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Optimal parameter estimation of shaped phase objects
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We show a general method to estimate with optimum precision, i.e., the best precision determined by the
light-matter interaction process, a set of parameters that characterize a phase object. The method is derived
from ideas presented by Pezze et al. [Phys. Rev. Lett. 119, 130504 (2017)]. Our goal is to illuminate the main
characteristics of this method as well as its applications to the physics community probably not familiar with
the formal quantum language usually employed in works related to quantum estimation theory. First, we derive
precision bounds for the estimation of the set of parameters characterizing the phase object. We compute the
Crámer-Rao lower bound for two experimentally relevant types of illumination: a multimode coherent state
with mean photon number N and N copies of a multimode single-photon quantum state. We show under which
conditions these two models are equivalent. Second, we show that the optimum precision can be achieved by
projecting the light reflected or transmitted from the object onto a set of modes with engineered spatial shape.
We describe how to construct these modes and demonstrate explicitly that the precision of the estimation using
these measurements is optimum. As an example, we apply these results to the estimation of the height and
sidewall angle of a cliff-like nanostructure, an object relevant in the semiconductor industry for the evaluation of
nanofabrication techniques.
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I. INTRODUCTION

Phase objects are samples that add a spatially dependent
phase shift to the light that passes through them or is re-
flected by them, while causing very low absorption. They
are ubiquitous in many different areas of science and tech-
nology. Many biological specimens act as phase objects, and
techniques such as phase-contrast or differential interference
contrast microscopy [1] have been developed to examine those
specimens. In the semiconductor industry, the characterization
of printed phase objects such as steep steps, gratings, and cliff-
like structures are used in the evaluation of the performance of
lithographic or other nanofabrication techniques [2–4].

In an imaging scenario, the aim is to retrieve a full image of
the sample with the best spatial resolution available. This turns
out to be challenging when one considers increasingly smaller
structures, i.e., samples with subwavelength spatial features.
For specific applications, several techniques have been found
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such as the use of shorter wavelengths for illumination (ex-
treme ultraviolet and x ray) [5,6], superresolution techniques
that make use of fluorophores [7,8], or by measuring in the
near-field regime at distances from the sample where one
can exploit the evanescent fields [9–11]. However, these
techniques also show specific drawbacks such as the use of
wavelengths that allow low penetration depth into the samples
and might cause damage to them, the need to use external
markers that contaminate the samples or the requirement of
unbearable exposure times due to scanning of large samples.

In many cases one is interested in estimating certain rel-
evant parameters of a sample, for instance, the period of
a submicrometer grating [12] or the thickness of a thin
nanolayer [13]. In this parameter estimation scenario, one
wonders what is the minimum size of spatial features that can
be estimated, i.e., what is the best spatial resolution achiev-
able. It is also important to search for measurement schemes
that can attain such a fundamental limit, which we will refer to
as optimum measurement. Quantum estimation theory [14,15]
provides the tools to answer these questions. Although the
relevance of quantum estimation theory for determining the
resolution limits in sensing and metrology has been known for
some time [16–20], it has only become of widespread use in
optical sensing and imaging during the past few years [21–26].

We consider a scenario where the probe beam, after reflec-
tion or transmission from the phase object can be written as a
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pure state |�(θ )〉, where θ ≡ {θ1, θ2, . . . , θM} is the set of M
parameters that we want to estimate. A key tool in quantum
estimation theory is the M × M quantum Fisher information
matrix (QFIM), Fi j = 4 �i j , where

�i j = Re{〈�i| � j〉 + 〈�i| �〉 〈� j | �〉}, (1)

and |�i〉 ≡ |∂�/∂θi〉. It allows to calculate the quantum
Crámer-Rao bound (QCRB), a precision bound to the values
of the elements of the covariance matrix V (θ̂ ) for an unbiased
estimator θ̂ of the set of parameters θ , so that the matrix
[V (θ̂ ) − F−1] should be positive-semi-definite [18]. This is
a fundamental precision bound that is independent of the
estimator and the specific measurement scheme considered
whose value depends only on the properties of the illumina-
tion light, beam, i.e., its quantum state, and the nature of the
light-matter interaction that modifies the characteristics of the
quantum state. The QCRB is the most informative bound in
the case of one-parameter estimation. This is also the case for
multiparameter estimation if [20,27]

Im 〈�i| � j〉 = 0 ⇐⇒ 〈�i| � j〉 = 〈� j | �i〉. (2)

In some cases of interest the theoretical analysis of the QFIM
is made considering that the source of light consists of N
copies of a multimode single-photon quantum state, even
though the light source does not actually generate single-
photon quantum states. For instance, in Ref. [28] the authors
justified using single-photon quantum states for analyzing
weak thermal sources at optical frequencies by claiming that
the source was “effectively emitting at most one photon” and
that “it allows us to describe the quantum state ρ of the optical
field on the image plane as a mixture of a zero-photon state
ρ0 and a one-photon state ρ1 in each time interval.” One thus
assumes that “...the probability of more than one photon ar-
riving at the image plane is negligible,” as stated in Ref. [29].
In some other experiments, the theoretical calculations were
done assuming a light source that generated single-photon
quantum states, while experiments were done using intense
or attenuated laser sources [30–32]. In a sense, this analysis
seemed to be motivated by the fact that, even though the QFIM
is an inherently quantum concept whose terms are calculated
with quantum mechanics tools, in certain cases the precision
bounds can also be applied to experiments where the quantum
nature of light is irrelevant [32].

Motivated by the previous considerations, here we will
consider two types of probe beams that illuminate the phase
object: N copies of a multimode single-photon state and a
multimode coherent state with average photon number N .
We will demonstrate that with these types of illumination,
the estimation of phase objects fulfill Eq. (2). We will also
show that the precision bounds obtained in both cases do not
coincide in general. However, if certain symmetry conditions
are satisfied, the resulting QFIM is the same in both cases.
As a consequence of this, our work might constitute a word of
caution for experiments aimed at determining the QFIM using
weak coherent states while employing single-photon quantum
states, for the sake of simplicity or as an approximation, in the
corresponding theoretical analysis.

After studying the most adequate illumination scheme, a
natural question arises: What kind of measurement has to be
performed to attain the best precision limit? One answer is to

project the transmitted or reflected light beam in a particular
set of spatial modes, a selection that depends on the spe-
cific parameter estimation problem considered [22,33], and
measure the mode amplitudes of the decomposition. One can
demonstrate (see Appendix A) that, for phase objects, if the
phases of the mode amplitudes do not depend on the set of
parameters θ , the measurement turns out to be an optimum
measurement. The measurements can be done using tech-
niques like spatial mode demultiplexing [22,34] or evanescent
coupling with different single-mode waveguides [35]. Al-
though the number of modes needed varies with the different
basis and different sets of spatial modes have been considered,
the number of required modes is generally large [26,32,33],
which renders these experiments cumbersome to implement.

Projection onto spatial modes as a tool for highly sensitive
sensing have been considered [13,36–38]. For instance, spatial
mode projections were used for estimating the displacement
and tilt of a Gaussian beam [39–41]. In this case, the selection
of the real and imaginary parts of the complex value of the
projection onto the same spatial mode (TEM10) allowed to
estimate the displacement and tilt independently. In Ref. [13]
a thin nanolayer with thickness λ/80 was measured by pro-
jecting the field onto an array of spatial modes with the help
of a spatial light modulator.

In 2017, Pezze et al. [27], introduced a general procedure
to generate a set of spatial modes that allowed optimum pa-
rameter estimation when the condition given by Eq. (2) was
fulfilled. We apply the method described in Ref. [27] to obtain
the projection modes that allow optimum multiparameter es-
timation of phase objects with an arbitrary spatial shape. This
method is a powerful tool for optimum parameter estimation
since it provides, for a wide class of estimation problems, a
projective measurement that saturates the QCRB. However,
the proposed method is described following typical quantum
estimation theory formalism that can make its comprehen-
sion difficult for readers interested in optical sensing and
metrology, but not familiar with quantum estimation theory
language. One of our goals is to translate to a less formal
language the procedure described in Ref. [27] so that readers
of the physics community can find it easier to grasp the main
points of the method and benefit from their results.

II. QUANTUM FISHER INFORMATION MATRIX
AND THE CRÁMER-RAO LOWER BOUND

Using the tools provided by quantum estimation theory,
we aim at estimating a set of M parameters (θ ≡ {θi}, i =
1, . . . , M) that characterize a phase object. For the sake of
simplicity, we consider the state of the probe beam after
reflection or transmission from the phase object to be a pure
state, i.e., ρ(θ ) = |�(θ )〉〈�(θ )|, a situation that is experimen-
tally relevant and conveniently simplifies the calculations. The
elements Fi j of the QFIM are calculated making use of Eq. (1).

One word of caution might be helpful at this point. When
considering physical scenarios that involve optical phases and
interferometers, one has to be careful with the selection of the
quantum state that describes the experimental scheme since,
apparently, equal physical models can lead to different values
of the QCRB. This might cause interpretation problems con-
cerning the bounds obtained via the QFIM [42]. Considering
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nonuniform phases can help to avoid some of these issues
since we can use as a reference the phase at a specific spatial
location.

A. QFIM for N copies of a multimode
single-photon quantum state

We consider that the probe beam that illuminates the sam-
ple consists of N-independent single photons with input state
|�in〉 = ∫

dx f (x)|x〉, where x refers to the spatial coordinate.
We assume that the quantum state satisfies the normalization
condition

∫
dx| f (x)|2 = 1. After interaction with a phase ob-

ject, the quantum state |�〉 of the outgoing photon is

|�〉 =
∫

dx f (x) exp{i ϕ(x, θ )}|x〉, (3)

where ϕ(x) is the spatially dependent phase added to the input
state that depends on the set of parameters θ . Making use of
Eq. (3), we obtain

〈�|�i〉 = i
∫

dx| f (x)|2
[
∂ϕ(x)

∂θi

]
, (4)

and

〈�i|� j〉 =
∫

dx| f (x)|2
[
∂ϕ(x)

∂θi

][
∂ϕ(x)

∂θ j

]
. (5)

Note that Eq. (5) shows that 〈�i|� j〉 is real, so we deduce
from Eq. (2) that the QCR bound is the most informative
precision bound.

We can write the elements of the QFIM F s
i j , given by

Eq. (1) as

F s
i j = 4N

{∫
dx| f (x)|2

[
∂ϕ

∂θi

][
∂ϕ

∂θ j

]

−
[∫

dx| f (x)|2
( ∂ϕ

∂θi

)][∫
dx| f (x)|2

( ∂ϕ

∂θ j

)]}
. (6)

Here, Eq. (6) corresponds to the QFIM after considering N-
independent copies of the single-photon quantum state.

B. QFIM for a multimode coherent quantum state with mean
photon number N

We consider now a multimode coherent quantum state as
illumination which can be defined in terms of single-mode
quantum states |αi〉 = D(αi )|vac〉 = exp(αiâ

†
i − α∗

i âi )|vac〉.
D(αi ) is the displacement operator and the mode normaliza-
tion 〈αi|αi〉 = 1 holds. The multimode coherent state |�〉 with
N = ∑

i |αi|2 mean photon number can be written as [43]

|�〉 = |α1〉 . . . |αN 〉 = D(α1) . . . D(αN )|vac〉. (7)

The inner products in Eq. (1) have the form

〈�|�i〉 =
∑

k

〈αk|∂αk

∂θi
〉 (8)

and

〈�i|� j〉 =
∑

k

〈
∂αk

∂θi

∣∣∣∣∂αk

∂θ j

〉
+

∑
k �=k′

〈
∂αk′

∂θi

∣∣∣∣αk′

〉〈
αk

∣∣∣∣∂αk

∂θ j

〉
. (9)

Making use of the expression for the derivative of a coherent
state [44] ∣∣∣∣∂αk

∂θi

〉
= iαk

(
∂ϕk

∂θi

)
a†

k |αk〉, (10)

the inner products become〈
∂αk

∂θi

∣∣∣∣∂αk

∂θ j

〉
= |αk|2

(
∂ϕk

∂θi

)(
∂ϕk

∂θ j

)
(1 + |αk|2) (11)

and 〈
αk

∣∣∣∣∂αk

∂θi

〉
= i|αk|2

(
∂ϕk

∂θi

)
. (12)

We observe again that the inner product 〈�i|� j〉 is real for
i, j = 1, . . . , M, which implies that the QCR bound is the
most informative bound. The elements F c

i j of the QFIM are

F c
i j = 4

∑
k

|αk|2
(

∂ϕk

∂θi

)(
∂ϕk

∂θ j

)
. (13)

An alternative derivation of Eq. (13) is presented in
Appendix B. For the sake of comparison with the correspond-
ing expression for a multimode single-photon quantum state
in Eq. (6), we write Eq. (13) in integral form as

F c
i j = 4N

∫
dx |α(x)|2

[
∂ϕ

∂θi

][
∂ϕ

∂θ j

]
, (14)

where α(x) is a normalized continuous function, i.e.,∫
dx |α(x)|2 = 1. Given the same spatial shape of the illumi-

nation beam, i.e., f (x) ≡ α(x), the expressions for the QFIM
in both cases are equal (F s

i, j = F c
i, j) if Ii = 0 holds for all

i = 1, . . . , M, where

Ii =
∫

dx| f (x)|2
[

∂ϕ

∂θi

]
.

Note that this is the case if f (x) is a symmetric function,
while the phase ϕ(x, θ ) introduced by the object is antisym-
metric. This demonstrates the equivalence, or nonequivalence,
of the QFIM calculated using the two types of quantum states
considered above. It depends on the symmetry on the spatial
variable x of both the illumination beam and the acquired 240
phase.

C. Example: Quantum Crámer-Rao bounds for the estimation
of the height and the sidewall angle of a cliff-like structure.

To illuminate our results, we consider a cliff-like nanos-
tructure made of a highly reflective material [4,38]. This
nanostructure is highly relevant in the semiconductor industry
and it is characterized by two parameters: the height h and the
sidewall angle β, as shown in the sketch in Fig. 1. In typical
nanostructures, the height is a fraction of the wavelength of
the incident light wave and the sidewall angle is ideally close
to 90◦. However, fabrication errors produce variations around
the desired values [45].

For the sake of simplicity, we approximate the slope of the
nanostructure as

S(x) = h

2
(1 + tanh αx). (15)

032617-3



VILLEGAS, PASSOS, PEREIRA, AND TORRES PHYSICAL REVIEW A 109, 032617 (2024)

FIG. 1. Sketch of a Cliff-like nanostructure with sidewall angle
β and height h. The red dashed line corresponds to the mathematical
model of the slope. The sidewall angle β is related to the parameter
α as α = 2/b = 2 tan β/h.

The parameters to estimate are θ1 ≡ h and θ2 ≡ α, with
tan β = αh/2. The spatial profile of the intensity of the illu-
mination beam used for probing is assumed to be a Gaussian
function

| f (x)|2 =
[

2

πw2

]1/2

exp −2x2

w2
. (16)

After reflection from the cliff-like structure, the optical beam
acquires a spatially dependent phase

ϕ(x, h, α) = kh(1 − tanh αx). (17)

The derivatives of the phase ϕ with respect to the parameters
h and α are

∂ϕ

∂h
= k(1 − tanh αx),

∂ϕ

∂α
= −khxsech2αx. (18)

The elements of the QFIM for the two types of quantum states
considered in this work are

F s
11 = 4N k2(1 − N3), F c

11 ∼ 4N k2(2 − N3),

F s
22 = F c

22 = 4N h2N2, F s
12 = F c

12 = 4N (kh)N1, (19)

where the dimensionless integrals Ni are

N1 = k
∫

dx | f (x)|2 x tanh(αx) sech2(αx),

N2 = k2
∫

dx | f (x)|2 x2 sech4(αx),

N3 =
∫

dx| f (x)|2 sech2(αx). (20)

In Appendix C we evaluate the dependence of the integrals
Ni with the parameters w and α. In most experimental im-
plementations the beam waist of the Gaussian beam (w) is
much larger that the size of the cliff-like structure (∼1/α), so
αw � 1. In this case we can write to first order

N1 =
[

2

π

]1/2 k

wα2
, N2 = 21/2 (π2 − 6)

9π1/2

k2

wα3
,

N3 =
[

8

π

]1/2 1

wα
. (21)

The QFIM is a real and symmetric 2 × 2 matrix. One can
deduce [46] that the conditions

Var(h) � [F−1]11 = F22

F11F22 − [F12]2 ,

Var(α) � [F−1]22 = F11

F11F22 − [F12]2 , (22)

and F11 F22 − [F12]2 � 0 hold. Here Var(y) designates the
variance of the variable y.

For αw � 1, we have F11F22 � (F12)2. The relative preci-
sion error σα ≡ √

Var(α)/α of the estimation of the parameter
α is

σα � 0.85

kh

√
αw

N
(23)

for both types of multimode quantum states. However, for the
estimation of the height h, the relative precision error σh ≡√

Var(h)/h for multimode single-photon quantum states is

σh � 1

2kh

√
1

N
, (24)

whereas for a multimode coherent quantum state is

σh � 1

2
√

2 kh

√
1

N
. (25)

The estimation of the parameter α with multimode coher-
ent and single-photon quantum states gives the same result
because the derivative of the phase given by Eq. (17) with
respect to the parameter α is an antisymmetric function of
the spatial coordinate (∼xsech αx) such that I1 = 0. This is
not the case for the derivative of the phase with respect to the
parameter h (I2 �= 0), hence the precision bounds given by the
corresponding elements of the inverse QFIM for multimode
coherent and single-photon quantum states lead to different
bounds for the estimation of the height h, implying that a
coherent state with average photon number N allows better
estimation precision than N copies of a single-photon state.

III. OPTIMUM ESTIMATION MEASUREMENT BY
PROJECTION ONTO SPATIAL MODES

A. General scheme

For the sake of simplicity, let us consider the case of
two-parameter phase estimation. The generalization of the
method for the estimation of more than two parameters is
straightforward. The probe light beam consists of a multimode
single-photon pure state with spatial shape f (x). After reflec-
tion or transmission, the sample adds a spatially varying phase
ϕ(x, θ1, θ2) that depends on two parameters: θ1 and θ2. We can
thus write the quantum state of the output light beam as

|�〉 =
∫

dx f (x) exp[iϕ(x, θ1, θ2)]a†(x)|0〉, (26)

where x designates the spatial coordinate and a†(x) is the
creation operator. As a starting point, we consider two values
of the parameters as reference: θ10 and θ20. We aim at esti-
mating the values of θ1 and θ2 where θ1 = θ10 + θ1 and
θ2 = θ20 + θ2. The parameter differences θ1 and θ2 are
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assumed to be small. We define the reference state as

|�0〉 =
∫

dx f (x) exp[iϕ0]|x〉, (27)

where ϕ0 ≡ ϕ(x, θ10, θ20) and |x〉 ≡ a†(x)|0〉. Following
Refs. [27,47] we construct two quantum states orthogonal to
|�0〉,

|ω1〉 = |�1〉 + 〈�1 |�0〉 |�0〉 , (28)

|ω2〉 = |�2〉 + 〈�2 |�0〉 |�0〉 . (29)

All derivatives are taken at θ1 = θ10 and θ2 = θ20. We generate
an orthonormal basis of quantum states obtained through the
Gramm-Schmidt process

|γ0〉 = |�0〉 , (30)

|γ1〉 = 1

�
1/2
11

|ω1〉 , (31)

|γ2〉 =
(

�11

det �

)1/2 [
|ω2〉 − �12

�11
|ω1〉

]
. (32)

In what follows, we demonstrate that for small values of θ1

and θ2, projecting the quantum state in Eq. (26) onto the
set of spatial modes {|γk〉}, given by Eqs. (D9) and (32),
provides an optimum estimation of the parameters θ1 and θ2.
We put forward two examples that will help clarifying the
main characteristics of the method described above.

B. Example I: Optimum estimation of the
height of a cliff-like structure

We consider as a first example a case of single-parameter
estimation. We assume that the side-wall angle parameter α

has a fixed value α = α0, and we aim at estimating the height
of the cliff-like structure, i.e., the parameter θ1 = h. The ref-
erence value of the height is h0, so we want to estimate h
where h = h0 + h. The spatially dependent phase added by
the sample in reflection is ϕ(x) = kh(1 − tanh α0x), so that
the quantum state after reflection from the cliff-like structure
is |�〉 = ∫

dx f (x) exp(iϕ)|x〉. The derivative of the phase at
h = h0 is

∂ϕ

∂h

∣∣∣∣
h=h0

= k[1 − tanh α0x]. (33)

The derivative of the quantum state |�〉 is

|�1〉 = ik
∫

dx f (x)[1 − tanh(α0x)] exp[iϕ0]|x〉, (34)

where ϕ0 = kh0[1 − tanh(α0x)]. Making use of Eqs. (27)
and (34), the inner products are

〈�0|�1〉 =
∫

dx| f (x)|2
(

∂ϕ

∂h

)
= ik,

〈�1|�1〉 =
∫

dx| f (x)|2
(

∂ϕ

∂h

)2

= k2(2 − N3). (35)

We assume the experimentally relevant case in which the
spatial dimensions of the illumination field are much larger
than the spatial features of the cliff-like nanostructure, i.e.,
the Gaussian function is assumed to be constant inside the

integrals. This approximation is valid if wα0 � 1 (see Ap-
pendix C). Making use of �11 = k2(1 − N3), the quantum
state |γ1〉 is

|γ1〉 =
∫

dx f (x) g1(x) exp(iϕ0)|x〉, (36)

where

g1(x) = − i

(1 − N3)1/2
tanh(α0x). (37)

Figure 2(a) shows the modulus of the function g1 for a typical
value of the parameters h0 and α0.

To obtain an analytical expression of the value of the mode
projection of |�〉 onto the quantum modes |γ0〉 and |γ1〉,
we make use of the Taylor expansion of exp[i(ϕ − ϕ0)] to
second order in h. If we define the mode detection proba-
bilities as p0 = |〈γ0|�〉|2 and p1 = |〈γ1|�〉|2, we obtain (see
Appendix D) that to second order in h

p0 = 1 − (1 − N3) (kh)2,

p1 = (1 − N3)(kh)2. (38)

We can see that to second order in h, we obtain p0 +
p1 = 1. Because of this, we can consider the estimation of
the parameter h by projecting onto the spatial mode |γ1〉 as a
Bernoulli process with variance p1(1 − p1) [48]. The proba-
bility to detect a reflected or transmitted photon under ideal
detection efficiency is p1. The sensitivity of the estimation of
h is given by

Var(h) = p1(1 − p1)

(∂ p1/∂h)2 = 1

4k2 (1 − N3)
. (39)

A comparison with Eq. (19) shows that Var(h) can be written
as Var(h) = 1/F11, which demonstrates that the projection
onto |γ1〉 is a measurement that saturates the value of precision
given by the quantum CRB.

One final consideration can be illuminating at this point.
One might wonder why not to use as projector the quantum
state |�1〉? In Ref. [27] the authors demonstrated that, for
projectors that are NOT orthogonal to |�0〉, as it is the case
of using |�1〉, the condition to saturate the CRB (see Eq. (8)
in Ref. [27] for one-parameter estimation) is

Im[〈�1|�1〉〈�1|�0〉] = |〈�0|�1〉|2Im[〈�1|�0〉]. (40)

Substituting Eq. (35) in Eq. (40), we obtain k3(2 − N3) �= k3,
which allows us to conclude that the use of |�1〉 as projector
does not provide an optimum estimation of the height h. In
Ref. [41], the authors considered the estimation of the center
x0 of a Gaussian beam. In this case, one finds that 〈�0|�1〉 =
0, they are orthogonal, so |γ1〉 = |�1〉, differently from the
case of the estimation of the height h of a cliff-like structure
considered above.

C. Example II: Estimation of the parameters
h and α of a cliff-like structure

We consider now the case where we aim at estimating
both the height h and the steepness of the cliff, represented
by the parameter α in our analytical model of the slope.
We define θ = (θ1, θ2) = (h, α). This corresponds to a two-
parameter estimation. Similarly to the one-parameter case, we
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FIG. 2. Modulus of the functions g1(y) and g2(y). The normalized transverse coordinate is y = α0x, where x is the spatial coordinate x and
α0 = (2 tan β0)/h0. The wavelength is λ = 633 nm, the reference height is h0 = λ/4, and the sidewall angle is β0 = 80◦.

consider reference values h0 and α0 and small variations of
the parameters around the reference values h = h0 + h and
α = α0 + α.

The quantum state |γ1〉 is still given by Eq. (36), and the
inner products involving |�1〉 are given by Eq. (35). The inner
products that involve |�2〉 are

〈�2| �0〉 = 0,

〈�1| �2〉 = kh0N1, (41)

〈�2| �2〉 = h2
0N2.

The quantum state |γ2〉 reads

|γ2〉 =
∫

dx f (x) g2(x) exp(iϕ0)|x〉, (42)

where

g2(x) = i

(
�11

det �

)1/2

×
{
−kh0 x sech2(α0x) + k

�12

�11
tanh(α0x)

}
, (43)

�11 = k2(1 − N3), �22 = h2
0N2, and �12 = kh0N1.

Figure 2(b) shows the shape of function g2 for typical
values of the parameters h0 and α0.

Similar to the one-parameter estimation case considered
above, to obtain an analytical result we make use of the Taylor
expansion of the exponential term to second order in h and
α (see Appendix E). The mode detection probabilities p0 =
|〈γ0|�〉|2, p1 = |〈γ1|�〉|2, and p2 = |〈γ2|�〉|2, up to second
order on h and α, read

p0 = 1 − k2(2 − N3)(h)2 − N2(h0α)2

−2 k h0N1(h)(α) + (kh)2, (44)

p1 = k2 (1 − N3)(h)2 + N2
1

1 − N3
(h0α)2,

+2 k h0 N1(h) (α), (45)

p2 =
(

N2 − N2
1

1 − N3

)
(h0α)2. (46)

One can easily verify that p0 + p1 + p2 = 1. In Appendix F
we show that the classical and quantum Fisher information

matrix coincide, which demonstrates that projection onto the
quantum states |γ1〉 and |γ2〉 is an optimum measurement that
saturates the QCRB.

IV. CONCLUSION

We demonstrated that the most informative bound for the
precision in the estimation of a set of parameters that char-
acterize a shaped phase object is the quantum Crámer Rao
bound. To derive this bound we have calculated the QFIM for
two types of light waves, namely, N copies of a multimode
single-photon quantum state and a multimode coherent quan-
tum state with mean photon number N . We showed that the
equivalence of these quantum states for parameter estimation
of phase objects depends on the spatial symmetry of the phase
introduced by the phase object. The results presented in this
work are a word of caution for experiments measuring the
QFIM that make use of weak coherent states, while using
single-photon quantum states in the corresponding theoretical
analysis for the sake of simplicity.

We also showed a measurement scheme for multiparam-
eter estimation of features of phase objects that allowed the
estimation with the best precision allowed by the light-matter
interaction considered. In order words, the measurement
scheme saturates the quantum Crámer Rao precision bound.
The method can be described as spatial spectroscopy since
it mimics in the spatial domain what conventional spec-
troscopy methods do in the (temporal) frequency domain
(hyperspectral imaging). The technique, which follows the
general guidelines put forward in Ref. [27], consists in pro-
jecting the light reflected or transmitted from the phase object
onto special modes with engineered spatial properties. The
required number of spatial modes needed to estimate a set of
parameters is the same as the number of parameters. This is a
striking contrast with other techniques that require the use of
a large number of spatial modes to achieve good precision in
the estimation of the unknown parameters.

We considered two examples to help clarify the main char-
acteristics of the method, with the aim of making easier its
understanding to readers of the physics community who are
interested in high-precision optical sensing and imaging, but
are not familiar with the formal language of quantum estima-
tion theory.
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For the experimental implementation, one can think of
using a spatial light modulator where the projection modes
can be imprinted. A similar scheme was implemented in
Ref. [13] for estimating a step height smaller than 10 nm, i.e.,
one-eightieth (1/80) of the wavelength used with a standard
error in the picometer scale. One can also consider measuring
the wavefront of the output light beam (amplitude and phase)
with any experimental method available, such as Ptychogra-
phy [49], digital holography [50], and project computationally
the optical field retrieved experimentally onto the optimum
spatial modes that provides the best spatial resolution.

ACKNOWLEDGEMENTS

This work is part of the R&D project CEX2019-
000910-S. This project is funded by the Government
of Spain (MCIN/AEI/10.13039/501100011033/). It is
supported by Fundació Cellex, Fundació Mir-Puig,
and Generalitat de Catalunya through the CERCA
program. We acknowledge financial support from project
QUISPAMOL (PID2020-112670GB-I00) funded by
MCIN/AEI/10.13039/501100011033. This work is also
part of the project 20FUN02 “POLight”, which has received
funding from the EMPIR program co-financed by the
Participating States and from the European Union’s Horizon
2020 research and innovation program. A.V. thanks the
financial support from PREBIST that has received funding
from the European Union’s Horizon 2020 research and
innovation program under the Marie Sklodowska-Curie Grant
Agreement No. 754558.

APPENDIX A: CONDITIONS FOR A MEASUREMENT
BASED ON SPATIAL MODE PROJECTION TO SATURATE

THE CRÁMER-RAO PRECISION BOUND

It was shown that one can select a set of spatial modes to es-
timate with optimum precision a single parameter [22,33,39],
i.e., a measurement that saturates the Crámer-Rao precision
bound. Here we show what conditions should satisfy a basis
of spatial modes for optimum multiparameter estimation of a
shaped phase object when the illumination probe is a multi-
mode single-photon quantum state with spatial shape f (x).

A shaped phase object generates a phase shift of the re-
flected or transmitted photons ϕ(x, θ ), i.e., the output quantum
state is

|�〉 =
∫

dx f (x) exp [iϕ(x, θ )] a†(x)|0〉, (A1)

where θ ≡ {θ1, θ2, . . . , θM} is the set of parameters to esti-
mate. The inner products read

〈�i|� j〉 =
∫

dx | f (x)|2
(

∂ϕ

∂θi

) (
∂ϕ

∂θ j

)
(A2)

and

〈�|�i〉 =
∫

dx | f (x)|2
(

∂ϕ

∂θi

)
. (A3)

The elements of the QFIM are Fi j = 4�i j , where

�i j = 〈�i|� j〉 + 〈�i|�0〉〈� j |�0〉. (A4)

The function that determines the spatial shape of the output
quantum state, f (x) exp[iϕ(x, θ )], can be expanded into a
basis of spatial modes as

f (x) exp [iϕ(x, θ )] =
∑

n

Cn(θ )|un〉, (A5)

where |un〉 are the elements of the basis and Cn are the com-
plex mode amplitudes that depend on the values of the set θ .
We can write

〈�i|� j〉 =
∑

n

(
∂C∗

n

∂θi

) (
∂Cn

∂θ j

)
(A6)

and

〈�|�i〉 =
∑

n

C∗
n

(
∂Cn

∂θi

)
. (A7)

If we write Cn = ρn exp(iϕn), with ρn being the modulus and
ϕn the phase of the mode amplitudes, the elements �i j can be
written as

�i j =
∑

n

{(
∂ρn

∂θi

)(
∂ρn

∂θ j

)
+ ρ2

n

(
∂ϕn

∂θi

) (
∂ϕn

∂θ j

)

−
[
ρ2

n

(
∂ϕn

∂θi

)] [
ρ2

n

(
∂ϕn

∂θ j

)]}
. (A8)

In the derivation of Eq. (A8), we used that, for phase objects,
one has Im〈�i|� j〉 = 0, which implies that

ρn

(
∂ρn

∂θi

)(
∂ϕn

∂θ j

)
= ρn

(
∂ρn

∂θ j

)(
∂ϕn

∂θi

)
. (A9)

If we consider an experimental scheme based on the projective
measurement onto the modes |un〉, the elements FC

i j of the
classical Fisher information matrix elements are

FC
i j =

∑
n

1

pn

(
∂ pn

∂θi

)(
∂ pn

∂θ j

)
. (A10)

Using the fact that the probabilities are pn = ρ2
n , one can

easily see that

FC
i j =

∑
n

ρn

(
∂ρn

∂θi

) (
∂ρn

∂θ j

)
. (A11)

Comparing Eqs. (A8) and (A11) we see that selecting a
base |un〉 where for the entire set of parameters θ , one has
∂ϕn/∂θi = 0, the measurement constitutes an optimum mea-
surement, i.e., the quantum and classical Fisher information
matrix coincide.

Let us consider two examples. First, it was demon-
strated [22] that the estimation of the distance d between
two incoherent optical point sources can be estimated with
optimum precision if one uses a set of Hermite-Gauss (HG)
modes. Second, in Ref. [39] it was demonstrated that the
position of a Gaussian beam can be estimated optimally by
projecting the displaced Gaussian beam into the set of HG
modes. The mode amplitudes of the projection are found to
be

Cn = 1√
n!

(
d

w0

)n

exp

(
− d2

2w2
0

)
, (A12)
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where n is the order of the Hermite-Gauss mode and w0 is a
beam width that characterize the HG modes. Notice that these
coefficients do not contain a phase that depends on d .

APPENDIX B: ALTERNATIVE DERIVATION OF EQ. (13)
OF THE MAIN TEXT

The introduction of a spatially dependent phase {ϕk} for
each spatial coordinate (index k) is an unitary operation that
can be represented by the operator

U = exp

[
i
∑

k

ϕk (θ ) a†
kak

]
, (B1)

such that the output quantum state is

|�(θ )〉 = U (θ )|α〉. (B2)

The derivative of the quantum state with respect parameter θi

is

|�i〉 =
(

∂U

∂θi

)
|α〉 = i

∑
k

(
∂ϕk

∂θi

)
a†

kak |α〉, (B3)

so that

〈�|�i〉 = i
∑

k

(
∂ϕk

∂θi

)
〈α|a†

kak|α〉. (B4)

Similarly we can write

〈�i|� j〉 =
∑

k

∑
k′

(
∂ϕk

∂θi

)(
∂ϕk′

∂θ j

)
〈α|a†

kak a†
k′ak′ |α〉

=
∑

k

(
∂ϕk

∂θi

)(
∂ϕk

∂θ j

)
〈α|a†

kak a†
kak|α〉

+
∑
k �=k′

(
∂ϕk

∂θi

)(
∂ϕk′

∂θ j

)
〈α|a†

kak|α〉〈a†
k′ak′ |α〉.

(B5)

The elements of the QFIM are

Fi j = 4〈�i|� j〉 − 4〈�|�i〉 〈�|� j〉

= 4
∑

k

(
∂ϕk

∂θi

)(
∂ϕk

∂θ j

)
{〈α|a†

kak a†
kak|α〉 − [〈α|a†

kak|α〉]2}

=
∑

k

(
∂ϕk

∂θi

)(
∂ϕk

∂θ j

)
〈(Nk )2〉, (B6)

where Nk ≡ 〈a†
kak〉 and the variance is 〈(Nk )2〉 = 〈N2

k 〉 −
〈Nk〉2. Making use of Eq. (B6) and the fact that 〈(Nk )2〉 =
|αk|2 for quantum coherent states, we obtain Eq. (13) on the
main text.

APPENDIX C: VALIDITY OF CONSTANT FIELD
APPROXIMATION FOR INTEGRATION

In general, all integrals Ni are of the form

Ni = km
∫

dx | f (x)|2 xm tanhn(α0x) sechp(αx), (C1)

where the integers m, n, and p varies for different integrals. If
we expand the Gaussian function as(

2

πw2

)1/2

exp

[
−2x2

w2

]
∼

(
2

πw2

)1/2[
1 − 2x2

w2

]
, (C2)

and define y = αx, we obtain that

Ni =
(

2

π

)1/2 km

αm+1w

∫
dy ym tanhn(y) sechp(y)

×
{

1 − 2

(wα)2

∫
dy ym+2 tanhn(y) sechp(y)∫
dy ym tanhn(y) sechp(y)

}
.

(C3)

First, notice that to first order, the dependence of Ni on the
parameters w and α is Ni ∼ 1/[wαm+1]. Second, the approx-
imation of neglecting the spatial dependence of the Gaussian
functions is valid if 1/(wα)2 � 1.

APPENDIX D: CALCULATION OF THE ANALYTICAL
APPROXIMATIONS OF THE INNER PRODUCTS FOR

EXAMPLE I OF THE MAIN TEXT

Here we calculate the mode projections of the quantum
state

|�〉 =
∫

dx f (x) exp(iϕ)a†(x)|0〉, (D1)

where

f (x) =
(

2

πw2

)1/4

exp

[
− x2

w2

]
, (D2)

and

ϕ = kh[1 − tanh(αx)]. (D3)

The basis of quantum states has elements

|γk〉 =
∫

dx gk (x) exp(iϕ0) a†(x)|0〉, (D4)

where gk (x) is a function characteristic of each mode and

ϕ0 = kh0[1 − tanh(α0x)]. (D5)

The expression of the mode projections reads, in general,

〈γk|�〉 =
∫

dx g∗
k (x) f (x) exp[i(ϕ − ϕ0)]. (D6)

To obtain analytical approximations to second order in h,
we make use of the Taylor expansion

exp [i(ϕ − ϕ0)] = 1 − A2

2
(kh)2 + i A(kh), (D7)

where

A = 1 − tanh(α0x). (D8)

Making use of Eqs. (D7) and (D8), that g0(x) = f (x) and

g1(x) = − i

(2 − N3)1/2
f (x) tanh(α0x), (D9)
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we obtain for Example I

〈γ0|�〉 = 1 − (kh)2

2
(2 − N3) + ikh,

〈γ1|�〉 = (1 − N3)1/2[kh + i (kh)2], (D10)

where

N3 =
∫

dx| f (x)|2 sech2(α0x). (D11)

APPENDIX E: CALCULATION OF THE ANALYTICAL
APPROXIMATIONS OF THE INNER PRODUCTS FOR

EXAMPLE II OF THE MAIN TEXT

For the case of the two-parameter estimation of the param-
eters h and α (Example II in the main text), the functions g0(x)
and g1(x) are the same than in the one-parameter estimation
scenario. The function g2(x) is

g2(x) = i

(
�11

det �

)1/2

f (x)

×
{
−kh0 x sech2(α0x) + k

�12

�11
tanh(α0x)

}
, (E1)

where �11 = k2(1 − N3), �22 = h2
0N2, �12 = kh0N1. To ob-

tain analytical approximations to second order in h and α,
we make use of the Taylor expansion

exp[i(ϕ − ϕ0)] =
[

1 − A2

2
(kh)2 − B2

2
(h0α)2

+ AB(kh) (h0α)

]

+ i

[
A(kh) − B(h0α) + C

h0

k
(α)2

− B(h) (α)

]
, (E2)

where

A = 1 − tanh(α0x),

B = kxsech2(α0x),

C = k2x2sech2(α0x) tanh (α0x). (E3)

Making use of Eqs. (E2) and (E3), the mode projections are

〈γ0|�〉 = 1 − (2 − N3)
(kh)2

2
− N2

(h0α)2

2

− N1(kh)(h0α) + i

[
(kh) + N4

h0

k
(α)2

]
,

(E4)

〈γ1|�〉 = (1 − N3)1/2 (kh) + N1

(1 − N3)1/2
(h0α)

× N6

(1 − N3)1/2

h0

k
(α)2 + N1

(1 − N3)1/2
(h) (α)

+ i

[
(1 − N3)1/2(kh)2

+ N1

(1 − N3)1/2
(kh) (h0α)

]
, (E5)

and

〈γ2|�〉 =
(

N2 − N2
1

1 − N3

)1/2{
(h0α) + (h)(α)

− N5(1 − N3) − N1N6

N2(1 − N3) − N2
1

h0

k
(α)2

+ i(kh) (h0α)

}
, (E6)

where

N4 = k2
∫

dx| f (x)|2x2 tanh(α0x) sech2(α0x),

N5 = k3
∫

dx| f (x)|2 x3 tanh(α0x) sech4(α0x),

N6 = k2
∫

dx| f (x)|2x2 tanh2(α0x) sech2(α0x). (E7)

APPENDIX F: COMPARISON FOR EXAMPLE II OF THE
CLASSICAL AND QUANTUM FISHER INFORMATION

MATRIX IN THE LIMIT �h, �α → 0.

The elements of the QFIM are

F Q
11 = 4�11 = 4k2(1 − N3),

F Q
22 = 4�22 = 4N2,

F Q
12 = F21 = 4�12 = kN1. (F1)

Using the detection probabilities pi, the elements of the Clas-
sical FIM are

FC
11 = 1

p0

(
∂ p0

∂h

)2

+ 1

p1

(
∂ p1

∂h

)2

+ 1

p2

(
∂ p2

∂h

)2

→ 1

p1

(
∂ p1

∂h

)2

= [2k2(1 − N3)(h)]2

k2(1 − N3)(h)2
= F Q

11, (F2)

FC
22 = 1

p0

(
∂ p0

∂α

)2

+ 1

p1

(
∂ p1

∂α

)2

+ 1

p2

(
∂ p2

∂α

)2

→ 1

p1

(
∂ p1

∂α

)2

+ 1

p2

(
∂ p2

∂α

)2

= 1 − N3

N2
1

4N4
1

(1 − N3)2

+ 4

(
N2 − N2

1

1 − N3

)
= 4N2 = F Q

22, (F3)
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FC
12 = 1

p0

(
∂ p0

∂h

) (
∂ p0

∂α

)
+ 1

p1

(
∂ p1

∂h

) (
∂ p1

∂α

)
+ 1

p2

(
∂ p0

∂h

)(
∂ p0

∂α

)
→ 1

p1

(
∂ p1

∂h

) (
∂ p1

∂α

)
→ 1

p1
[2k2(1 − N3)(h)

+2kN1(α)]

[
2kN1(h) + 2

N2
1

1 − N3
(α)

]
(F4)

= 1

p1

[
8k2N2

1 (h)(α) + 4k3N1(1 − N3)(h)2 + 4k
N3

1

1 − N3
(α)2

]

= 4kN1

p1

[
2kN1(h)(α) + k2(1 − N3)(h)2 + N2

1

1 − N3
(α)2

]
(F5)

= 4kN1
p1

p1
= 4kN1 = F Q

12. (F6)

Note that Eqs. (F3) to (F6) imply that a measuring scheme based on projection onto the modes |γk〉 allows to saturate the CR
lower bound for estimation precision since F = F Q.

[1] D. Murphy and M. Davidson, Fundamentals of Light Mi-
croscopy and Electronic Imaging, Fundamentals of Light
Microscopy and Electronic Imaging (Wiley, New York,
2012).

[2] C. J. Raymond, M. R. Murnane, S. L. Prins, S. Sohail, H.
Naqvi, J. R. McNeil, and J. W. Hosch, Multiparameter grating
metrology using optical scatterometry, J. Vac. Sci. Technol. B:
Microelectron. Nanometer Struct. Process. Meas. Phenom. 15,
361 (1997).

[3] R. Kris, O. Adan, A. Tam, A. Y. Karabekov, O. Menadeva,
R. Peltinov, A. Pnueli, O. Zoran, and A. Vilenkin, Height and
sidewall angle SEM metrology accuracy, in Metrology, Inspec-
tion, and Process Control for Microlithography XVIII, Vol. 5375
(SPIE, 2004), pp. 1212–1223.

[4] L. Cisotto, S. F. Pereira, and H. P. Urbach, Analytical calcula-
tion on the determination of steep side wall angles from far field
measurements, J. Opt. 20, 065601 (2018).

[5] C. G. C. G. Schroer, O. Kurapova, J. P. Patommel, Boye, J.
Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze
et al., Hard x-ray nanoprobe based on refractive x-ray lenses,
Appl. Phys. Lett. 87, 124103 (2005).

[6] A. R. Schropp, Hoppe, J. Patommel, D. Samberg, F. Seiboth, S.
Stephan, G. Wellenreuther, G. Falkenberg, and C. Schroer, Hard
x-ray scanning microscopy with coherent radiation: Beyond the
resolution of conventional x-ray microscopes, Appl. Phys. Lett.
100, 253112 (2012).

[7] S. W. Hell and J. Wichmann, Breaking the diffraction resolution
limit by stimulated emission: Stimulated-emission-depletion
fluorescence microscopy, Opt. Lett. 19, 780 (1994).

[8] S. W. Hell, Far-field optical nanoscopy, Science 316, 1153
(2007).

[9] U. Dürig, D. W. D. W. Pohl, and F. Rohner, Near-field optical-
scanning microscopy, J. Appl. Phys. 59, 3318 (1986).

[10] L. Novotny and N. Van Hulst, Antennas for light, Nat. Photon.
5, 83 (2011).

[11] B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J.
Martin, and D. W. Pohl, Scanning near-field optical microscopy
with aperture probes: Fundamentals and applications, J. Chem.
Phys. 112, 7761 (2000).

[12] D. C. Flanders, Submicrometer periodicity gratings as artificial
anisotropic dielectrics, Appl. Phys. Lett. 42, 492 (1983).

[13] N. Hermosa, C. Rosales-Guzman, S. F. Pereira, and J. P. Torres,
Nanostep height measurement via spatial mode projection,
Opt. Lett. 39, 299 (2014).

[14] C. W. Helstrom, Quantum detection and estimation theory,
J. Stat. Phys. 1, 231 (1969).

[15] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum
Theory, Vol. 1 (Springer Science & Business Media, New York,
2011).

[16] C. W. Helstrom, Estimation of object parameters by a quantum-
limited optical system, J. Opt. Soc. Am. 60, 233 (1970).

[17] A. Fujiwara, One-parameter pure state estimation based on the
symmetric logarithmic derivative, METR 94-8, University of
Tokyo, 1994.

[18] A. Fujiwara, Multi-parameter pure state estimation based on the
right logarithmic derivative, METR 94-9, University of Tokyo,
1994.

[19] K. Matsumoto, A geometrical approach to quantum estimation
theory, in Asymptotic Theory Of Quantum Statistical Infer-
ence: Selected Papers (World Scientific, Singapore, 2005),
pp. 305–350.

[20] K. Matsumoto, A new approach to the cramér-rao-type bound
of the pure-state model, J. Phys. A: Math. Gen. 35, 3111 (2002).

[21] M. Tsang, Quantum limits to optical point-source localization,
Optica 2, 646 (2015).

[22] M. Tsang, R. Nair, and X.-M. Lu, Quantum theory of superres-
olution for two incoherent optical point sources, Phys. Rev. X
6, 031033 (2016).

[23] C. Lupo and S. Pirandola, Ultimate precision bound of quan-
tum and subwavelength imaging, Phys. Rev. Lett. 117, 190802
(2016).

[24] M. G. Paris, Quantum estimation for quantum technology, Int.
J. Quantum Inform. 07, 125 (2009).

[25] F. Yang, R. Nair, M. Tsang, C. Simon, and A. I. Lvovsky,
Fisher information for far-field linear optical superresolution
via homodyne or heterodyne detection in a higher-order local
oscillator mode, Phys. Rev. A 96, 063829 (2017).
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