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Algorithms with unitary oracles can be nested, which makes them extremely versatile. An example is the phase
estimation algorithm used in many candidate algorithms for quantum speedup. The search for new quantum
algorithms benefits from understanding their limitations: Some tasks are impossible in quantum circuits, although
their classical versions are easy, for example, cloning. An example with a unitary oracle U is the if clause, the
task to implement controlled U (up to the phase on U ). In classical computation the conditional statement is easy
and essential. In quantum circuits the if clause was shown impossible from one query to U . Is it possible from
polynomially many queries? Here we unify algorithms with a unitary oracle and develop a topological method to
prove their limitations: No number of queries to U and U † lets quantum circuits implement the if clause, even if
admitting approximations, postselection, and relaxed causality. We also show limitations of process tomography,
oracle neutralization, and dim U

√
U , U T , and U † algorithms. Our results strengthen an advantage of linear optics,

challenge the experiments on relaxed causality, and motivate new algorithms with many-outcome measurements.
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I. INTRODUCTION

Quantum computation is believed to outperform classi-
cal computation. Many candidate algorithms for quantum
speedup [1–6] use Kitaev’s phase estimation algorithm [7].
Phase estimation is so versatile because it is an oracle algo-
rithm; it estimates the phase of any unitary oracle U . In oracle
algorithms, the input is an oracle: an unknown subroutine, a
black box whose inner workings are hidden. It is only possible
to query an oracle: to set its input and receive its output.
With no assumptions on the subroutines, versatility is the main
advantage of oracle algorithms. They can be gradually com-
posed into complicated computation in independent building
blocks.

Another advantage of oracles is the provability of lim-
itations of computation. Factoring has a low-complexity
quantum algorithm due to Shor [1], while it is believed to have
only high-complexity classical algorithms. Rigorously prov-
ing complexity lower bounds is hard. Unlike factoring, oracle
problems do have some lower bound proof methods: the poly-
nomial [8], hybrid [9], and adversary [10,11] methods. For
example, the problem solved by Grover’s quantum algorithm
[12] is an oracle problem. It has a proven complexity lower
bound in classical [12] as well as quantum [8,9] circuits. In
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Grover’s quantum algorithm, the oracle is classical; it is a
function on bit strings (representing classical computation).
In phase estimation [7] the oracle is quantum; representing
any quantum circuit, it is a unitary matrix. Additional versatile
algorithms could be singled out by a new, possibly purely
quantum, lower-bound method.

Discovering limitations of quantum computation has fur-
ther advantages. Consider the classically easy tasks, whose
quantum analogs are impossible: cloning [13], deleting [14],
universal-NOT gate [15], programming [16]. These impossi-
bilities lead to new protocols and deepen our understanding of
physics; for example, no cloning inspires quantum cryptogra-
phy [17] and serves as a check for various axiomatizations of
quantum mechanics [18–22].

Usually, after an initial impossibility result, stronger no-go
theorems and precise bounds follow by studying approxi-
mation, postselection, and complexity generalizations. The
first two generalizations are often considered separately: ap-
proximate cloning [23,24] independently from postselection
(probabilistic) cloning [25], and similarly for other tasks
[16,26–30] (see [31] for an exception). The third generaliza-
tion allows repeated input. Repreparing a state or rerunning
a procedure is often necessary, for example, for obtaining
statistics from experiments. Hopefully, polynomially many
repetitions suffice. One such complexity generalization is
N-to-M cloning [31–35]: if M = N + 1, N is the sample com-
plexity of creating one clone. When the input is an oracle, we
are interested in the algorithm’s query complexity.

Here we develop a unified formalism for quantum compu-
tation with unitary oracles, which captures all of the above
generalizations simultaneously. Thus, we are able to derive
the strongest-yet no-go theorem for the if-clause task [36];
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the task to implement controlled U given an oracle U , the
quantum version of the conditional statement essential to clas-
sical computation. We show that an if clause of any query
complexity is impossible, thus losing what could be a funda-
mental building block in quantum circuits. This, for example,
limits the flexibility of phase estimation, which assumes the
controlled-U building blocks. Our method exploits features
unique to unitary oracles; its novel topological approach adds
to the few previously known lower-bound methods. To further
demonstrate its applicability, we prove limitations of other
previously studied unitary-oracle tasks: the neutralization,
fractional power, inverse and transpose tasks. The limitations
hold for quantum circuits (even with postselection and relaxed
causality), but not for linear optics. This motivates developing
implementation-dependent algorithms for oracle problems.

A. Problem statement

To state the problem precisely, we first discus some pre-
ceding works. In addition to phase estimation [7], several
known algorithms use oracle access to U for implementing
a function of U : the complex conjugate U [37], the transpose
U T and inverse U † [38,39], and the fractional power U q for
some q ∈ Q [40,41]. The fractional power algorithms differ
from the others in two ways: First, they require queries to U
(or controlled U ) and to its inverse. Second, they succeed not
for all, but only for most, n-qubit unitary oracles U ∈ U(2n):
they are (exponential1) average-case algorithms in the sense
of heuristic schemes [42, Definition 11]. Complexity theory
mostly studies worst-case algorithms, algorithms succeed-
ing even on the worst input. Worst-case algorithms satisfy
input-independent guarantees, which is preferred for reliable
computation.

In different computational models the same oracle prob-
lem might have a different query complexity: the minimal
number of queries the model needs to solve the problem. In
the quantum-circuit model the queries have predefined causal
order, and in process matrices the causal order is relaxed
[43,44]. While quantum circuits need three queries, process
matrices provide a two-query solution to the quantum switch
[43], the task to superpose orders of two oracles. Thus, the-
oretically, process matrices are more powerful. But are they
physically relevant? The debate about the physicality of the
process-matrix solution to the quantum switch is ongoing, for
example, whether it was implemented [45] or only simulated
[46] by certain linear optics experiments [47–49].

A discrepancy between quantum circuits and linear optics
is already exhibited by a simpler unitary-oracle problem, the
if clause. Its classical version is fundamental for classical
computation: Apply a subroutine if a control bit is 1 and do
nothing otherwise. In the quantum version, the control bit is a
qubit and the subroutine is a d-dimensional unitary U ∈ U(d ),

1The algorithms work for inputs U that satisfy a condition captured
by the gap parameter g [40]. As a function of g, the algorithms require
O(1/g) queries to succeed on these “good” inputs. Haar measure over
U(2n) induces the probability of a “bad” input δ = 1 − (1 − g)2n �
2ng, thus the algorithms fit within a requested δ with O(2n/δ) queries.
Since δ � 1 − e−2ng, the exponential query complexity is necessary.
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FIG. 1. (a) This algorithm of Kitaev [7] implements c0(U ′) if
given |�〉 such that U ′|�〉 = |�〉. (b) The interferometric if clause
[36]: polarizing beam splitters transmit or reflect the photon depend-
ing on its polarization degree of freedom |i〉c. U acts on other degrees
of freedom.

acting on n = �log2 d� qubits. Following [36], we identify this
with the linear operator

cφ (U ) := |0〉〈0| ⊗ I + eiφ(U )|1〉〈1| ⊗ U (1)

for some real function φ. In the special case when φ is iden-
tically zero, the operator, c0(U ) = |0〉〈0| ⊗ I + |1〉〈1| ⊗ U , is
controlled U . Access to c0(U ) is assumed in phase estimation
[7]. c0(U ) is implementable given a +1 eigenstate [Fig. 1(a)]
or a classical description [50,51] of U . Such information is not
available in our oracle setting, which entertains more flexibil-
ity. When U is an oracle, the freedom in φ(U ) is necessary:
It grants the if clause an insensitivity to U ’s global phase
[36,52,53]. Araújo, Feix, Costa, and Brukner [36] proved that
implementing (1) for all U ∈ U(d ) from only one query to U
is impossible in quantum circuits, though it is possible in lin-
ear optics [Fig. 1(b)]. To explain the discrepancy, the authors
argued that the gate U in Fig. 1(b) is not completely unknown:
its position is known, revealing that on the lower path modes it
acts as the identity. Any physical gate is restricted to a specific
space (specific modes), so Ref. [36] suggested adding the
direct sum composition U ⊕ I to the quantum-circuit model.

Dong, Nakayama, Soeda, and Murao [54] found an al-
gorithm for a related task, of implementing cd

φ (U ) for all
U ∈ U(d ), where

cm
φ (U ) := |0〉〈0| ⊗ I + eiφ(U )|1〉〈1| ⊗ U m. (2)

In their algorithm m = d , φ(U ) = det(U )−1, and U is queried
d times. Alternatively, with d queries to the fractional power
U

1
d the algorithm implements c1

φ (U ) = cφ (U ) (m = 1), the if
clause. Thus, the algorithm of [54] relates two unitary-oracle
problems: the if clause and the fractional power.

The fractional power dates back to the
√

U question in
Aaronson’s 2006 list of “The ten most annoying questions in
quantum computing” [55]. For a given fraction, a given uni-
tary has several possible fractional powers. Sheridan, Maslov,
and Mosca [40] chose a particular fractional power, and, by
finding a contradiction, proved that a worst-case algorithm
implementing it for an unknown U is impossible [40, Lemma
1]. This oracle impossibility means that if a worst-case algo-
rithm for some

√
U exists, it depends on the details of the

implementation of U .
Another important oracle task is to remove the effect of

an unknown and undesired evolution: the neutralization task.
Often the evolution, the repeated application of some unitary
U , cannot be avoided. However, initializing the state and/or
interlacing U with fixed gates can cancel out its effect. For
example, spin echo [56] is a neutralization algorithm for
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restricted U ’s: for qubit rotations around the z axis. Spin echo
neutralizes two queries to U . The neutralization algorithm of
[54] works for general d-dimensional unitaries. It neutralizes
d queries to U .

The tasks mentioned above are all tasks with unitary ora-
cles. Some algorithms and no-go theorems have been found,
but maybe a unified approach is possible, with more emphasis
on query complexity in order to strengthen the no-gos and
to understand the optimality of the known algorithms. We
have seen that the linear-optics complexity of the if clause is
constant, 1, and that its quantum-circuit complexity is strictly
bigger. To bridge the gap, Ref. [36] suggested modifying the
quantum circuit formalism. But, is the gap large enough, e.g.,
beyond poly(n),2 to justify this? What is the quantum-circuit
complexity of the if clause? It seems at most exponential
because U ’s classical description suffices to build an if clause
[51], and process tomography [57–59] yields the oracle’s clas-
sical description from exp(n) queries.

B. Results overview

In this work we develop a unified formalism for com-
putation with unitary oracles U . We phrase such tasks and
worst-case algorithms as functions on unitaries. The algorithm
functions have two important properties: continuity and ho-
mogeneity. We add to the few previously known lower bound
methods a different, topological method and derive results.

The first and the most surprising result shows that the
quantum-circuit complexity of the if clause is infinite. We
show that no matter how many times a postselection circuit
queries U and U †, it cannot implement the if clause with
a nonzero success probability for every U ∈ U(d ), not even
approximately! Surprisingly, process tomography suggested
above fails for the if clause, and only works for a relaxed vari-
ant of the task. We prove this limitation of process tomography
directly. Second, we give a different proof that implementing
the fractional power U

1
d for all U ∈ U(d ) is impossible, from

any number of queries to U and U †. Our contradiction is in-
dependent of the particular dth root function. Third, we show
that quantum circuits and process matrices fail to neutralize
some specific numbers of queries. Last, we prove related
limitations regarding the transpose and inverse tasks.

The above results limit versatile quantum computation,
and impact our understanding of tomography, measurements,
linear optics, and causality. Using process tomography for the
if clause has a caveat: Instead of a superoperator estimate of
ρ �→ Uρ U †, the if clause requires a matrix estimate of U .
We show the limitation of such matrix tomography. Defining
a relaxed if clause circumvents the limitation, but the algo-
rithm must use a measurement beyond the binary success
or fail type. This splits measurements into two groups with
different effects on the quantum-circuit query complexity.
The quantum-circuit model itself is compared to other mod-
els: linear optics and process matrices. On the if clause the
quantum-circuit model turns out to be infinitely less efficient
than linear optics! One might put some hope into relaxing

2In the absence of oracles, the quantum-circuit model can simulate
optics with only a polynomial overhead [79–82].

causality; maybe linear optics is better matched by process
matrices. While arguably true for the quantum switch task,
this is wrong for the more fundamental if-clause task: its
process-matrix complexity is infinite, too. The advantage of
linear optics stems from restricting the oracle. The models
with fully general unitary oracles have a property central to
our impossibility proofs: homogeneity. Linear optics restrict
oracles to the form 1 ⊕ U which breaks homogeneity. Differ-
ently from [36], we attribute the direct sum to the linearity of
linear optics (see Sec. V).

The rest of the paper is organized as follows. Section II
defines oracle computation using functions on d-dimensional
unitaries, U ∈ U(d ). Section III proves the if-clause impossi-
bility and the process tomography limitation by exploiting the
continuity of algorithms and the topology of the space U(d )
(Lemma 1). Section IV uses this topological approach to prove
results regarding the neutralization, 1/dth power, transpose,
and inverse. In Sec. V, we emphasize that our method applies
to the worst-case models with the exception of linear optics.
We discuss the cause and the significance of this exception.
Then we discuss relaxed causality and measurements.

II. ALGORITHM AS A FUNCTION OF THE ORACLE

An algorithm should solve a problem. Each problem men-
tioned in the Introduction asks to implement some operator
t (U ) ∈ L(H), where L(H) is the set of linear operators from
a finite-dimensional Hilbert space H to itself. We call the
function t : U(d ) → L(H) task function. The allowed types
of queries to the oracle, for example, U and U † queries, are
also represented by functions on operators (query functions)
in our example by id : U �→ U and inv : U �→ U †. Another
example is the c0 query function in phase estimation. A set
of allowed query functions is a query alphabet �. A task
function and a query alphabet together form a pair (t, �)
called task. Examples are in Table I, which phrases the above-
mentioned preceding works in terms of tasks.

Next we represent algorithms by functions of U . In [8,60]
a unitary quantum circuit with N queries to an oracle U
corresponds to a sequence of unitary transformations

V0,U,V1,U, . . .VN−1,U,VN

for some fixed unitaries Vi acting on a possibly larger Hilbert
space than the oracle U . We generalize the above in two ways.
First, we add the possibility to query U via query functions σi:

V0, σ1(U ),V1, σ2(U ), . . .VN−1, σN (U ),VN .

Regarding σi as a single character, the string s =
σ1σ2 . . . σN , called the query sequence, is fixed for the algo-
rithm. Second, we allow for a projective measurement at the
end {�succ,�fail}, followed by the postselection on success
�succ.

Definition 1 (Postselection oracle algorithm). A postse-
lection oracle algorithm (A, �A) is a function A : U(d ) →
L(H ⊗ K) of the form

A(U ) = �succ VN [σN (U ) ⊗ IKN ] . . .V1[σ1(U ) ⊗ IK1 ]V0, (3)

where σi ∈ �A for all i ∈ [N]. The algorithm implements the
total linear operator A(U ) (Fig. 2) whenever its projective
measurement {�succ,�fail} yields success. The probability of
success must be nonzero if the ancilla Hilbert space K is
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TABLE I. Examples of tasks and their approximate solvability by oracle algorithms with postselection.

Task For all U ∈ U(d ) For most U ∈ U(d )

if clause (cφ, {id, inv}) Impossiblea Unitary algorithm [40,54]b

if clause from fractions (cφ, {U �→ U
1
d }) Exact unitary algorithm [54]

Complex conjugate (U �→ U , {id}) Exact unitary algorithm [37]
Transpose (U �→ U T , {id}) Exact algorithm [38,39]
Inverse (inv, {id}) Exact algorithm [37–39]b

Phase estimation (phase_est, {c0}) Unitary algorithm [7]
Fractional power (U �→ U

1
d , {id, inv}) Impossible [40]a,b Unitary algorithm [40]

aThis result.
bBy composing two tasks.

initialized to the all-zero state, i.e., for all U ∈ U(d ) and for
all |ξ 〉 ∈ H,

||A(U )(|ξ 〉 ⊗ |0〉K)||2 > 0, (4)

which is the usual postselection condition [61].
We will equivalently represent a postselection oracle al-

gorithm by (A, �A), where the calligraphic font denotes the
corresponding function into superoperators, i.e.,

A(U )(ρ) := trK[A(U )(ρ ⊗ |0〉〈0|K)A(U )†], (5)

where we already include the correct initialization of the an-
cilla, and its tracing out at the end of the algorithm. Denote
by S+(H) the completely positive superoperators L(H) →
L(H) that are trace nonvanishing, i.e., they map density states
D(H) ⊂ L(H) to linear operators with strictly positive trace.
Then, the postselection condition (4) translates to the require-
ment that A : U (d ) → S+(H).

The following generalization of postselection oracle algo-
rithms relaxes the causal order of the queries.

Definition 2 (Process-matrix algorithm). A process-
matrix algorithm (A, �A) is a function A : U(d ) → S+(H)
such that

JA(U ) = tr inner
edges

[W (Jσ̃1(U ) ⊗ · · · ⊗ Jσ̃N (U ) ⊗ Iopen
edges

)] (6)

is the contraction in Fig. 3, where W is a fixed matrix, J
 :=∑
i, j |i〉〈 j| ⊗ 
(|i〉〈 j|) is the Choi isomorphism of 
, and

σ̃i(U ) are query superoperators, σ̃i(U )(ρ) := σi(U )ρ σi(U )†

for the query functions σi ∈ �A.
As opposed to quantum circuits, the wires in Fig. 3 do not

fix the order of the queries. How the queries are connected
is determined by W , which may correspond to a fixed causal
order, but also to a superposition of orders [43], and beyond
[44,62].

It remains to define what it means for an algorithm to
achieve a task. Note that we consider only unitary t (U ).

A(U)A(U)A(U)

H

V0

σ1(U)

V1

σN (U)

VN Πsucc

H
. . .

|0〉 K K1 KN K

FIG. 2. A postselection oracle algorithm has fixed unitary gates
Vi, a fixed projection �succ, and special slots for queries σi(U ), while
identity is applied to the remaining Hilbert space Ki.

Definition 3 (Exactly achieving a task). A postselection
oracle algorithm (A, �A) exactly achieves the task (t, �) if
�A ⊆ � and if it implements t (U ) to the Hilbert space H,
provided that the ancilla Hilbert space K was initialized to the
all-zero state |0〉, i.e., the operator equation

A(U )(I ⊗ |0〉〈0|) = t (U ) ⊗ |g(U )〉〈0| (7)

holds for some |g(U )〉 ∈ K.
The freedom in the unnormalized state |g(U )〉 allows for

any global phase and any postselection probability. By the
postselection condition (4) |g(U )〉 is never zero.

To define achieving a task for both postselection oracle
algorithms and process-matrix algorithms, we use an equiv-
alent equation in terms of (trace nonvanishing) superoperators
A(U ) ∈ S+(H):

A(U )(ρ)

tr[A(U )(ρ)]
= t (U )ρ t (U )†. (8)

One direction of the equivalence is immediate from (5), the
other follows from Theorem 2.3 of [63]. The theorem also
relates the errors in the operator and superoperator languages.
Here we continue with superoperators.

Definition 4 (ε-approximately achieving a task).
Algorithm (A, �A) ε-approximately achieves the task (t, �)

Jσ̃1(U)

Jσ̃2(U)

. . .

Jσ̃N (U)

W

FIG. 3. A process-matrix algorithm is a contraction of queries
with a fixed matrix W . W may or may not determine the queries’
order.

032625-4



TOPOLOGICAL OBSTRUCTIONS TO QUANTUM … PHYSICAL REVIEW A 109, 032625 (2024)

FIG. 4. Intuition for the n = 1 case of the Borsuk-Ulam theorem:
At some moment the rising tide must hit points that are exactly
opposite on the circle.

if �A ⊆ � and if the renormalized output of the algorithm is
always close to the task output, i.e., for all U ∈ U(d ),

sup
H′

ρ∈D(H⊗H′ )

∣∣∣∣∣∣∣∣ A(U )⊗I (ρ)

tr[A(U )⊗I (ρ)]
− [t (U ) ⊗ I]ρ [t (U ) ⊗ I]†

∣∣∣∣∣∣∣∣
tr

� ε,

(9)
where || · ||tr is the trace norm, and I ∈ L(H′) and I ∈ S+(H′)
are the identity operator and superoperator.

The left-hand side of inequality (9) is postselection dia-
mond distance [63]. It simplifies to diamond distance if A(U )
is trace preserving. Our use of the postselection condition
and of diamond distance, a worst-case measure, means that
ε-approximately achieving is worst case: even with the worst
inputs ρ and U the algorithm succeeds with nonzero proba-
bility and then satisfies the error bound. Thus, our formalism
excludes the two algorithms in column four of Table I, and
includes all the algorithms in column three, where “exact”
means ε = 0, and “unitary” means �succ = I .

III. IF-CLAUSE IMPOSSIBILITY VIA TOPOLOGY

Algorithms as functions of U [Eqs. (5) and (6)] have useful
properties. The postselection oracle algorithm, function (5),
is continuous whenever the query functions are [see (3)]. So
is the process-matrix algorithm, function (6), because Choi
isomorphism and its inverse are continuous. Moreover, both
functions are 0-homogeneous according to the definition be-
low.

Definition 5 (Homogeneity). A function f : X → Y is m-
homogeneous for some m ∈ Z iff f (λx) = λm f (x) for any x ∈
X and any scalar λ such that λx ∈ X .

For example, the scalars are restricted to the unit circle
(one-sphere) λ ∈ S1 if the domain of f is the space of unitaries
U(d ). The space SU(2) is homeomorphic to the three-sphere
S3 and the following prominent result in topology studies
continuous functions on n-spheres Sn:

Borsuk-Ulam theorem [64]. For any f : Sn → Rn contin-
uous there exist antipodal points mapped to the same value
f (x) = f (−x).

While the Borsuk-Ulam theorem (Fig. 4) implies a special
case (see Appendix A), for the fully general if-clause im-
possibility we prove a topological lemma that also exploits
homogeneity.

Lemma 1. Let m ∈ Z. If a continuous m-homogeneous
function f : U(d ) → S1 exists, then d divides m.

For example, the determinant, emerging in the cd
φ algo-

rithm reviewed in Sec. IV A, is a d-homogeneous function:
det(λU ) = λd det(U ). By Lemma 1 this homogeneity degree
and its multiples are the only ones possible for continuous
functions U(d ) → S1. Consequently, in our main result cm

φ

obeys a dichotomy that depends on whether d divides m
(d|m):

Theorem 1. Let d be the oracle dimension, let m ∈ Z and
ε ∈ [0, 1/2).

(i) If d|m a postselection oracle algorithm exists ε-
approximately achieving (cm

φ , {id, inv}) for some φ. It makes
|m| queries.

(ii) If d � m no such postselection oracle algorithm or
process-matrix algorithm exists, for any number of queries.

The if-clause (m = 1) impossibility is immediate. In addi-
tion to the following full proof of Theorem 1, the Appendix
contains two more proofs for only the exact, ε = 0, impos-
sibility. The “operational” proof in Appendix B reaches a
contradiction by using the supposed cm

φ algorithm as a building
block in a larger circuit. The proof in Appendix C for only
the m = 1 case3 gives additional intuition: The special unitary
group SU(d ) is a dth cover of PU(d ), the projective unitary
group. This prevents the existence of a continuous map from a
unitary superoperator to a matching operator, PU(d ) → U(d ),
preventing an exact if-clause algorithm. The full proof below
holds for approximations and relies on Lemma 1 proven next.

Proof of Theorem 1. For d|m direction we repeat |m|/d
times the algorithm of [54] (Sec. IV A), which exactly
achieves (cd

φ, {id}) using d queries. We switch the id to inv

queries if m < 0.
For the d � m direction, assume an algorithm

(A, {id, inv}) ε-approximately achieves (cm
φ , {id, inv})

for some ε < 1
2 . As mentioned, A is a continuous,

0-homogeneous function of U ∈ U(d ). Consider the input
state ρ ∈ D(H), ρ = |+〉〈+|c ⊗ |0〉〈0|, where the first
register is the control qubit, and the second the target qudit.
Using ρ define f : U(d ) → C as

f (U ) : = tr

[ A(U )(ρ)

tr [A(U )(ρ)]
(|1〉〈0|c ⊗ U m)

]
,

which is continuous, m-homogeneous. Observing that

tr
[
cm
φ (U )ρ cm

φ (U )†(|1〉〈0|c ⊗ U m)
] = e−iφ(U )

2
, (10)

and that multiplication by |1〉〈0|c ⊗ U m and taking trace can-
not increase trace norm, we get∣∣∣∣ f (U ) − e−iφ(U )

2

∣∣∣∣ � ∣∣∣∣∣∣∣∣ A(U )(ρ)

tr [A(U )(ρ)]
− cm

φ (U )ρ cm
φ (U )†

∣∣∣∣∣∣∣∣
tr

,

which is less than ε by the assumption. Thus,

| f (U )| � 1

2
− ε > 0

for all U ∈ U(d ) because ε < 1
2 by the assumption. This lets

us define the continuous function f̂ (U ) := f (U )/| f (U )|. Re-

3We thank an anonymous referee from the QIP conference for
observing that such a proof is possible.
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1
1

0

1

x

y

z

FIG. 5. Sequential and simultaneous increase of each coordinate
are homotopic inside the cube [0, 1]3.

call that homogeneity of functions on U(d ) is defined with
respect to scalars of unit norm only, λ ∈ S1. Thus, | f (U )| is
0-homogeneous, and the continuous function f̂ : U(d ) → S1

is m-homogeneous. By Lemma 1, d|m. �
Proof of Lemma 1. This elementary proof (for a shorter

proof see Appendix D) studies the structure of the space
U(d ), finding paths on this space that are continuously de-
formable, or homotopic, to each other. Denoting a path by
U (t ), t ∈ [0, 1], we split [0, 1] to d identical intervals labeled
by j ∈ {0, 1 . . . , d − 1} and use the parameter  ∈ [0, 1] to
move inside each interval. Consider the paths U (t ) = ei2πt I ,

U ′
(

j + 

d

)
=

⎛⎜⎜⎜⎜⎝

0 ... j ... d−1

0 . . .
... 1
j ei2π

... 1
d−1

. . .

⎞⎟⎟⎟⎟⎠
and

U ′′
(

j + 

d

)
=

⎛⎜⎜⎝
ei2π

1
. . .

1

⎞⎟⎟⎠,

where all the off-diagonal matrix elements are zero and the
diagonal elements change: U (t ) loops on all d of them simul-
taneously, U ′(t ) loops on all d of them in sequence, and U ′′(t )
loops only on the zeroth one.

First, we show that U is homotopic to U ′. We
can write U (t ) = exp(i2π diag[t, t . . . t]) and U ′( j+

d ) =
exp(i2π diag[1 . . . 1,, 0 . . . 0]), where exp is matrix expo-
nentiation and diag v is the square matrix with the vector v

on the diagonal and zeros elsewhere. For any vector in the d-
dimensional hypercube, v ∈ [0, 1]d , the continuous function
v �→ exp(i2π diag v) outputs a d-dimensional unitary. If fed a
hypercube path v(t ) from [0, . . . , 0] to [1, . . . , 1], the function
outputs a unitary path starting and ending at the identity: the
unitary path U (t ), if the hypercube path is the straight line;
the unitary path U ′(t ), if the hypercube path travels along the
edges of the hypercube (Fig. 5). Since the two hypercube paths
are homotopic, so are U and U ′.

To show that U ′ and U ′′ are homotopic, note that U ′( j
d ) =

U ′′( j
d ) for all j. Therefore, showing their homotopy on each

of the d subintervals suffices. Indeed, there exists a continuous
unitary path Rj (s), s ∈ [0, 1] such that conjugating by Rj (s)
continuously deforms U ′ into U ′′ on the jth subinterval; at
s = 0, U ′ stays unchanged, at s = 1 it becomes U ′′—the role

of the path Rj (s) being analogous to the thick lines in Fig. 5:

Rj (s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 cos
(

π
2 s

)
i sin

(
π
2 s

)
1 1
...

. . .

1

j i sin
(

π
2 s

)
cos

(
π
2 s

)
1

... . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
so, indeed, the map U ′( j+

d ) �→ Rj (s)U ′( j+

d )Rj (s)† at s = 0
does nothing and at s = 1 swaps the 0th and the jth basis
states. This fixes a homotopy between U ′ and U ′′. Combining
with the first homotopy, we conclude that U and U ′′ are
homotopic.

Assuming a continuous m-homogeneous function f :
U(d ) → S1, next we show that d must divide m. Since f is
m-homogeneous, we have f (U (t )) = eim2πt f (I ), which cor-
responds to m loops on the circle S1 starting and ending at
f (I ). U ′′(t ) is a periodic function with d periods inside [0,1],
and so is the function f (U ′′(t )). Therefore, if f (U ′′(t )) makes
k ∈ Z loops on the interval [0, 1

d ], then it makes kd loops on
S1 on the entire [0,1] interval. Since f is continuous, f (U (t ))
must be homotopic to f (U ′′(t )). But on the circle S1 two paths
can be homotopic if and only if they make the same number
of loops (this is captured by the fundamental group of S1). We
must have m = kd , which proves Lemma 1. �

A. Process tomography for the if clause?

Theorem 1 seems to contradict process tomography. After
we allow approximations and arbitrarily many queries, pro-
cess tomography seems to offer a solution to the if clause.
exp(n) queries suffice to estimate any oracle’s superoperator
with exponentially small error [65]. To build the if clause,
our process tomography should output a matrix estimate X ∈
U(d ), instead of the superoperator estimate ρ �→ XρX †, be-
cause controlled X ,

ρ �→ (|0〉〈0| ⊗ I + |1〉〈1| ⊗ X )ρ(|0〉〈0| ⊗ I + |1〉〈1| ⊗ X )†,
(11)

contains cross terms. Thus, in this section we study process
tomography (of a unitary oracle) that outputs a matrix estimate
X .

If such tomography is possible, its matrix output X approx-
imately describes the oracle U ∈ U(d ) only up to the global
phase because distinguishing the global phase is unphysical.
Thus, to quantify the error, we compare κ (X ) to κ (U ), where
the function κ : U(d ) → U(d ) fixes one canonical form for all
unitaries equal up to the global phase. Formally, κ (eiαU ) =
κ (U ) for all α ∈ [0, 2π ) (κ is 0-homogeneous) and κ (U ) =
eiφ(U )U for some real function φ. An example is a function
that makes the first nonzero matrix element of its input real
positive.

While any practical process tomography procedure in-
cludes classical postprocessing of measurement outcomes, in
principle it is convertible to a fully quantum algorithm with
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one measurement at the end that yields the full estimate (in
our case a full matrix X ): all its matrix elements written to
some N-dependent precision. Being a measurement outcome,
this matrix estimate X is a random variable that takes values
in the discrete space �N ⊂ U(d ).

Definition 6 (Process tomography yielding a unitary
matrix). Process tomography of a unitary oracle is an algo-
rithm making N queries to U ∈ U(d ) and then measuring,
obtaining the outcome X ∈ �N ⊂ U(d ) with probability
pN,U (X ). The output distribution pN,U is such that for all
U ∈ U(d ),

PrX∼pN,U (·)[||κ (X ) − κ (U )||op � εN ] � 1 − δN ,

where limN→∞ εN = 0 and limN→∞ δN = 0.
The operator norm || · ||op distinguishes Definition 6 from

existing process tomography algorithms that ensure a van-
ishing distance of superoperators [65]. Can we relate the
two distances? Vanishing operator norm implies vanish-
ing diamond distance of the corresponding superoperators
[66, Lemma 12.6]. Conversely, vanishing diamond distance
||X (·)X † − U (·)U †||♦ implies vanishing

||X − 〈v|U †X |v〉U ||op = ||κ (X ) − 〈v|U †κ (X )|v〉U ||op (12)

for any unit vector |v〉 [63, Theorem 1.3]. However, Definition
6 requires the U term to be independent of X . This makes all
the difference.

Theorem 2. Process tomography of Definition 6 is impos-
sible.

Proof. The triangle inequality gives

||κ (U ) − κ (V )||op � σN,U +
∑

X∈�N

|pN,U (X ) − pN,V (X )|

+ σN,V , (13)

where σN,U := ∑
X∈�N

pN,U (X )||κ (U ) − κ (X )||op is a sum
which can be split to two sums, over “good” and “bad” X
values, and then by Definition 6 upper bounded by εN + 2δN .
The middle term of (13) is the total variational distance of
two probability distributions. Equivalently, it is the trace dis-
tance of two classical density states ρN,U = diag(pN,U ) and
ρN,V = diag(pN,V ), the outputs of the process tomography
algorithm making N queries to U or V , respectively. By the
subadditivity of diamond distance, the trace distance of the
outputs is upper bounded ||ρN,U − ρN,V ||tr � N ||U · U † − V ·
V †||♦. Using the inequality ||U · U † − V · V †||♦ � 2||U −
V ||op [66, Lemma 12.6] we get

||κ (U ) − κ (V )||op � 2N ||U − V ||op + 2εN + 4δN . (14)

Thus, κ is continuous. But if κ is continuous (it
is 0-homogeneous by definition), then defining f (U ) :=
〈0|κ (U )U †|0〉 = eiφ(U ) gives us f : U(d ) → S1 continuous
and −1-homogeneous, contradicting Lemma 1. �

Building on top of known process tomography algorithms
cannot produce matrix estimates in the sense of Definition
6 and the proof reveals the reason: The arbitrary closeness
of the matrices κ (X ), κ (U ) cannot be guaranteed because
any κ must be discontinuous (see also Lemma 2 in Ap-
pendix C). Consider the κ example that makes the first
nonzero matrix element real positive. This κ is discontinuous.
At the discontinuity is, for example, the Pauli-X operator

TABLE II. If-clause achievability by algorithms that use a differ-
ent type of measurement.

Measurement with if clause Random if clause

One success outcome ✗ ✗ (Appendix F)
Many success outcomes ✗ (Appendix F)

√
(Appendixes E,F)

U = κ (U ) = σx, because its first matrix element is zero,
〈0|σx|0〉 = 0. We can choose an estimate X with small but
negative 〈0|X |0〉, so that κ (X ) ≈ −σx. This maximizes the
operator norm difference ||κ (X ) − σx||op ≈ 2. Thus, near the
discontinuity, ||X (·)X † − U (·)U †||♦ vanishes, but ||κ (X ) −
κ (U )||op is large: the discontinuity in κ amplifies the error
arbitrarily.

We suggest modifying Definition 6 to use multiple κ j ,
each continuous on some subset of U(d ) and applied only
if the sampled X lies deep inside this subset. For example,
the following functions, indexed by j ∈ {0, 1 . . . , d − 1}, split
U(d ) to d such (overlapping) subsets:

κ j (U ) :=
{

〈 j|U |0〉
|〈 j|U |0〉|U, if 〈 j|U |0〉 �= 0

κ j+1 mod d (U ), otherwise.
(15)

Having sampled X choose κr , where r = r(X ) = min{ j :
|〈 j|X |0〉| � 1/

√
d}. The chosen function is continuous

around the sampled X , circumventing the impossibility. Thus,
given some set {κr}r and a rule r = r(X ) we define the follow-
ing.

Definition 7 (Process tomography yielding a unitary
matrix, revised). Process tomography of a unitary oracle is an
algorithm making N queries to U ∈ U(d ) and then measur-
ing, obtaining the outcome X ∈ �N ⊂ U(d ) with probability
pN,U (X ). The output distribution pN,U is such that for all
U ∈ U(d ),

PrX∼pN,U (·)[||κr (X ) − κr (U )||op � εN ] � 1 − δN ,

where limN→∞ εN = 0, limN→∞ δN = 0, and r = r(X ).
Appendix E argues that any standard process tomography

[65] combined with (15) satisfies this definition. The depen-
dence of κr on the sampled X yields randomness beyond the
estimation error: There are oracles U for which the sampling
yields either an approximation of κ0(U ) or an approximation
of κ1(U ), both with a non-negligible probability. [Consider
the Fourier transform oracle 〈 j|U |k〉 = ei 2π

d jk/
√

d and κr ,
r(X ) of example (15).] Having obtained a classical estimate
of κr (U ), we build a circuit close to |0〉〈0| ⊗ I + |1〉〈1| ⊗
κr (U ) = cφr (U ), but the value r changes the circuit’s operator
(and the superoperator) beyond the estimation error. The index
r is known and random; calculated from the measurement
outcome obtained along implementing cφr (U ), instead of the
if clause, process tomography yields the random if clause (see
Appendix F). A many-outcome measurement is necessary for
randomness. Thus, on the random if clause, quantum circuits
using a many-outcome measurement are more powerful than
those using a binary success or fail measurement (Table II).

We can make the tomography-based strategy fully quan-
tum, deferring the r measurement to an additional an-
cilla register. Before the measurement, this implements a
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(a) (b)

FIG. 6. (a) The unitary algorithm due to [54] makes d queries to U and implements cd
φ (U ) to its first two registers. (b) The queries to U are

replaced by subroutines A(U ) that possibly act on additional ancillae. A(U ) is assumed to approximately apply t (U ) = U
1
d to its non-ancilla

Hilbert space.

superoperator close to

ρ �→
∑

r

pr U [cφr (U ) ⊗ |r〉]ρ[cφr (U )† ⊗ 〈r|], (16)

corresponding to the entangled if clause (see Appendix F).
After the deferring, a d-outcome measurement suffices to

achieve the random if clause because r in cφr (U ) = |0〉〈0| ⊗
I + |1〉〈1| ⊗ eiφr (U )U takes d values. This measurement is
less complex than the full process tomography.4 Since the
|�N |-outcome tomography measurement turns out to be un-
necessary, one may ask whether the d-outcome measurement
is optimal or can be simplified further. Even more pressing is
the question of the query complexity of the random if clause.
The brute-force tomography approach is likely far from opti-
mal.

IV. APPLICATIONS TO OTHER TASKS

Here we use our method to study other tasks, namely, the
neutralization, fractional power, transpose, and inverse task.
For each task we first review some preceding work.

A. Review of the cd
φ algorithm via the neutralization

In this section we review the unitary algorithm of Dong,
Nakayama, Soeda, and Murao [54] that exactly implements
cd
φ (U ). Suppose we try to implement cm

φ (U ) taking the follow-
ing approach: (i) use the controlled-swap gates as in Fig. 1(a);
if the control is |1〉 the oracle U is queried in sequence m
times, if the control is |0〉 the m queries are “moved” to an
ancilla register. (ii) If the control is |0〉 apply to the ancilla
a subroutine that makes the “moved” queries have no ef-
fect other than a multiplication by a scalar. In the words of
Ref. [54], the subroutine of step (ii) neutralizes the moved
queries. Fitting the neutralization into our framework we de-
fine the following:

Definition 8 (ε-approximately neutralizing a query
sequence). Given a query sequence s, a postselection oracle
algorithm A∅ : U(d ) → L(H) ε-approximately neutralizes s,

4With the full process tomography, one can also implement cφX (U )
with X ∈ �N because the outcomes X yield |0〉〈0| ⊗ I + |1〉〈1| ⊗ X
which is close to cφX (U ) = |0〉〈0| ⊗ I + |1〉〈1| ⊗ eiφX (U )U via ex-
pression (12) and by choosing |v〉 to be an eigenvector of U †X so
that 〈v|U †X |v〉 =: eiφX (U ).

if its query sequence is s and still it leaves an all-zero input
(almost) untouched:∣∣∣∣∣∣∣∣ A∅(U )|0〉〈0|A∅(U )†

tr [A∅(U )|0〉〈0|A∅(U )†]
− |0〉〈0|

∣∣∣∣∣∣∣∣
tr

� ε. (17)

Definition 8 uses the algorithm’s operator instead of the su-
peroperator in order to forbid the (partial) trace; applying the
oracles to an ancilla that is later traced out is not considered a
neutralization.

Observing that the totally antisymmetric state is an
eigenstate of U ⊗d , Ref. [54] presented an algorithm ex-
actly neutralizing (ε = 0) the sequence s = (id )d of parallel
queries. This postselection oracle algorithm A‖d

∅
(U ) is uni-

tary. Reference [54] used A‖d
∅

(U ) to build the algorithm of
Fig. 6(a), the (unitary) postselection oracle algorithm that
exactly achieves (cd

φ, {id}):
Construction 1 (due to [54]). For the correctly chosen

fixed unitary V , the unitary algorithm of Fig. 6(a) makes d
queries to U and implements the operator A(U ) such that
A(U )(IH ⊗ |0〉〈0|K) equals

[|0〉〈0| ⊗ I + det(U )−1|1〉〈1| ⊗ U d ] ⊗ det(U )|0〉〈0|K. (18)

Proof. First note that we can write the determinant as

det (U ) =
∑
π∈Sd

sgn (π )
d∏

i=1

〈i|U |π(i)〉

= 1

d!

∑
π,τ∈Sd

sgn (τ ) sgn (π )
d∏

i=1

〈τ(i)|U |π(i)〉

= 〈χd |U ⊗d |χd〉, (19)

where |χd〉 = 1√
d!

∑
π∈Sd

sgn(π )|π(1)〉 ⊗ · · · ⊗ |π(d )〉 ∈ K is
the totally antisymmetric state. For a proof of Eq. (19) see
Appendix G. Note that we have indexed the basis vectors
starting with i = 1. Switching to the usual labeling that starts
with zero, observe that |χd〉 is normalized and therefore
there exists a unitary V ∈ L(K) such that V |0〉 = |χd〉. De-
fine the unitary oracle algorithm A‖d

∅
(U ) := V †U ⊗dV . Since

|〈χd |U ⊗d |χd〉| = 1, the unitary A‖d
∅

(U ) on input |0〉 out-
puts |0〉 with probability 1 for all U ∈ U(d ). Therefore, A‖d

∅

exactly neutralizes its queries, A‖d
∅

(U )|0〉〈0| = det(U )|0〉〈0|.
Observe that the algorithm of Fig. 6(a) implements
|0〉〈0| ⊗ I ⊗ A‖d

∅
(U )K + |1〉〈1| ⊗ U d ⊗ IK, from which (18)

follows. �

032625-8



TOPOLOGICAL OBSTRUCTIONS TO QUANTUM … PHYSICAL REVIEW A 109, 032625 (2024)

B. Neutralizable query sequences

Complementary to the neutralizing algorithm A‖d
∅

(U )
above, here we prove the impossibility of neutralizing the re-
maining numbers of parallel, as well as sequential, id queries.
At first glance, it seems that one could always add a query
and then make it have no effect in the algorithm. This is
less obvious when tracing out subsystems is disallowed, as
in the neutralization (Definition 8). Indeed, for most query
numbers, the neutralization is impossible. Conceptually, this
no-neutralization of oracle queries is analogous to the no-
deleting of states [14].

Theorem 3. Let d ∈ N be the dimension of the oracle U ,
let s = (id )m and ε ∈ [0, 1). If there exists a postselection
oracle algorithm ε-approximately neutralizing s, then d|m.

Proof. Suppose (A∅, {id}) is a postselection oracle al-
gorithm ε-approximately neutralizing s. By Eq. (3), A∅ :
U (d ) → L(H) is continuous and m-homogeneous and so is

fA∅
(U ) := 〈0|A∅(U )|0〉√

tr [A∅(U )|0〉〈0|A∅(U )†]
.

Since taking X �→ 〈0|X |0〉 can only contract trace norm, in-
equality (17) implies that

|| fA∅
(U )|2 − 1| � ε < 1

so | fA∅
(U )| �= 0 holds for all U ∈ U(d ) and we can define

f̂A∅
(U ) := fA∅

(U )/| fA∅
(U )| which maps from U(d ) to the

circle and is continuous m-homogeneous. Then by Lemma 1,
m is a multiple of d . �

Theorem 3 does not distinguish between parallel and se-
quential queries: it applies to both. More generally, all of
the above applies also to process-matrix algorithms (a model
already without the parallel or sequential distinction).

C. Fractional power impossibility

Here we are interested in the (1/d )th power task (U �→
U

1
d , {id, inv}). It is listed in Table I. For this task, Sheridan,

Maslov, and Mosca [40] found an average-case algorithm,
an algorithm that works for most, but not all, U ∈ U(d ).
Given any fraction q ∈ Q, the algorithm makes id , inv queries
(after the adjustment in Appendix A of [40] that removes
the controlled-U queries) and implements an operator that
for most U ∈ U(d ) is close to U q ⊗ U −q ⊗ IK2 . This can be
arbitrarily close at the cost of increasing the dimension of
the ancilla Hilbert space K2. In [40] U �→ U q corresponds
to a specific fractional-power function. Many exist because
each unitary has many possible roots. For example, for any
j, k ∈ {0, 1, . . . m − 1} a possible mth root of(

1 0
0 −1

)
is

(
ei 2π j

m 0
0 ei π+2πk

m

)
.

Here we show that, unlike in the average case, in the worst
case we cannot implement U

1
d to within an arbitrarily small

error ε. For the specific (1/d )th power function chosen in
[40], the impossibility was already proven in [40, Lemma 1].
However, the following corollary of Theorem 1 holds for any
(1/d )th power function.

Corollary 1. Let t : U(d ) → U(d ) be any function such
that t (U )d = U . No postselection oracle algorithm or

FIG. 7. After postselecting the first two registers on outcome
|ψ+〉, this algorithm of [38,39] implements U †. Its subroutine in the
dashed box, the unitary algorithm of [37], implements the complex
conjugate U from d − 1 parallel queries to U .

process-matrix algorithm can ε-approximately achieve the
(1/d )th power task (t, {id, inv}) for ε < 1/2d , no matter how
many queries it makes.

The impossibility of errors smaller than 1/exp(n) for
n-qubit unitaries is discouraging because the “inverse expo-
nential scaling” here is qualitatively different from how errors
scale in useful algorithms. In a useful algorithm the error
ε scales inverse exponentially or even inverse polynomially
with respect to the complexity of the algorithm. In other words,
the complexity scales as log2(1/ε) or poly(1/ε) [41,67–69].
Here, instead, we found ε values for which arbitrarily complex
algorithms fail.

Another way to understand the strength of the result is
to consider only two-dimensional unitary oracles, which in-
tuitively should be the simplest to work with. According to
the result, the square root of a two-dimensional unitary is
impossible to implement within ε < 1

4 by quantum circuits of
any complexity.

The intuition for a complexity-independent lower bound
on ε is simple: we are trying to approximate a discontinuous
function t by some continuous algorithm.

Proof. Suppose (A, {id, inv}) ε-approximately achieves the
(1/d )th power task (t, {id, inv}). Use A(U ) instead of each
query to U in the (cd

φ, {id, inv}) algorithm of Ref. [54] as
in Fig. 6. The resulting algorithm in the exact (ε = 0) case
A(U )(I ⊗ |0〉〈0|) = t (U ) ⊗ |g(U )〉〈0| implements

(|0〉〈0| ⊗ I + det[t (U )]−1|1〉〈1| ⊗ U ) ⊗ [|g(U )〉〈0|]⊗d

⊗ det[t (U )]|0〉〈0|,
which corresponds to the if clause. For A with error ε, the
composed algorithm in Fig. 6(b) has error dε because it
uses the A(U ) subroutine d times and because postselection
diamond distance satisfies weak subadditivity (Theorem 2.1
in [63]). By Theorem 1 we must have dε � 1

2 implying that
ε � 1/2d . �

D. Review of the complex-conjugation algorithm

Complex conjugation is used as a subroutine in the inverse
algorithm discussed in the subsequent sections. Here we re-
view the complex-conjugation algorithm of Miyazaki, Soeda,
and Murao [37], giving an alternative proof of its correctness.

Construction 2 (due to [37]). For a correctly chosen fixed
unitary Vconj, the unitary algorithm in the dashed box in Fig. 7
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implements Aconj(U ) such that

Aconj(U )(I ⊗ |0〉〈0|⊗d−2) = U ⊗ det(U )|0〉〈0|⊗d−2 (20)

while making d − 1 queries to U .
Therefore, the (unitary) postselection oracle algorithm ex-

actly achieves the complex-conjugation task (U �→ U , {id}).
Proof. Cramer’s rule for matrix inversion reads as U −1 =

det(U )−1C(U )T , where C(U ) is the cofactor matrix of U .
We define it presently, but first note that from Cramer’s
rule C(U ) = det(U )U . It remains to show that the algorithm
implements C(U ) to its first register corresponding to a d-
dimesional Hilbert space H. Cofactor matrix of U is the
matrix of minors of U , C(U )i, j = (−1)i+ j det(U� i,� j ), or

C(U ) =
d∑

i, j=1

(−1)i+ j det(U� i,� j )|i〉〈 j|, (21)

where the labeling of the computational basis vectors starts
with i = 1, and where det(U� i,� j ) is the (i, j)th minor, defined
as the determinant of the matrix U with the ith row and jth
column deleted. Formally, we write

det(U� i,� j )= (−1)i+ j

(d − 1)!

∑
τ,π∈Sd
τ (1)=i
π (1)= j

sgn(τ ) sgn(π )
d∏

k=2

〈τ (k)|U |π (k)〉.

(22)
See Appendix G for the proof. Substituting (22) into (21) we
get C(U ) = E†U ⊗d−1E with E = ∑d

j=1 |v j〉〈 j| and∣∣v j
〉 = 1√

(d − 1)!

∑
π∈Sd

π (1)= j

sgn(π )|π (2)〉 ⊗ · · · ⊗ |π (d )〉.

E : H → H⊗d−1 is an isometry because the vectors {|v j〉} j∈[d]

in H⊗d−1 are orthonormal. We switch back to the basis
labeling that starts with zero. Since {|v j〉} j∈{0,1,...d−1} are or-
thonormal, there exists a (nonunique) unitary Vconj such that
Vconj(| j〉 ⊗ |0〉⊗d−2) = |v j〉 = E | j〉, which implies that(

I ⊗ 〈0|⊗d−2
)
V †

conjU
⊗d−1Vconj(I ⊗ |0〉⊗d−2) = C(U ) (23)

is a unitary. Therefore, the dashed box Aconj(U ) =
V †

conjU
⊗d−1V †

conj in Fig. 7 on input |ξ 〉 ⊗ |0〉⊗d−2 outputs
the all-zero state on the ancilla with probability

p = ||(I ⊗ 〈0|⊗d−2)Aconj(U )(|ξ 〉 ⊗ |0〉⊗d−2)||2

= ||C(U )|ξ 〉||2 = 1.

In other words, projecting the ancilla output onto the all-zero
state has no effect, i.e., Aconj(U )(I ⊗ |0〉〈0|⊗d−2) equals

(I ⊗ |0〉〈0|⊗d−2)Aconj(U )(I ⊗ |0〉〈0|⊗d−2),

which by Eq. (23) equals to C(U ) ⊗ |0〉〈0|⊗d−2. �

E. Review of the simplest transpose and inverse algorithms

We listed the transpose and inverse task in Table I.
Quintino, Dong, Shimbo, Soeda, and Murao [38,39] presented
a family of algorithms for each task. Here we review only the
simplest algorithm of each family: the one with the fewest
queries and the lowest probability of success.

Construction 3 (due to [38,39]). Figure 7 with the dashed
box replaced by U is a single-query algorithm implementing
U T with the probability of success 1/d2.

Prepending to Construction 3 a unitary that prepares the
input |ψ+〉 = 1√

d

∑d−1
i=0 |ii〉 (the generalized Bell state) gives

a postselection oracle algorithm exactly achieving the task
(U �→ U T , {id}).

Proof. Note that if the dashed box is replaced by the
identity operator I , Fig. 7 corresponds to the generalized
teleportation, which succeeds with probability 1

d2 . In other
words, (〈ψ+| ⊗ I )(I ⊗ |ψ+〉) = 1

d I . Next, for any complex
d × d matrix M, (M ⊗ I )|ψ+〉 = I ⊗ M T |ψ+〉, which can be
verified by writing M in terms of its matrix elements. Thus,
the algorithm of Fig. 7 with the dashed box replaced by U
implements

(〈ψ+| ⊗ I )(I ⊗ U ⊗ I )(I ⊗ |ψ+〉)

= U T (〈ψ+| ⊗ I )(I ⊗ |ψ+〉) = 1

d
U T .

�
Composing the transpose algorithm with the unitary algo-

rithm for the complex conjugate [37] gives a postselection
oracle algorithm exactly achieving the task (U �→ U †, {id}).

Construction 4 (due to [38,39]). The algorithm of Fig. 7
makes d − 1 queries to U and implements U † with the proba-
bility of success 1/d2.

Both algorithms above have a useful feature: their effect
on the ancillae can easily be uncomputed. Let Vprep be a
unitary that prepares |ψ+〉 from the all-zero state. Substitut-
ing |ψ+〉 = Vprep|0〉⊗2 into the algorithm of Fig. 7 for both
occurrences of |ψ+〉 gives algorithms with ancillae initialized
to zeros and with �succ = |0〉〈0|⊗2. Adding after the dashed
box a gate that swaps the first and the last register results in
transpose and inverse algorithms AT and A† such that

AT (U )(I ⊗ |0〉〈0|⊗2) = U T ⊗ 1

d
|0〉〈0|⊗2,

A†(U )(I ⊗ |0〉〈0|⊗d ) = U † ⊗ 1

d
|0〉〈0|⊗d .

We call such algorithms clean (Definition 9). Note the
complex-conjugation algorithm, Eq. (20), is also clean.
Cleanness can be achieved whenever the ancilla output is
independent of the oracle U , by adding the appropriate fixed
unitary gate as we did here.

F. Query complexity of the clean transpose and inverse

We reviewed the simplest transpose and inverse algo-
rithms. References [38,39] also presented other algorithms,
with higher probabilities of success, that require more queries.
Are they all clean? We answer this negatively in a much more
general way: In this section we show that clean transpose
and inversion algorithms with certain numbers of queries
are impossible. First we define clean algorithms: Apart from
achieving their task [inequality (9)], they satisfy an additional
condition regarding their effect on their ancillae: if the ancilla
input is the all-zero state, so should be the ancilla output. In
the definition we merge the task and the ancilla conditions into
one inequality.
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Definition 9. (Clean postselection oracle algorithm). A
postselection oracle algorithm A : U(d ) → L(H ⊗ K) that ε-
approximately achieves the task (t, �) is clean if for all H′
and ρ ∈ D(H′ ⊗ H), ε upper bounds also∣∣∣∣∣

∣∣∣∣∣ Ã(U )(ρ ⊗ |0〉〈0|)Ã(U )†

tr[Ã(U )(ρ ⊗ |0〉〈0|)Ã(U )†]
− ˜t (U )ρ ˜t (U )† ⊗ |0〉〈0|

∣∣∣∣∣
∣∣∣∣∣
tr

,

where the wide tilde denotes the extension X̃ := IH′ ⊗ X .
In other words, the ancilla output is independent of the

unknown oracle. Clean algorithms enable ancillae recycling
and preserve coherences if used inside an interferometer
[Fig. 1(b)]. The following impossibility of certain clean al-
gorithms is a corollary of Theorem 3.

Corollary 2. Let ε ∈ [0, 1). If an N-query clean postselec-
tion oracle algorithm ε-approximately achieves the task

(1) (inv, {id}), then N ≡ −1 (mod d ).
(2) (U �→ U T , {id}), then N ≡ 1 (mod d ).
Proof of 1. Such an algorithm (A, {id}) satisfies∣∣∣∣∣∣∣∣ A(U )|0〉〈0|A(U )†

tr [A(U )|0〉〈0|A(U )†]
− (U † ⊗ I )|0〉〈0|(U ⊗ I )

∣∣∣∣∣∣∣∣
tr

� ε

(24)
by Definition 9 with H′ trivial and ρ = |0〉〈0|. If it makes N
queries, the new algorithm (U �→ (U ⊗ I )A(U ), {id}) makes
N + 1 queries. Represent by ||X ||tr the left-hand side of
(24). Since ||(U ⊗ I )X (U † ⊗ I )||tr = ||X ||tr, the algorithm ε-
approximately neutralizes the query sequence s = (id )N+1.
Theorem 3 then guarantees that d divides N + 1.

Proof of 2. Suppose some clean N-query algorithm ε-
approximately achieves the transpose task. Replace each
query to U by Aconj(U ) of Eq. (20), i.e., by the clean, unitary,
(d − 1)-query algorithm of [37] that exactly implements U .
The algorithm makes N (d − 1) queries to U , ε-approximately
implements U †, and is clean. Then by the preceding proof d
divides N (d − 1) + 1, so N ≡ 1 (mod d ). �

References [38,39] found for every k ∈ N a k-query trans-
pose algorithm and a k(d − 1)-query inverse algorithm. The
success probability of these grows with k. We have shown that
their algorithms can be clean only if k ≡ 1 (mod d ).

V. DISCUSSION AND OPEN PROBLEMS

In this work we introduce a unified framework for al-
gorithms with unitary oracles U ∈ U(d ), and develop a
topological method to prove their limitations. The method
yields new limitations for algorithms implementing the if
clause cφ (U ), neutralization, (1/d )th power U

1
d , transpose

U T , and inverse U †. Our method adds to the very few pre-
viously known proof methods for limiting query complexity.

Similarly to the preceding methods [8–11], our method is
worst case: it expects algorithms to work on every input. The
distinction is important. While a quantum circuit implement-
ing U

1
d for most U ∈ U(d ) exists [40], one working for all

U ∈ U(d ) is impossible. Similarly, the worst-case if clause is
impossible (Theorem 1), and the (exponential) average-case
if clause is implemented by Fig. 6(b) after substituting the
U

1
d heuristic scheme [40] for A(U ). Whether a more efficient

average-case algorithm exists remains open. Between the fi-
nite average-case and the infinite worst-case complexity, other

complexity notions fit, and could be explored. One notion
is that of Levin’s average-case complexity [71], equivalent
to the notion of errorless heuristic scheme [42]: the scheme
gives a warning (e.g., the ⊥ symbol) if its output breaks the
requested specifications (in our case, if the implemented op-
erator exceeds the requested diamond distance from the task
operator). Errorless heuristic schemes remain a possibility for
the if clause and the fractional power. Another notion is that of
smoothed complexity [72], which considers the worst input,
but after perturbing it slightly. Although previously defined
for errorless heuristic schemes [72,73], smoothed complexity
can also be defined for heuristic schemes with errors (as
Ref. [74] did specifically for the perceptron algorithm). Such
smoothed analysis could resolve the transition between the
two problems’ average-case and worst-case complexities. Fo-
cusing here on worst-case query complexity, we leave all the
above questions open.

The query complexity bounds proven here reveal surpris-
ing differences between oracle computational models. First,
we show how quantum circuits differ from linear optics. By
Theorem 1, the if clause is an oracle problem on which quan-
tum circuits perform much worse than linear optics. The query
complexities of the if clause in these models are not poly-
nomially, and not even exponentially equivalent. While the
linear-optics complexity of the if clause was known to equal
one, its quantum-circuit and process-matrix complexities are
worked out here to be infinite! Linear optics avoid our im-
possibility because the direct sum U ⊕ I lacks homogeneity,
a property required by our method. According to Ref. [36],
the direct sum appears due to the gate’s localization to the
upper path modes in Fig. 1(b). However, instead of a direct
sum, a second-quantization view yields a tensor product of
modes. We suggest a conceptually different reason for the
direct sum: the linearity of linear optics. Figure 1(b) implicitly
assumes that U is a linear (passive) gate: the vacuum |�〉 is its
+1 eigenstate. If this hidden assumption is made explicit, the
oracle is not completely unknown and should be represented
by U ′ = 1 ⊕ U as in Fig. 1(a). Thus, while restricting to linear
optics yields a weaker computational model, in the presence
of oracles (Appendix H), it also imposes additional knowledge
about the oracles. Surprisingly, overall this gives a remarkable
advantage on the if clause.

The demonstrated advantage of linear optics motivates
studying restricted computational models, especially if the
restriction makes the model more implementable in the
near term. For example, aside from linear optics, we could
restrict optics to Gaussian optics or to various levels of non-
Gaussianity [75], applying the same restriction to the oracle.
This could capture varying amounts of device independence
in experiments, adversarial power in cryptography, or distrust
in communication protocols. Restricting the computational
model, and with it the oracle, may change the query com-
plexity of problems other than the if clause. Studying these
changes under restrictions that are relevant in near-term com-
putation is an interesting future direction.

Process matrices compare equally unfavorably to linear
optics on the if clause. While the linear restriction improves
efficiency, relaxed causality does not. This affects the debate
of whether the linear optics experiments [47–49] imple-
ment the process-matrix solution to the quantum switch: Any
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(a) (b)

FIG. 8. (a) In this quantum-switch implementation [70], the photon passes through the interferometer twice. In the first pass, A acts on one
photon if the polarization is |1〉c and on vacuum otherwise. In the second pass, A acts on one photon if the polarization is |0〉c and on vacuum
otherwise. A can act nontrivially on vacuum. (b) Analogously to Fig. 1, the equivalent circuit captures this possibility.

claimed linear-optics efficiency could stem from the implicit
restriction on the oracles, and not from relaxed causality. To
discount the restriction effect, we suggest to check the query
complexity in the experiments by imagining that the oracles
are fully general and act nontrivially on vacuum. For example,
for the specific linear-optics quantum switch in Fig. 8(a), this
leads to an equivalent circuit in Fig. 8(b) whose query com-
plexity does not match the process-matrix quantum switch.
This approach to query complexity has a specific, causality-
related purpose. It might not work for other purposes. Indeed,
in computational models that allow changing or superposing
particle numbers, calculating complexity is an interesting and
difficult open problem.

The last query complexity gap is between measurements.
Understanding why process tomography fails at the if clause
[it fails at the (1/d )th power for a similar reason] leads
us to define modified tasks which are achievable: the en-
tangled and random if clause. If simpler implementations
exist, the entangled if clause could serve as a subroutine
in larger algorithms. The random if clause reveals the com-
plexity gap between measurements: its query complexity is
infinite in the one-success-outcome model, but finite (at most
exponential) in a model with exp(n) success outcomes (Ta-
ble II). Are there algorithms requiring fewer queries and fewer

outcomes? An optimal algorithm will exactly quantify the
advantage of many outcomes; finding one remains an open
question.
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APPENDIX A: IF-CLAUSE IMPOSSIBILITY (SPECIAL CASE) VIA THE BORSUK-ULAM THEOREM

Here we prove a special case of Theorem 1 from the famous result of algebraic topology: the Borsuk-Ulam theorem [64] (see
Fig. 4).

Borsuk-Ulam theorem. If f : Sn → Rn is a continuous function, then there exists x ∈ Sn such that f (x) = f (−x).
Proof of Theorem 1 (d even, m odd). Let d be an even and m an odd integer. The first part is the same as in the general proof of

Theorem 1. Assume towards contradiction that there exists a continuous 0-homogeneous function A : U (d ) → S+(C2d ) such
that ∣∣∣∣∣∣∣∣ A(U )(ρ)

tr [A(U )(ρ)]
− (|0〉〈0| ⊗ I + eiφ(U )|1〉〈1| ⊗ U m

)
ρ
(|0〉〈0| ⊗ I + eiφ(U )|1〉〈1| ⊗ U m

)†
∣∣∣∣∣∣∣∣ <

1

2
(A1)

holds for all U ∈ U(d ), all ρ ∈ D(C2d ), and for some real function φ. Let ρ+ = |+〉〈+| ⊗ |0〉〈0| ∈ C2 ⊗ Cd , and define f :
U(d ) → C by

f (U ) := tr

[ A(U )(ρ+)

tr [A(U )(ρ+)]
(|1〉〈0|c ⊗ U m)

]
. (A2)

This is well defined because A maps into S+(C2d ) so the superoperator A(U ) never vanishes the trace of its input. Observe that
by its definition f is a continuous odd function. Substituting the inequality (A1) into (A2), we get that | f (U ) − 1

2 e−iφ(U )| < 1
2 so

f never maps to zero. We can define f̂ (U ) = f (U )/
√

( f (U )) f (U ), which is also continuous and odd, but maps into the circle

S1.

032625-12



TOPOLOGICAL OBSTRUCTIONS TO QUANTUM … PHYSICAL REVIEW A 109, 032625 (2024)

Now, since d is even we can define the following continuous function g : S3 → U (d ) such that given a vector x =
(x1, x2, x3, x4)T on the 3-sphere S3 ⊂ R4:

g(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1 + ix2 −x3 + ix4
. . . . .

.

x1 + ix2 −x3 + ix4

x3 + ix4 x1 − ix2

. .
. . . .

x3 + ix4 x1 − ix2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where the dots denote that the elements are repeated across
the diagonal and the antidiagonal, and there are zeros ev-
erywhere else. Note that g is odd, g(−x) = −g(x). By the
Borsuk-Ulam theorem, since f̂ ◦ g : S3 → C ⊂ R3 is contin-
uous, there exists x ∈ S3 such that f̂ ◦ g(x) = f̂ ◦ g(−x) =
− f̂ ◦ g(x), where the last equality holds because f̂ ◦ g is odd.
So for this x we have f̂ ◦ g(x) = 0. But this contradicts the
fact that f̂ maps into S1. �

APPENDIX B: EXACT IF-CLAUSE IMPOSSIBILITY: AN
OPERATIONAL PROOF

Proof of Theorem 1 (ε = 0). Assume a postselection
oracle algorithm (A, {id, inv}) exactly achieves the task
(cm

φ , {id, inv}). Since the query functions are continuous and
±1 homogeneous, by Eq. (3) A(U ) is continuous and w-
homogeneous for some w ∈ Z. Equation 7 implies

A(U )(I ⊗ |0〉〈0|) = (|0〉〈0| ⊗ I + eiφ(U )|1〉〈1| ⊗ U m)

⊗ |g(U )〉〈0|. (B1)

Consider the circuit of Fig. 9. It outputs B(U )|0〉 =
e−iφ(U )|| |g(U )〉||2|0〉. Moreover, B(U ) is continuous and m-
homogeneous. Then

f (U ) := 〈0|B(U )|0〉
〈0|A(U )†A(U )|0〉

is continuous, m-homogeneous, and by Eq. (4) well defined on
all U ∈ U(d ). Observe that f (U ) = e−iφ(U ). Lemma 1 applies
to f , so d divides m. �

The above can be extended to approximations, as long as
the two sides of (B1) are close enough to guarantee f (U ) �= 0.

B(U)B(U)B(U)

H
|0〉

A(U)A(U)A(U)

X

A(U)†A(U)†A(U)†
X

|0〉 Um

|0〉K |0〉〈0|K

FIG. 9. Circuit B : U(d ) → L(H ⊗ K) running A as a subrou-
tine. The control qubit and the target qudit of H are shown explicitly.
X is a Pauli-X gate.

APPENDIX C: EXACT IF-CLAUSE IMPOSSIBILITY VIA
COVERING SPACES

This proof uses the fact that PU(d ) is a dth cover of
SU(d ).5 The covering space approach gives useful intuition,
but, we did not find a way to extend it to the approximate case
(ε > 0); we discuss the difficulty at the end of this section.

Proof of Theorem 1 (m = 1, ε = 0). Assume towards
contradiction the existence of an algorithm (A, �A) that ε-
approximately achieves (cφ, {id, inv}) for ε = 0. Observe
from Eqs. (5) and (6) that we can define a function on
unitary superoperators AS (U ) := A(U ), where the unitary
superoperator U is defined as U (ρ) := UρU †. Since the query
alphabet �A ⊆ {id, inv} only contains continuous functions,
AS (U ) is continuous. Next define

s(U ) := 2d
(〈1| ⊗ I )AS (U )(|+〉〈+| ⊗ I

d )(|0〉 ⊗ I )

tr[AS (U )(|+〉〈+| ⊗ I
d )]

(C1)

and observe that s is continuous and that applying Eq. (8) we
get s(U ) = eiφ(U )U , which produces a contradiction with the
lemma below. �

We will show that there is no continuous function s (called
section) that maps a unitary superoperator to some matching
unitary.

Lemma 2. Let π : U(d ) → S+(Cd ) map unitaries to
the corresponding superoperators, i.e., π : U �→ U , where
U (ρ) = Uρ U †. There is no continuous map s : Im(π ) →
U(d ) such that π ◦ s = idIm(π ).

First we will characterize the space Im(π ). Defining
the equivalence relation U ∼ eiαU for all α ∈ [0, 2π ), we
will show that Im(π ) is homeomorphic to the quotient
space U(d )/ ∼= U(d )/Z[U(d )] =: PU(d ) called the projec-
tive unitary space. In particular, π maps into the same element
precisely those unitaries that differ by the global phase. To
see this, consider the continuous map π and the quotient map
p : U(d ) → PU(d ):

U(d) Im (π)

PU(d)

π

p h

and observe that whenever p(U ) = p(U ′) we have that
π (U ) = π (U ′). By the universal property of quotient spaces

5Suggested by an anonymous referee of the QIP conference, whom
we would like to thank in this way.
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in topology there exists a continuous map h : PU(d ) →
Im(π ), h([U ]) = U such that h ◦ p = π . Therefore, h is sur-
jective (because π is). h is also injective: assume h([U ]) =
U = U ′ = h([U ′]) and let U ∈ [U ] be some unitary from
the equivalence class. Choose coordinates k, l ∈ [d] such
that the matrix element ulk of U is nonzero. Observing that∑

j U (| j〉〈k|)|l〉〈 j| = ulkU and similarly for some U ′ ∈ [U ′],
we get ulkU = u′

lkU ′ �= 0 and since both U and U ′ are uni-
tary we have U = eiαU ′ for some α ∈ [0, 2π ). Therefore,
[U ] = [U ′] and h is also injective. A bijective continuous
function from a compact space to a Hausdorff space is a
homeomorphism, so Im(π ) and PU(d ) are homeomorphic.
We can restate Lemma 2:

Lemma 3. Let p : U(d ) → PU(d ) be the quotient map.
There is no continuous map s : PU(d ) → U(d ) such that
p ◦ s = id .

We can prove this via Lemma 1.6 But our aim here is to
prove Lemma 3 directly, using the fact that SU(d ) is a finite
cover of PSU(d ) := SU(d )/Z[SU(d )] = SU(d )/ ∼.

Proof. First we show that PU(d ) and PSU(d ) are home-
omorphic. Let ı : SU(d ) → U(d ) be the embedding of the
special unitaries into the unitaries and sp and p the quotient
maps as depicted:

SU(d) U(d)

PSU(d) PU(d)

ı

sp p
g

Observing that whenever sp(U ) = sp(U ′) we must have
that U = λU ′ (with λd = 1) and therefore (p ◦ ı)(U ) = (p ◦
ı)(U ′), we get by the universal property of quotient spaces in
topology that there exists a continuous g : PSU(d ) → PU(d )
that makes the diagram commute. Next define the function
r : U(d ) → SU(d ), r(U ) = U/ det(U ). This is a continuous
function such that r ◦ ı = idSU(d ) (a retraction):

SU(d) U(d)

PSU(d) PU(d)

r

sp p
g′

Whenever p(U ) = p(U ′) we have that U = eiαU ′ for some
α ∈ [0, 2π ) and therefore (sp ◦ r)(U ) = (sp ◦ r)(U ′). By the
universal property of quotient spaces in topology there
exists a continuous g′ : PU(d ) → PSU(d ) that makes the
diagram commute. The following argument shows that g
and g′ are the inverse of each other: Take any x̄ ∈ PSU(d )
and some preimage of it x ∈ SU(d ), sp(x) = x̄. Observe

6Proof. p is continuous and 0-homogeneous, i.e., p(eiαU ) = p(U )
for all α real. Suppose that s as in Lemma 3 exists, then the oppo-
site composition s ◦ p must be continuous and 0-homogeneous (as
p loses the information about α). Also (s ◦ p)(U ) differs from U
only by the global phase (because p ◦ s = id). Define f : U(d ) →
S1, f (U ) = 〈0|U −1(s ◦ p)(U )|0〉. The function f is continuous and
(−1)-homogeneous so its existence contradicts Lemma 1. �

that

g′ ◦ g (x̄) = g′ ◦ g ◦ sp (x) = g′ ◦ p ◦ ı (x)

= sp ◦ r ◦ ı (x) = sp(x) = x̄,

where the second equality follows from the first commut-
ing diagram, the third equality from the second commuting
diagram, and the fourth equality from the fact that r is a
retraction. Similarly, take any [U ] ∈ PU(d ). For any preimage
U ∈ U(d ) of [U ], p(U ) = [U ] we have

g ◦ g′ ([U ]) = g ◦ g′ ◦ p (U ) = g ◦ sp ◦ r (U )

= p ◦ ı ◦ r (U ) = [U ],

where the second equality is from the second commuting dia-
gram, the third equality is from the first commuting diagram,
and the last equality holds because p maps U/ det(U ) and U to
the same equivalence class. We got that the continuous maps
g and g′ are the inverse of each other, so PSU(d ) and PU(d )
are homeomorphic. In particular, we can find the fundamental
group of PU(d ) by calculating it for PSU(d ).

Next we use the covering space argument to calculate
π1[PSU(d )], the fundamental group of PSU(d ). The group
of dth roots of unity (same group as Z/dZ) acts on SU(d )
by scalar multiplication: λU = λU . Since the group of dth
roots of unity is finite, its action is a covering space action:
for every A ∈ SU(d ) there is a neighborhood W of A such
that if for some dth root of unity λ the neighborhood λW
intersects W then λ = 1. Then the covering space theorem
(Proposition 1.40 in [76]) states that sp : SU(d ) → PSU(d ) is
a covering map and that the group of dth roots of unity Z/dZ
is isomorphic to π1[PSU(d )]/sp∗(π1[SU(d )]). We know that
sp∗(π1[SU(d )]) = {1} because the induced homomorphism
sp∗ must map the trivial group to the trivial group and
π1[SU(d )] is indeed trivial because SU(d ) is simply con-
nected. We get that π1[PSU(d )] is isomorphic to Z/dZ and
so is π1[PU(d )].

Now assume towards contradiction that s : PU(d ) → U(d )
as in Lemma 3 exists. In other words we have the following
commuting diagram:

PU(d) U(d) PU(d)s p

id

and knowing that π1[PU(d )] = Z/dZ and that π1[U(d )] =
Z, we have the corresponding diagram for the induced homo-
morphisms between the fundamental groups:

Z/dZ Z Z/dZ
s∗ p∗

id

Since s∗ is a homomorphism, it must map the generator of

Z/dZ to some x ∈ Z such that

d times︷ ︸︸ ︷
x + x + · · · + x = 0. There-

fore s∗ must map the generator, and consequently any element,
of Z/dZ to zero. s∗ must be trivial and this contradicts
p∗ ◦ s∗ = id . �

From the above proofs, extensions to approximations seem
nontrivial. We reduced any if-clause algorithm to a map s
of Lemma 3 that maps an equivalence class [U ] to some
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representative from that class Urep ∈ [U ]. But if the algorithm
is only approximate, then so is s obtained from the reduc-
tion. Its output could be outside the input equivalence class
s([U ]) /∈ [U ] or p ◦ s �= id . To reach contradiction we would
need an extension of Lemma 3 to approximations p ◦ s ≈ id .

APPENDIX D: ALTERNATIVE PROOF OF LEMMA 1

Central to this proof is the fact that the determinant
map det : U(d ) → S1 induces an isomorphism on the cor-
responding fundamental groups (Proposition 2.2.6 of [77]).
The required algebraic-topology background, all of which is
covered in Chap. 9 of [78], is just the basics of fundamental
groups (paths, homotopies, time reparametrization, etc.) to-
gether with the description of the fundamental group of the
circle S1 as infinite cyclic and generated by the homotopy
class of the loop t �→ e2π it . Throughout the proof, we will
use the notation π1(X, p) for the fundamental group of the
topological space X based at p. For a path γ : [0, 1] → X ,
we will denote by [γ ] its homotopy class, and for another
path γ ′ such that γ (1) = γ ′(0) we will denote by γ ∗ γ ′ their
composition.

Lemma 4. Let γ : [0, 1] → U(d ) be the loop γ (t ) =
e2π it I , where I ∈ U(d ) is the identity matrix. Then its ho-
motopy class [γ ] is a dth power in the fundamental group
π1(U(d ), I ), i.e., there exists some other loop γ ′ : [0, 1] →
U(d ) based at I such that [γ ′]d = [γ ].

We proved Lemma 4 (less formally) in the main text. Here
we give another, shorter proof.

Proof of Lemma 4. We use the fact (see Proposition
2.2.6 of [77]) that the determinant map det : U(d ) → S1

induces an isomorphism on the fundamental groups det∗ :
π1(U(d ), I ) → π1(S1, 1). The fundamental group π1(S1, 1) is
isomorphic to Z and generated by the homotopy class of the
loop ν : [0, 1] → S1 defined by ν(t ) = e2π it . Since det ◦γ :
[0, 1] → S1 is the loop t �→ e2π idt , which winds d times
around the circle, it is homotopic to the composition of ν with
itself d times (as both loops are equal up to reparametrization
of time). Thus,

det∗([γ ]) = [det ◦ γ ] =
⎡⎣ν ∗ ν ∗ · · · ∗ ν︸ ︷︷ ︸

d times

⎤⎦
= [ν][ν] . . . [ν]︸ ︷︷ ︸

d times

= [ν]d . (D1)

Since det∗([γ ]) is a d-th power in π1(S1, 1) and det∗ is a group
isomorphism, we deduce that [γ ] is also a dth power [to see
this, apply the inverse of det∗ to both sides of Eq. (D1)]. �

To complete the proof of Lemma 1 we give here the formal
version of the arguments in the main text.

Proof of Lemma 1. Without the loss of generality we
may assume that f (I ) = 1 since otherwise we may replace
f with its rotation U �→ f (I )−1 f (U ). Let γ : [0, 1] → U(d )
be the loop γ (t ) = e2π it I . By Lemma 4, the homotopy class
[γ ] is a dth power in π1(U(d ), I ), and so must map to a
dth power under any group homomorphism. In particular,
h∗([γ ]) = [ f ◦ γ ] is a dth power in π1(S1, 1), and so we can
write [ f ◦ γ ] = [γ ′]d for some loop γ ′ : [0, 1] → S1. Since
the fundamental group of the circle π1(S1, 1) is (infinite)

cyclic and generated by the homotopy class of the loop ν(t ) =
e2π it , we can write [γ ′] = [ν]k for some k ∈ Z, and so we have
[ f ◦ γ ] = [ν]kd . On the other hand, the m-homogeneity of f
allows us to derive an explicit formula for f ◦ γ :

f ◦ γ (t ) = f
(
e2π it I

) = (
e2π it

)m
f (I ) = e2π imt .

The loop t �→ e2π imt , which winds m times around the circle,
is homotopic to the composition of ν with itself m times (as
both loops are equal up to reparametrization of time) and so
[ f ◦ γ ] = [ν]m. Combining the two expressions we got for
[ f ◦ γ ] in terms of [ν], we deduce that [ν]kd = [ν]m. Since
the order of [ν] in π1(S1, 1) is infinite, the two powers must
be equal and m = kd . �

APPENDIX E: PROCESS TOMOGRAPHY OF
DEFINITION 7 EXISTS

In this Appendix we argue that algorithms of Definition
7 exist. For any U, they output a classical description of
a unitary operator close to κr (U ), where r depends on a
measurement outcome, so r is random. In example (E5) r ∈
{0, 1, . . . , d − 1}. The classical description allows for build-
ing a new circuit that is close to implementing |0〉〈0| ⊗ I +
|1〉〈1| ⊗ κr (U ). This does not approximately achieve the if
clause, and the only reason is the randomness of r. Intuitively,
it achieves a random relaxation of the if clause, discussed
rigorously in Appendix F.

Known process tomography algorithms achieve

PrX∼pN,U (·)[||X · X † − U · U †||♦ � ε♦N ] � 1 − δ♦N , (E1)

where limN→∞ ε♦N = 0 and limN→∞ δ♦N = 0 [65].
Theorem 4. Any process tomography algorithm that satis-

fies (E1) also satisfies Definition 7.
Proof. Suppose that ||X · X † − U · U †||♦ � ε♦N < 1/d .

By Theorem 1.3 of [63] there exists αU,X ∈ C,

(1 − ε♦N )2 � 1 − ε♦N � |αU,X |2 � 1, (E2)

such that

||X − αU,XU ||op � 2
√

ε♦N . (E3)

This implies that the inequality

|〈r|X |0〉 − αU,X 〈r|U |0〉| � 2
√

ε♦N (E4)

holds for any r ∈ {0, 1, . . . , d − 1}.
We aim to satisfy Definition 7 with the κ j functions and the

r = r(X ) rule described in Eq. (15) and below it:

κ j (U ) =
{

〈 j|U |0〉
|〈 j|U |0〉|U = |〈 j|U |0〉|

〈 j|U |0〉 U if 〈 j|U |0〉 �= 0,

κ j+1 mod d (U ) otherwise,
(E5)

r = r(X ) = min{ j : |〈 j|X |0〉| � 1/
√

d}, (E6)

which ensures that |〈r|X |0〉| � 1/
√

d and because of our
supposition also that 〈r|U |0〉 �= 0, so we can safely divide
by each. We will show that the left-hand side of (E3) is
close to ||κr (X ) − κr (U )||op, by using the following upper
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bound: ∣∣∣αU,X − |〈r|U |0〉|
|〈r|X |0〉|

〈r|X |0〉
〈r|U |0〉

∣∣∣ � ∣∣∣αU,X − αU,X

|αU,X |
∣∣∣ +

∣∣∣ αU,X

|αU,X | − αU,X
|〈r|U |0〉|
|〈r|X |0〉|

∣∣∣ +
∣∣∣αU,X

|〈r|U |0〉|
|〈r|X |0〉| − |〈r|U |0〉|

|〈r|X |0〉|
〈r|X |0〉
〈r|U |0〉

∣∣∣
=

∣∣∣|αU,X | − |αU,X |
|αU,X |

∣∣∣ + |αU,X |
∣∣∣ 1
|αU,X | − |〈r|U |0〉|

|〈r|X |0〉|
∣∣∣ + |〈r|U |0〉|

|〈r|X |0〉|
∣∣∣αU,X − 〈r|X |0〉

〈r|U |0〉
∣∣∣

� |αU,X − 1| + |αU,X | 2
√

ε♦N

|αU,X | |〈r|X |0〉| + |〈r|U |0〉|
|〈r|X |0〉|

2
√

ε♦N

|〈r|U |0〉| , (E7)

where the last inequality upper bounded: the first term us-
ing | |a| − |b| | � |a − b| a, b ∈ C, the second term using the
same applied to Eq. (E4) with αU,X 〈r|X |0〉 taken out of the
norm, the third term using Eq. (E4) with 〈r|U |0〉 taken out.
Applying (E2) to the first term of (E7) and simplifying the
rest, we get∣∣∣∣αU,X − |〈r|U |0〉|

|〈r|X |0〉|
〈r|X |0〉
〈r|U |0〉

∣∣∣∣ � ε♦N + 4
√

ε♦N

|〈r|X |0〉| . (E8)

We obtain

||κr (X ) − κr (U )||op =
∣∣∣∣∣∣∣∣ |〈r|X |0〉|

〈r|X |0〉 X − |〈r|U |0〉|
〈r|U |0〉 U

∣∣∣∣∣∣∣∣
op

=
∣∣∣∣∣∣∣∣X − |〈r|U |0〉|

|〈r|X |0〉|
〈r|X |0〉
〈r|U |0〉U

∣∣∣∣∣∣∣∣
op

� ||X − αU,XU ||op

+
∣∣∣∣∣∣∣∣αU,XU − |〈r|U |0〉|

|〈r|X |0〉|
〈r|X |0〉
〈r|U |0〉U

∣∣∣∣∣∣∣∣
op

� 2
√

ε♦N + ε♦N + 4
√

ε♦N

|〈r|X |0〉| . (E9)

The last inequality upper bounds the first term by (E3) and the
second term by (E8).

Provided that condition (E1) holds, we set the parameters
of Definition 7 in the following way. Let δN = δ♦N . Let N0 be
some number such that ε♦N � 1/d for all N � N0. We set

εN =
{

2 if N < N0,

2
√

ε♦N + ε♦N + 4
√

d
√

ε♦N if N � N0.
(E10)

The r = r(X ) rule guarantees that for N � N0, εN up-
per bounds (E9). At the same time limN→∞ εN = 0 and
limN→∞ δN = 0 hold, satisfying Definition 7. �

APPENDIX F: RANDOM IF CLAUSE AND ENTANGLED
IF CLAUSE

Here we show how algorithms of Definition 7 yield the
random if clause and the entangled if clause. For a rigorous
treatment we first need several definitions.

Definition 10 (k-task). A k-task is a pair (t, �), where
(1) t is a vector (t0, t1, . . . , tk−1) of task functions ti :

U(d ) → L(Ht ).
(2) The query alphabet � is a set of query functions.
For example, the k-if clause is ((cφ0 , cφ1 , . . . , cφk−1 ),

{id, inv}) for any {φi}i. Another example is the k-(q)th power
for some fraction q ∈ Q, where each ti is a specific qth power
function on U ∈ U(d ) (recall that many such functions exist).

A random task or an entangled task is a k-task for any
k � 2. The qualifiers “random” and “entangled” will invoke
different notions of algorithms “achieving” the k-task. We
defined postselection oracle algorithm (Definition 1), which
includes only a binary success or fail measurement. Here we
need a generalization:

Definition 11 (m-postselection oracle algorithm). An
m-postselection oracle algorithm ((A0, A1, . . . Am−1), �A)
corresponds to an m-tuple of functions Ar : U(d ) →
L(H ⊗ K) of the form

Ar (U ) = �r VN [σN (U ) ⊗ IKN ] . . .V1[σ1(U ) ⊗ IK1 ]V0 (F1)

that differ from each other only by the last multiplication
by the projector �r . The operator Ar (U ) is implemented
upon getting the success outcome r ∈ {0, 1, . . . m − 1} in the
measurement {�0,�1, . . . �m−1,�fail}, where �fail = I −∑m−1

r=0 �r . As before, σi ∈ �A. Whenever the ancilla Hilbert
space K is initialized to the all-zero state, the total probabil-
ity of success is nonzero, i.e., for all U ∈ U(d ) and for all
|ξ 〉 ∈ H:

m−1∑
r=0

||Ar (U )(|ξ 〉 ⊗ |0〉K)||2 > 0. (F2)

Observe that for m = 1 we are back to our original
postselection oracle algorithm model. The superoperator im-
plemented on the rth outcome is

Ar U (ρ) = trK
[
Ar (U )(ρ ⊗ |0〉〈0|K)Ar (U )†

]
, (F3)

where we wrote U as a subscript to avoid too many paren-
theses. If m � 2, the probability tr[Ar U (ρ)] of an individual
outcome r ∈ {0, 1, . . . m − 1} can hit zero.

Next, we generalize approximately achieving (Definition
4) to random k-tasks. We would like to compare Ar U to tr (U )
as in Definition 4. The rth contribution to the error should
be weighted by the conditional probability of the rth out-
come, pr U (ρ) = tr[Ãr U (ρ)]/psuccU (ρ), where ρ ∈ D(H ⊗
H′), Ãr U = Ar U ⊗ IH′ , and psuccU (ρ) = ∑m−1

r=0 tr[Ãr U (ρ)]
is the total probability of success. On inputs U, ρ that yield a
nonzero probability of outcome r, the contribution is

pr U (ρ)

∣∣∣∣∣
∣∣∣∣∣ Ãr U (ρ)

tr
[
Ãr U (ρ)

] − tr (U )ρ tr (U )†

∣∣∣∣∣
∣∣∣∣∣
tr

= 1

psuccU (ρ)

∣∣∣∣Ãr U (ρ) − tr
[
Ãr U (ρ)

]
tr (U )ρ tr (U )†

∣∣∣∣
tr ,

(F4)

which is well defined on all ρ ∈ D(H) because of condition
(F2). This justifies the following definition.
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Definition 12 (m-postselection oracle algorithm
ε-approximately achieving a random k-task). An m-
postselection oracle algorithm ((A0, A1, . . . Am−1), �A)
ε-approximately achieves a random ((t0, t1, . . . , tk−1), �) if
�A ⊆ � and if for all U ∈ U(d )

sup
H′

ρ∈D(H⊗H′ )

1

psuccU (ρ)

×
m−1∑
r=0

||Ãr U (ρ) − tr[Ãr U (ρ)]t̃r (U )ρ t̃r (U )
†||tr

� ε, (F5)

where the wide tilde denotes the H′ extension by the identity
superoperator or operator, and for r � k we set tr = tk−1.

If either k = 1 or m = 1, then (F5) simplifies to (9). Conse-
quently, the if clause (k = 1) is impossible also in the m > 1
model, and the random if clause is impossible in the original
m = 1 model. This justifies the remaining impossibilities in
Table II.

Extending the algorithmic model is not necessary for the
entangled if clause. Binary success or fail measurement suf-
fices if the r value can remain in an additional, entangled
register.

Definition 13 (Postselection oracle algorithm ε-
approximately achieving an entangled k-task). A
postselection oracle algorithm (A, �A) ε-approximately
achieves an entangled ((t0, t1, . . . , tk−1), �) if �A ⊆ � and if
AU := A(U ) maps L(H) → L(H ⊗ Ck) and

sup
H′

ρ∈D(H⊗H′ )

1

tr[ÃU (ρ)]

×
k−1∑
r=0

||〈r|ÃU (ρ)|r〉 − tr[〈r|ÃU (ρ)|r〉]t̃r (U )ρ t̃r (U )
†||tr

� ε, (F6)

where {|r〉}r∈[k] is the computational basis of Ck , and the wide
tilde denotes the H′ extension by the identity superoperator or
operator.

Writing pr U (ρ) = tr[〈r|ÃU (ρ)|r〉] the sum in (F6) is equal
to

k−1∑
r=0

||〈r|ÃU (ρ)|r〉 ⊗ |r〉〈r|

− pr U (ρ)t̃r (U )ρ t̃r (U )
† ⊗ |r〉〈r|||tr

= ||
k−1∑
r=0

|r〉〈r|ÃU (ρ)|r〉〈r|

−
k−1∑
r=0

pr U (ρ)(t̃r (U ) ⊗ |r〉)ρ(t̃r (U )
† ⊗ 〈r|)||tr. (F7)

Thus, expression (16) in the main text is indeed an example of
an entangled k-task.

The last two definitions are closely related. Applying the
principle of deferred measurement to an algorithm of Def-
inition 12 will give an algorithm of Definition 13 for the

entangled version of the same k-task. In the opposite direction,
adding the measurement with �r = I ⊗ |r〉〈r| results in the
corresponding k-postselection oracle algorithm.

Next we show that the random if clause is possible. By the
above argument, the entangled if clause follows. We will show
that example (E5) yields an algorithm satisfying Definition
12 for k = m = d , justifying the tick in Table II. Process
tomography can obtain classical descriptions κr (X ) ∈ U(d )
that satisfy Definition 7. From this classical description, we
can build a new circuit that implements an operator arbitrar-
ily close to cr (X ) := |0〉〈0| ⊗ I + |1〉〈1| ⊗ κr (X ). If we know
the value of r, then this strategy implements a superoperator
arbitrarily close to Ar U,N , where

Ar U,N (ρ) =
∑

X∈�N ,
r(X )=r

pU,N (X )cr (X )ρcr (X )†. (F8)

Moreover, psuccU (ρ) = 1. Then the expression on the left-
hand side of (F5) is close to

sup
H′

ρ∈D(H⊗H′ )

d−1∑
r=0

||Ãr U,N (ρ) − tr[Ãr U,N (ρ)]c̃r (U )ρ c̃r (U )
†||tr

� sup
H′

ρ∈D(H⊗H′ )

∑
X∈�N

pU,N (X )||c̃r (X )ρc̃r (X )
†

− tr[c̃r (X )ρc̃r (X )
†
]c̃r (U )ρ c̃r (U )

†||tr
�

∑
X∈�N

pU,N (X )||cr (X ) · cr (X )† − cr (U ) · cr (U )†||♦

�
∑

X∈�N

pU,N (X )2||κr (X ) − κr (U )||op

� 2εN + 4δN . (F9)

In the first inequality we took the sum of (F8) and pU,N (X )
out of the trace norm. The second inequality holds because

tr[c̃r (X )ρc̃r (X )
†
] = 1 and because moving the supremum into

the sum can only increase the expression. The third inequality
uses the upper bound on the diamond norm in terms of the op-
erator norm [66, Lemma 12.6] and the equality ||Y ⊗ Z||op =
||Y ||op||Z||op. The last inequality follows from Definition 7.

This shows that the described tomography strategy ε-
approximately achieves the random if clause, for any ε > 0. In
particular, it achieves the random d-if clause, where cφr (U ) =
|0〉〈0| ⊗ I + |1〉〈1| ⊗ κr (U ) for κr of (E5).

APPENDIX G: SYMMETRIC EQUATIONS FOR THE
DETERMINANT AND THE MINORS

In the following we first prove the symmetric formula for
the determinant of Eq. (19), then we use it to prove Lemma 6,
the symmetric formula for the minors of Eq. (22).

Lemma 5. The determinant of M ∈ Matn×n(C) is given by
the formula:

det (M ) = 1

n!

∑
π,τ∈Sn

sgn (τ ) sgn (π )
n∏

i=1

Mτ (i),π (i).
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Proof. By the usual Leibniz formula, we have det(M ) =∑
π∈Sn

sgn(π )
∏n

i=1 Mi,π (i). For each τ ∈ Sn, set Mτ to be
the matrix obtained from M by permuting the rows of M
according to τ−1, i.e., Mτ

i, j = Mτ (i), j . On the one hand, by
the properties of the determinant function we have det(Mτ ) =
sgn(τ ) det(M ), and on the other hand, by the Leibniz formula

det (Mτ ) =
∑
π∈Sn

sgn (π )
n∏

i=1

Mτ
i,π (i) =

∑
π∈Sn

sgn (π )
n∏

i=1

Mτ (i),π (i).

Combining the two expressions for det(Mτ ) and multiplying
by sgn(τ ) gives

det (M ) =
∑
π∈Sn

sgn (π ) sgn (τ )
n∏

i=1

Mτ (i),π (i).

Summing this equality over all τ ∈ Sn and dividing by n! gives
the desired result. �

Lemma 6. The (i, j) minor of a matrix M ∈ Matn×n(C) is
given by

det
(
M� i,� j

) = (−1)i+ j

(n − 1)!
·

∑
π,τ∈Sn
π (1)= j
τ (1)=i

sgn (τ ) sgn (π )
n∏

k=2

Mτ (k),π (k).

Proof. We think of Sn−1 as the subset of Sn of permutations
fixing n, i.e., Sn−1 = {α ∈ Sn | α(n) = n}. For each m ∈ {i, j}
set Xm = {α ∈ Sn | α(1) = m}, and let Tm : Xm → Sn−1 be the
mapping Tm(α) = (n n − 1 . . . m) ◦ α ◦ (1 2 3 . . . n − 1 n).
Note that Tm(α) lies in Sn−1 since it fixes n, that Tm is a
bijection (since Tmα it is obtained from α by composing on
both sides with fixed permutations), and finally that by the
multiplicativity of sgn we have

sgn [Tm(α)] = (−1)n−m sgn (α)(−1)n−1 = (−1)1−m sgn (α).

One can now verify that for all k ∈ {1, 2, . . . , n − 1} and for
every τ ∈ Xi and π ∈ Xj we have

(M� i,� j )Tiτ (k),Tjπ (k) = Mτ (k+1),π (k+1).

Indeed, if τ (k + 1) < i then deleting the ith row from M does
not change the index of the τ (k + 1)th row, and correspond-
ingly (n n − 1 . . . i) fixes τ (k + 1) and so (Tiτ )(k) = τ (k +
1). If τ (k + 1) > i then then deleting the ith row from M
decreases the index of the τ (k + 1)th row by one, and corre-
spondingly (n n − 1 . . . i) does the same thing to τ (k + 1). A
similar argument for π shows the validity of the last equality.
Now, by Lemma 5,

det(M� i,� j ) = 1

(n − 1)!

∑
π ′,τ ′∈Sn−1

sgn
(
τ ′) sgn

(
π ′) n−1∏

k=1

(M� i,� j )τ ′(k),π ′(k)

= 1

(n − 1)!

∑
π∈Xi,τ∈Xj

sgn (Tiτ ) sgn
(
Tjπ

) n−1∏
k=1

(M� i,� j )Tiτ (k),Tjπ (k)

= 1

(n − 1)!

∑
π∈Xi,τ∈Xj

(−1)1−i sgn (τ )(−1)1− j sgn (π )
n−1∏
k=1

Mτ (k+1),π (k+1)

= (−1)i+ j

(n − 1)!

∑
π∈Xi,τ∈Xj

sgn (τ ) sgn (π )
n∏

k=2

Mτ (k),π (k).

�

APPENDIX H: LINEAR-OPTICS SOLUTION

First, we briefly review the relevant parts of the linear-optics model as described by Aaronson and Arkhipov [79]. A d × d
unitary U specifies what happens to each of the d input modes, collected in the set SU :

∀ k ∈ SU a†
k �→

∑
j∈SU

Ujka†
j ,

where a†
i is the creation operator on the ith mode. The unitary acts trivially on other modes, which is captured by the following

extension of the matrix:

Ujk := δ jk if j /∈ SU or k /∈ SU . (H1)

Now for any set of modes S we can describe the action of U by

∀ k ∈ S a†
k �→

∑
j∈S∪SU

Ujka†
j .
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A general quantum state of n particles distributed among m modes is

|ψ〉m,n =
∑

�n=(n1,n2,...,nm )∈�m,n

α�n

(
a†

1

)n1
(
a†

2

)n2
. . .

(
a†

m

)nm

√
n1!n2! . . . nm!

|�〉,

where �m,n is the set of possible partitions of n particles into m slots. In words, a state is a result of taking the vacuum state
|�〉 = |�〉m,0 and applying to it a degree-n polynomial of m variables, creation operators. A unitary U acts on the state as a linear
transformation of the polynomial’s variables. The output is

U [|ψ〉|S|,n] =
∑

�n=(n1,n2,...,n|S|)∈�|S|,n

α�n

( ∑
j∈S∪SU

Uj1a†
j

)n1
( ∑

j∈S∪SU

Uj2a†
j

)n2

. . .

( ∑
j∈S∪SU

Uj|S|a
†
j

)n|S|

√
n1!n2! . . . n|S|!

|�〉, (H2)

where S are the input state’s modes. In particular, for k ∈ S \ SU , U leaves the kth mode of the input state untouched [since
then Eq. (H1) applies]. Equation (H2) implies that it also leaves the vacuum state (n = 0) untouched. These are the two crucial
reasons why building an if clause in the linear-optics model is easy.

We define oracle linear-optics algorithm to be a sequence of gates V0, σ1(U ), V1, σ2(U ), . . .VN−1, σN (U ), VN ; Vi representing
fixed gates and σi(U ) query gates as in Fig. 2 in the main text, but the gates now act on a vector state according to Eq. (H2).

Next, we can describe the Mach-Zehnder-interferometer solution [Fig. 1(b)] of the if clause (cφ, {id, inv}) as a single-query
oracle linear-optics algorithm. In the quantum-circuit model, a general pure-state input to cφ (U ) decomposes as |ξ 〉 = α0|0〉 ⊗
|t0〉 + α1|1〉 ⊗ |t1〉, where the first Hilbert space is the control qubit and the second the target qudit. Suppose we encode the
control in the photon’s polarization. Collect in Sh the modes corresponding to horizontal polarization |Sh| = d and in Sv the
modes corresponding to the vertical |Sv| = d . We write this as the 2d-mode single-photon state∣∣ψ|ξ〉

〉
2d,1 = α0|ψ|t0〉〉|Sh|,1|�〉|Sv |,0 + α1|�〉|Sh|,0|ψ|t1〉〉|Sv |,1,

i.e., in the first summand there is one photon on the d horizontal modes and zero photons on the d vertical modes and in the
second summand vice versa. In Fig. 1(b) each polarizing beam splitter corresponds to the unitary V which effectively relabels
polarization modes to path modes h �→ lower and v �→ upper. Thus, the resulting unitary V †UV acts nontrivially on the Sv

modes only. Equation (H2) implies that(
V †UV

)[|ψ|ξ〉〉2d,1

] = α0|ψ|t0〉〉|Sh|,1U
[|�〉|Sv |,0

] + α1|�〉|Sh|,0U
[|ψ|t1〉〉|Sv |,1

]
= α0|ψ|t0〉〉|Sh|,1|�〉|Sv |,0 + α1|�〉|Sh|,0|ψU |t1〉〉|Sv |,1 (H3)

and the second equality holds because U acts trivially on vacuum, and because |ψ|t1〉〉|Sv |,1 has one photon on exactly those modes
that are in SU . The output state (H3) is the linear-optics version of

α0|0〉 ⊗ |t0〉 + α1|1〉 ⊗ U |t1〉, (H4)

which equals cφ (U )|ξ 〉 with φ identically zero.
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