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Energy levels of mesonic helium in quantum electrodynamics

V. I. Korobov
BLTP JINR, Dubna 141980, Russia

and Physics Department, Samara National Research University, Samara 443086, Russia

A. V. Eskin , A. P. Martynenko , and F. A. Martynenko
Physics Department, Samara National Research University, Samara 443086, Russia

(Received 19 November 2023; accepted 13 February 2024; published 1 March 2024)

On the basis of the variational method we study the energy levels of pionic helium (π -e-He) and kaonic helium
(K-e-He) with an electron in the ground state and a meson in the excited state with principal and orbital quantum
numbers n ∼ l + 1 ∼ 20. Variational wave functions are taken in the Gaussian form. Matrix elements of the
basic Hamiltonian and corrections to vacuum polarization and relativism are calculated analytically in a closed
form. We calculate some bound-state energies and transition frequencies which can be studied in the experiment.
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I. INTRODUCTION

One of the directions in the development of the theory of
fundamental interactions is connected to the study of bound
states of particles. In addition to the usual stable atoms and
molecules that exist in our world, there are exotic bound states
(muonium, positronium, positronium ions, muonic hydrogen,
and others), which have attracted the attention of both ex-
perimenters and theoreticians for decades [1–3]. Although
bound states have a short lifetime, by studying various energy
intervals in the energy spectrum of such systems, as well as
their decay widths, year after year, it was possible to obtain
from these studies more accurate information about the values
of the fundamental parameters of the standard model. The
number of such exotic systems has been growing in recent
years. For example, Refs. [4,5] proposed to study, using the
laser spectroscopy method, pionic helium atoms, which con-
sist of a negative pion, an electron, and a helium nucleus.
From a measurement of pion transitions between states with
large values for the principal and orbital quantum numbers
[(n, l ) = (17.16) → (17.15)] one can try to obtain a more
accurate value of the pion mass than can be obtained with
other methods. In [6,7], a successful experiment was already
carried out for nearly circular orbits, n ∼ l + 1, which gave
a transition-frequency value of 183 760 MHz. To find a more
accurate value of the pion mass from these measurements, it is
also necessary to take into account systematic effects such as
collision-induced shift and broadening of the transition lines,
among others [8–10]. The work in this direction is in an active
phase. Along with the atoms of pionic helium, other atoms
can be proposed and studied, for example, kaonic helium,
with the goal of research being a more accurate determination
of the mass of the K− meson. It is useful to note that there
are other approaches to clarifying the value of the π meson
mass. Thus, the study carried out in [11] demonstrated the
potential of crystal spectroscopy of curved crystals in the field
of exotic atoms. In that work, 5g-4 f transitions in pionic
nitrogen and muonic oxygen were measured simultaneously
in a gaseous nitrogen-oxygen mixture. Knowing the muon

mass, the muon line can be used to energy calibrate the pion
transition. The mass value of a negatively charged pion was
obtained and is 4.2 ppm higher than the current world average
of 139.570 77 ± 0.000 17 MeV [12].

Mesonic atoms are formed as a result of the replacement of
an orbital electron by a negatively charged meson. After that,
laser spectroscopy of such atoms will make it possible to mea-
sure transition frequencies and determine the reduced mass of
the system and hence the mass of the meson. To reduce the
influence of strong interaction between a meson and a nucleus,
the meson’s orbit is raised by increasing its orbital momen-
tum. The long lifetime of a meson atom is determined by the
state with a large value for the orbital momentum l = (16/20)
in which a meson is formed in the atom. Its transition to the
ground state with l = 0 is strongly suppressed. The lifetime
of such an atom is several nanoseconds.

The study of energy levels of three-particle systems can
be carried out with high accuracy within the framework of
the variational method. There are some differences in the
use of the variational method to find the energy levels of
three-particle systems. They are connected to the choice of
coordinates and representation of the Hamiltonian to describe
the system, with the choice of basis wave functions. Thus,
in [4] an exponential basis was used, and the coordinates of
the electron and meson were determined with respect to the
nucleus. In Refs. [13–15], when calculating the energy levels
of mesomolecules of hydrogen, muonic helium, etc., we used
Jacobi coordinates. For systems with three or more particles,
constructing a good set of basis functions is not an easy task,
and calculating the matrix elements becomes a very labor-
intensive process. From this point of view, Gaussian functions
written in Jacobi coordinates are especially suitable for the
analytical calculation of matrix elements and for obtaining the
energies of the ground and excited states. The purpose of this
work is to calculate the energy levels in pionic and kaonic
helium atoms, as well as transition frequencies between levels
in which the meson is in an excited state with a large orbital
quantum number.
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II. GENERAL FORMALISM

Different approaches have been developed for the study
of three-particle systems. There is an analytical method of
perturbation theory, which makes it possible to analytically
investigate both the Lamb shift and the hyperfine structure of
the spectrum [15–21]. Other methods that are used for many-
particle systems are the variational method and the method
of hyperspherical coordinates, which allow one to find energy
levels and wave functions with very high accuracy [22–31].
Since, for mesonic helium, the states of an atom with large
orbital moments for the meson are considered so that the elec-
tron and meson are the same distance from the nucleus, it is
virtually impossible to use a method employing the analytical
perturbation theory. Therefore, we study this system on the
basis of the variational method. The Gaussian basis is used as
the basis set for the wave functions.

To find the energy levels of a three-particle system, we
introduce the Jacobi coordinates ρ and λ, which are related
to the particle radius vectors r1 (nucleus), r2 (meson), and r3

(electron) as follows:

ρ = r2 − r1, λ = r3 − m1r1 + m2r2

m1 + m2
, (1)

where m1, m2, and m3 are the masses of the He nucleus, π−
(K−) meson, and electron.

To solve the variational problem, we choose the ground-
state trial-basis wave functions in the form of the superposi-
tion of the Gaussian exponents:

�(ρ,λ, A) =
K∑

i=1

Ciψi(ρ,λ, Ai ), ψi(ρ,λ, Ai )

= e− 1
2 (Ai

11ρ
2+2Ai

12ρλ+Ai
22λ

2 ), (2)

where Ci are linear variational parameters, Ai is the matrix of
nonlinear variational parameters, and K is the basis size.

In the nonrelativistic approximation the Hamiltonian of a
three-particle atom in Jacobi coordinates can be presented as

Ĥ0 = − 1

2μ1
∇2

ρ − 1

2μ2
∇2

λ + e1e2

|ρ| + e1e3∣∣λ + m2
m12

ρ
∣∣

+ e2e3∣∣λ − m1
m12

ρ
∣∣ , (3)

where m12 = m1 + m2, μ1 = m1m2
m1+m2

, μ2 = (m1+m2 )m3
m1+m2+m3

, and e1,
e2, and e3 are the particle charges.

For arbitrary states of the meson and electron with orbital
angular momenta l1 and l2, a convenient basis for the ex-
pansion of functions depending on two directions are bipolar
spherical harmonics [32]:[

Yl1 (θρ, φρ ) ⊗ Yl2 (θλ, φλ)
]

LM

=
∑

m1,m2

CLM
l1m1l2m2

Yl1m1 (θρ, φρ )Yl2m2 (θλ, φλ), (4)

where θρ, φρ and θλ, φλ are spherical angles that determine the
direction of the vectors ρ and λ, respectively. Since the π− or
K− meson is in an orbital excited state l in pionic or kaonic
helium and the electron is in the ground state, the variational
wave function of the system is chosen for such states in the

form

�lm(ρ,λ, A) =
K∑

i=1

CiYlm(θρ, φρ )ρ l e− 1
2 (Ai

11ρ
2+2Ai

12ρλ+Ai
22λ

2 ),

(5)

where the spherical function Ylm(θρ, φρ ) describes the angular
part of the orbital motion of a pion or kaon.

Within the framework of the variational approach, the so-
lution of the Schrödinger equation is reduced to solving the
following matrix problem for the coefficients Ci:

HC = EBC, (6)

where the matrix elements of the Hamiltonian Hi j and nor-
malizations Bi j can be calculated analytically in the basis of
the Gaussian wave functions. Thus, the normalization of the
wave function (5) is determined by the following expression:

〈�|�〉 =
K∑

i, j=1

CiCj2
l+2π3/2	

(
l + 3

2

)
Bl

22

(detB)l+ 3
2

,

Bkn = Ai
kn + Aj

kn, (7)

where 	(l + 3/2) is the Euler gamma function.
Consider further analytical results for the matrix elements

of the Hamiltonian. The kinetic-energy operator contains two
terms. The matrix element from the Laplace operator with
respect to λ has the form

〈�|∇2
λ|�〉 =

K∑
i, j=1

CiCj2
l+2π

3
2 	

(
l + 3

2

)
Bl−1

22

(detB)l+ 5
2

× [
3Ai

22

(
Ai

22 − B22
)
detB + (2l + 3)

× (
Ai

22B12 − Ai
12B22

)2]
. (8)

A similar matrix element with the Laplace operator in ρ is
also expressed in terms of nonlinear variational parameters as
follows:

〈�|∇2
ρ |�〉 =

K∑
i, j=1

CiCj2
l+1π

3
2 	

(
l + 1

2

)
Bl−1

22

(detB)l+ 5
2

× {
(2l + 1)detB

[ − (2l + 3)Ai
11B22 + 3

(
Ai

12

)2

+ 2lAi
12B12

] + (2l + 1)(2l + 3)

× (
Ai

12B12 − Ai
11B22

)2}
. (9)

The potential-energy operator in the nonrelativistic Hamil-
tonian consists of pairwise Coulomb interactions Ui j (i, j =
1, 2, 3). The convenience of using the Gaussian basis in this
case also lies in the possibility of an analytical representation
of the matrix elements of the potential energy [in electron
atomic units (e.a.u.)]:

〈�|U12|�〉 = −Z
K∑

i, j=1

CiCj2
l+ 3

2 π
3
2 	(l + 1)

Bl−1
22

(detB)l+1
, (10)

〈�|U13|�〉 = − Z
K∑

i, j=1

CiCj2
l+ 5

2 π	

(
l + 3

2

)
B

l+ 1
2

22

(detB)l+ 3
2

× 2F1

(
1

2
, l + 3

2
,

3

2
,−

(
F 23

2

)2

detB

)
, (11)
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TABLE I. Energy levels of the meson atom obtained in the nonrelativistic approximation with the Gaussian (G) and exponential (Exp)
bases and values of the main corrections in the energy spectrum in electron atomic units.

State Enr(Exp) Enr(G) − α2

8 p4
e �Uvp �Ucont

(3
2He -π−-e) atom

(17, 16) −2.64312261030188(2) [4] −2.64238222 −0.00035742 −0.00000036 0.00000212
(17, 15) −2.6709980910(1) [4] −2.66982848 −0.00036341 −0.00000036 0.00000215
(18, 17) −2.52088142679 [4] −2.52053250 −0.00040763 −0.00000042 0.00000481
(18, 16) −2.545645472099(1) [4] −2.54506684 −0.00040557 −0.00000042 0.00000478
(19, 18) −2.4329808449305 [4] −2.43282621 −0.00045014 −0.00000045 0.00000529
(19, 17) −2.4529359745011 [4] −2.45265164 −0.00044052 −0.00000044 0.00000516

(4
2He -π−-e) atom

(17, 16) −2.65751243850171 [4] −2.65676897 −0.00035246 −0.00000035 0.00000209
(17, 15) −2.68542722(2) [4] −2.68424220 −0.00035923 −0.00000036 0.00000212
(18, 17) −2.5319465695913 [4] −2.53159626 −0.00040322 −0.00000041 0.00000475
(18, 16) −2.556984919572(2) [4] −2.55640530 −0.00040184 −0.00000041 0.00000473
(19, 18) −2.4413857971745 [4] −2.44123203 −0.00044557 −0.00000045 0.00000524
(19, 17) −2.4618067856861 [4] −2.46151679 −0.00043725 −0.00000044 0.00000514

(3
2He -K−-e) atom

(20, 19) −4.70032469 −4.68062221 −0.00012207 −0.00000013 0.00000075
(20, 18) −4.70435047 −4.69322183 −0.00011231 −0.00000012 0.00000068
(21, 20) −4.31990309 −4.31336107 −0.00014995 −0.00000015 0.00000086
(21, 19) −4.32856055 −4.32386298 −0.00014501 −0.00000015 0.00000088
(29, 28) −2.74459354 −2.74407984 −0.00031887 −0.00000034 0.00000380
(29, 27) −2.76135247 −2.76071139 −0.00032067 −0.00000034 0.00000380
(30, 29) −2.65386695 −2.65349887 −0.00034777 −0.00000036 0.00000412
(30, 28) −2.67027220 −2.66981800 −0.00035322 −0.00000037 0.00000418

(4
2He -K−-e) atom

(20, 19) –4.83371129 −4.83289366 −0.00011988 −0.00000012 0.00000073
(20, 18) −4.86241602 −4.85784789 −0.00010846 −0.00000012 0.00000066
(21, 20) −4.45731745 −4.44998430 −0.00013049 −0.00000015 0.00000088
(21, 19) −4.46536310 −4.46016857 −0.00013805 −0.00000014 0.00000083
(29, 28) −2.80020575 −2.79967013 −0.00030251 −0.00000032 0.00000361
(29, 27) −2.81647989 −2.81605377 −0.00031142 −0.00000034 0.00000370
(30, 29) −2.70241808 −2.70204219 −0.00033248 −0.00000035 0.00000395
(30, 28) −2.71878216 −2.71833449 −0.00033771 −0.00000036 0.00000400

〈�|U23|�〉 =
K∑

i, j=1

CiCj2
l+ 5

2 π	

(
l + 3

2

)
B

l+ 1
2

22

(detB)l+ 3
2

× 2F1

(
1

2
, l + 3

2
,

3

2
,−

(
F 13

2

)2

detB

)
, (12)

F 13
2 = B12 + m1

m12
B22, F 23

2 = B12 − m2

m12
B22, (13)

where 2F1(α, β, x) is a hypergeometric function.
For l = 1 expressions (11)–(13) coincide with previously

obtained results [33]. Using the matrix elements of the Ĥ0

Hamiltonian, some energy levels of the π−-meson and K−-
meson atoms are calculated in the MATLAB system. The
calculations are carried out using our program, which was pre-
viously used to calculate the energy levels of various muonic
atoms in quantum electrodynamics. The calculation of the
energy levels of the π−-meson atom is carried out in order

to test the operation of the program. The calculation results
are shown in Table I.

To improve the accuracy of the calculation, we consider
some important corrections to the Hamiltonian Ĥ0. The pair
electromagnetic interaction between particles in quantum
electrodynamics is determined by the Breit potential [34].
Among the various terms in this potential, let us single out
those terms that have the greatest numerical value. They
include relativistic corrections, contact interaction, and cor-
rections for vacuum polarization.

The relativistic corrections are defined in the energy spec-
trum by the following terms in electron atomic units:

�Urel = −α2

8

(
p4

1

m3
1

+ p4
2

m3
2

+ p4
3

m3
3

)
. (14)

The term of leading order in (14) is related to the motion
of the electron. The value of the matrix element from �U e

rel
can be obtained in exactly the same way as (8) in terms of
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FIG. 1. The radial distribution densities W (ρ ) (left) and W (λ) (right) for (3
2He-π−-e) for state (16,15). The values of variables ρ and λ are

taken in electron atomic units.

variational parameters:

〈�| − α2

8
∇4

λ|�〉 = − α2

8

K∑
i, j=1

CiCj2
l+2π

3
2 	

(
l + 3

2

)
Bl−2

22

(detB)l+ 7
2

[
15

(
Ai

22

)2
(detB)2

(
Ai

22 − B22
)2 + 10(2l + 3)Ai

22

(
Ai

22 − B22
)

× detB
(
Ai

22B12 − Ai
12B22

)2 + (2l + 3)(2l + 5)
(
Ai

22B12 − Ai
12B22

)4]
. (15)

Let us also take into account the vacuum polarization effects in the energy spectrum. Since for both an electron and a meson
in a highly excited state the Compton wavelength of an electron is much smaller than the radius of the Bohr orbit, we can use
the following expression for the vacuum polarization potential in electron atomic units:

�Uvp = �Uvp(r13) + �Uvp(r23) = − 4

15
α2(Zα)δ

(
λ + m2

m12
ρ

)
+ 4

15
α2(Zα)δ

(
λ − m1

m12
ρ

)
. (16)

The matrix elements of such potentials are calculated ana-
lytically in a closed form:

〈�|�Uvp(r13)|�〉 = − 4

15
α2(Zα)

K∑
i, j=1

CiCj2
l+ 1

2 	

(
l + 3

2

)

× 1(
F 13

1

)l+ 3
2

, (17)

〈�|�Uvp(r23)|�〉 = − 4

15
α2(Zα)

K∑
i, j=1

CiCj2
l+ 1

2 	

(
l + 3

2

)

× 1(
F 23

1

)l+ 3
2

, (18)

F 13
1 = B11 + m2

2

m2
12

B22 − 2
m2

m12
B12,

F 23
1 = B11 + m2

1

m2
12

B22 + 2
m1

m12
B12. (19)

The contact interaction potential, as well as (16), is ex-
pressed through the δ functions in the form (in electron atomic
units)

�Ucont = πZα2

2
δ

(
λ + m2

m12
ρ

)
− πα2

2
δ

(
λ − m1

m12
ρ

)
. (20)

In Table I we present the results from calculating the en-
ergy values with the Hamiltonian Ĥ0 and the values of the
matrix elements (15), (17), (18), and (20).

The obtained wave functions (5) make it possible to
calculate the radial distribution densities in ρ and λ and root-
mean-square values

√
〈ρ2〉 and

√
〈λ2〉, which are determined

by the expressions

W (ρ) = (2π )3/2

〈�|�〉
K∑

i, j=1

CiCj

B3/2
22

ρ (2l+2)e− 1
2

detB
B22

ρ2

, (21)

W (λ) = 2l+ 5
3 π

〈�|�〉
K∑

i, j=1

CiCj	
(
l + 3

2

)
B

l+ 3
2

11

λ2e− 1
2 B22λ

2

× 1F1

(
l + 3

2
,

3

2
,

B2
12λ

2

2B11

)
, (22)

W (ρ, λ) = 4π

〈�|�〉
K∑

i, j=1

CiCj

B12
ρ2l+1λe− 1

2 [B11ρ
2+B22λ

2]sh(B12ρλ),

Blk = Ai
lk + Aj

lk, (23)

〈ρ2〉 = π
3
2 2l+3	

(
l + 5

2

)
〈�|�〉

K∑
i, j=1

CiCj
Bl+1

22

(detB)l+5/2
, (24)

〈λ2〉 = π
3
2 2l+2	

(
l + 3

2

)
〈�|�〉

K∑
i, j=1

CiCj
Bl−1

22

(detB)l+ 5
2

× (
3B11B22 + 2B2

12l
)
. (25)

032802-4



ENERGY LEVELS OF MESONIC HELIUM IN QUANTUM … PHYSICAL REVIEW A 109, 032802 (2024)

FIG. 2. The radial distribution densities W (ρ ) (left) and W (λ) (right) for (3
2He-π−-e) for state (17,15). The values of variables ρ and λ are

taken in electron atomic units.

The radial distribution densities are presented in Figs. 1–4
in the cases of pionic helium and kaonic helium. These plots
show the presence of characteristic distances in the particle
systems (He-π−-e) and (He-K−-e). It also follows from these
graphs that for the considered states, the meson turns out to be
located the same distance from the nucleus or slightly closer
to the nucleus than the electron. The distribution densities for
the two radial variables ρ and λ provide a more complete
picture of the characteristic distances in a given system of
three particles. They are shown in two graphs in Figs. 5
and 6.

Fine splitting in a three-particle atom which is determined
by the interaction of the electron spin and the large orbital
angular momentum of the meson is not considered here.

III. DISCUSSION OF THE RESULTS

To calculate the energy of a specific state, we run the
program 10 different times with a minimum basis of 200
functions, varying the boundaries to generate nonlinear vari-
ational parameters. Having selected the boundaries where the
minimum energy is obtained at this stage, we launch several
programs with the same parameters, increasing the basis to
approximately 800 functions. At each step of the program,
the basis is increased by one, and refinement cycles are per-
formed. The number of such cycles (usually, this value is
1000) is specified in the input file at the beginning of the pro-

gram. The final size of the basis is not limited, but the program
ends when it cannot refine the minimum energy obtained in
the previous step. By making several such calculations, we
determine by what amount the results change. We take the
number of matching digits as the accuracy of our calculations.
We present the calculation results by writing the energy to
eight decimal places, which determines the accuracy of the
calculation in our approach. Of course, there are a number
of other corrections in the three-particle interaction potential
that are not accounted for, but they are suppressed by the
additional degree of the fine-structure constant α. Thus, it is
possible to determine the accuracy of the calculation by taking
into account uncalculated corrections of 10−7 e.a.u.

This paper examines the energy levels of pionic and kaonic
helium for states in which the meson has such a large or-
bital momentum that it is located approximately the same
distance from the nucleus as the electron. The calculations
are performed in leading order within the framework of the
variational method with the Gaussian basis, and a number of
basic corrections determined by the Breit Hamiltonian (for
relativism, vacuum polarization, and contact interaction) are
calculated in the first order of perturbation theory. Since an
electron is in the 1S state, the notation (n, l ) is used for a
state with three particles in Table I, where l is the orbital
momentum of the meson and n is the principal quantum
number of subsystem (π−He2+) or (K−He2+). In our case
the variational trial function is restricted to the subspace of

FIG. 3. The radial distribution densities W (ρ ) (left) and W (λ) (right) for (3
2He-K−-e) for state (21,20). The values of variables ρ and λ are

taken in electron atomic units.
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FIG. 4. The radial distribution densities W (ρ ) (left) and W (λ) (right) for (3
2He-K−-e) for state (22,20). The values of variables ρ and λ are

taken in electron atomic units.

σ states [for states with an azimuthal quantum number of an
electron in the moving frame equal to zero, see Eq. (5)]. In
this case the states of interest become bound, and the standard
variational procedure is valid. These issues were discussed
in our previous works [35,36], which showed that the prob-
lem is reduced (projected) to Feshbach-type closed-channel
equations.

The Rydberg states in atoms play an important role in
refining the values of fundamental constants. Thus, based on
the spectroscopy of the Rydberg states in a hydrogen atom,
the measurement of the Rydberg constant has been improved
[37,38]. In this problem, by working with the Rydberg states,
it is possible to eliminate contributions to the structure of a

FIG. 5. The radial distribution density W (ρ, λ) for (πe 4He) in
states (17,16) (top) and (17,15) (bottom). The values of variables ρ

and λ are taken in electron atomic units.

nucleus. In the case of mesonic atoms, the use of Rydberg
states makes it possible to reduce the influence of strong
interaction on the energy spectrum.

Spectroscopy of various exotic molecules can provide new
information about the nature of fundamental interactions and
the values of fundamental parameters of the standard model.
Several years ago, the PiHe collaboration at the Paul Scherrer
Institute performed laser spectroscopy of the infrared transi-
tion in three-body pion helium atoms [4,5]. The atoms were
created in a superfluid (He II) helium target. Similar measure-
ments in antiproton helium atoms embedded in liquid helium
were carried out by the CERN Atomic Spectroscopy And
Collisions Using Slow Antiprotons collaboration [39]. The
antiproton-to-electron mass ratio was determined as mp/me =
1836.1526734(15) [39]. The mass of π mesons can be deter-
mined by comparing the experimental transition frequencies
in pionic helium with the results of the QED calculation [4].
Although the transition frequency (17, 16) → (17, 15) has
already been measured for pionic helium [5], the analysis of
experimental data to extract the pion mass is still ongoing.

Our study of the energy levels of both pionic and kaonic
helium is carried out on the basis of the variational approach,
which was developed in Ref. [28]. In contrast to Ref. [4], to
describe a three-particle system, the Jacobi coordinates ρ and
λ are used, in which the original Hamiltonian has the form (3).
The second difference between our calculation and [4] is the
use of a Gaussian basis rather than an exponential basis within
the variational method. In such a basis, all matrix elements
of the Hamiltonian are obtained in a closed analytical form.
In the case of an exponential basis, the calculation of matrix
elements can also be performed analytically, but very often,
when a calculation program is written, the calculation of such
matrix elements is performed numerically. Finally, the third
difference between our calculations and [4] is that in [4],
within the framework of the variational approach, the method
of complex coordinate rotation is used, and we work with a
real Hamiltonian and solve the eigenvalue problem (6). The
obtained numerical results for the leading-order contribution
to the energy of the system and corrections to it are pre-
sented in Table I. Comparing these results with calculation
in [4], it is necessary to note a slight difference in the re-
sults which appears in the third digit after the decimal point
(second column in Table I). For the (17.16) → (17.15) tran-
sition frequency for pionic 4He that was measured, our result
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FIG. 6. The radial distribution density W (ρ, λ) for (Ke 3He) in
states (21,20) (top) and (21,19) (bottom). The values of variables ρ

and λ are taken in electron atomic units.

180 772 GHz is slightly different (close to 1%) from the result
183 681.5 ± 0.5 GHz obtained in [4] and from the experimen-
tal value, which is 183 760(6) (6) GHz. Our result for a similar
transition frequency in pionic 3He is 180 594 GHz. We also
present here the results for the (21, 20) → (21, 19) transition
frequencies in the case of kaonic helium. They are 69 094 GHz
(K-e- 3

2He) and 67 017 GHz (K-e- 4
2He). In general, our results

using the Gaussian trial functions (third column of Table I)
are consistent with calculations with an exponential basis in
[4] (second column of Table I) in the case of pionic helium. In
the case of kaonic helium, we obtained results using an expo-
nential and Gaussian basis. The difference in results is due,
in our opinion, to differences in the variational approaches
used in this work and in [4] and the bases for variational wave
functions.

A study of the characteristic distances at which the nu-
cleus, meson, and electron are located relative to each other
is shown in Figs. 1–6 for some states for which the binding
energies are calculated. The meson is in an excited state with

a large orbital momentum l . The key parameter with which
one can estimate its distance to the nucleus is determined
by the expression

√
μ1/m3, where μ1 is the reduced mass

of the meson-nucleus system and m3 is the electron mass.
When the principal quantum number n = √

μ1/m3 ≈ 16 for
the (π− 4

2He) or (π− 3
2He) subsystem, the movement of the

π− meson occurs at approximately the same distance from the
nucleus and has the same binding energy as the electron. In
the case of kaonic helium, the value of the principal quantum
number increases due to an increase in the meson mass and
reaches the value n ≈ 29. This parameter determines the order
of the principal quantum number n at which the meson and
electron have close orbits. But in this work we have so far
considered slightly smaller values, n ≈ 20, so that the K−
meson is located a little closer to the nucleus. It follows from
Figs. 1–6 that in the case of the considered Rydberg states
of the π− or K− meson, characteristic distances along ρ and
λ have close values. So, for example, the root-mean-square
value of

√
λ2 for state (17,16) in (π -e- 4

2He) is 60 050 fm,
and the root-mean-square value of

√
ρ2 for the same state is

37 210 fm. This means that the use of an analytical method
to calculate energy levels as in [13,21] is difficult since the
characteristic series for the parameter Me/Mμ from [13,21]
does not rapidly converge.

When calculating relativistic effects, we take into account
only the corresponding correction for the electron, meaning
that the electron is the lightest particle in this system, and
with an increase in the principal quantum number n, the orbital
speed is determined by the formula v = Zα/n. Therefore, for
a meson in circular Rydberg states it is suppressed by the
factor n.

In Table I we limited ourselves to presenting numerical
results from calculating the energies of bound states of three
particles for only a certain number of states with (n, l ). But
the obtained general analytical formulas for the matrix el-
ements of the Hamiltonian of the system make it possible
to carry out corresponding numerical calculations for other
states (n, l ) which may be more important for the experiment.
For the principal quantum number n = 29, the binding en-
ergy of kaonic helium in state (n, l ) = (29, 28) is equal to
−2.798 355 417 6 e.a.u., and in state (n, l ) = (29, 27) it has
the value −2.814 521 016 7 e.a.u., which ultimately gives the
transition frequency between these levels, ν = 106 364 GHz.
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