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A quantum autoencoder is a quantum neural network model for compressing information stored in quantum
states. However, one needs to process information stored in quantum circuits for many tasks in the emerging
quantum information technology. In this work, generalizing the ideas of classical and quantum autoencoders, we
introduce the quantum circuit autoencoder (QCAE) model to compress and encode information within quantum
circuits. We provide a comprehensive protocol for QCAE and design a variational quantum algorithm, varQCAE,
for its implementation. We theoretically analyze this model by deriving conditions for lossless compression and
establishing both upper and lower bounds on its recovery fidelity. Finally, we apply varQCAE to three practical
tasks, and numerical results show that it can effectively (1) compress the information within quantum circuits, (2)
detect anomalies in quantum circuits, and (3) mitigate the depolarizing noise in quantum circuits. These suggest
that our algorithm is potentially applicable to other information processing tasks for quantum circuits.
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I. INTRODUCTION

Quantum technologies have witnessed substantial advance-
ments in recent years, exemplified by noteworthy experiments
in quantum supremacy [1–3] on noisy intermediate-scale
quantum (NISQ) devices [4]. Despite these advancements,
NISQ devices have grappled with substantial noises and lim-
ited qubit numbers. To unlock the full potential of NISQ
devices, it becomes imperative to deploy techniques for quan-
tum information compression.

Autoencoders are a prevalent artificial neural network
approach for compressing and encoding information [5].
In Fig. 1(a) a typical autoencoder framework is depicted,
showcasing the primary concept of information compression
through a bottleneck while preserving data reconstruction
fidelity. Notably, in the field of quantum computing, a quan-
tum autoencoder (QAE) has been introduced [6]. The QAE
methodology involves information compression by discarding
the “trash” system during the encoding step, followed by
state reconstruction aided by a “reference” state. Figure 1(b)
illustrates the typical diagram of a quantum autoencoder,
showcasing its process for efficient quantum information
compression and reconstruction. References [7,8] proposed
different QAE models applied to quantum machine learning.
Reference [9] analyzed the relationship between the QAE
trainability and the cost function, resulting in the proposal of
a local cost function version of QAE. Reference [10] investi-
gated the reconstruction fidelity upper bound and introduced
a noise QAE to enhance compression performance.
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In addition to quantum states, the information processing
within quantum circuits is also a common practice [11,12].
Quantum machine learning tasks often involve converting
classical information into quantum information using param-
eterized encoding circuits. For instance, Ref. [13] utilized
four-qubit circuits to transform the Iris data set (a public image
data set) [14] into quantum states, with information stored in
both quantum states and circuits. Reference [15] proposed a
QAE-based circuit compression strategy to reduce communi-
cation costs in quantum cloud computing. While processing
information within a quantum circuit in a noisy environment,
the objective may shift to transforming the information into
an unknown quantum channel. However, it is important to
note that QAE cannot be directly applied to compressing
information stored within a quantum circuit.

Considering the issues above, there is a need for an elab-
orate study on quantum circuit autoencoder. The quantum
circuit autoencoder can also act as a generalization of QAE.
For example, it can subsume QAE in some cases, such as the
purified quantum query access model.

Reference [16] proposed a gate compression model that
uses two unitary operators to reduce the input gate’s di-
mension and another two unitary operators to reconstruct
the original gate. The authors also provided a method to
achieve exponential reduction in dimension. Reference [15]
applied a quantum autoencoder on quantum cloud comput-
ing and proposed a quantum gate autoencoder to reduce
communication qubit resources. These two models can be
considered prototypes of the quantum circuit autoencoder.
However, they consider only quantum circuits consisting of
single-qubit gates in the form of IID and a family of parame-
terized quantum circuits. In contrast, general quantum circuits
may consist of multiple qubits and not just single-qubit
gates.
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FIG. 1. Diagrams of three different autoencoders. (a) The standard autoencoder encodes an n-dimensional input data X into a lower
dimensional representation X ′ of dimensionality m, which it then decodes to reconstruct the original n-dimensional data as Y . (b) The quantum
autoencoder takes an input n-qubits state ρ, transforms it into a lower-dimensional(m-qubits) state ρlatent , and then decodes this state to
a n-dimensional state ρ ′. (c) The quantum circuit autoencoder encodes a D-dimensional quantum circuit into a d-dimensional circuit and
reconstructs the original D-dimensional quantum circuit through decoding.

In this paper, we propose a quantum circuit autoencoder
(QCAE) model as depicted in Fig. 1(c). For a quantum chan-
nel E acting on n qubits, we construct encoders Ue and Ve

to obtain F = trtrash[Ve ◦ E ◦ Ue] acting on an m-qubit system
(m < n), where Ue, Ve, and a partial trace operation constitute
a supermap [17] that maps an n-qubit channel to an m-qubit
channel. The goal is to maximize the reconstruction fi-
delity between Ẽ = Vd ◦ [F ⊗ id] ◦ Ud and E , where id is the
identity channel.

To implement the QCAE on NISQ devices, we design
a variational quantum algorithm (VQA) [18], referred to as
varQCAE. By setting the encoders and decoders as the param-
eterized quantum circuits (PQCs) [19], we use the classical
optimizer to find optimal parameters for the quantum circuit
autoencoder, obtaining executable sequences of local gates
suitable for NISQ devices. A VQA consists of PQCs, loss
function, and optimizer, and an inevitable issue is the Barren
Plateau (BP) [20]. We use the hardware efficient ansatz [21]
as the PQCs in varQCAE. We propose a perfect compression
condition to help design the loss function and decrease com-
putation cost. A local cost function, inspired by Ref. [9], is
also designed to reduce the impact of BP. Furthermore, we
analyze the fidelity bound of varQCAE, including an upper
bound for general channels and a lower bound for special
cases.

Conventional autoencoders have diverse applications, such
as dimension reduction [22], anomaly detection [23], and
denoising [24]. Our work employs varQCAE for quantum
circuit tasks, including information compression, anomaly de-
tection, and denoising on quantum circuits. We evaluate the
performance of varQCAE on IBM qiskit [25] and Mindquan-
tum [26]. In our demonstrations, the varQCAE can compress
the information within parameterized quantum circuits with a
reconstruction error of approximately 0.05. Moreover, the dis-
tributions of anomalous scores of “normal” and “abnormal”
quantum circuits data sets are significantly different, in which
we use two different ways to generate circuits in these two
data sets. As for denoising, varQCAE can reduce the impact
of depolarizing error on circuits. In summary, these results
indicate that varQCAE can be applied to these applications.

Our main contributions: First, we have designed a proto-
col for the quantum circuit autoencoder. The encoding and
decoding components of the autoencoder are illustrated in
Fig. 1(c). Second, we have theoretically analyzed the protocol

and established the conditions necessary for the faithful re-
covery of quantum circuits, which is crucial for designing the
loss function. Third, we have enhanced the prototype protocol
from various perspectives, such as designing a variational
quantum algorithm called varQCAE and proving its recon-
struction fidelity bound. Finally, we have numerically applied
varQCAE to several applications, including information com-
pression, anomaly detection, and quantum circuit denoising.
We evaluated the performance on IBM qiskit [25] and
Mindquantum [26].

II. PRELIMINARIES

A quantum system A corresponds to a Hilbert space HA.
The quantum state of system A is described by a density
operator on HA, a positive semidefinite operator with trace
one. A quantum state ρ is called pure if it has rank one and is
called mixed otherwise.

In this work, we denote the maximally mixed state as
ω = 1/d for a d-dimensional system and the maximally
entangled state as φ+ = (1/d )

∑d
i, j=1 |i〉〈 j| ⊗ |i〉〈 j| for a

d2-dimensional bipartite system. The fidelity between two
quantum states ρ and σ is defined as

F (ρ, σ ) := ‖√ρ
√

σ‖2
1 = (tr

√√
ρσ

√
ρ)2, (1)

with a special case F (ρ, |ψ〉〈ψ |) = 〈ψ |ρ|ψ〉.
A quantum operation (or quantum channel) EA→B with

input system A and output system B is a completely positive,
trace-preserving linear map from the linear operators on HA

to the linear operators on HB. We use id to denote the identity
quantum channel, which means id(ρ) = ρ for any state ρ.
The mixed-unitary quantum channel is the convex combina-
tion of unitary operations. For a series of quantum circuits
U1,U2, . . . , we can utilize a controlled circuit to implement a
mixed-unitary channel in practice [27].

In this work, subscripts indicate the input and output sys-
tems, and we omit the identity operator 1 when it does
not introduce ambiguity. For instance, XAYB ≡ YBXA ≡ XA ⊗
YB denotes applying XA ⊗ YB to the composite system AB.
We write XABYBC ≡ (XAB ⊗ 1C )(1A ⊗ YBC ) and EB→C (XAB) ≡
(idA ⊗ EB→C )XAB. We also write the partial trace of a multi-
partite operator by directly omitting the subscript the partial
trace takes on, for example, XB := TrA(XAB).
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A quantum channel can be represented by a Choi state
[28,29]. The Choi state of a quantum operation EA→B is
defined as

JE = (idÃ→A ⊗ EA→B)φ+
ÃA

= 1

dA

dA−1∑
i, j=0

|i〉〈 j| ⊗ E (|i〉〈 j|), (2)

where φ+
ÃA

= 1
dA

∑dA−1
i, j=0 |i〉〈 j|Ã ⊗ |i〉〈 j|A is an maximally en-

tangled state, Ã, A are isomorphic systems, and {|i〉} is an
orthogonal basis of the input space HA.

The output of the channel EA→B with input ρA can be
recovered by

EA→B(ρA) = dATrA
[
JE(ρᵀ

A ⊗ 1B
)]

. (3)

Consider a quantum channel �A1A2→B1B2 with a Choi state
represented by J�. In this case, the input system of � com-
prises composite systems A1 and A2, while the output system
involves composite systems B1 and B2. We can define the
reduced channel NA1→B1 as the channel with a Choi state ob-
tained by tracing out systems A2 and B2, denoted as trA2B2 (J�).

In this work, the similarity between two quantum channels
is characterized by the fidelity of their respective Choi states.
To be specific, we define the fidelity of two quantum channels
E1 and E2,

F (E1, E2) := F (JE1 , JE2 ), (4)

where F (·) is the fidelity defined as in Eq. (1).

III. METHOD

A. Sketch of our method

We present the diagram of our QCAE model. The goal is to
find encoders and decoders to encode E through a bottleneck
and decode it to original circuits as faithfully as possible.
We design the varQCAE, a variational quantum algorithm,
to implement QCAE. Our algorithm uses the parameterized
quantum circuits controlled by a set of parameters to represent
the encoders and decoders. Therefore, varQCAE aims to find
the optimal control parameters to maximize the similarity
between original and reconstructed quantum channels.

The QCAE, as shown in Fig. 1(c), consists of two sepa-
rate processes: encoding and decoding. During the encoding
process, the training data set {Ui}Ntrain

i=1 is encoded as a mixed-
unitary quantum channel E on an n-qubit system. For an
arbitrary state ρ, the mixed-unitary quantum channel E can
be written as

E (ρ) =
Ntrain∑
i=1

piUiρU †
i . (5)

Then the encoders Ue(θ ) and Ve(θ ) act on the channel E and
obtain the reduced channel F by partially tracing the last
(n − m) qubits (i.e., “trash” systems). As a result, the encoders
and partial trace together form an operator that supermaps
a 2n-dimensional channel E to a 2m-dimensional channel F .
In the decoding process, the decoders Ud (θ ) and Vd (θ ) are
applied to the channel F ⊗ id to yield a new quantum channel
Ẽ . Finally, we feed the similarity between E and Ẽ to the

classical optimizer to update parameters θ . Repeat these steps
until the loss is converged or other termination condition is
satisfied.

In the varQCAE, we set the decoders in the decoding
process to be the conjugate transpose of the encoders, i.e.,
Ud = U†

e and Vd = V†
e . Therefore, we could consider only

the encoding process and omit the subscript in encoders and
decoders for convenience. We apply � := V (θ ) ◦ E ◦ U (θ ) on
a product state ωA′ ⊗ φ+

C1C̃1
, where ωA′ is the maximally mixed

state on the latent subsystem A′ and φ+
C1C̃1

is the maximally
entangled state on the “trash” subsystem C1 and the isomor-
phic system C̃1 of C1. The reason for using this initial state
relates to the construction of the loss function, which will be
explained in Sec. III B and Proposition 1. The resulting state
is on the composite system B′C2C̃2. Considering utilizing the
decoding scheme as the validation, the decoders are applied on
F ⊗ id, assuming that the channel �C1C̃1→C2C̃2

is the identity
channel. As a consequence, the goal of varQCAE is to maxi-
mize the fidelity of φ+

C1C̃1
and φ+

C2C̃2
. Then we use the classical

optimizer to find the near-optimal control parameters. The
PQC used for encoders is the hardware-efficient ansatz [21]
in our variational algorithm, and the structure is shown in
Fig. 2(b).

See Algorithm 1 and Fig. 2 for more details of
varQCAE.

ALGORITHM 1. Main Algorithm: varQCAE

Input: Training data Dtrain = {U1, . . . ,Un}, and the circuit
ansatzes U (θ ) and V (θ ) and the number of iterations IT R;
1: Training Process:
2: Set epoch t = 0 and initialize θ0 randomly;
3: Let encoders Ue(θ ) ← U (θ ) and Ve(θ ) ← V (θ );
4: while not converged or t � IT R do
5: t ← t + 1;
6: Initialize loss L(θt ) = 0;
7: for each Ui in Dtrain do
8: � ← V (θt ) ◦ Ui ◦ U (θt );
9: ψB′C2C̃2

← �(ωA′ ⊗ φ+
C1C̃1

);
10: Li(θt ) ← tr[O trB′ [ψB′C2C̃2

]], where L is the loss
function in Eq. (6);

11: L(θt ) ← L(θt ) + 1
n [1 − Li(θt )];

12: end for
13: Update parameters θt+1 of L(·) using classical optimizer;
14: end while
15: Output the near-optimal parameters θ	;
16: Reconstruction Validation Process:
17: Initialize the reconstruction error Lval = 0;
18: Let decoders Ud (θ ) ← U (θ )† and Vd (θ ) ← V (θ )†;
19: for each Ui in Dtrain do
20: Apply encoders to obtain

Fi ← trC1C̃1C2C̃2
[Ve(θ	) ◦ Ui ◦ Ue(θ	)];

21: Ũi ← V (θ	)† ◦ (Fi ⊗ id)◦ U (θ	)†;
22: Calculate the reconstruction fidelity F (JUi , JŨi );
23: Lval ← Lval + 1

n (1 − F (JUi , JŨi ));
24: end for
25: Output The reconstruction error Lval;
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FIG. 2. (a) Diagram of the varQCAE. In the training process
of varQCAE, we consider only the encoding process in the whole
QCAE framework in Fig. 1(c), as we set the decoders as the dagger
of the encoders. We apply the quantum channel � := Ve ◦ E ◦ Ue on
the initial state ωA′ ⊗ φ+

C1C̃1
. The resulting state is on the composite

system B′C2C̃2, and we compare the state fidelity between two states
on the subsystems C1C̃1 and C2C̃2. The loss function estimates the
state fidelity discussed in Sec. III B. (b) The hardware-efficient ansatz
we used to construct the encoders.

B. Loss function

In this section, we define the loss function of the training
process in varQCAE. Given the data set D := {Uk}N

k=1 and pa-
rameterized quantum circuits U (θ ) and V (θ ), the loss function
is designed as

L(D, θ ) := 1 − 1

N

N∑
k=1

[
tr
(
O trB′

[
(V (θ ) ◦ Uk ◦ U (θ ))

(
ωA′ ⊗ φ+

C1C̃1

)])]
, (6)

where O is a local observable and

O =
n−m−1∑

k=0

φ+
k,k+(n−m) ⊗ 1k,k+(n−m), (7)

where n and m are the number of system qubits of the original
and latent circuits, respectively. Here φ+

k,k+(n−m) is the maxi-
mally entangled state on the k and k + (n − m) subsystems,
which can be written as

φ+
k,l = 1

2 [|00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11|]k,l

= 1
2 [I + ZkZl + XkXl − YkYl ]. (8)

The goal of QCAE is to maximize the reconstruction fi-
delity between the original channel E and the reconstruction
channel Ẽ , and a straightforward method is to calculate the
reconstruction error

error1 = 1 − F (E, Ẽ )

= 1 − tr[JEJ Ẽ ]. (9)

However, this method falls short as a proper loss function for
several reasons. First, error1 computes fidelity between two
4n-dimensional quantum states, incurring prohibitively high
computational costs. Second, the observable in this function
remains neither fixed nor explicit. Due to these limitations,
we opt the function as

error2 = 1 − F
(
φ+

C1C̃1
, ψC2C̃2

)
= 1 − tr

[
φ+

C1C̃1
ψC2C̃2

]
, (10)

which is to compare two quantum states on the input sub-
system C1C̃1 and output subsystem C2C̃2. These two quantum
states’ dimensions are 4(n−m). As a result, this method reduces
the computational cost, and the observable in this method is
the maximally entangled state. In addition, we proposed the
perfect compression condition in Proposition 1 to claim them
both equal to 0 when the perfect compression is achieved.

Furthermore, there is an inevitable issue that the gradient
exponential vanishes in a variational quantum algorithm. This
issue is called the Barren Plateau (BP) [20] problem and has
been studied in many works, such as Refs. [9,30]. In Ref. [9]
the relationship between cost function and BP has been dis-
cussed. In addition, the authors demonstrated that the local
cost function can reduce the adverse effects of BP. Inspired by
this idea, we design the loss function in Eq. (6) to reduce the
impact of BP in varQCAE.

In Ref. [9] the reconstruction error function, which directly
compares the fidelity of two quantum states, is defined as
the global cost function; the loss function, such as the L in
Eq. (6), which is the summation of the expectations of local
observables, is defined as the local cost function. The authors
prove that the global cost function leads to exponentially van-
ishing gradient even though the ansatz is shallow and that the
local cost function leads to, at worst, polynomially vanishing
gradients.

Given the varQCAE, we briefly discuss analytic gradient
and the BP issues that the expectation gradient is approxi-
mate to zero exponentially. The ansatz we use is a two-local
parameterized quantum circuit deployed as the sequence of
single-qubit rotations and two-qubit gates. Therefore, we can
use the parameter-shift rule [31] to obtain the partial deriva-
tive:

∂L
∂θ j

= L(θ+) − L(θ−), (11)

where θ+ and θ− are different from θ only at the jth pa-
rameter: θ j → θ j ± π

4 . As a result, if we have access to a
quantum computer, we can utilize it to estimate the gradients
in polynomial time.

Regarding the BP issue that plagues many variational
quantum algorithms, we would like to highlight two critical
aspects in the context of our varQCAE. First, our approach in-
volves performing (n − m)-qubit measurements and utilizing
the outcomes as the basis for the loss function. Second, the ob-
servable in the loss function [refer to Eq. (6)] is a summation
of several two-qubit observables. These two considerations
render the loss function local, and it has been demonstrated
that a shallow parameterized quantum circuit (PQC) with a
local loss function, at worst, exhibits a polynomially vanishing
gradient [9]. Consequently, our varQCAE may mitigate the
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barren plateau issue, particularly when the number of layers L
is O(log(n)). Figure 6 in Appendix D provides a visualization
of the landscape of varQCAE.

In addition, we analyze the algorithm cost from several
aspects. The number of the control parameters: we employ a
hardware-efficient ansatz which entails a total of 8np control
parameters in varQCAE, where n is the system size and p
is the repetition times of the ansatz used in the algorithm.
The number of gates: There are 4np single rotation gates and
n(n − 1)p CNOT gates.

C. Reconstruction validation

After completing the training process for varQCAE, it is
crucial to develop a strategy for evaluating the performance of
the training results. During training, our focus is exclusively
on the encoding part. This focus must be extended to the entire
scheme in the validation process.

After training, we obtained the near-optimal parameters θ	

and the reduced channel F from �, F = trC1C̃1C2C̃2
[V (θ	) ◦

E ◦ U (θ	)]. Finally, Ẽ = V†(θ	) ◦ (F ⊗ id) ◦ U†(θ	) is ob-
tained in the decoding process. In the reconstruction valida-
tion part, we will evaluate the infidelity between two quantum
channels E and Ẽ . A simple way is to calculate the infidelity
between their Choi states, as shown in Eq. (9). Two issues
must be addressed in the validation process. One is to obtain
the reduced channel F , and another is to obtain the product
channel F ⊗ id.

To address the first issue, we propose an equivalence
problem: extracting the Choi state JF of F from J�. After
preparing the Choi state J� for channel �, the reduced Choi
state JF = tr[m+1,n],[n+m+1,2n] J� is obtained by performing a
partial trace on the subsystems from the mth to nth qubits and
from (n + m)-th to 2n-th qubits. As a result, the reduced Choi
state of JF is obtained from �.

The second issue is efficiently constructing the Choi state
JF⊗id. We obtained the reduced Choi state JF from the
previous problem and calculated the Choi state of the iden-
tity channel, J id. A direct strategy involves obtaining the
state J� ⊗ J id and applying the swap operator to adjust the
subsystems, yielding JF⊗id. The swap operator swaps the
[m + 1, 2m] qubit subsystem with the [2m + 1, m + n] qubit
subsystem. The issue of designing the circuit consisting of
swap circuits is equivalent to a permutation problem. For this
circuit design problem, we propose a strategy, the details of
which are presented in Appendix G.

IV. THEORETICAL ANALYSIS

In this section we present the critical theoretical findings,
including the perfect compression condition and the fidelity
bound associated with varQCAE. The perfect compression
condition can justify our choice of loss function L. Further-
more, the upper bound on reconstruction fidelity implies that
the efficacy of our method is constrained by the rank of the
input quantum channel, a parameter intricately tied to the
quantity of input quantum circuits. Additionally, the lower
bound on reconstruction fidelity, which is under the consider-
ation of the input channel as the depolarizing channel, serves
as a performance guarantee for our algorithm.

An important step of the loss function design is changing
the reconstruction error estimation from Eq. (9) to Eq. (10).
The change is driven by the objective of downsizing the mea-
surement system from n qubits to (n − m) qubits, a critical
step in reducing computational costs. The crucial observation
facilitating the transformation is that both estimations con-
verge to 0 when the input channel can be perfectly recovered
after compression. The subsequent proposition provides the
analytical insight into this transformation:

Proposition 1. (Perfect compression condition) The chan-
nel E can be recovered from F by the recovery scheme
illustrated in Fig. 1(c) if and only if

trB′ �
(
ωA′ ⊗ φ+

C1C̃1

) = φ+
C2C̃2

, (12)

where φ+ is the maximally entangled state, ω denotes the
maximally mixed state, and � = V ◦ E ◦ U is the channel
obtained by applying encoders to E .

The proof is shown in Appendix A. Proposition 1 indicates
that the recovery of a quantum channel after compression is
feasible if the origin channel can be processed as a product
of a compressed channel and an identity channel under the
influence of two unitary operators. This proposition implies
the feasibility of achieving the learning task, namely, finding
the optimal U and V , by training solely on the “trash” state.
This concept underpins the design of the reconstruction error
(10).

As an information compression method, it is imperative
to assess its performance in terms of recovery. We provide
the upper and lower bounds on reconstruction fidelity for
varQCAE, with the lower bound derived under the assumption
that the input channel is depolarizing.

Lemma 2. Consider quantum states ρ and σ , with r being
the rank of σ . The fidelity between ρ and σ is bounded above
by the sum of the largest r eigenvalues of ρ. This bound is
attained if and only if ρ = σ .

Lemma 2 provides an upper bound on the fidelity between
any two quantum states, a result instrumental in proving the
following proposition.

Proposition 3. Consider Ẽ as the recovered quantum chan-
nel from V ◦ E ◦ U , the recovery fidelity F (Ẽ, E ) is bounded
above by the sum of the largest d2 eigenvalues of the Choi
state of E , where d is the dimension of the reduced quantum
channel F = trtrash[V ◦ E ◦ U ].

The proofs for these two results are detailed in Appendix B.
Drawing inspiration from this proposition, it becomes evi-
dent that the reconstruction fidelity via varQCAE may is not
optimal when the rank exceeds d2. For instance, consider
the completely depolarizing quantum channel � with input
and output dimensions D and compress it to d dimensions.
The Choi state of � is diag( 1

D2 , . . . ,
1

D2 ). According to the
proposition mentioned above, even under the best-case train-
ing scenario, the fidelity of reconstruction remains bounded
by d2

D2 .
While upper bounds provide valuable insights, lower

bounds are also crucial as they offer a performance guarantee,
at least for some special cases. In this study we explore the
lower bound of reconstruction fidelity when the input chan-
nel is the depolarizing channel, as outlined in the following
proposition.
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Proposition 4. For a given depolarizing channel Ep with
dimension D, utilizing varQCAE to compress it to a d-
dimensional quantum channel and subsequently recover it to
D-dimensional, the lower bound on the reconstruction fidelity
is given by

F (Ep, Ẽp)

�

⎡
⎣
√(

p

D2
+ 1 − p

)(
p

d2
+ 1 − p

)
+ (d2 − 1)

p

Dd

⎤
⎦

2

.

(13)

The proof is presented in Appendix C.

V. APPLICATIONS AND DEMONSTRATIONS

In this section we delve into practical applications of
varQCAE, with a primary focus on quantum circuit informa-
tion compression, the fundamental objective motivating the
proposal of varQCAE. Additionally, we explore two other ap-
plications: varQCAE-based anomaly detection and denoising
for quantum circuits.

In our demonstrations, we applied compression and recon-
struction techniques to multiple quantum circuits, achieving
remarkably low reconstruction error rates, with approximately
0.05. Moreover, varQCAE has demonstrated remarkable ef-
ficacy in detecting “abnormal” data from “normal” data and
mitigating the noise on quantum circuits.

We utilized the quantum platforms Qiskit 0.45.2 and
Mindquantum 0.9.0 in our demonstrations. The optimizer
used in this work is the L-BFGS-B optimizer in Scipy
1.12.0. The updated code is available at the GitHub
repository [32].

A. Quantum circuit information compression

This section investigates the capability of leveraging
varQCAE for information compression on quantum circuits.
As illustrated in Sec. III, we consider a set of quantum circuits
{Ui}N

i=1 with a dimension D, constructing these circuits as a
mixed quantum channel E . The encoding process involves
finding a supermap to map the D-dimensional quantum chan-
nel E to a d-dimensional channel F . The encoding process
compresses the information within the quantum circuits. A
critical metric for evaluating compression performance is the
reconstruction fidelity between the original channel E and the
reconstructed channel Ẽ which is recovered from F .

Our demonstrations focused on compressing information
within parameterized quantum circuits (PQCs). PQCs serve
as widely used encoding tools for translating classical infor-
mation into quantum information in quantum neural networks
(QNNs), owing to their solid expressive power. Specifically,
we target the RealAmplitudes from the qiskit circuit library
as the PQCs for compression. The parameters required for
these circuits are independently generated using a normal
distribution.

Figure 3 presents numerical results for evaluating the
performance of varQCAE on quantum circuit information
compression. There are three key demonstrations conducted:

(a)

(b)

(c)

FIG. 3. Training process of varQCAE for circuit information
compression. (a) Changes of loss function and reconstruction er-
rors in the training process on a five-qubit system. (b) Changes
of loss function in the training process under the different noises.
(c) Changes of loss function in the training process with the input
circuits’ qubits are arranged from 6 to 10; the labels are the qubit
pairs that are the qubits number of the input channel and the latent
channel.
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(1) In Fig. 3(a) the changes in the loss function (blue) and
reconstruction error (orange) are shown during the training
process. The input circuits consist of five qubits using the
RealAmplitudes construction. The number of input quantum
circuits is 10, and the latent circuits in varQCAE are set
to four. The quantum simulator used in this demonstration
is noiseless. The results of this demonstration validate the
rationality of constructing the loss function L as described in
Eq. (6).

(2) Figure 3(b) illustrates the change in the loss function
during the training process, subject to three different types
of noise, including depolarizing error, thermal-relaxation,
and the FakeTokyo noise in qiskit. The input circuits in
this demonstration consist of four qubits using the Re-
alAmplitudes construction. The number of input quantum
circuits is 10, and the latent circuits in varQCAE set to
three.

(3) In Fig. 3(c) the change in the loss function during the
training process is depicted. Here the labels represent the qubit
pair representation of the qubit numbers for both the input and
latent circuits. This demonstration showcases that varQCAE
is capable of convergence even with relatively large system
sizes.

Overall, these demonstrations provide valuable insights
into the performance and capabilities of varQCAE in quantum
circuit information compression.

We selected L-BFGS-B as the classical optimizer and set
the training epoch to 50. The super parameters’ sensitivity
analysis is shown in Appendix E.

B. Anomaly detection

In this section we apply varQCAE to identify anomalies in
quantum circuits. Considering the scenario of chip anomaly
detection, the objective is to identify abnormal chips within a
collection of quantum chips. Classical data anomaly detection
method may not be seamlessly applicable in this scenario. The
varQCAE, leveraging variational algorithms, offers a solution
tailored to the intricacies of quantum circuit data.

Conventional autoencoder can be used for anomaly detec-
tion [33]. After thorough training, the autoencoder learns the
pattern of “normal” data. Subsequently, when presented with
new data, the autoencoder compresses and reconstructs the in-
put based on the learned patterns. “Normal” data conforming
to the learned distribution tend to yield lower reconstruction
errors, while anomalous data that deviate from the distribution
result in higher reconstruction errors.

The specific framework is the following: The input is the
“normal” data set X , anomalous data set {x(i), i = 1, . . . , N}
and a threshold α. Then design an autoencoder network and
train it using the “normal” data set X . Next, for each data x(i)

in the anomalous data set, we use the trained autoencoder to
obtain the reconstruction error(i). Finally, make the decision,
and label the ith data x(i) as “abnormal” if error(i) > α and
“normal” otherwise.

Similar to the conventional autoencoder, we investigate ap-
plying varQCAE to detect anomalous quantum circuit tasks.
For the given “normal” quantum circuits set {Unormal} and
anomalous quantum circuits set, we train a quantum circuit
autoencoder using {Unormal}. We also use the reconstruction

fidelity as anomalous scores for each circuit in the anomalous
quantum circuits set. If the reconstruction fidelity is bigger
than a given threshold, we label this circuit as “normal.”
Otherwise, we label it as “abnormal.”

The following demonstrations demonstrate the potential of
varQCAE-based quantum circuit anomaly detection.

Data preparation: To prepare the quantum circuit data set,
we adopt the RealAmplitudes parameterized quantum circuit.
Initially, we generate a quantum circuit with randomly gener-
ated parameters. Subsequently, we introduce Gaussian noise
to the parameters multiple times, utilizing them to generate
the original circuits’ data set. The distinction between the
“normal” and “abnormal” circuit data sets is achieved by
evaluating the Choi state fidelity between the original circuit
and each circuit in the original circuit data set. In the “normal”
data set, every circuit exhibits a fidelity greater than 0.95,
whereas in the “abnormal” data set, each circuit has a fidelity
lower than 0.2. Anomaly detection aims to classify these two
types of quantum circuits.

The results are shown in Fig. 4, providing that varQCAE
can be highly effective in detecting abnormal data from nor-
mal data. Black bins show the distribution of the anomaly
scores of the “normal” data, and orange bins show the dis-
tribution of the anomaly scores of the “abnormal” data.
Figures 4(a) and 4(b) are the anomalous score distributions of
our demonstrations with the noiseless and noise simulators,
respectively. The noise we consider is the depolarizing error
with error probability 0.01.

In Fig. 4(a) the input circuits are six qubits, and the latent
circuits are five qubits. In Fig. 4(b) the input circuits are five
qubits, and the latent circuits are four qubits. Moreover, the
train data consist of 10 “normal” circuits; the test data consist
of 40 “normal” and 40 “abnormal” circuits. We use the L-
BFGS-B optimizer and set the training epoch as 50.

C. Quantum circuit denoising

In this section we consider applying varQCAE to denoise
quantum circuits. In the NISQ era, circuit execution is lim-
ited by the effect of noise. An essential application of the
conventional autoencoder is denoising data. The main idea is
to extract the main character of data by autoencoder under
the assumption that the noise in data is not the main feature.
Reference [34] also proposed using quantum autoencoder
denoise spin-flip errors and random unitary transformation
errors concerning the GHZ state. In this work we consider
denoising the depolarizing error on quantum circuits.

Depolarizing error: For an n-qubit quantum state ρ, the
depolarizing channel error Ep affects ρ according to

Ep(ρ) = (1 − p)ρ +
∑

σ k∈{I,X,Y,Z}

p

2n

(
n⊗

i=1

σ k
i

)
ρ

(
n⊗

i=1

σ k
i

)
,

(14)

where p is the probability of being replaced, and σ k
i ∈

{I, X,Y, Z} is the Pauli operator acting on the ith qubit.
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(a)

(b)

FIG. 4. Results of quantum circuits anomaly detection. Both
figures are the anomaly scores distributions. (a) Anomalous score
distribution without noise. We consider using the noiseless simulator;
the input circuits use six qubits, and the latent circuits use five qubits.
(b) Anomalous score distribution with noise. We consider using the
simulator under the depolarizing noise with the error probability
error 0.01, the input circuits using five qubits, and the latent cir-
cuits using four qubits. In demonstrations, we randomly choose 10
“normal” circuits to train varQCAE and choose 40 “normal” circuits
in the rest of the “normal” data set and 40 “abnormal” circuits for
estimating the reconstruction error. The blue bins show the anomaly
scores of the “normal” test data set, and the orange bins show the
anomaly scores of the “abnormal” test data set. The x label is the
reconstruction fidelities and is set as the anomaly scores, and the y
label is the density of the circuits with the same anomaly scores.

For a quantum circuit U , U is affected by the depolarizing
channel error Ep by

Ep ◦ U (ρ) = (1 − p)U (ρ) +
∑

σ k∈{I,X,Y,Z}

p

2n

(
n⊗

i=1

σ k
i

)

× U (ρ)

(
n⊗

i=1

σ k
i

)
. (15)

FIG. 5. Quantum circuit AutoEncoder denoises the parameter-
ized quantum circuit under the depolarizing error. We show the
average fidelity of noisy test states with the three-qubit amplitude
PQC with parameters under the norm distribution N(0, 0.6) before
denoising (blue dots) and after denoising (orange squares). Error bars
display standard deviations. 100 noisy training pairs, 100 training
rounds, and the L-BFGS-B optimizer. The number of qubits in orig-
inal and latent circuits is three and one.

The main components for quantum circuit denoising are as
follows.

Data preparation: For a given quantum circuit U , we sam-
ple a set Ui from U under the depolarizing channel Ep. More
specifically, Eq. (15) shows that the depolarizing channel is a
weighted operator summation; each weight is the probability
of adding the operator to the input circuit. In our demon-
stration, we sample an operator Oi with probability and set
Ui = Oi ◦ U . We can obtain the training set {Ui} by repeating
this process.

Denoising based on varQCAE: In this step, we use the
training data set {Ui} to train a varQCAE model. The training
detail is shown in Sec. III A. After the training, we can use the
varQCAE model to obtain the reconstruction data set {Ũi}.

Validation: A vital issue is evaluating the performance of
the circuit denoise. We compute two indices for evaluation.
One index is the sample impact, which reflects the similar-
ity between the training set {Ui} and U . We give the mean
and variance of the similarities. Another index is the recon-
struction impact or denoise performance, which reflects the
similarity between the reconstruction set {Ũi} and U . We also
calculate the mean and variance values.

Figure 5 is the result of denoising the parameterized
quantum circuit under the depolarizing error. The original
quantum circuit is the RealAmplitude circuit with the pa-
rameters generated by the distribution N (0, 0.6). We sample
100 noise circuits and train the 100 epochs by varQCAE.
The number of qubits of original circuits is three and one
for the latent circuits. The blue dots are the mean fidelity of
sample data. The orange squares are the mean fidelity after
denoise. It shows that the varQCAE can mitigate the noise
impact.

We also consider implementing the varQCAE-based
circuit denoising on a noisy simulator, shown in
Appendix F.
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VI. CONCLUSION AND DISCUSSION

In this work, we introduce the quantum circuit autoen-
coder model and design a variational quantum algorithm for
its implementation, referred to as varQCAE. Subsequently,
we proposed the theoretical analysis to determine the con-
dition for faithful compression, aiding in constructing the
local loss function of varQCAE. Additionally, we establish
an upper bound on the reconstruction fidelity of varQCAE,
and calculate the fidelity lower bound for cases involving
the depolarizing channel as the input channel. Moreover, we
demonstrated the application of varQCAE in various toy sce-
narios, such as information compression, anomaly detection,
and denoising for quantum circuits. Finally, we performed
demonstrations and implemented varQCAE applications us-
ing the Qiskit and Mindquantum platforms.

There is much potential for further progress. (1) Determin-
ing tasks suitable for varQCAE. On the one hand, quantum
circuit autoencoders have applications in data generation and
feature extraction for information within quantum circuits. On
the other hand, investigating practical applications rather than
toy demonstrations in this work is also crucial work. In addi-
tion, finding more practical tasks beyond anomaly detection
using Parameterized quantum circuits (PQCs) with different
parameters and distributions are also appealing. (2) The re-
construction fidelity of varQCAE is bounded in Proposition
3. Using the noise-assisted channel to overcome the fidelity
limited in varQCAE as discussed in Ref. [10], which uses
a noise-assisted channel to overcome the fidelity limited in
QAE. Reference [10] constructs the reference state by the
measurement results from the “trash” subsystem after imple-
menting the encoder, which means adding a noise channel on
the “trash” subsystems. In varQCAE, it would be effective
when using the noise channel rather than the identity channel
in the reconstruction process. (3) In varQCAE, we use the
PQCs as the encoders and decoders in QCAE. It might be
more powerful to substitute the PQCs with the parameterized
quantum channels. (4) This work considers only the lower
bound on reconstruction fidelity for special cases, and it would
be an interesting question to consider the general cases.
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APPENDIX A: PROOF OF THE PERFECT
COMPRESSION CONDITION

Proposition 1. (Perfect compression condition) The chan-
nel E can be recovered from F by the recovery scheme
illustrated in Fig. 1(c) if and only if

trB′ �
(
ωA′ ⊗ φ+

C1C̃1

) = φ+
C2C̃2

, (A1)

where φ+ is the maximally entangled state, ω denotes the
maximally mixed state, and � = V ◦ E ◦ U is the channel
obtained by applying encoders to E .

Proof. The condition is sufficient: If E can be recovered
from F by the decoding scheme in Fig. 1(c) faithfully, we can
get

E = V† ◦ (F ⊗ 1) ◦ U†, (A2)

and this means

� = V ◦ E ◦ V = FA′→B′ ⊗ 1C1C̃1→C2C̃2
, (A3)

which means that the channel � is a product channel, and the
subchannel on the subsystem C1 is identity, that is, the result
state on subsystems C2 and C̃2 is ψC2C̃2

= φ+.
The condition is necessary: If Eq. (A1) is satisfied. Let

J�
A′C1C̃1B′C2C̃2

be the Choi state of �A′C1C̃1→B′C2C̃2
, we can deduce

from Eq. (3), the result state after apply � to initial state
ωA′ ⊗ φ+

C1C̃1
:

�A′C1C̃1→B′C2C̃2

(
ωA′ ⊗ ψC1C̃1

)
= D trA′C1C̃1

J�
A′C1B′C2C̃2

(
ωA′ ⊗ φ+

C1C̃1
⊗ 1B′C2C̃2

)
. (A4)

Since trB′ �(ωA′ ⊗ φ+
C1C̃1

) = φ+
C2C̃2

, we have

trB′ �
(
ωA′ ⊗ φ+

C1C̃1

)
= D trA′C1C̃1B′

(
J�

A′C1C̃1B′C2C̃2
(ωA′ ⊗ φ+

C1C̃1
⊗ 1B′C2C̃2

)
)

= φ+
C2C̃2

. (A5)

Since

tr[MAB(ρA ⊗ 1B)] = tr[(trB MAB)ρA], (A6)

where MAB is a quantum operation (or channel) on a compos-
ite system HA ⊗ HB and ρA is a density operator on HA,we
have

φ+
C2C̃2

= D trA′C1C̃1B′
(
J�

A′C1C̃1B′C2C̃2

(
ωA′ ⊗ φ+

C1C̃1
⊗ 1B′C2C̃2

))
= D

d
trC1C̃1

(
J�

C1C̃1C2C̃2

(
φ+

C1C̃1
⊗ 1C2C̃2

))
= �C1C̃1→C2C̃2

(
φ+

C1C̃1

)
, (A7)

which implies that the reduced quantum channel �C1C̃1→C2C̃2

of � is an identity channel, so the quantum channel F can
be deemed a d-dimensional channel with input system A′ and
output system B′.

As the state φ+
C2C̃2

is a maximally entangled state, so the

state after we apply � to the initial state ωA′ ⊗ φ+
C1C̃1

is the

product state ωB′ ⊗ φ+
C2C̃2

. This means � can be written in the
form of F ⊗ 1, which means that we can recover the quantum
channel by

V† ◦ (F ⊗ 1) ◦ U† = V† ◦ � ◦ U†

= V† ◦ V ◦ E ◦ U ◦ U†

= Ẽ, (A8)

as depicted in the decoding process of Fig. 1(c). �
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. Slice of loss landscape with respect to the first two circuit parameters by changing the input channels’ size n and latent channel
size m. Here the binary list represents (n, m). (a) (3,2), (b) (4,3), (c) (5,4), (d) (4,2), (e) (5,3), (f) (6,4).

The inductions from Eq. (A5) to Eq. (A7) and from
Eq. (A7) to Eq. (A8) use the fact that the initial state is a
product state of ω and φ+.

APPENDIX B: PROOF OF THE UPPER BOUND
OF varQCAE

Lemma 2. Consider quantum states ρ and σ , with r being
the rank of σ . The fidelity between ρ and σ is bounded above
by the sum of the largest r eigenvalues of ρ. This bound is
attained if and only if ρ = σ .

Proof.

F (ρ, σ ) = F (�im(σ )ρ�im(σ ), σ )

� tr(�im(σ )ρ�im(σ ) ) tr(σ )

= tr(�im(σ )ρ) =
r∑

i=1

λi, (B1)

where �im(σ ) denotes the projection onto the image of σ , λ =
(λ1, . . . , λr ) is the eigenvalues of ρ and λ1 � · · · � λr , and
the inequality in (B1) is due to the Proposition 3.12 in [35].�
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Lemma 2 gives an upper bound on the fidelity between any
two quantum state, and it can be used to prove the following
proposition.

Proposition 3. Consider Ẽ as the recovered quantum chan-
nel from V ◦ E ◦ U , the recovery fidelity F (Ẽ, E ) is bounded
above by the sum of the largest d2 eigenvalues of the Choi
state of E , where d is the dimension of the reduced quantum
channel F = trtrash[V ◦ E ◦ U ].

Proof. Let JF
A′B′ and J�

A′C1B′C2
be the Choi state of F and E ,

respectively:

F (Ẽ, E ) = F
(
V† ◦ ((V ◦ E ◦ U )A′→B′ ⊗ idC1C̃1→C2C̃2

) ◦ U†, E
)

= F
(
(V ◦ E ◦ U )A′→B′ ⊗ idC1C̃1→C2C̃2

,V ◦ E ◦ U
)

= F
(
JF

A′B′ ⊗ φ+
C1C̃1,C2C̃2

, J�
A′C1C̃1B′C2C̃2

)
. (B2)

It is easy to show that

rank
(
JF

A′B′ ⊗ φ+
C1,C2

)
� d2. (B3)

By Lemma 2 we can get

F
(
JF

A′B′ ⊗ φ+
C1C̃1,C2C̃1

, J�
A′C1C̃1B′C2C̃2

)

�
d2∑

i=1

λi, (B4)

where λ = (λ1, λ2, . . . , λd2 ) is the eigenvalues of JE with
λ1 � λ2 � · · · � λd2 . �

APPENDIX C: PROOF OF THE FIDELITY LOWER BOUND
OF varQCAE ON COMPRESS DEPOLARIZING CHANNEL

Proposition 4. For a given depolarizing channel Ep with
dimension D, using the varQCAE to compress it to a
d-dimensional quantum channel, and recover it to D-
dimensional, the lower bound of the reconstruction fidelity is

F (Ep, Ẽp)

�

⎡
⎣
√(

p

D2
+ 1 − p

)(
p

d2
+ 1 − p

)
+ (d2 − 1)

p

Dd

⎤
⎦

2

.

(C1)

Proof. For an arbitrary quantumm channel E , let
�A′C1C̃1→B′C2C̃2

:= V ◦ E ◦ U and FA′→B′ = trC1C̃1C2C̃2
�,

the recovery channel Ẽ = V† ◦ (FA′→B′ ⊗ idC1C̃1→C2C̃2
) ◦ U†.

The states JE
AB, JF

A′B′ , J�
A′C1C̃1B′C2C̃2

and J Ẽ
AB are the Choi states

of E , F , E and Ẽ , respectively.
Define the reconstruction fidelity as

F (E, Ẽ ) = max
U ,V

F (E,V† ◦ (FA′→B′ ⊗ idC1C̃1→C2C̃2
) ◦ U†)

= max
U ,V

F (V ◦ E ◦ U ,FA′→B′ ⊗ idC1C̃1→C2C̃2
)

= max
U ,V

F (�A′C1C̃1→B′C2C̃2
,FA′→B′ ⊗ idC1C̃1→C2C̃2

)

= max
U ,V

F
(
J�

A′C1C̃1→B′C2C̃2
, JF

A′→B′ ⊗ φ+
C1C̃1C2C̃2

)
. (C2)

Setting U = V = id yields a lower bound as follows:

F (E, Ẽ ) �F{U=V=id}
(
J�

A′C1C̃1→B′C2C̃2
, JF

A′→B′ ⊗ φ+
C1C̃1C2C̃2

)
.

(C3)

Equation (C3) means that the reconstruction fidelity when
the encoders and decoders are all is identity is a lower
bound.

For the given depolarizing channel Ep,

JEp = pωD×D + (1 − p)φ+
D , (C4)

where ωD×D = 1
D2 is the maximally entangled state and φ+

D =∑D−1
i, j=0 |i〉〈 j| ⊗ |i〉〈 j|:

F{U=V=id}
(
J
Ep

A′C1C̃1→B′C2C̃2
, JF

A′→B′ ⊗ φ+
C1C̃1C2C̃2

)
= F

(
pωD×D + (1−p)φ+

D , p
1d×d

d2
⊗ φ+

D/d + (1 − p)φ+
D

)
.

(C5)

Let |ψ1〉, . . . , |ψD2〉 be an orthogonal basis of the D2

Hilbert space. The basis satisfies that

φ+
D = |ψ1〉〈ψ1| = φ+

d ⊗ φ+
D/d = |ψ ′

1〉〈ψ ′′
1 | ⊗ |ψ ′

1〉〈ψ ′′
1 | (C6)

and

|ψi〉 = |ψ ′
i 〉 ⊗ |ψ ′′

1 〉, i ∈ [2, . . . , d2], (C7)

where {|ψ ′
i 〉} is an orthogonal basis of the d2 Hilbert space.

The spectral decomposition of the two quantum state in the
fidelity function in Eq. (C5) is

pωD×D + (1 − p)φ+
D =

D2∑
i=1

λi|ψi〉〈ψi|,

λ1 = p

D2
+ 1 − p,

λ2 = · · · = λD2 = p

D2
, (C8)

and

p
1d×d

d2
⊗ φ+

D/d + (1 − p)φ+
D =

D2∑
i=1

μi|ψi〉〈ψi|,

μ1 = p

d2
+ 1 − p,

μ2 = · · · = μd2 = p

d2
,

μd2+1 = · · · = μD2 = 0. (C9)

So the result in Eq. (C5) is

F

(
pωD×D + (1 − p)φ+

D , p
1d×d

d2
⊗ φ+

D/d + (1 − p)φ+
D

)

=

⎡
⎢⎢⎣tr
⎛
⎜⎜⎝
√√√√√
√√√√D2∑

i=1

λi|ψi〉〈ψi|
D2∑
i=1

μi|ψi〉〈ψi|
√√√√D2∑

i=1

λi|ψi〉〈ψi|

⎞
⎟⎟⎠
⎤
⎥⎥⎦

2
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=
⎡
⎣tr

⎛
⎝ D2∑

i=1

√
λiμi|ψi〉〈ψi|

⎞
⎠
⎤
⎦

2

=
⎡
⎣ D2∑

i=1

√
λiμi

⎤
⎦

2

=
[√(

p

D2
+ 1 − p

)(
p

d2
+ 1 − p

)
+ (d2 − 1)

p

Dd

]2

.

(C10)

�

APPENDIX D: THE VISUALIZATION
OF THE LANDSCAPE

Figure 6 provides a visualization of the landscape of
varQCAE, depicting a target channel formed by the convex
combination of ten PQCs. As illustrated in the figure, the im-
pact of the barren plateau is alleviated across various settings
of the [original, latent] qubit pairs.

APPENDIX E: SENSITIVITY ANALYSIS OF varQCAE

In this Appendix we experimentally analyze the impact
of superparameters in varQCAE for compressing information
within quantum circuits. Figure 7 illustrates the performance
obtained when changing some settings, including the number
of input circuits, the layers of the ansatzes, and the parame-
ters’ distribution.

The demonstration shows that the loss function and val-
idation values increase with the number of input circuits.
The reason is that the mixed channel’s rank increases as the
number of input circuits increases. In Fig. 7(a) the loss and
validation are still under 0.07 when the number of input cir-
cuits increased to 50. In this demonstration, we set the number
of original and latent circuits as four and three, use a one-layer
ansatz to construct the input circuits, and the distribution to
generate control parameters is N (0, 0.1).

In Fig. 7(b) the results show that the loss function and
validation values increase with the increase of the layers of
ansatzes used in input circuits. The reason is also the increase
of the rank of the mixed channel. In this demonstration, we
set the number of original and latent circuits as four and three.
The distribution to generate control parameters is N (0, 0.1).
In this demonstration, we set the number of original and latent
circuits as four and three, use 20 circuits as the input, and the
distribution to generate control parameters is N (0, 0.1).

Figure 7(c) changes the values of σ in the distribution
N (μ, σ ); we can find that as the σ increases, the train and
validation performance dramatically falls. This observation
reveals that the rank of the input channel goes full as the
number of circuits increases when the input circuits are all
random unitaries. In this demonstration, we set the number of
original and latent circuits as four and three, use 20 circuits as
the input, use a one-layer ansatz to construct the input circuits,
and the distribution to generate control parameters is N (0, σ ).

All the demonstrations show that the performance will
be influenced dramatically as the rank of the input channel

(a)

(b)

(c)

FIG. 7. Sensitivity analysis on different parameters. We analyze
the impacts of change in different input circuit data sets, including
(a) the number of circuits, (b) the layers of each circuit, and (c) the
sigma in the normal distribution to generate control parameters in
input circuits.

increases, which meets the description of the upper bound of
varQCAE in Proposition 3.
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FIG. 8. Denoising performance under depolarizing errors. The
input circuit consists of four qubits, while the latent circuit has three
qubits. Depolarizing error probabilities range from 0.01 to 0.09,
corresponding to error rates observed in NISQ devices.

APPENDIX F: QUANTUM CIRCUIT DENOISING
UNDER NOISE

This section focuses on applying quantum circuit denoising
using a noise simulator. Specifically, the parameterized quan-
tum circuits within varQCAE are subjected to the same noise
as the input circuits.

In Sec. V C we prepare the circuit data {Ui}. Multiple
sampling from depolarizing noise are performed to obtain op-
erators Oi; These operators are then composed with the input
quantum circuit U , resulting in Ui. In this section, we generate
a random quantum circuit U and execute it on a simulator
with noise N . Their composite is E = U ◦ N , which serves
as an equivalent representation of the circuit data set {Ui}.
Subsequently, we utilize varQCAE to compress and recover
the circuit U on a simulator with depolarizing error.

The results of this process are illustrated in Fig. 8. The
noise of the simulator is the depolarizing noise, and the noise
strengths range from 0.01 to 0.09, which is the same error
level as the NISQ device. The input circuit is 4 qubits and the
latent circuit in varQCAE is three qubits. The optimizer is the
L-BFGS-B in Scipy, and the training epoch is 50.

APPENDIX G: THE DIAGRAM OF DESIGNING
SWAP CIRCUIT

The swap circuit construction issue, proposed in the
Sec. III C, is a crucial technique to obtain the channel F ⊗ id.
For a 2n + 2m qubit system, swap the [n + 1, 2n] subsystem
with the [2n + 1, 2n + m] subsystem. This problem can be
transformed to an equivalent permutation problem: For a num-
ber list L1 := [a1, . . . , a2m, b1, . . . , b2n], find a permutation
sequence {[xi, y j]|xi, y j ∈ L1, xi 
= y j} to get the number list
L2 := [a1, . . . , am, b1, . . . , bn, am+1, . . . , a2m, bn+1, . . . , b2n].

The swap circuit equivalent permutation problem can be
solved by executing the SWAP operations as follow scheme:

a1, · · · , a2m, b1, · · · , b2n

↓ SWAP a2m with {b1, · · · , bn}
a1, · · · , a2m−1, b1, · · · , bn, a2m, bn+1, · · · , b2n

↓ SWAP a2m−1 with {b1, · · · , bn}
a1, · · · , a2m−2, b1, · · · , bn, a2m−1, a2m, bn+1, · · · , b2n

↓
· · ·
↓ SWAP am+1 with {b1, · · · , bn}

a1, · · · , am, b1, · · · , bn, am+1, · · · , a2m, bn+1, · · · , b2n.
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