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Quantum homogenization is a reservoir-based quantum state approximation protocol, which has been suc-
cessfully implemented in state transformation on quantum hardware. In this work we move beyond that and
propose the homogenization as a novel platform for quantum state stabilization and information protection. Using
the Heisenberg exchange interactions formalism, we extend the standard quantum homogenization protocol
to the dynamically equivalent (swap)α formulation. We then demonstrate its applicability on the available
noisy intermediate-scale quantum (NISQ) processors by presenting a shallow quantum circuit implementation
consisting of a sequence of CNOT and single-qubit gates. In light of this, we employ the Beny-Oreshkov
generalization of the Knill-Laflamme (KL) conditions for near-optimal recovery channels to show that our
proposed (swap)α quantum homogenization protocol yields a completely positive, trace-preserving (CPTP) map
under which the code subspace is correctable. Therefore, the protocol protects quantum information contained
in a subsystem of the reservoir Hilbert space under CPTP dynamics.

DOI: 10.1103/PhysRevA.109.032624

I. INTRODUCTION

A physical system with the capacity to consistently entan-
gle its degrees of freedom and maintain a coherent quantum
state arbitrarily close to a desired target state for time longer
than the lifespan of single modes is a prerequisite for the
development of noisy quantum devices, with implications to
many quantum protocols, e.g., long-distance quantum com-
munication [1], quantum networks [2], quantum cryptography
[3], and quantum sensing [4].

So far, many stabilization schemes [5–8] were inspired
by classical control theory and relied on direct feedback
loops for carrying quantum feedback procedures, where a
controller compared the system output with a predetermined
target value, and made adjustments in real time based on
the measurement-acquired information. Alternatively, some
models utilized open quantum systems [9], governed by a
Lindblad master equation with varying dissipative and Hamil-
tonian terms, while others [10] constructed stabilizer codes
and eliminated the dissipative part altogether.

These approaches, however, were fundamentally hindered
by the fact that measurements induce spurious backreactions

*yosifov.alexander@huawei.com
†aditya.iyer@physics.ox.ac.uk
‡ebler.daniel1@huawei.com
§vlatko.vedral@physics.ox.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

on the system. Although, in this respect, weak measurements
were considered [11], they only provided a limited amount of
information, while requiring precise control over individual
degrees of freedom, thus leading to considerable experimental
complexity and hardware overhead [6].

To bypass those shortcomings, reservoir-based dynamical
systems have been recently proposed as a viable alternative for
a variety of tasks, such as coherent quantum control and state
preparation [12–14]. Here, the repetitive engineered coupling
of an input system to a reservoir has already demonstrated
utility for the robust entanglement of superconducting qubits
[15,16], showing improved state stabilization and prolonged
entangled-state lifetimes. The appeal of this idea stems from
employing the system-reservoir dynamics as a resource for
engineering steady states which are available “on demand”
and immune to some errors, thus reducing cost and improving
scalability. Although very promising, the main challenge for
this method lies in engineering a physical system with dynam-
ics that naturally drives it to a desired steady state without
actively controlling individual degrees of freedom.

Motivated by the recent success of such exchange inter-
action models [17–19], in this work we contribute in this
direction by proposing the quantum homogenization proto-
col [20] as a novel platform for quantum state stabilization.
The protocol is a quantum information formalization of state
approximation collision models [21,22] via sequential input-
reservoir interactions, modeled by the two-body partial swap,
a versatile operation which implements a probabilistic ex-
change of states between the input system and the reservoir
[23–29]. Fundamentally, the repetitive system-reservoir inter-
actions spread the system information across the reservoir,
maintaining coherence and entangling its degrees of freedom.
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Concretely, we substitute the partial swap gate with the bi-
partite (swap)α operator [30], generated by a Heisenberg
exchange interaction, where α is a time-dependent coupling
parameter, and show that the (swap)α is equivalent to the
partial swap. Upon this insight, we demonstrate the prac-
tical applicability of the (swap)α quantum homogenization
protocol by presenting an experimentally realizable shallow
quantum circuit, consisting of four CNOT gates and six single-
qubit gates, which can be natively implemented on current
noisy intermediate-scale quantum (NISQ) processors. Then,
in the context of the Beny-Oreshkov generalization [31] of
the Knill-Laflamme (KL) correctability conditions, we argue
that the iterative input-reservoir interactions of the proposed
(swap)α quantum homogenizer encode logical states in a
reservoir code subspace via a noisy channel in a correctable
form. Hence, a recovery quantum channel exists, such that
it approximately reverses the encoding process. This demon-
strates that the homogenization protocol naturally converges
to a desired steady state and protects the encoded information
in the reservoir subspace.1

II. QUANTUM HOMOGENIZATION

Classical reservoir computing is a simple facilitator of neu-
ral network models [33]. It utilizes the dynamics of a fixed
reservoir (a collection of artificial neurons or physical degrees
of freedom) to process input data without fine-tuning. Re-
cently, that framework was extended to the quantum domain
[34], where, through the use of quantum modes, inherently
quantum effects (e.g., entanglement) can be leveraged.

The quantum homogenizer is a reservoir-based protocol
[20,28,29] with naturally convergent dynamics [35]. It takes
any input quantum state ρS ∈ HS and applies a series of prob-
abilistic exchange operations with the reservoir degrees of
freedom: N d-state quantum systems (i.e., qudits, see [36,37]),
each prepared in arbitrary state ξ (i) = ξ ∀i ∈ N , leading to the
the density matrix HR � ξ⊗N

R := ξR1 ⊗ ξR2 ⊗ . . . ⊗ ξRN after
N rounds.2 The exchange dynamics is modeled by the two-
body partial swap operator USR = cos η 1SR + i sin η swapSR,
where η is the parameter determining the probability of either
leaving the state invariant (by applying the identity operator
1SR) or exchanging the input state with the given qudit state
through the swap operation as

swapSR(ρS ⊗ ξR)swap†
SR = ξS ⊗ ρR. (1)

The quantum homogenization protocol then gradually con-
verges the input ρS towards ξ as

U †
N . . .U †

1

(
ρS ⊗ ξ⊗N

R

)
U1 . . .UN ≈ ξ⊗N+1

SR , (2)

where Uk := USRk ⊗ (⊗ j �=k1 j ) denotes the unitary two-body
interaction between the input system and the kth reservoir
qudit.

1A novel observation was made in [32] that quantum reservoirs can
protect quantum information against errors of polynomial complex-
ity.

2For numerical simulations demonstrating the relation between
state fidelity and the size of N , see [38].

In the homogenization process, the input state gets grad-
ually mapped from the input space HS onto a subspace of
the Hilbert space HR of the reservoir, where due to acting
with USR (for small η) the changes to the reservoir have been
experimentally shown to be vanishingly small and the state
of individual reservoir qudits remains coherent [28,36]. Gen-
erally, given that at each timestep the input system interacts
with a single reservoir qudit, after the first step it evolves as

ρ
(1)
S = trR1

[
U1

(
ρ

(0)
S ⊗ ξ (1)

)
U †

1

]
, (3)

where its state becomes [20]

ρ
(1)
S = (cos η)2ρ

(0)
S + (sin η)2ξ + i cos η sin η

[
ξ, ρ

(0)
S

]
, (4)

with the term [ξ, ρ
(0)
S ] = ξρ

(0)
S − ρ

(0)
S ξ denoting the commu-

tator of the two states, and η being the coupling parameter.
Analogously, the state of the first ancilla ξ (1) ∈ R1 reads [20]

ξ (1) = (sin η)2ρ
(0)
S + (cos η)2ξ + i cos η sin η

[
ρ

(0)
S , ξ

]
. (5)

After the input system interacts sequentially with N reservoir
qudits, ρ

(N )
S reaches a steady state as3

ρ
(N )
S = trR

[
UN . . .U1

(
ρ

(0)
S ⊗ ξ⊗N

R

)
U †

1 . . .U †
N

]
. (6)

where Uk is given as in (2). That is, the dynamics of the
quantum homogenizer is captured by an operation USR which
asymptotically converges (contracts) all input states towards
a desired steady state. In other words, the sequence of dissi-
pative operations asymptotically drives a system in any initial
state to the thermal state of the reservoir, which, in our case,
is a superposition of d coherent states [39,40].4

In this respect, as it was proven in [36], the contractivity
of USR ensures that D[USR(ρ (�)

S ⊗ ξR)U †
SR] � γ�D(ρ (�)

S ⊗ ξR),
where γ� ∈ [0, 1), ∀� � 1, and D is the Hilbert-Schmidt
distance [42,43]. Consequently, for � = N large enough,
D(ρ (N )

S , ξ ) � δ, where δ � 1 is a small positive constant.
Here, the set of steady states, corresponding to the dynamical
process (6) is given by the set of density operators S(HR) [44].
Where, for the case of d-dimensional qudits, we know from
[37,45], that under such engineered system-reservoir coupling
the system asymptotically converges to S(HR), thus making
HR the asymptotically steady-state manifold.

Note that the utilization of such two-body exchange in-
teractions with a dissipative reservoir has already yielded
promising results for quantum state stabilization of a paramet-
ric oscillator [46] and quantum data classification [47].

III. HEISENBERG EXCHANGE FORMALISM

Suppose we substitute the partial swap gate USR with
the two-body Heisenberg exchange operator (swap)α [30],

3The steady-state properties of the quantum homogenization proto-
col were extended to continuous variable qudits in [36].

4For a comprehensive treatment of quantum homogenization as a
contractive map, see [20]. Note that, compared to qubit models, the
engineered coupling of a reservoir with a higher-dimensional quan-
tum system (e.g., qudit) has been proven to be an efficient resource
for stabilizing the coherent state of the system [41].
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|ψ〉 U1

|φ〉 RY (π
4 ) RZ(η) RZ(−2η) RZ(η) RY (−π

4 )

FIG. 1. Quantum circuit representation of the proposed (swap)α

quantum homogenizer.

herein denoted as U α , where α is the tunable coupling param-
eter (updated at each timestep), which controls the strength of
the interactions between the input and the ancilla [17–19].5

In the following analysis, without loss of generality, we
restrict our analysis to the case of qubit messages and reservoir
states. The Bell basis for a pair of qubits is defined as

|	±〉 = 1√
2

(|00〉 ± |11〉),

|
±〉 = 1√
2

(|01〉 ± |10〉),

(7)

where using (7), U α can be expressed as [30]

U α = |	+〉 〈	+| + |	−〉 〈	−| + |
+〉 〈
+|
+ eiπα |
−〉 〈
−| . (8)

The relation between the partial swap gate USR and U α can be
seen via the matrix representation

USR =

⎛
⎜⎜⎝

cos η + i sin η 0 0 0
0 cos η i sin η 0
0 i sin η cos η 0
0 0 0 cos η + i sin η

⎞
⎟⎟⎠

= eiη

⎛
⎜⎜⎜⎝

1 0 0 0

0 1+e
iπ
n

2
1−e

iπ
n

2 0

0 1−e
iπ
n

2
1+e

iπ
n

2 0
0 0 0 1

⎞
⎟⎟⎟⎠

= eiηU α, (9)

where −2η = π
n , and α = 1

n . Therefore, it is evident that the
U α operator [30] is equivalent, up to a global phase factor of
e−iη, to the standard partial swapUSR, as defined in [20,28,29].
Remark that (9), together with single-qubit rotations, is uni-
versal for simulating any unitary two-qubit gate [17].

To demonstrate the feasibility of the proposed quantum
gate on hardware with native CNOT gates, such as current
superconducting NISQ devices, we decomposed it to a combi-
nation of CNOT gates and single-qubit gates, see Fig. 1. Here,

5It was shown in [30] that three (swap)α gates are necessary and
sufficient for the construction of an optimal quantum circuit. More-
over, the (swap)α gates are known to be as efficient as CNOT gates in
implementing two-body operations.

|ψ〉 and |φ〉 are arbitrary states, and the gates are given by

U1 =
(

1 0
0 e

iπ
2n

)
,

RY

(π

4

)
= 1√

2

(
1 −1
1 1

)
,

RY

(
−π

4

)
= 1√

2

(
1 1

−1 1

)
, (10)

RZ (η) =
(

e−iη 0
0 eiη

)
,

RZ (−2η) =
(

e2iη 0
0 e2iη

)
,

where for α = π (mod 2π ) the operator U α can act as
swap |φ〉 |ψ〉 = |ψ〉 |φ〉 ,∀ |ψ〉 |φ〉, while for α ∼ 0, U α ≡
1SR. Moreover, the closer η is to π/2, the higher the probabil-
ity is that U α will act as the swap, while for weak coupling
the input state is only slightly modified towards the target
reservoir state.

Using the two-body Heisenberg exchange operator U α is
advantageous for the practical implementation of the proposed
protocol (e.g., solid-state quantum computing) as this engi-
neered system-reservoir interaction driven stabilization of the
input state onto a reservoir subspace is achieved by controlling
only the coupling parameter α [30]. This can be done via an
external control field, e.g., a global time-dependent magnetic
field [48,49], eliminating the need for selective control over
individual degrees of freedom [6] and simplifying the archi-
tecture design.6

IV. ROBUSTNESS OF QUANTUM HOMOGENIZATION

In the context of approximate quantum error correction
[52] and following the prescription of [31], we now demon-
strate that such dissipative reservoir-based systems satisfy
the Beny-Oreshkov generalization of the KL conditions for
approximate quantum code correctability, herein viewed as a
condition on the access to information by the environment.
Namely, assuming there are some noise-induced nonunitary
effects (as discussed below), we show that the associated
information “leakage” is minimal and does not disturb the
steady state of the quantum homogenizer.

Let us first remark that, in the already introduced model,
the system-reservoir interaction is unitary and purifies the
homogenization process.7 Suppose we denote the complete
operation as R ◦ ζ , consisting of an encoding quantum chan-
nel ζ : S(HS ) → S(HR), representing the partial swap, and

6This principle has been successfully applied for the engineering
of effective “always-ON” Hamiltonians in analog quantum simula-
tors [50,51], leading to reduced computational cost and significantly
improved system controllability.

7Where, in practice, the presence of noise during the encoding of
the input would induce some nonunitary propagation of the state to
the environment E , such that the proposed collision model is the
Stinespring dilation of the noisy process. In this case, such leakage
of information into E is described by the complementary channel ζ̂ ,
see (11).
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a recovery channel R : S(HR) → S(HS ), representing its in-
verse, where S(HS ) and S(HR) are the state space on the
system and reservoir, respectively.8 Here, as is the case in any
experimental setup, we consider the encoding channel ζ to
be noisy in a sense that during the input-reservoir encoding
process part of the information propagates into an environ-
ment E ∈ HE . Where, for ease of notation, we assume the
noise elements Ni are absorbed in ζ . Then, there exists a
corresponding Stinespring dilation isometry [53] M acting
as M : HS → HR ⊗ HE , which is unique up to local iso-
morphisms of HE . The isometry transforms the input state
ρS ∈ HS on HR ⊗ HE as MρSM†.

We can now continue with the main task of character-
izing the recoverability of the system information from the
environment by employing the concept of complementary
channels which are known to have similar Stinespring rep-
resentation [31,54]. This method is particularly useful since it
relates distances between channels to distances between their
complementary versions. The encoding channel ζ̂ : S(HS ) →
S(HE ), complementary to ζ , is defined as

ζ̂ (ρS ) = trR(MρM†), (11)

where ζ̂ specifies how much information from the input sys-
tem HS has leaked into the environment. Because of that, all
complementary channels are also unique in the same restricted
sense as the isometry M, and are associated with choices of
states in the environment.9 In this setup, the generalized KL
conditions allow us to test whether an approximate recovery
channel exists, as measured by the fidelity-based Bures dis-
tance B, studied in [31,55], where we consider the following
definition as a necessary and sufficient condition.

Definition 1. An encoding map M defines a code which is
δ correctable under the channel ζ , where a recovery channel R
as in (R ◦ ζ ,F ) = 1 − δ exists iff a complementary channel
R̂ as in (̂ζ , ̂R ◦ F ) = 1 − δ exists, where F is a target channel
(e.g., F = 1) and δ ∈ [0, 1].

We can now restate the above definition in terms of the
diamond norm which more accurately captures the presence
of entanglement with an ancillary system [56] as

‖R ◦ ζ − F‖� � δ (12)

for δ � 1. Note the generalized KL conditions are broadly
applicable for subsystem and algebraic codes and the recovery
operation may be taken with respect to an arbitrary target
channel [57]. To simplify things, we can convert Definition
1 into a condition on the existence of the complementary
channel ζ̂ : If ∀ρS ∈ S(HS ) there exists a channel with approx-
imately constant output to the environment, such as ζ̂ (ρS ) ≈
ϕtr(ρS ) (where ϕ is an arbitrary output state), then R must
exist such that maxR(R ◦ ζ , ξ ) � δ for δ � 1, where in terms
of (12) δ � minRB(R ◦ ζ ,F ) � minR̂B (̂ζ , ̂R ◦ F ).

8Ideally, the state is obtained by viewing ζ as the unitary partial
swap and discarding the environment E . As was shown in [28],
however, in practical setups complete tracing out of the degrees of
freedom of E is not possible, and some nonzero coupling between R
and E remains.

9Likewise, complementary versions can be defined for all quantum
channels. For instance, F̂ = tr is the complementary to F = 1.

Recall that, in our setup, the encoding channel ζ (specified
by the isometry M) is noisy with elements Ni. In this sense,
as it was pointed out in [31], the condition on the existence
of an approximately constant output channel ζ̂ depends on
whether there exists a set of coefficients λi j (i.e., density oper-
ator components), such that M†N †

i N jM = λi j1 is satisfied,
where λi j = 〈i| ϕ | j〉 for some output state ϕ. Assuming F̂ is
a projection (F̂ = F̂2), a large family of such coefficients is
known to exist, such as λi j = tr(βN †

i N j ) for some state β.
Moreover, given the channel ζ , its complementary ζ̂ , and the
corresponding isometry M are defined as above, let P be a
channel which maps all logical states to some constant state
in S(HE ). Concretely, P maps the input states as

P : S(HS ) → σ, (13)

where σ ∈ S(HE ) denotes a constant state in the environment
E , corresponding to a subsystem Ẽ ⊂ E of dimension at most
k (denoted below as Ẽσ

k ), as it is naturally expected by the
quantum homogenization dynamics.10 From the information-
disturbance theorem [58] we know that

‖ ζ̂ − P ‖�‖ R ◦ ζ − ξ (0) ‖, (14)

where ξ (0) is the initial reservoir state as defined earlier. No-
tice that here, the theorem states that if a channel R exists,
such that it can recover ζ arbitrarily well, the right-hand side
(r.h.s.) norm of (14) will be small. Meaning that, short of
a macroscopic measurement-induced disturbance, the system
leaks almost no information to the environment, as ζ̂ is well
approximated by P .

Now, suppose ζ is such that its complementary ζ̂ is ap-
proximately k-forgetful with an uncertainty δ [59], meaning
that the channel output is to a subspace of dimension less than
or equal to k

‖ ζ̂ − P ‖(k)
� � δ, (15)

where δ � 1 and k denotes the maximal dimension of the en-
coded subspace in E . Evidently, the complementary channel
ζ̂ : ρS → Ẽσ

k is simply the restriction of ζ to act on S(HẼ ) for
any arbitrary subsystem Ẽ ⊂ E of dimension at most k. From
(13) to (15), and given that ζ is a channel with fixed single-
point output, its complementary ζ̂ is also an approximately
constant output channel ζ̂ (ρS ) ≈ ϕtr(ρS ) for ∀ρS ∈ S(HS ) and
some fixed state ϕ ∈ HE . Thus, it straightforwardly follows
from the subsystem decoupling theorem [59] (which formal-
izes the relation between approximate correctability and the
forgetfulness of ζ̂ to an environment subspace) that for all
subsystems Ẽ ⊂ E of dimension � k, where k � |R|, an ap-
proximate recovery channel R must exist (with precision of
2
√

2δ as a consequence of [58]), such that it satisfies Defini-
tion 1 [31]. Notice that an essential feature of the protocol is
the convergence dynamics towards a desired reservoir target
state for all logical states. Here, for all logical states the dy-
namics asymptotically outputs a desired fixed state, such that

10Note that (i) P is absorbed in ζ̂ similar to how N is absorbed in ζ ,
where for ease of notation P is dropped throughout the paper and (ii)
ρS is assumed to be simple one-dimensional logical state. Otherwise,
||ρS|| � k can quickly saturate the channel capacity.
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∀ρS ∈ S(HS ) the complementary channels ̂R ◦ F (ρS ) = ξ (0)

(in the neighborhood of δ) exist.
Therefore, although in practical setups perfect tracing over

the environment degrees of freedom is not possible as some
nonzero coupling remains, we demonstrate that the “leaked”
information is minimal and recoverable, and does not disturb
the system. Hence, the desired quantum steady state remains
stabilized in the reservoir subspace as ζ̂ is well approximated
by P .

Of course, implementing such a recovery protocol would,
in addition to hardware dependence, also necessitate having a
detailed information about the contributions to the noise due
to nonzero correlations with the environment.

V. CONCLUSION

We presented a formulation of the quantum homoge-
nization protocol with two-body Heisenberg-type exchange
interactions which satisfies the generalized KL conditions
for approximate error correctability. The proposed protocol
contributes to the recently established research on dissipation-
driven information protection [12–14] as it presents a phys-
ically implementable platform whose naturally convergent
dynamics asymptotically drives it to a desired steady-state
manifold without the need for manipulating individual de-
grees of freedom. Instead, it only requires control over an
external field to tune the exchange interactions, thus eliminat-
ing the hardware overhead that many current methods suffer
from [6].

The realization of such systems, capable of robust state
preparation and manipulation of arbitrary states, is essential
for the success of quantum hardware and is of broad inter-
est to several communities. The ability to deterministically
generate entangled states between multidimensional quantum
systems (e.g., qudits) has many practical applications due to
their demonstrated robustness compared to qubits, such as
quantum key distribution [60] and hybrid quantum informa-
tion processing [61]. Moreover, such reservoir-based systems
can be further extended to more complex schemes such as
topological error correction [62], as well as be utilized for
the development of quantum simulators [63]. Interestingly, the
possible applications of the current framework as a quantum
cloning protocol or a quantum safe were explored in [27,64],
while its utility in spin-chain quantum communication proto-
cols was demonstated in [65]. From a theoretical perspective,
on the other hand, such systems are broadly studied in re-
source theory, where they are referred to as catalysts [66].

Ultimately, this line of work cannot only help in refining
existing quantum hardware and quantum computation proto-
cols, but also lead to an insights into quantum information
theory and quantum thermodynamics.
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