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Demonstration of a parity-time-symmetry-breaking phase transition using superconducting
and trapped-ion qutrits
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Scalable quantum computers hold the promise to solve hard computational problems, such as prime factoriza-
tion, combinatorial optimization, simulation of many-body physics, and quantum chemistry. While being key to
understanding many real-world phenomena, simulation of nonconservative quantum dynamics presents a chal-
lenge for unitary quantum computation. In this work, we focus on simulating nonunitary parity-time-symmetric
systems, which exhibit a distinctive symmetry-breaking phase transition as well as other unique features that
have no counterpart in closed systems. We show that a qutrit, a three-level quantum system, is capable of
realizing this nonequilibrium phase transition. By using two physical platforms, an array of trapped ions and
a superconducting transmon, and by controlling their three energy levels in a digital manner, we experimentally
simulate the parity-time-symmetry-breaking phase transition. Our results indicate the potential advantage of
multilevel (qudit) processors in simulating physical effects, where additional accessible levels can play the role
of a controlled environment.
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I. INTRODUCTION

Quantum simulation is one of the key prospective applica-
tions for quantum computing [1–6]. It uses a well-controlled
quantum device to replicate the behavior of the system of
interest. There are two main approaches to quantum simu-
lation. One is the analog quantum simulation, which relies
on special-purpose quantum systems and can be based on
a variety of platforms including superconducting transmons
[7,8], trapped ions [9,10], neural atoms [11,12], and photons
[8,13]. These systems have been used to study nontrivial quan-
tum effects [10,14–18], e.g., reproducing phase transitions
in quantum many-body systems [10,15,16,19,20]. While the
analog simulators have arguably reached the practical quan-
tum advantage threshold, the scope of their applications is
likely to remain limited to a class of models that can be
simulated and the level of precision in quantitative predictions
[14]. Another approach is to use digital quantum devices [1]
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capable of universal quantum computation and in principle not
limited in the type of systems they can describe [21,22]. Dig-
ital quantum simulation can address various physical [4,23–
25] and chemical [26,27] problems intractable for classical
computing. However, reaching sufficient precision in quan-
titative predictions calls for significant improvements in the
quantum hardware, and likely requires fault tolerance [28].

Modern quantum computing devices are designed to per-
form reversible operations and natively support only unitary
gates [29]. Simulation of standard Hermitian Hamiltonians fits
well within this framework [2–4], yet modeling the behavior
of nonconservative quantum systems is equally valuable. Un-
derstanding Markovian and non-Markovian dynamics of open
quantum systems [30–33] is important to describe a range of
physical phenomena, such as decoherence [34], thermaliza-
tion [35–39], noise characterization [40–42], and others as
well as for realizing quantum control protocols [43–45]. It
is in fact possible to simulate nonunitary dynamics using a
reversible quantum computer, and numerous techniques have
been developed to this end, including methods based on linear
combination of unitaries [46–48] or dilation [49–52]. Effec-
tively, the Hilbert space can be split into two parts, one part
encoding the system of interest, and the other the environ-
ment. An interaction between the system and the environment
is then simulated by a properly engineered unitary evolution
of the total system.
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A remarkable special case of nonunitary dynamics arises
in parity-time- (PT -) symmetric quantum systems [53]. A
PT -symmetric system is described by a Hamiltonian that is
non-Hermitian, yet can feature a real energy spectrum. Such
systems have properties intermediate between closed and
open [54], and allow one to realize tunable transitions between
the two. Many aspects of PT -symmetric systems, including
those related to information flow [55–57], quantum state dis-
crimination [58,59], breaking of entanglement monotonicity
[60], have no counterparts in unitary dynamics. However,
their distinguishing feature is the phase transition, associated
with the breaking of the PT symmetry, which is accom-
panied by a plethora of peculiar physical and mathematical
effects. The spectrum of the PT -symmetric Hamiltonian
is real in the unbroken phase, but complex in the broken
phase. At the crossover, known as the exceptional point, the
complex-conjugated eigenvalues become equal, while the cor-
responding eigenvectors coalesce [61]. Near the exceptional
point, the energy spectrum of the system shows increased
response to perturbations, a property that has been proposed
as a basis for sensing and signal processing [62–64].

Physically, systems with PT symmetry can be realized by
including suitably balanced gains and losses [64]. A natural
way to engineer a PT -symmetric system then is to introduce
carefully tuned dissipative couplings. This approach has been
demonstrated with a variety of experimental setups includ-
ing photonics [65–68], nuclear spins [69], superconducting
circuits [70,71], and cold atoms [72]. A digital simulation
has the potential to be more robust and scalable, as the total
system remains unitary and well controlled. Digital simulation
of quantum PT -symmetry breaking has been demonstrated
with the use of nitrogen-vacancy centers in diamonds [73] and
superconducting qubits [74].

Our work reports a proof-of-principle experiment simulat-
ing the simplest nontrivial PT -symmetric two-level system
using digital unitary evolution of a single three-level quantum
system, a qutrit. Two of the three qutrit levels correspond to
the subspace of the non-Hermitian qubit, while the single
remaining level proves sufficient to engineer the effective PT -
symmetric dynamics. As a result, in our setup, the degrees of
freedom corresponding to the qubit and the environment are
not spatially separated, and the simulation protocol only relies
on local single-qutrit gates. This is in contrast to the approach
of Refs. [73,74], where the environment is represented us-
ing ancilla qubits, and interactions are affected by multiqubit
gates.

Generally, multilevel systems (qudits) have distinct ad-
vantages over qubit systems in the context of quantum
information processing [75–111]. In particular, decomposi-
tions of multiqubit gates making use of auxiliary qudit levels
[83,85,96,98] is an active area of research [92,112,113]. Sig-
nificant advantages in quantum simulation, such as a reduction
in circuit depth and gate errors in comparison to a traditional
qubit-based approach, are also expected (see, e.g., recent pro-
posals presented in Refs. [114,115] and reviews [107,116]).

Various physical platforms supporting qudit-based com-
puting are being developed [108,117–121]. In particular, su-
perconducting circuits [117–119,122] and trapped-ion-based
devices [120,121] have demonstrated promising capabilities.
In our work, we use both these leading platforms, operating

in the qutrit regime in order to demonstrate a parity-time-
symmetry breaking in a two-level system.

The paper is organized as follows. In Sec. II, we introduce
a two-level PT -symmetric system, describe its basic proper-
ties, and explain how to simulate it digitally using the dilation
technique. Sections III and IV describe the experimental setup
and results for the trapped-ion and superconducting platforms,
respectively. Section VI contains discussion and outlook.

II. PT -SYMMETRIC SYSTEMS AND SIMULATION

A PT -symmetric system is governed by a non-Hermitian
Hamiltonian H , which is invariant with respect to the
combined parity P and time-reversal T transformations
[H,PT ] = 0. The characteristic polynomial of a PT -
symmetric Hamiltonian is always real, and hence the eigenval-
ues are either all real or come in complex-conjugate pairs. In
the former case, the system is said to be in the PT -unbroken
phase. The regime with complex eigenvalues corresponds to
the PT -broken phase and typically arises as the gain and
loss terms become sufficiently strong, so that the nonunitary
aspects of the dynamics dominate the internal interactions
[123].

PT -symmetric systems feature many unusual proper-
ties such as complex spectrum, exceptional points and
coalescence of eigenvectors, nonconservation of the trance
distance between quantum states, and breaking entangle-
ment monotonicity. In this work, we focus on probing the
PT -symmetry-breaking phase transition, and the associated
qualitative change in the dynamics.

A. Two-level PT -symmetric system

The simplest PT -symmetric system has two levels (qubit)
and its time evolution is generated by an effective non-
Hermitian Hamiltonian (written here with h̄ set to 1)

H = σx + irσz =
(

ir 1
1 −ir

)
. (1)

We henceforth refer to H simply as the PT -symmetric Hamil-
tonian. The real parameter r quantifies the strength of the
gain and loss (diagonal) terms compared to the interlevel
interactions. The parity operator is P = σx, and the time-
reversal operator acts by complex conjugation T (·) = (·)∗.
The Hamiltonian (1) is PT symmetric for any real value of
r, i.e.. [H,PT ] = 0.

The eigenvalues of H are h± = ±h, h = √
1 − r2. For r <

1 the eigenvalues are real and PT symmetry is unbroken,
while r > 1 leads to purely imaginary values of h and hence
breaks PT symmetry. The value r = 1 corresponds to the
exceptional point.

Similarly to the unitary case, in the PT -unbroken phase
eigenvectors of the system |ψ±〉 acquire complex phases
during the time evolution, and level populations manifest
Rabi-type oscillations. As the phase transition point r = 1 is
approached from within the PT -unbroken phase, the period
of oscillations T = 2π√

1−r2 grows and diverges at r = 1. After
that, the PT -broken regime with r > 1 exhibits an expo-
nential relaxation to the ground state with time τ = 1√

r2−1
,
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without the oscillatory behavior [55]. Our main goal in this
work is to probe this expected transition experimentally.

B. Embedding non-Hermitian evolution into a unitary operator

The evolution operator V (t ) = e−iHt of a non-Hermitian
system is not unitary, and hence can not be implemented
directly with a reversible quantum computer. However, it can
be embedded in a unitary gate acting on a larger system

U (t ) =
(

λ−1V (t ) B
C D

)
. (2)

Here λ is a scalar factor and B,C, D are arbitrary matrix en-
tries compatible with the unitarity of U (t ). Such embeddings
arise in many settings. Stinespring dilation of completely posi-
tive trace-preserving (CPTP) maps is an example [124]. In the
context of quantum algorithms based on transformations of
singular values, they are known as block encodings [125,126].
An arbitrary operator V (t ) can be represented in the form
of Eq. (2), as long as its operator norm satisfies ||V (t )|| � 1
(for details see Appendix A). Operators with larger norms can
be embedded if rescaled appropriately V (t ) → V (t )/λ, as we
indicated in Eq. (2).

To apply the evolution operator V (t ) to an arbitrary initial
state |ψ〉, one embeds |ψ〉 into the larger space and applies
U (t ) to the result

U (t )

(|ψ〉
0

)
=

(
λ−1V (t )|ψ〉

C|ψ〉
)

. (3)

To probe the structure of the embedded state V (t )|ψ〉, the
measurements are performed on the full resulting state, and
the outcomes lying in the correct subspace are postselected.

The success probability of the postselection is equal to
λ−2〈ψ |V (t )†V (t )|ψ〉. Hence, it decreases as λ grows. From
this point of view, it is optimal to choose the minimal λ com-
patible with the restriction λ−1||V (t )|| � 1, which is solved by
λ(t ) = σmax(t ), with σmax(t ) being the largest singular value
of V (t ). We note that rescaling the evolution operator by the
scalar factor λ(t ) is equivalent to shifting the Hamiltonian by
a time-dependent constant

H → H + i
ln λ(t )

t
. (4)

Such a shift does not alter the physical dynamics in the
subspace of interest, it only affects the success probability
of the postselection. The postselection procedure remains
unchanged and leads to identical results for any admissible
choice of λ(t ).

C. Simulating two-level PT -symmetric system with a unitary
qutrit

The previous section contains a general discussion of em-
bedding a nonunitary evolution operator into larger unitary
dynamics. Here we consider the case where the evolution
operator is that of the PT -symmetric qubit (1), while the
embedding system is a qutrit. There is an additional subtlety
in this case, stemming from the fact that a single auxiliary
dimension is not sufficient to simulate a general operator
V (t ). However, precisely for the case when the scalar factor

FIG. 1. Decomposition of the PT -symmetric qubit dynamics
into a sequence of single-qutrit gates.

is chosen to be λ(t ) = σmax(t ) the embedding is possible (see
Appendix A).

The evolution operator V (t ) for the PT -symmetric qubit
(1) can be written as V (t ) = cos(ht ) − i sin(ht )

h H, and its sin-
gular values read as

σ±(t ) = 1

|h| (
√

|1 − r2 cos2(ht )| ± |r sin(ht )|), (5)

so that σmax(t ) = σ+(t ).
The unitary circuit, which corresponds to the target embed-

ding, can be written as a sequence of three elementary qutrit
gates (see Fig. 1):

U (t ) = R(01)
X (ϕ)R(12)

X (θ )R(01)
X (ϕ), (6)

which are defined by

R(01)
X (ϕ) =

⎛
⎝ cos ϕ

2 −i sin ϕ

2 0
−i sin ϕ

2 cos ϕ

2 0
0 0 1

⎞
⎠, (7)

R(12)
X (θ ) =

⎛
⎝1 0 0

0 cos θ
2 −i sin θ

2
0 −i sin θ

2 cos θ
2

⎞
⎠. (8)

The rotation angles (ϕ, θ ) in Eq. (6) are functions of the
coupling strength r and the evolution time t

ϕ(r, t ) = arctan
tan(ht )

h
, θ (r, t ) = −2 arccos

σ−
σ+

. (9)

The return probability |〈0|U (t )|0〉|2 computed analytically
displays the hallmark phase transition pattern of the PT -
symmetry breaking (Fig. 2).

III. DEMONSTRATION WITH TRAPPED-ION QUTRITS

Here we report the simulation using a trapped-ion quan-
tum processor, which is an upgraded version of the recently
presented setup (see Refs. [121,127]). It is a chain of
10 171Yb+ ions inside a linear Paul trap. Qudits are en-
coded in Zeeman sublevels of 2S1/2(F = 0) and 2D3/2(F =
2), with the qudit dimension up to d = 6. In this work
we employ only three states of each qudit, which we fur-
ther refer as |0〉 = 2S1/2(F = 0, mF = 0), |1〉 = 2D3/2(F =
2, mF = 0), and |2〉 = 2D3/2(F = 2, mF = 1). More details
on the experimental setup are given in the Appendix B. In-
formation about initialization, quantum gates, and readout
procedures are also given there.

Native single-qudit operations supported by our processor
[121] are R(0 j)(ϕ, θ ) and virtual R(0 j)

Z (θ ) gates with j = 1, 2.
Their matrix representations are given in Appendix B. The
virtual RZ gates are not used in the current experiment, and
will not be discussed in detail here. RX rotations featuring in
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FIG. 2. Dynamics ground-state population p for PT -symmetric two-level system (1) for a range of parameters 0 � r � 1.2. The region
r < 1 corresponds to the PT -unbroken phase, r > 1 to the PT -broken phase, and r = 1 (blue line) to the phase transition (exceptional
point). For each point (r, t ) rotation angles (ϕ, θ ) are defined according to Eq. (9), where r and t are dimensionless parameters. (a) Theory.
(b) Experimental results obtained on the trapped-ion platform. Each data point is an average of 8000 experimental runs. The results are SPAM
corrected. (c) Experimental results obtained with the transmon-based qutrit. Each data point is an average of 8192 experimental samples.
(d) For r = 0 the evolution is unitary and population dynamics manifests Rabi-type oscillations. (e) Below the exceptional point (r = 0.6 at
the figure) dynamics is nonunitary, but PT -symmetry unbroken, and level populations are periodic in time. (f) Above the exceptional point
(r = 1.1 at the figure) the PT symmetry is broken and level population relaxes exponentially.

decomposition (6) can be transpiled to the native gates using
relations R(0i)

X (θ ) = R(0i)(0, θ ) and

R(i j)
X (θ ) = R(0i)

Y (π )R(0 j)
X (θ )R(0i)

Y (−π ), (10)

where R(0i)
Y (θ ) = R(0i)(π/2, θ ). The result of the transpilation

is given in Fig. 3.
As mentioned, 10 ion qudits are available in our setup,

and the addressing laser system enables us to control each
ion individually. Since the experiment only involves single-
qudit operations, we chose to increase the sampling rate by
performing the parallel computation on 5 out of 10 ions. We
chose to use only half of the ions (so that no active ions are
nearest neighbors), to reduce the cross-talk effects.

Experimental results obtained with the trapped-ion pro-
cessor are shown in Fig. 2(b). Each pair of parameters (r, t )
defines rotation angles (ϕ, θ ) for the transpiled circuit in Fig. 3

FIG. 3. Simulation circuit (6) transpiled to the single-qutrit gates
native to the trapped-ion processor.

according to Eq. (9), and 8000 samples are aggregated and
averaged to compute level populations for each data point.
Results are postselected on lying in the qubit subspace |0〉, |1〉,
yielding probabilities p0(r, t ) and p1(r, t ). The return proba-
bility of the non-Hermitian qubit is then computed as

p = p0(r, t )

p0(r, t ) + p1(r, t )
, (11)

and is the final quantity reported in Fig. 2(b).

IV. DEMONSTRATION WITH A TRANSMON-BASED
QUTRIT

The transmon-based qutrit is used to access the three-level
system with a superconducting platform. The transmon is a
widely used qubit consisting of a Josephson junction shunted
with large capacitance [128]. It has an energy spectrum of a
weakly anharmonic quantum oscillator, which allows using it
as a qutrit. For details on the device, initialization procedure,
gate implementation, and readout see Appendix C. The native
gate set for our superconducting qutrit consists of R(01)

X (ϕ),
R(12)

X (ϕ), R(01)
Z (ϕ), R(12)

Z (ϕ) rotations, and their matrix repre-
sentations also given in Appendix C.

While it is possible to implement gates R(01)
X (ϕ) and

R(12)
X (ϕ) operations with an arbitrary angle ϕ, each value of ϕ
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FIG. 4. Gates (a) R(01)
X (ϕ) and (b) R(12)

X (θ ) transpiled to the native single-qutrit transmon operations. Virtual RZ gates are highlighted with
a gray background. Only the colored gates are subject to the parameter sweeps in the simulation protocol of Fig. 1.

requires preliminary measurement-intense calibration. In turn,
the gates R(01)

Z (ϕ) and R(12)
Z (ϕ) can be implemented virtually

for any ϕ with zero duration and perfect fidelity [129]. In
terms of a total calibration time reduction, it is more efficient
to transpile the gate sequences using RX gates with fixed
angles and arbitrary RZ rotations. In this work, we calibrate
and use R(01)

X (π/2) and R(12)
X (π/2), which form a universal

single-qutrit gate set when supplemented with the virtual RZ

rotations.
To transpile Eq. (6) into this gate set, we use a relation

R( j j+1)
X (ϕ) = (e−iϕ/2)( j j+1)H ( j j+1)R( j j+1)

Z (ϕ)H ( j j+1), (12)

where j ∈ {0, 1}, and H ( j j+1) denotes an operation similar to
a Hadamard gate:

H ( j j+1) = R( j j+1)
Z

(π

2

)
R( j j+1)

X

(π

2

)
R( j j+1)

Z

(π

2

)
. (13)

We note that in Eq. (12) the global phase (eiλ)( j j+1) of
a two-level subsystem phase cannot be left out, but can be
reproduced by a combination of two-level RZ rotations

(eiλ)(01) = R(01)
Z (0)R(12)

Z (−λ), (14)

(eiλ)(12) = R(12)
Z (λ)R(01)

Z (λ). (15)

Figure 4 depicts the transpilation of the gates R(01)
X (ϕ) and

R(12)
X (θ ), featuring in the simulation circuit Fig. 1.

Experimental results obtained with a superconducting plat-
form agree with the theoretical predictions and are reported in
Fig. 2(c). The parametrization of rotation angles ϕ(r, t ) and
θ (r, t ) is used in the transpiled gates in Fig. 4 and postselec-
tion of the outcome probabilities are similar to the ion-based
experiment.

V. DISCUSSION

Here we give a summary of the experimental results
demonstrating the PT -symmetry breaking on both experi-
mental platforms (Fig. 2), and discuss some of their specific
features. For both setups experimental data are very close to
the theoretical model. In the trapped-ion case some statistical
noise is present, consistent with 8000 samples per point aver-
aging.

For the transmon-based device, each reported observation
value is an average of 8192 experimental sequences, preparing
the state populations of a superconducting qutrit. It should

be noted that a phase increment value is discretized in our
waveform generator, therefore, one can notice a slight ripple
behavior in Fig. 2(c). We also note that, though the transpiled
circuit in Fig. 4 looks much longer than the original one, it
mostly consists of virtual zero-duration RZ rotations (high-
lighted with gray boxes). Hence, the total circuit duration is
comparable to the original sequence.

We would like to point out the essential differences be-
tween our experiments and the previous works, where the
parity-time-symmetry transition has been observed. Similarly
to our setup, Ref. [71] used three levels of a transmon to
probe the phase transition. However, their simulation is ana-
log, relies on engineered dissipative couplings and controlled
relaxation of the excited states. In particular, this technique
has the drawback of postselection success rate decaying expo-
nentially with the simulation time. Our simulation is digital,
allowing more control, and the postselection success rate does
not decay with time. Similarly to our work, Ref. [74] relies
on the fully digital simulation, but uses auxiliary qubits to
engineer non-Hermiticity. As we have argued in the Intro-
duction, multilevel systems can provide distinct advantages
in storing and processing of quantum information. Illustrat-
ing this potential, our work uses a single qutrit, the minimal
possible setup to probe this phase transition digitally, and the
techniques developed apply broadly.

VI. CONCLUSIONS

We have introduced a theoretical protocol for the simula-
tion of a two-level PT -symmetric system using the digital
evolution of a unitary qutrit. The simulation is based on the
dilation technique, i.e., embedding of the nonunitary evolu-
tion operator into the unitary dynamics of a larger system.
A single additional level existing in a qutrit proved to be
sufficient for our application. The protocol has been im-
plemented in two independent experimental setups, trapped
ions and a superconducting transmon, and conclusively
demonstrated the predicted change in dynamics across the
PT -symmetry-breaking phase transition, from oscillatory
behavior (PT -symmetric regime) to the exponential relax-
ation (PT -broken regime). Both experimental platforms have
demonstrated excellent agreement with each other and with
the theory. Our results point to the significant potential of both
trapped ions and superconductors, in simulating the physics of
open systems.
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APPENDIX A: BLOCK ENCODING

1. General

To make the technical aspects of our work self-contained,
here we present a simple approach to block encodings of
nonunitary operators. Let A be an n × n operator that we wish
to embed into an [(n + m) × (n + m)]-dimensional unitary U ,
with the following block structure:

U =
(

An×n Bn×m

Cm×n Dm×m

)
. (A1)

In our applications, A is the evolution operator A = e−iHt of
some non-Hermitian Hamiltonian. We would like to stress that
PT symmetry is not required at this point, and the technique
applies to general non-Hermitian Hamiltonians.

We assume to have the full control over the (n +
m)-dimensional system, so that the only constraint on
A comes from the unitarity of U , i.e., U †U = 1, or

explicitly

A†A + C†C = 1, A†B + C†D = 0, (A2)

B†A + D†C = 0, B†B + D†D = 1. (A3)

Assuming that the first of these equations can be solved for
C, the remaining equations have solutions as well. Indeed, the
off-diagonal equations are solved by choosing

B = −(A†)−1C†D. (A4)

Note since A is an exponential, A−1 exists. Substituting B into
the last equation leads to

D†KD = 1, K = CA−1(CA−1)† + 1. (A5)

Because K is Hermitian it can always be diagonalized by a
unitary transformation W †KW = diag(k1, k2, . . . ). Since K is
positive definite ki > 0. Hence, choosing

D = W diag

(
1√
k1

,
1√
k2

, . . .

)
(A6)

fulfills the last equation in Eq. (A3).
Thus, the key question is whether the first equation in

Eq. (A3) has a solution. In fact it does, provided
(i) 1 − A†A � 0,
(ii) rank(1 − A†A) � m.
The first condition here ensures that C†C is positive

semidefinite, and is equivalent to the requirement ||A|| � 1.
The second condition takes into account the fact that m is
the maximum rank of C†C, for (m × n)-dimensional operator
C. An explicit solution for C can be given, e.g., in the basis
diagonalizing A†A, but we will not need it.

2. Relaxing restrictions

Constraints on the singular values of A might appear to be
too restrictive in practice. For example, ||A|| = ||e−iHt || � 1
generally would not hold for evolution operators in non-
Hermitian systems. A simple workaround is to instead
simulate H + iμ with some sufficiently large real constant μ.
Shifting the Hamiltonian by a constant affects the dynamics of
the physical subspace trivially, but permits a block encoding
into a unitary matrix.

Assume that the largest singular value σmax of A is known.
Then block encoding A/σmax is a natural choice. It puts all
eigenvalues in the range [0, 1], and at the same time reduces
the rank of 1 − A†A by one, allowing to use one less aux-
iliary dimension for block embedding. The last property is
important for this work since it allows simulating an arbitrary
two-dimensional system using a single extra dimension, i.e., a
unitary qutrit.

3. Gate-level implementation

An arbitrary single-qutrit gate, i.e., an element U ∈ SU(3),
can be decomposed into a product of three two-level gates

U = A(01)B(12)C(01), (A7)

where A, B,C ∈ SU(2). For a simple proof, we refer to the
Appendix of Ref. [130]. As we now show, the additional
symmetries of the PT -symmetric Hamiltonian (1) lead to a
very compact form of the decomposition.
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We begin by observing that

e−iHt = cos(ht ) − i
sin(ht )

h
H, (A8)

and rewrite it as

e−iHt =
√

1 − r2 cos2(ht )

h
eiϕσx + r

sin(ht )

h
σz. (A9)

Here

ϕ = arctan
tan(ht )

h
, h =

√
1 − r2. (A10)

This form naturally leads to the following singular value de-
composition:

e−iHt = RX (ϕ)	RX (ϕ), (A11)

	 = 1

h
(
√

1 − r2 cos2 ht + r sin ht σz ), (A12)

where RX (ϕ) = e−i 1
2 ϕσx . Hence, the singular values are

σ± = 1

h
(
√

1 − r2 cos2 ht ± r sin ht ). (A13)

Note that σ± � 0 for all r ∈ R, and can alternatively be written
as shown in Eq. (5).

The renormalized evolution operator to be embedded into
a qutrit unitary is e−iHt/σmax. Its singular values are 1 and σ :

σ = σmin

σmax
=

√
|1 − r2 cos2 ht | − |r sin ht |√
|1 − r2 cos2 ht | + |r sin ht |

. (A14)

Decomposition of the form (A7) can now be derived from the
factorization (A11) (see Fig. 1 for the graphical representa-
tion)

U = R(01)
X (ϕ)R(12)

X (θ )R(01)
X (ϕ), (A15)

with θ = −2 arccos σ . The middle factor here reads as

R(12)
X (θ ) =

⎛
⎜⎝

1 0 0

0 cos θ
2 −i sin θ

2

0 −i sin θ
2 cos θ

2

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0

0 σ ∗
0 ∗ ∗

⎞
⎟⎠.

(A16)

The last form emphasizes that the top left block of R(12)
X (θ ) re-

produces 	/σmax, while the unspecified entries ∗ do not affect
the resulting block encoding. They can be chosen arbitrarily
(subject to the unitarity constraint), and R(12)

X (θ ) provides per-
haps the simplest such choice.

APPENDIX B: DETAILS ON TRAPPED-ION-BASED
QUTRIT

1. Initialization

The basic scheme of the trapped-ion setup is given in
Fig. 5. At the beginning of each experimental run, ions are
first Doppler cooled with a combination of 369.5 nm phase
modulated at 14.7-GHz laser and a 935.2-nm phase modulated
at 3.08-GHz laser [131] (Fig. 6). After that each qudit is
initialized in the |0〉 state by the optical pumping with the
same lasers (369.5-nm laser phase modulation frequency is
changed to 2.1 GHz for that). Usually, after this step ions

FIG. 5. Simplified scheme of the trapped-ion setup. Ions are
stored in a linear Paul trap. Beams at 369, 935, and 760 nm en-
sure ions cooling, initialization, readout, and repumping. Quantum
operations are performed with two tightly focused laser beams at
435 nm, which can be scanned with acousto-optical deflectors (AOD)
along the ion chain. Acousto-optical modulators (AOM) control their
amplitude, phase, and frequency. The addressing laser frequency is
stabilized with respect to a high-finesse optical cavity.

radial modes are sideband cooled to the motional ground state
[132], which is required for two-qudit operations, but in this
experiment this step is omitted as only single-qudit operations
are necessary.

2. Native gates

Native gates R(0 j)(ϕ, θ ) used in this paper are given by the
following matrices:

R(01)(ϕ, θ ) =

⎛
⎜⎝

cos θ
2 −ie−iϕ sin θ

2 0

−ieiϕ sin θ
2 cos θ

2 0

0 0 1

⎞
⎟⎠, (B1)

R(02)(ϕ, θ ) =

⎛
⎜⎜⎝

cos θ
2 0 −ie−iϕ sin θ

2

0 1 0

−ieiϕ sin θ
2 0 cos θ

2

⎞
⎟⎟⎠, (B2)

FIG. 6. Level scheme of the 171Yb+ ion. Solid lines show laser
fields. Dashed lines show laser fields obtained by lasers phase
modulation.
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FIG. 7. Readout confusion matrices for trapped ion qutrits. (a)–(e) For each of the five used ions, (f) average readout confusion matrix for
these five ions.

The gates R(0 j)(ϕ, θ ) are implemented by applying a laser
pulse at 435.5 nm resonant to the |0〉 → | j〉 transition. Rel-
ative phase of the laser emission sets the angle ϕ, while the
pulse duration determines θ .

3. Readout

After applying required quantum gates a state readout of
each ion is performed. The first stage of this procedure is anal-
ogous to the optical qubit [133]. The ions are illuminated with
a 369.5-nm cooling laser phase modulated at 14.7 GHz and a
935.2-nm nonmodulated repumping beam. These fields drive
transitions 2S1/2(F = 1) → 2P1/2(F = 0), 2S1/2(F = 0) →
2P1/2(F = 1), and 2D3/2(F = 1) → 3[3/2]]1/2(F = 0) re-
sulting in a strong fluorescence of the ions being in the |0〉
state in the end of the quantum algorithm. Ions in states |1〉 and
|2〉 remain dark. Ion fluorescence photons are collected with
a high-aperture lens and focused onto an array of multimode
optical fibers. Other ends of these fibers are connected to the
photomultiplier tubes. By comparing the number of detected
photons during the measurement cycle (single-cycle duration
is 900 µs) for each ion with a predetermined threshold value,
we distinguish state |0〉 from all others. At the end of the
measurement cycle, all population from the state |0〉 is trans-
ferred to the 2S1/2(F = 1). After that operation R(01)(0, π ) is
applied to all the ions transferring population from the |1〉
state to the empty |0〉 state, and the measurement is repeated.
In the second measurement cycle, the ion is dark only if it is
in the |2〉 state at the end of the algorithm. Thus, with these
two measurement cycles, we can distinguish all three states of
each ion.

To calibrate the initialization and readout processes we
sequentially prepared all ions in states |0〉, |1〉, and |2〉 and
performed the measurement of the register. For each state,
104 measurements are made. In Fig. 7 we show the confusion
matrix for the readout process for all five used ions and an
average readout fidelity through them.

The readout error sources include optical pumping from
the |0〉 state to the 2D3/2(F = 2) manifold during the transient
stage in the beginning of each readout cycle, nonresonant
pumping between qudit states, single-qudit gate infidelities,
and spontaneous decay of the 2D3/2(F = 2) states [133]. All
these error contributions can be rather straightforwardly re-
duced by further optimization of the system parameters. For
instance, it was demonstrated that a duration of a single read-
out cycle in multiparticle processors based on 171Yb+ ions can
be significantly decreased in comparison to our current results
by reducing the amount of the stray light on the detector and
increasing a photon collection efficiency [134]. This would
significantly reduce errors due to spontaneous decay and non-
resonant pumping.

This method can also be easily extended to the case where
all d = 6 qudit states are used to encode information.

APPENDIX C: DETAILS ON TRANSMON-BASED QUTRIT

1. Device description

For the purposes of this research we use a flux-tunable
transmon qubit, where the first three energy levels are treated
as a qutrit system [135] (see Fig. 8). The fabrication process
of a such device consist of five main parts: ground plane
fabrication, fabrication of Al/AlOx/Al Josephson junctions,

032619-8



DEMONSTRATION OF A PARITY-TIME-SYMMETRY- … PHYSICAL REVIEW A 109, 032619 (2024)

FIG. 8. The energy spectrum of a transmon-based qutrit. Com-
putational levels |0〉 , |1〉, and |2〉 of a qutrit system are colored. The
allowed transitions are 0–1 and 1–2 with corresponding frequencies
f01 and f12. Native gates R(01)

X (ϕ) and R(12)
X (ϕ) are represented as

allowed operations of applied microwave pulses.

bandages deposition, and air-bridges construction. The fab-
rication starts with silicon substrate cleaning and aluminum
thin-film evaporation. The main structures including trans-
mon electrodes and coplanar waveguide transmission lines are
patterned using a direct optical lithography. The next step is
aimed at the Josephson junction fabrication using standard
Dolan bridge technique [136]. In order to have good galvanic
contact between the ground plane and the obtained Josephson
junctions, bandages are deposited through a single-layer or-
ganic mask after aluminum oxide etching via an argon milling
process. In order to achieve uniform electric potential and
avoid parasitic modes, the final fabrication step is devoted to
aluminum free-standing air-bridge structures [137].

At the operating point (sweet spot), where the energy
spectrum is less sensitive to the flux noise, the transition
frequencies f01 and f12 are 6.16 and 6.04 GHz, respectively.
We probe states via the dispersive readout scheme [138] using
an individual transmission line resonator of the frequency
7.1 GHz. Since the qutrit transition frequencies are relatively
close to the resonator the transmon can suffer from a sponta-
neous Purcell decay. Therefore, to protect qutrit, an individual
coplanar waveguide filter with wide linewidth is added to the
scheme according to the proposal described in [139].

We characterize the coherence properties of the qutrit sys-
tem by measuring the spontaneous decay rates from state |1〉
(T (01)

1 = 10.5µs) and state |2〉 (T (12)
1 = 4.8 µs) and Ramsey

oscillations between |0〉 and |1〉 (T (01)
2 = 6.2 µs).

2. Experimental setup

The presented experiment is performed in the dilution
refrigerator with a base temperature of around 10 mK (see
Fig. 9). The whole experimental setup can be divided into two
main parts: cryogenic and room temperature. In the dilution
refrigerator microwave attenuators are used for thermalization
purposes. The transmon is coupled to a readout transmission

line via a resonator and a Purcell filter; for gate implementa-
tions (XY controls) and flux control (Z control) an additional
is used.

Pulse generation for qutrit control is fully performed by an
arbitrary waveform generator (AWG) with a local oscillator
(LO). The IQ mixers have the ability to combine two signals
from AWG, which supply a pulse envelope of a low inter-
mediate frequency component, with a high-frequency signal
from LO [140]. One channel from AWG is also used for flux
control. The same IQ up- and down-conversion approach is
used for qutrit readout. The signal from the transmission line
is amplified by an impedance-matching parametric amplifier
(IMPA) and then processed with a custom digitizer (DIG)
based on FPGA.

The experimental procedures can be divided into three
main steps: initialization, single-qutrit gate pulses, and in-
dividual readout. Below, we describe each part of the
experiment in detail.

a. Initialization

We use the passive reset method and wait for approxi-
mately 100 µs, allowing the qubit to naturally dissipate into
the external environment. The initial state prepared in this way
is a good approximation of the ground state |0〉 in our case
since h f01 � kT , where T is the environmental temperature
in the dilution refrigerator, k is the Boltzmann constant, and
h is the Plank constant. This implies that the residual thermal
population can be neglected.

b. Single-qutrit gates

In order to manipulate the qutrit states, we use microwave
pulses generated by the standard heterodyne approach [140].
In the laboratory frame, the Hamiltonian function of the
transmon-based qutrit system under the external drive can be
written as

Ĥlab = h̄
∑
j=1,2

[ω j | j〉 〈 j| + λ j�(t )(σ̂−
j + σ̂+

j )], (C1)

where σ̂−
j = | j − 1〉 〈 j| and σ̂+

j = | j〉 〈 j − 1| are the lowering
and the raising operators, respectively, h̄ω j is the energy of a
state | j〉. The drive term �(t ) with modulation frequency ωd

is naturally expressed as �(t ) = I (t ) cos ωdt + Q(t ) sin ωdt .
Here, we also introduce the weight parameter λ j , conditioned
by the energy structure of a system. For a transmon, λ1 =
1, λ2 = √

2 due to the charge matrix elements.
In a rotating frame, Eq. (C1) simplifies to

ĤRWA

=
⎛
⎝ 0 I (t ) + iQ(t ) 0

I (t ) − iQ(t ) 0
√

2[I (t ) + iQ(t )]
0

√
2[I (t ) − iQ(t )] 0

⎞
⎠.

(C2)

Thus, we can execute two-level RX rotations, the subspaces
spanned by states {|0〉, |1〉} and {|1〉, |2〉} being our first pair
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FIG. 9. Experimental setup of the transmon-based experiment.

of native gates. In the matrix representation these gates are
defined as follows [141,142]:

R(01)
X (ϕ) =

⎛
⎝ cos ϕ

2 −i sin ϕ

2 0
−i sin ϕ

2 cos ϕ

2 0
0 0 1

⎞
⎠, (C3)

R(12)
X (θ ) =

⎛
⎝1 0 0

0 cos θ
2 −i sin θ

2
0 −i sin θ

2 cos θ
2

⎞
⎠. (C4)

In-phase I (t ) and quarter-phase Q(t ) quadratures hold in-
formation not only about a pulse shape, but also about the
signal modulation phase ϕ. It can be shown that the phase
incrementation to the drive modulation gives instantaneous
change of rotation axis producing virtual Z gates. In the matrix
representation this pair of our native gates is defined by

R(01)
Z (ϕ) =

⎛
⎝1 0 0

0 eiϕ 0
0 0 1

⎞
⎠, (C5)

R(12)
Z (ϕ) =

⎛
⎝1 0 0

0 1 0
0 0 eiϕ

⎞
⎠. (C6)

c. Readout

The state discrimination process starts with applying a
700-ns duration rectangular pulse to the readout transmission
line. In the experiment, we use a single-shot dispersive readout
technique. During a readout calibration, we prepare qutrit in
one of the states |0〉, |1〉, and |2〉 for 5 × 104 times each
and measure the corresponding response trajectories xi(t ) by a
digitizer. The obtained trajectories are split into train and test
sets. Then the train set is integrated in time with appropriate
weight functions F0(t ) and F1(t ). In the current experiment,
these functions are inspired by Gram-Schmidt orthogonaliza-
tion process [143] and defined as follows:

F0(t ) = 〈x∗
1 (t ) − x∗

0 (t )〉, (C7)
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FIG. 10. (a) The readout calibration trajectories of qutrit states
are presented in the (I, Q) plane. Orange, blue, and aquamarine col-
ored dots indicate measured Gaussian readout clouds corresponding
to the |0〉, |1〉, and |2〉 states. The mean value and standard deviation
of each cloud are denoted by white dots and dashed ellipses, respec-
tively. (b) The readout confusion matrix shows probability of readout
declaration error. The average value of diagonal elements represents
the total readout fidelity of the experiment.

F1(t ) = 〈x∗
2 (t ) − x∗

0 (t )〉−

−
∫

F0(t )[x2(t ) − x0(t )]dt∫ |F0(t )|2dt
F0(t ), (C8)

where 〈. . . 〉 stands for the averaging over all trajectories and
∗ denotes the complex-conjugation operation.

The integration process projects each trajectory onto the
weight functions, which is equivalent to the quadrature calcu-
lation by the downsampling method

Ii = Pr0
i = Re

(∫
F0(t )xi(t )dt

)
,

Qi = Pr1
i = Re

(∫
F1(t )xi(t )dt

)
. (C9)

The calculated quadratures are generally represented as Gaus-
sian clouds with a similar distribution in the IQ plane [see
Fig. 10(a)]. The obtained quadratures are classified by the
standard machine-learning logistic regression method. We
then use the test set to calculate a readout confusion matrix
and fidelity as accuracy evaluation of the trained classification
model. The resulted confusion matrix is shown in Fig. 10(b).
In our experiment, the average readout fidelity of a qutrit state
classification is 87.6%.

3. Transpilation to native gates

As was mentioned in Sec. III, native single-qudit gates
for the used trapped-ion processor are given by R0 j (ϕ, θ )
( j = 1, 2) rotations and virtual RZ (θ ) gate. Therefore, R12

X (θ )
gate from the circuit (6) is transpiled to R(0i)

Y (±π ) and R(0 j)
X (θ )

gates with i = 1 and j = 2 according to the following form:

R(i j)
X (θ ) = R(0i)

Y (π )R(0 j)
X (θ )R(0i)

Y (−π ). (C10)

The transpiled circuit, which was executed in the experiment,
is presented in Fig. 3.
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V. Vuletić, and M. D. Lukin, Probing many-body dynamics
on a 51-atom quantum simulator, Nature (London) 551, 579
(2017).

[20] A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler,
S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, P.
Zoller, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin,
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