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Superiority in dense coding through non-Markovian stochasticity

Abhishek Muhuri , Rivu Gupta , Srijon Ghosh , and Aditi Sen(De)
Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj 211019, India

(Received 12 January 2024; accepted 23 February 2024; published 20 March 2024)

We investigate the distributed dense coding (DC) protocol, involving multiple senders and a single or two
receivers under the influence of non-Markovian noise, acting on the encoded qubits transmitted from the senders
to the receiver(s). We compare the effects of non-Markovianity on DC for both the dephasing and depolarizing
channels. In the case of dephasing channels, we illustrate that for some classes of states, high non-Markovian
strength can eradicate the negative influence of noisy channels which is not observed for depolarizing noise.
Furthermore, we incorporate randomness into the noise models by replacing the Pauli matrices with random
unitaries and demonstrate the constructive impact of stochastic noise models on the quenched averaged dense
coding capacity. Interestingly, we report that the detrimental effect of non-Markovian depolarizing channels in
the DC protocol can be eliminated when randomness is added to the channel.
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I. INTRODUCTION

Entanglement, the nonlocal resource shared with distant
partners, is the most inherent difference between a conven-
tional classical information-sharing protocol and its quantum
version [1]. Basic protocols like dense coding [2], tele-
portation [3], key distribution [4], and one-way quantum
computation [5] take advantage of this salient feature to
surpass the classical limit imposed by unentangled resource
states. In particular, quantum dense coding (DC) is the process
of transmitting classical information, encoded in quantum
states, across a long distance using an entangled state as the
channel [2]. The successful implementation of the DC proto-
col consists of three steps [6–13]: (i) encoding at the sender’s
end, (ii) sending the encoded part through a quantum channel
connecting the sender and the receiver, and (iii) decoding the
information via measurements at the receiver’s site. Moreover,
the transmission of classical information has also been exper-
imentally demonstrated over reasonably large separation of
the parties with physical systems like photons [14–20] and
trapped ions [21–24].

The dense coding capacity (DCC) of a shared resource
state, which is characterized as the maximum amount of
classical information that can be sent, is used to quantita-
tively assess the performance of the shared state in the DC
protocol. It can be shown that not all entangled states are
beneficial for DC [25]. In particular, a quantum state is said
to be dense codable if and only if it can provide a capacity
greater than what can be achieved through purely classical
means [7,26,27]. If the encoded parts are transmitted over a
noiseless channel and the Holevo bound [28,29] is used during
the decoding of the information, the compact version of DCC
can be determined analytically by maximizing over unitary
encoding for any number of senders and a single receiver.
When two receivers decoding the message via local operations
and classical communication (LOCC) are involved in DC, the
exact dense coding capacity is not known although the upper
bound was provided [30] by employing a local Holevo-like

bound [31–33], which can be improved either by increasing
the set of operations used for encoding [34–36] or through
preprocessing [37]. Different kinds of DC schemes like the
port-based dense coding protocol [38–42] and probabilistic
dense coding have also been proposed [43–45].

Since isolated systems cannot be prepared, the systems un-
der consideration are always in contact with the environment
which, in general, is responsible for the decay of quantum
properties like quantum correlations. Environmental noise is
often classified into two categories: Markovian [46], which
has no memory effect during evolution, and non-Markovian
[47–51], which retains memories of earlier stages of the evo-
lution and influences later noise processes. It was found that
quantum correlations, by nature, are fragile against noise in-
jected by the environment; e.g., under local dephasing noise,
entanglement suddenly dies away—a phenomenon known as
entanglement sudden death [52–57] which, in turn, affects all
the information-processing tasks. Specifically, the DC pro-
tocol can be affected by noise in two ways: first, when the
resource states are shared, which has already been considered
in the derivation of DCC [6,7,9,11,12,27], and second, when
encoded qubits are sent to the receiver(s) for which DCC
affected by certain kinds of Markovian noise has also been
addressed [35,36,58–63] (cf. Ref. [64] for non-Markovian
noise with a single sender-receiver pair).

In this work, we examine the impact of both Markovian
and non-Markovian noises on the multipartite dense coding
protocol involving multiple senders and one or two receivers.
Our aim is to determine whether the non-Markovian nature
of the noise has any favorable influence on the transmission
of classical information, since the collapse and subsequent
revival-like phenomena were observed in the instance of cor-
relation measures [57,65–70]. Specifically, we demonstrate
that when the shared states are the generalized Greenberger-
Horne-Zeilinger (gGHZ) [71,72] and generalized W (gW)
states [73,74], the DCC can be enhanced in the presence of
high dephasing noise and high non-Markovianity compared
to the Markovian dephasing noise, thereby eliminating the
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detrimental effects of noise on the protocol. Interestingly,
we observe that for depolarizing non-Markovian noise, such
an increment is absent. Furthermore, the increase of DCC
under non-Markovian noise is more pronounced in the case
involving only two senders compared to the case with three
senders.

On a different front, the inherently stochastic nature of
quantum theory allows for the existence of randomness which
is a thriving area of research in the context of random unitaries
and circuits. Various studies have been devoted to the dy-
namics of entanglement, such as the properties of many-body
systems [75,76], and to demonstrate operator spreading [77]
by random unitaries [78–80]. It is quite unnatural to anticipate
that the noise affecting resources will be of a specific sort,
such as dephasing or depolarizing noise. Instead, a certain
type of noise with some fluctuations, that can be represented
by random unitaries selected from a Gaussian distribution
with a fixed standard deviation around the Pauli matrix, can
replicate a more realistic environment. We perform quenched
averaging of DCC over several such realizations of the choices
of randomness injected on the noisy channels. We manifest
that for a fixed amount of non-Markovianity, the quenched
averaged DCC and its upper bound for two receivers increase
with the increase of disorder strength when the shared states
are the gGHZ and the gW. Specifically, we highlight the
increment of the averaged DCC achieved under random non-
Markovian depolarizing noise over the same under Markovian
noise without any disorder.

Our paper is arranged in the following manner. In Sec. II,
we introduce random channels and certain quantities required
for in-depth analysis of the noisy dense coding protocol. The
positive impact of non-Markovianity on DCC is presented
in Sec. III while Sec. IV demonstrates DCC under the ran-
dom noise models. Finally, we summarize our observations in
Sec. V.

II. QUALITY FACTORS TO ASSESS THE PERFORMANCE
OF DC UNDER NOISE

We lay down the framework required for the analysis of
our findings in this section. We first present a brief outline of
the noisy dense coding protocol involving an arbitrary number
of senders and a single as well as two receivers. We then
discuss how to construct random non-Markovian channels. Fi-
nally, quantities that capture the critical behavior of the noise
strength for obtaining quantum advantage are introduced.

A. Noisy dense coding capacity

The dense coding capacity (DCC) quantifies the amount
of classical information that can be transmitted with the help
of a shared quantum state, known as the resource state. A
second quantum channel is also required, through which the
senders transfer their qubits to the receiver(s) after encoding
the message. When the encoded information is sent through
a noiseless channel, the DCC for an (N + 1)-party state,
ρS1···SNR, shared between N senders, Si (i = 1, 2, 3, . . . , N),
and a single receiver, R, reads [11,12]

C1(ρS1···SNR) = max
[

log2 dS1···SN , log2 dS1···SN

+ S(ρR) − S(ρS1···SNR)
]
. (1)

Here, log2 dS1··· SN = log2 dS1 dS2 . . . · · · dSN corresponds to
the capacity without quantum advantage, referred to as the
classical bound, with dSi (i = 1, 2, . . . , N) being the dimen-
sion of the subsystem of the sender, Si. S(ρ) = −Tr(ρ log2 ρ)
is the von Neumann entropy and ρR is the reduced subsystem
at the receiver’s end, obtained by tracing out the senders’
part of the original state, i.e., ρR = TrS1···SN ρS1···SNR. A
resource state is said to be dense codable when S(ρR) −
S(ρS1···SNR) > 0, signifying quantum advantage over the clas-
sical bound. Note that Eq. (1) is obtained by considering that
the encoding performed by the senders is through unitary op-
erations (cf. Ref. [81]). We refer to this protocol as NS − 1R.

When the channel through which the senders transmit their
qubits to the receiver is noisy, the multipartite DCC has been
shown to be [59,61]

C1
noise(ρS1···SNR) = max

[
log2 dS1···SN , log2 dS1···SN

+ S(ρR) − S(ρ̃ )
]
, (2)

where

ρ̃ = �
((

U min
S1

⊗ · · · ⊗ U min
SN

⊗ IR
)
ρS1···SNR

× (
U min†
S1

⊗ · · · ⊗ U min†
SN

⊗ IR
))

. (3)

Here � is a completely positive trace-preserving (CPTP) map
denoting the noisy channel and U min

Si
, a local unitary applied

by the sender i, such that the von Neumann entropy in the
last term of Eq. (2) is minimized. If the noisy channel � is
covariant, which means that it commutes with a complete set
of orthogonal unitary operators, {Wi} [59,60], we have

�(WiρW †
i ) = Wi�(ρ)W †

i . (4)

The noisy dense coding capacity with covariant noise reduces
to [59,61]

C1
noise(ρS1···SNR) = max

[
log2 dS1···SN , log2 dS1···SN

+ S(ρR) − S(�(ρ))
]
. (5)

Note that the simplification occurs since the noisy channel
� commutes with the entropy-minimizing unitaries U min

Si
and

the von Neumann entropy is invariant under local unitary
operators. A paradigmatic example of such a channel is the
depolarizing channel while the dephasing channel is not so.
Thus, in order to estimate the DCC of a resource state in
the presence of a noisy channel that is not covariant, the
minimization over the unitaries U min

Si
has to be performed. In

this work, we will consider that the senders’ nodes are affected
individually by both the dephasing and depolarizing noises,
after encoding.

Distributed superdense coding capacity in a noisy environment

Let us consider that the state ρS1···SNR1R2 is shared between
N senders and two receivers such that the first r senders,
S1, . . . ,Sr , communicate their classical message to R1, while
the remaining senders, Sr+1, . . . ,SN , do so to R2. LOCC
between two receivers are allowed for decoding, and we call
this scheme NS-2R. Instead of the Holevo bound [28], which
is used to derive the DCC for a single receiver, a Holevo-like
bound for LOCC [31] can be applied to obtain the distributed
DCC. Since it is known that this bound cannot be achieved
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asymptotically, we obtain only the upper bound on the dense
coding capacity, which reads as [12]

B2(ρS1···SNR1R2 )

= max
[

log2 dS1···SN , log2 dS1···SN

+ S(ρR1 ) + S(ρR2 ) − maxx=1,2S(ξ x )
]
, (6)

where ρRi is the subsystem of the receiver i (i = 1, 2),
obtained by tracing out all the senders and the other
receiver. Here, ξ 1 = TrSr+1···SNR2ρS1···SNR1R2 , and ξ 2 =
TrS1···SrR1ρS1···SNR1R2 , where the former is obtained by trac-
ing out the second group of senders (Sr+1, . . . ,SN ) and a
receiver R2. Similarly, we obtain ξ 2. Let us now suppose that
the channels through which the two sets of senders transfer
their qubits to the respective receivers are noisy, represented
by �. The upper bound on the DCC alters as [62]

B2
noise(ρS1···SNR1R2 )

= max
[

log2 dS1···SN , log2 dS1···SN

+ S(ρR1 ) + S(ρR2 ) − maxx=1,2S(ξ̃ x )
]
. (7)

Here, ξ̃ x again represents the reduced subsystems of the cor-
responding sender-receiver pairs as

ξ̃ 1 = TrSr+1···SNR2

(
�

(
(U min

S1
⊗ · · · ⊗ U min

SN
⊗ IR1R2

)
× ρS1...SNR1R2

(
U min†
S1

⊗ · · · ⊗ U min†
SN

⊗ IR1R2 )
))

, (8)

and similarly ξ̃ 2. Like in the single-receiver scenario, local
unitaries U min

Si
’s are applied in order to minimize the entropy

in the last term of Eq. (7). Note that U min
S1

⊗ · · · ⊗ U min
Sr

and
U min
Sr+1

⊗ · · · ⊗ U min
SN

independently minimize S(ξ̃ 1) and S(ξ̃ 2),
respectively. As in Eq. (5), the covariant channels lead to a
capacity similar to Eq. (7), with a modification in ξ̃ x.

B. Action of random quantum channels

Exemplary noise models considered typically in the litera-
ture include the dephasing, depolarizing, amplitude damping
channels [82] (see Appendix A for Kraus representation of
the dephasing and depolarizing channels). However, in reality,
they can seldom be realized accurately according to their
Kraus representation involving the Pauli matrices. During the
dense coding protocol, the noise acting on the encoded qubits
at the senders’ side may be quite different from the Pauli noise
that characterizes some channels like dephasing and depolar-
izing. To address such a situation, local noise models based
on random unitary operators are considered, representing the
noise that actually affects each qubit sent to the receiver(s). An
arbitrary two-dimensional unitary matrix U is parametrized
by four variables as

U =eiφ

(
eiω/2 0

0 e−iω/2

)(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)(
eiδ 0
0 e−iδ

)
.

(9)

For brevity, we set φ = 0, since it only contributes to an
overall phase. Here, specific values of ω, θ , and δ lead to the
well-known Pauli matrices. The values of the three parameters
which characterize the Pauli matrices (up to a global phase)
are given by σx : ω = 2π, θ = π, δ = π ; σy : ω = 3π, θ =

π, δ = π ; and σz : ω = 2π, θ = 0, δ = 3π . Note that the val-
ues of ω, θ , and δ, mentioned above, are not unique for a
given Pauli matrix. We design the random noisy channels by
replacing σi’s in their Kraus representation by random unitary
matrices given in Eq. (9). The parameters of the random
unitary Ui corresponding to a given σi (i = x, y, z) are chosen
from a Gaussian distribution with the corresponding mean μ

and a fixed standard deviation, say ε, denoted by G(μ, ε). For
example, the random unitary Ux corresponding to σx has its
parameters ω, θ , and δ chosen from Gaussian distributions,
G(2π, ε), G(π, ε), and G(π, ε), respectively, which in turn
quantifies the fluctuation around σx during implementation.
Note that, when we characterize a random noise model, we
incorporate the fluctuation in the standard Pauli matrices,
keeping the framework of the dephasing and depolarizing
noise models intact. Precisely, we use the same Kraus oper-
ators as standard noise models but with the Pauli matrices
replaced by random unitaries U , each of which is a function of
three parameters ω, θ , and δ chosen from a Gaussian distribu-
tion of the fixed mean which is the desired value and a given
standard deviation. Note that the desired Pauli matrices are
recovered with vanishing standard deviation. This construc-
tion ensures that the random noise still remains a CPTP map
and is physically realizable. Thus, the only modification in the
Kraus operators is that they are defined by random unitaries
instead of Pauli matrices (the coefficients remain the same as
in the original definition of the dephasing and depolarizing
noise). Hence, we can redefine the Kraus operators for the
random non-Markovian dephasing and depolarizing channels,
respectively, as

κ
dph
I =

√
[1 − αp](1 − p)I, κdph

z =
√

[1 + α(1 − p)]pUz,

with 0 � p � 1/2 and

κ
dp
I =

√
[1 − 3αp](1 − p)I, κ

dp
i =

√
[1 + 3α(1 − p)]p

3
Ui,

(10)

with i = x, y, and z. The degree of non-Markovianity is de-
noted by α, where a higher value indicates more backflow
of information from the environment into the system, while
the quantity p represents the strength of noise acting on the
system; i.e., an increase in p implies that a greater amount
of noise is affecting the system. In the Markovian limit (i.e.,
with α = 0), the noise parameter p varies as 0 � p � 0.5 for
the dephasing channel and as 0 � p � 1 in the case of the
depolarizing channel. The allowed range of p in the non-
Markovian regime is the same as the Markovian one for the
dephasing channel, whereas for finite non-Markovian strength
(α > 0) in the depolarizing channel, p ∈ (0, 1

3α
) to ensure that

the Kraus operators for the depolarizing channel remain pos-
itive and the channel remains a CPTP map. Note that, unlike
the dephasing channel, the depolarizing one is covariant even
in the presence of non-Markovianity. However, even a small
deviation from the usual Pauli matrices makes the channel
incovariant.

Remark. By replacing the Pauli matrices with random uni-
taries, the noise that affects the protocol becomes random, but
since the Kraus operators retain their original form, the nature
of the noise remains the same. For example, the action of the
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dephasing channel is to leave the state (on which it acts) unaf-
fected with some probability p or change its phase by acting
σz with probability (1 − p). In a similar way, for the random
“noisy” dephasing channel, the action of the noise is to either
keep the state unaffected with a certain probability (p) or to
change it by acting on it with a unitary close to the σz operator
(with probability 1 − p). A similar argument holds for the
noisy depolarizing channel, where noise acts on the state from
all directions x, y, and z but the action is quantified by random
unitaries instead of the original Pauli matrices. Therefore,
even in the presence of random unitaries, we refer to the
noise models as “noisy dephasing” and “noisy depolarizing”
channels, since the characters of the noise remain unchanged
through the coefficients of the Kraus operators, i.e., “how” the
noise disturbing the system does not change, but its eventual
effect does not correspond to that of the well-known Pauli
noise models.

Below, we estimate U min which is required to optimize the
DCC in the presence of dephasing noise for a class of shared
states.

Proposition 1. For the dense coding protocol involving N
senders and a single receiver sharing an (N + 1)-qubit gGHZ
state affected by local dephasing noise, the optimizing uni-
taries U min corresponding to each sender are proportional to
the identity operator.

Proof. The (N + 1)-qubit gGHZ state is given by
|gGHZ〉N+1 = x|0〉⊗N+1 + √

1 − x2|1〉⊗N+1. The senders per-
form unitaries U min

S j
(ω j, θ j, δ j ) minimizing S(ρ̃ ) in the dense

coding capacity C1
max(ρs1··· sN R) [see Eq. (2)], before being

affected by the noise �. For each sender, S j , the two-
dimensional unitary U min

S j
can be parametrized (up to an

overall phase) by three parameters ω j , θ j , and δ j . The noisy
state �(ρ̃gGHZ) has 2N+1 eigenvalues, all of which are func-
tions of {x, α, p, θ j, ω j, δ j} with α and p being the strength
of non-Markovianity and noise, respectively. The analytical
form of the eigenvalues required to compute S(�(ρ̃gGHZ)) is
too complicated to present in the paper, but close observation
reveals that they can be written as

μk = ei
∑N−1

j=0 (ω j+δ j )
√

e−2i
∑N−1

j=0 (ω j+δ j ) fk (x, α, p, θ j )

= √
fk (x, α, p, θ j ), (11)

where k = 1, 2, . . . , 2N+1 identifies the eigenvalues. Note
that the functional form of fk may be different for different
eigenvalues, and the only condition that fk must satisfy is
that

∑
k

√
fk (x, α, p, θ j ) = 1, to ensure normalization. Even

though the form of fk is complicated, Eq. (11) indicates that
the minimization of S(�(ρ̃gGHZ)) needs to be performed only
over the variables θ j of each U min

S j
, and not over ω j and δ j .

Note that this function f does not have any physical sig-
nificance; it only helps us to write the eigenvalues of the
resulting state in a compact form. Numerical minimization of
S(�(ρ̃gGHZ)) over θ j for N up to 10 reveals that the minimum
occurs at θ jopt ≈ nπ ∀ j. Thus, cos θ jopt ≈ ±1 and sin θ jopt ≈ 0,
implying that the minimizing unitaries are proportional to the
identity operator, i.e., U min

S j
∝ I (where I is the 2 × 2 identity

operator). Hence the proof. �
Remark. Note that if the shared state is an arbitrary N-qubit

state, U min may not simplify to the identity operator.

C. Critical noise strengths

Let us define certain physical quantities that can help us
analyze the effect of noise on the DCC. These quantities are
introduced to capture the overall behavior that emerges in the
DC protocol affected by decoherence and imperfections. In
the presence of noise, one can expect the following changes
in any indicator Q quantifying the protocol’s performance,
which is the dense coding capacity in this case.

(1) Typically, Q decreases with the increase of the noise
strength p and vanishes either at a finite p or asymptotically.
Hence, we define the minimum value of the noise strength,
referred to as the critical noise strength and denoted by pc, at
which the DCC or quenched averaged DCC (which will be
defined later for random noise) collapses to its classical limit
for a fixed value of α as

pc = min
p

[
p|C1

noise or B2
noise = log2

(
dS1 . . . · · · dSN

)]
. (12)

A lower value of pc indicates that the state involved in the
protocol is more susceptible to noise and vice versa.

(2) In the presence of non-Markovian noise, Q, in general,
revives after collapse due to the backflow of information. For
example, we know that it is the case for entanglement [65,68–
70]. Motivated by this picture, the minimum value of p, at
which the capacity first goes beyond its classical limit after
collapse, can be called the revival strength of noise, denoted
by pr , given by

pr = min
p

[
p � pc|C1

noise or B2
noise > log2

(
dS1 · · · dSN

)]
.

(13)
The constructive effect of the noise, if induced, is more promi-
nent when the value of pr is low, which indicates that the
capacity revives faster.

(3) Moreover, it is possible to identify a range of the
noise parameters, in which non-Markovianity helps to over-
come the detrimental effect that occurred due to Markovian
noise, thereby illustrating the constructive effect of non-
Markovianity. To compare the Markovian and non-Markovian
noise scenarios, we define the quantity manifesting the advan-
tage furnished by non-Markovianity, denoted by pa, as

pa = min
p

[
p|C1

noise(α > 0) > C1
noise(α = 0)

or B2
noise(α > 0) > B2

noise(α = 0)
]
. (14)

We will investigate the patterns of the above quantities
depending on the noise models and shared resource states,
in the succeeding sections. Note, however, that typically, to
obtain a quantum advantage in the dense coding protocol, a
high amount of entanglement is required and so it is not a
priori guaranteed that the feature of revival that is observed
for entanglement [70] can also be apparent for DCC. The
above quantities pc, pr , and pa highlight the different impacts
of noise on the dense coding protocol. But first, let us briefly
explain how numerical optimization is employed to calculate
the DCC in the presence of noise.

D. Numerical optimization method

The quantity being minimized is S(�((U min
S1

⊗ · · · ⊗
U min
SN

⊗ IR)ρS1···SNR(U min†
S1

⊗ · · · ⊗ U min†
SN

⊗ IR))). Since
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each minimizing two-dimensional unitary U min
Si

can be
parametrized by three variables ωi, θi, and δi, the entropy
function involves optimization over the 3N quantities
{ωi, θi, δi}N

i=1 corresponding to the N senders. The ranges
of the variables are set as 0 � ωi, δi � 2π , and 0 � θ � π .
We use the improved stochastic ranking evolution strategy
(ISRES) algorithm based on the method described in Ref. [83]
to perform nonlinear optimization using the NLOPT library
[84] in C++. The evolution strategy involves two steps:
mutation rule (with a log-normal step-size update and
exponential smoothing) and differential variation. Since
our optimization problem does not involve any nonlinear
constraint, the objective function itself determines the
fitness ranking. The optimization algorithm is executed
105 times in order to locate the global minimum. We use
the aforementioned algorithm since it has the heuristics
to escape local extrema present within the variable range.
The convergence is set to 10−5 in the NLOPT routine, which
guarantees that the minimum of the entropy function is correct
up to the fifth decimal place. We first use the algorithm to find
U min
Si

for the depolarizing channel, for which the minimizing
unitaries should reduce to the identity for each sender (since
the noise is covariant). We verify that this is indeed the case,
i.e., U min

Si
= I, to ensure that the ISRES algorithm is suited

for our purpose before applying it for other types of noise.

III. DENSE CODING INFLUENCED BY
NON-MARKOVIAN NOISE

We now investigate the response of non-Markovian de-
phasing and depolarizing noise on the dense coding scheme.
The noise acts on each channel that carries the encoded qubits
from the senders’ side to the receiver(s). Specifically, we aim
to find out whether non-Markovian noise in the channel can
have a constructive impact on the capacity or not. If yes,
we are interested in identifying a range of parameters in the
channel where such an effect is predominant.

Before going to a protocol with an arbitrary number of
senders and a single or two receivers, let us consider the
simplest bipartite scenario involving a single sender and a
single receiver. One can check that C1

noise(α > 0) > C1
noise(α =

0) for high values of the noise parameter, p, and the non-
Markovianity strength α, when the shared state is |φ+〉SR
(see Appendix B). It will be interesting to find whether such
an advantage persists for arbitrary shared multipartite states
in the N senders–one receiver and N senders–two receivers
regimes. In this respect, note that it was shown that the relation
between multipartite entanglement and DCC differs from the
bipartite domain [62] and hence the effects of noise observed
in the case of DCC with two parties may not hold in the
multipartite domain, which is indeed the case as shown in the
succeeding sections.

A. Noisy dense coding between arbitrary senders
and a single receiver

In the multipartite domain, a natural choice of the resource
state is an (N + 1)-party gGHZ state, given by |gGHZ〉N+1 =
x|0〉⊗N+1 + √

1 − x2|1〉⊗N+1, shared between N senders and
a single receiver. Such a choice is due to the fact that in the

noiseless scenario, |gGHZ〉N+1 with x = √
1/2 provides the

maximum DCC, i.e., log2 dS1 · · · dSN + 1 while for other val-
ues of x, the capacity reads as log2 dS1 · · · dSN + H ({x2, 1 −
x2}), where H ({pi}) = −∑

i pi log2 pi represents the Shan-
non entropy corresponding to the single-site reduced density
matrix at the receiver’s end having eigenvalues {x2, 1 − x2}.

Impacts of dephasing non-Markovian channel. In the pres-
ence of both Markovian and non-Markovian noise (α 	= 0),
the dephasing channel is not covariant, which implies that
the minimization over U min corresponding to each of the N
senders has to be performed. However, such optimization is
hard to perform analytically and so we will resort to numerical
optimization in obtaining the exact trends of the DCC by vary-
ing the noise parameter and the strength of non-Markovianity.

Before proceeding further, we present a lower bound on
the DCC in the presence of the non-Markovian dephasing
channel.

Theorem 2. The lower bound on the DCC, obtained under
the non-Markovian dephasing channel, provides an advantage
over its Markovian counterpart, for a certain range of the
noise parameter when an (N + 1)-qubit gGHZ state is shared
between N senders and a single receiver.

Proof. As stated before, the DCC without noise for the
shared gGHZ state, |gGHZ〉N+1, with N senders and a single
receiver can be obtained. In the presence of noise, motivated
by Proposition 1, let us assume that U min = IS1 ⊗ IS2 ⊗ · · · ⊗
ISN (with I being the 2 × 2 identity matrix), which leads to
a lower bound on the actual DCC. In this case, the capac-
ity reduces to C1

noise = log2 dS1 · · · dSN + H ({x2, 1 − x2}) −
S(�(ρN+1)), where ρN+1 = |gGHZ〉N+1〈gGHZ| with � be-
ing the non-Markovian dephasing channel. Notice first that,
under the action of the dephasing channel (both Markovian
and non-Markovian), the coefficients in the density matrix
only get modified but no additional coefficients appear beyond
those of the pure state. This implies that there are only two
eigenvalues, given by

1
2 (1±

√
1−4(−1 + (1 − 2p)2N )x2(x2 − 1)) and

1
2 (1±

√
1−4(−1 + (1 − 2p + 2(p − 1)pα)2N )x2(x2 − 1)),

(15)

for the Markovian and non-Markovian channels, respectively.
Since both S(ρR) and S(�(ρN+1)) are bivariate functions,
it is clear that the state is dense codable when the smaller
eigenvalue of S(�(ρN+1)) is lower than that of S(ρR), thereby
making S(ρR) � S(�(ρN+1)). Let us consider that the eigen-
values of ρR are such that x2 < (1 − x2). In the case of the
Markovian channel, it is observed that the lower eigenvalue
of �(ρN+1) is less than x2, when p � 1/2. Thus, for the
Markovian dephasing channel, the gGHZ state always gives
a quantum advantage in the dense coding protocol.

Repeating the same exercise with the lower eigenvalue in
Eq. (15), we find that the non-Markovian dephasing noise
allows for dense codability of the gGHZ state when p 	= pc =
(1 + α − √

1 + α2)/2α, which is the noise strength at which
the capacity reduces to its classical limit. Thus, a higher value
of α decreases the noise strength at which the state ceases
to be dense codable. However, comparing S(�M (ρN+1))
and S(�NM (ρN+1)), with the subscript being the types of
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noise in the channel, we find that when p � pa = (2 + α −√
4 + α2)/2α, S(�M (ρN+1)) � S(�NM (ρN+1)), and hence

the non-Markovian channel furnishes a higher dense cod-
ing capacity than the Markovian one. Since pa � pc,
the non-Markovian advantage is guaranteed for [(2 + α −√

4 + α2)/2α, 0.5], and a higher value of α indicates a greater
range of improvement due to non-Markovianity since pa de-
creases monotonically with α. Hence the proof. �

Remark. Although the depolarizing non-Markovian chan-
nel is covariant, the depolarizing channel acting on the
senders’ part of the gGHZ state changes the state space
drastically which, in turn, increases the number of nonzero
eigenvalues with the increase of N , and the proof along the
lines of the dephasing channel does not go through. However,
numerical simulations in the case of the depolarizing channel
become easy owing to its covariant property.

Dense coding under non-Markovian noise

Let us now concentrate on the exact DCC affected by
non-Markovian dephasing noise by performing numerical op-
timization. Let us now consider two exemplary sets of pure
states as the shared resource, the gGHZ state and the gener-
alized W state, given by |gW〉N+1 = ∑

i biP[|0〉⊗N |1〉] where
the bi’s are chosen to be real, and P denotes the permutation
operator which permutes the vector |1〉 in different positions.
The gW state for three qubits [85,86] reduces to |gW〉3 =√

a|001〉 + √
b|010〉 + √

1 − a − b|100〉, where a, b ∈ R and
a + b � 1 which, for a = 1/2, exhibits perfect dense coding
in the absence of noise and we refer to it as |W1/2〉3. For four
qubits, we can write it as |gW〉4 = √

a|0001〉 + √
b|0010〉 +√

c|0100〉 + √
1 − a − b − c|1000〉 (shared between S1, S2,

S3, and R) which has one ebit (entanglement-bit - where one
ebit refers to the amount of entanglement in a maximally en-
tangled state of two parties [87]) of entanglement for a = 1/2
in the S : R bipartition and we term it as |W1/2〉4. For these
classes of states, we study the trends of DCC against the noise
strength and the variation of state parameters, for different
values of the non-Markovianity parameter, α. In the case of
the dephasing channel, the optimal unitary U min is identified
numerically (using the NLOPT algorithm ISRES [88]).

a. Two versus three senders with gGHZ states. When three-
and four-qubit gGHZ states are shared between two and three
senders, respectively (with one receiver), and after encoding,
the senders’ qubits are disturbed by dephasing noise, we ob-
tain the noisy encoded state, denoted by ρ

gGHZ
(p,α) with ρ

gGHZ
(0,0)

being the original pure state. As one expects, C1
noise(ρgGHZ

(p,0) ) <

C1
noise(ρgGHZ

(0,0) ); i.e., the DCC decreases monotonically with
the increase of the noise parameter p, irrespective of the
state parameter. There exists a critical noise value pc, where
C1

noise(ρgGHZ
(p,0) ) reduces to its classical bound. For example, at

α = 0, pc = 0.48 for the three-qubit gGHZ state while for
four-qubit |gGHZ〉4, pc = 0.42. Clearly, pc decreases with
the number of senders, thereby showing a decrease in the
robustness against noise with an increasing number of parties.

b. Constructive effects of non-Markovianity. Quantum ad-
vantage in the DC protocol emerges with high noise in
the presence of strong non-Markovianity; i.e., a higher non-
Markovian strength allows for countering the destructive

FIG. 1. Two senders and a single receiver, 2S-1R case under
non-Markovian dephasing noise. (a) C1

noise (ordinate) against the non-
Markovian dephasing noise parameter, p (abscissa), for different
non-Markovianity, α, when the shared resource state is the three-
qubit GHZ which is affected by dephasing noise after encoding. The
inset in (a) highlights the constructive effect of non-Markovianity
at high noise strength on the GHZ state. (b) A similar study is
performed for the shared W state. [(c) and (d)] DCC (ordinate)
of three-qubit |gGHZ〉3 and |W1/2〉3 states, respectively, against the
state parameters x and b (abscissa), respectively, for p = 0.4. The
different non-Markovianity parameters are represented from dark
(blue) to light (green) as α = 0.0 (squares), α = 0.8 (circles), α =
0.9 (triangles), and α = 0.99 (diamonds), respectively. The x axis is
dimensionless whereas the y axis is in bits.

effects of noise on the DCC. Specifically, at high p and α, we
observe the existence of pa, i.e., for p � pa, C1

noise(ρgGHZ
(p,α) ) >

C1
noise(ρgGHZ

(p,0) ), thereby establishing the constructive response
of non-Markovianity [see Figs. 1(a), 1(c), and 2(a) and Table
I]. The advantage in DCC is more pronounced at high values
of noise strength and non-Markovianity. In other words, pa,
as defined in Eq. (14), decreases with α and p. For the shared
four-qubit gGHZ states, the quantum advantage can again

FIG. 2. 3S-1R under non-Markovian dephasing noise. [(a) and
(b)] C1

noise (ordinate) vs p (abscissa) when four-qubit GHZ and
W states are initially shared. The constructive effect of non-
Markovianity at high p and α is highlighted in the inset in (a).
DCC for the four-qubit |gGHZ〉4 and |W1/2〉4 states with the state
parameters, x and b (abscissa), respectively, for p = 0.4 are shown in
(c) and (d). All other specifications are the same as in Fig. 1.
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TABLE I. Critical noise strength pc, revival noise strength pr , and noise strength pa, for which advantage is furnished due to non-
Markovianity for the GHZ and the W states affected by non-Markovian dephasing noise.

pc pr pa

α GHZ W GHZ GHZ W

2S-1R 3S-1R 2S-1R 3S-1R 2S-1R 3S-1R 2S-1R 3S-1R 2S-2R
0 0.48 0.42 0.13 0.07
0.3 0.41 0.35 0.1 0.06 0.46 0.48
0.5 0.36 0.31 0.09 0.05 0.41 0.47 0.44 0.47 0.45
0.7 0.33 0.28 0.08 0.05 0.37 0.42 0.42 0.42 0.41
0.9 0.29 0.25 0.07 0.04 0.33 0.38 0.4 0.4 0.39

be reported, which are of two kinds: (i) C1
noise(|gGHZ〉4

(p,α) )
becomes nonvanishing after it collapses, i.e., pr exists like
the three-qubit case, and (ii) C1

noise(ρgGHZ
(p,α) ) > C1

noise(ρgGHZ
(p,0) ),

thereby obtaining pa. Notice that, for the existence of pa, a
high amount of non-Markovianity is required for three senders
compared to DC with two senders. It possibly indicates that
when there are more senders, noise acts on each channel,
thereby accumulating more destructive effects of noise which
can only be eliminated with high non-Markovianity as shown
in Table I.

c. No advantage of non-Markovianity for generalized W
states. In general, the DCC for the gW states, in the NS-1R
routine, neither revives after collapse nor shows advantage due
to non-Markovian noise after collapse (see Table I). In partic-
ular, as shown in Figs. 1(b) and 2(b) pc decreases with the
strength of non-Markovianity α, thereby illustrating less ro-
bustness of the |W〉3 state against noise. However, the |W1/2〉3

states show an opposite behavior, specifically a constructive
effect with α. For example, for p = 0.4 and sufficiently high
non-Markovianity (α > 0.8), we have C1

noise(|W1/2〉3
(p,α) ) >

C1
noise(|W1/2〉3

(p,0)). In spite of such advantage, states for which
nonclassical capacity does not exist under Markovian noise
[b � 0.02 as illustrated in Fig. 1(d) and for all b in Fig. 2(d)],
fail to exhibit quantum advantage at α > 0.

d. Detrimental behavior observed for the non-Markovian
depolarizing channel. Like on entanglement, the depolarizing
channel has a much more adverse effect on the dense coding
protocol than the dephasing one which is clear from the very
low value of pc reported in Table II. This is primarily due to

TABLE II. Critical noise strength pc for GHZ and W states
affected by non-Markovian depolarizing noise.

pc

GHZ W

α 2S-1R 3S-1R 2S-2R 2S-1R 3S-1R 2S-2R
0 0.09 0.06 0.75 0.08 0.05 0.31
0.3 0.07 0.03 0.58 0.05 0.03 0.26
0.5 0.05 0.03 0.45 0.04 0.02 0.21
0.7 0.04 0.02 0.32 0.03 0.02 0.16
0.9 0.03 0.02 0.25 0.02 0.02 0.1

the fact that the depolarizing noise acts on the qubits from all
directions in contrast to the dephasing-type noise, which only
affects the qubits from the z direction [70]. Neither the gGHZ
nor the gW states show any advantage with α; rather, their
capacities decrease with non-Markovianity. As argued before,
non-Markovianity can counter the destructive effects of noise
only when the noise strength is above a certain threshold
value, which is not possible for the depolarizing channel since
the noise parameter, p, is upper bounded by 1/3α for any
arbitrary shared state. Moreover, comparing the 2S-1R and
the 3S-1R protocols, we find that the DCC is much worse
affected for the three-sender case than that of the two-sender
protocol (compare Figs. 2 and 3).

B. Distributed non-Markovian dense coding

A dense coding scheme with two senders and two receivers
is qualitatively different than the scenario with a single re-
ceiver. The impact of noise on the distributed dense coding
protocol can only be inferred by studying the pattern of an
upper bound B2

noise via LOCC in Eq. (7).
We again consider the non-Markovian dephasing and depo-

larizing channels as noise models to obtain the expressions for
the dense coding capacity given in Eq. (7). In contrast to the

FIG. 3. Two senders and two receivers scenario. B2
noise with non-

Markovian depolarizing noise, p in (a) and (b) for the GHZ and W
states while in (c) and (d), the upper bound on capacity is plotted
against state parameters of |gGHZ〉4 and |W1/2〉4. All other specifi-
cations are the same as in Fig. 1.
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single-receiver scenario, we will show that the two-receiver
dense coding protocol is more robust to the non-Markovian
dephasing noise (since pc does not exist for the gGHZ states
in the 2S-2R regime), and the |W1/2〉4 states also provide
a larger quantum advantage in DCC than the one-receiver
scenario for both types of noise. Moreover, for the gGHZ
states, the dephasing channel has no effect on the dense cod-
ing capacity when varied against α, i.e., B2

noise(|gGHZ〉4) is
invariant for the entire range of non-Markovianity at a fixed
noise strength p.

Theorem 3. For the four-qubit gGHZ state shared be-
tween two senders and two receivers, the upper bound on
the distributed DCC without noise coincides with the upper
bound in the presence of non-Markovian dephasing noise, i.e.,
B2

noise = B2 irrespective of the value of the non-Markovian
parameter α.

Proof. The four-qubit gGHZ state, |gGHZ〉4
S1S2R1R2

=
x|0000〉 + √

1 − x2|1111〉, can be represented in the
density matrix form as ρgGHZ = x2|0000〉〈0000| +
(1 − x2)|1111〉〈1111| + x

√
(1 − x2)(|0000〉〈1111| + |1111〉

〈0000|). If we again assume that the U min are proportional
to the identity operator, which our numerical studies
show to be the case, the non-Markovian noise does
not change the subspace of the affected state, i.e.,
�(ρgGHZ) = x2|0000〉〈0000| + (1 − x2)|1111〉〈1111| + f (p,
α, x)(|0000〉〈1111| + |1111〉〈0000|), where the function
f includes the noise parameters p and α. Notice that
only the off-diagonal terms change, which does not
contribute during the partial trace operation, unlike the
single-receiver protocol. The only term in the expression
of B2

noise that can get modified by the effect of noise is
max[S(TrS1R1�(ρgGHZ)), S(TrS2R2�(ρgGHZ))] = H ({x2, 1 −
x2, 0, 0}), which is independent of the non-Markovianity
parameter α and also the noise strength p. Thus, independent
of the value of α and p, the upper bound on the 2S-2R
DCC remains unchanged and equal to its noiseless value
B2

noise = 2 + H ({x2, 1 − x2}) bits. Hence the proof. �
Remark. The optimizing unitaries U min appearing in

Eq. (7) do not make any qualitative changes to our results
since numerical studies suggest that each U min acting on the
sender’s end is proportional to the identity operator, and thus
does not change the subspace to which the initial state be-
longs.

Let us now elaborate on our numerical observations per-
taining to the noisy distributed dense coding scheme.

gGHZ states: Dephasing versus depolarizing noise. Al-
though no non-Markovian advantage is reported for the
dephasing channel in the entire parameter range of α for
the gGHZ state, the GHZ state remains unaffected by non-
Markovianity, furnishing B2

noise = 2 + H ({x2, 1 − x2}) for all
α. There is, however, a destructive effect on the DCC of
the gGHZ states against depolarizing noise, such that B2

noise
decreases with α > 0 although it remains above the classical
threshold as illustrated in Figs. 3(a) and 3(c).

gW states. For the dephasing type of noise, the dense cod-
ing capacity of the W state does not hit the classical value at all
but decreases to a minimum value and the quantum advantage
also increases with α as shown in Table I. On the contrary,
the depolarizing noise is again destructive in nature whereby

the capacity decreases with an increase of the non-Markovian
parameter. The W state, according to Fig. 3(b), shows no
advantage of non-Markovianity for the depolarizing channel
and the capacity collapses to its classical limit faster than
in the Markovian regime. The |W1/2〉4 state also mimics this
behavior, where the DCC decreases with α and the parameter
regime of b where quantum advantage exists also shrinks with
non-Markovianity as shown in Fig. 3(d).

IV. EFFECTS OF RANDOM CHANNELS
ON DENSE CODING CAPACITY

In this section, we study the impact of noise on the dense
coding protocol, when the noisy channels are characterized by
random unitaries along with non-Markovianity as discussed
in Sec. II B. Note that in the case of random noise, the DCC
has to be computed by performing averaging, which we define
now.

Quenched averaging. For a fixed resource state and non-
Markovianity α, in a single realization, we compute C1

noise or
B2

noise by choosing a set of parameters in the unitary, {xi}, from
a Gaussian distribution with mean 〈xi〉 and standard deviation
ε. We calculate the dense coding capacity for 4 × 103 sets of
such realizations and, by averaging them, we obtain quenched
averaged dense coding capacity denoted by 〈C1

noise〉 or 〈B2
noise〉.

Theorem 4. The upper bound on the dense coding capacity
affected by the random noisy channel for multiple senders
and a single receiver is greater than the capacity influenced
by noise without randomness.

Proof. Any arbitrary unitary operator in two dimensions
can be characterized by three parameters ω, θ , and δ, apart
from an overall phase, as in Eq. (9). Let us suppose that
any Pauli matrix is written as U o = U o

1 U o
2 U o

3 , characterized
by the parameters ωo, θo, and δo, respectively. Suppose the
random unitary corresponding to U o is U = U1U2U3. To gen-
erate such a random unitary, each parameter (ω, θ , and δ)
is randomly chosen from a Gaussian distribution of mean
ωo, θo, and δo, respectively, and standard deviation ε. Thus,
one arbitrary choice of the parameters of the random unitary
U may be taken to be ωo + ε, θo + ε, and δo + ε. It can
be shown that the unitaries constituting U can be written as
Ui = cos ε

2U o
i + sin ε

2U ′
i with i = 1, 2, 3, where

U ′
1 =

(
ieiω/2 0

0 −ie−iω/2

)
,

U ′
2 =

(− sin θ/2 cos θ/2
− cos θ/2 − sin θ/2

)
, (16)

U ′
3 =

(
ieiδ/2 0

0 −ie−iδ/2

)
.

Thus, U = U1U2U3 = cos3 ε
2U 0 + ∑

j f j (ε)Ũj , where each
f j (ε) = O(sin ε

2 ) or higher and each Ũj represents a unitary
obtained from the product of Ui’s and U o

i ’s. Note that we
denote Ũ0 = U 0

1 U 0
2 U 0

3 = U 0 which is not present in the sum-
mation and thus j > 0. Finally, we can write the action of U
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on a state ρ as

UρU † = cos6 ε

2
U oρU o† +

∑
j>0

f j (ε)U oρŨ †
j

+
∑
j>0

f j (ε)ŨjρU o†

+
∑

j>0,l>0

f j (ε) fl (ε)ŨjρŨ †
l (17)

= cos6 ε

2
U oρU o† +

∑
j,l

f j (ε) fl (ε)ŨjρŨ †
l . (18)

Here, one must take care to omit j = l = 0 in the summation.
Let us now illustrate the proof for the dephasing channel.

Note that the same line of proof would hold for the depolar-
izing channel, but with some more cumbersome algebra. The
dephasing channel is characterized by the Pauli operator U o =
σz whose parameters ωo, θo, and δo are given in Sec. II B.
Since we consider the noise to act only on the senders’ part,
the only affected term in the dense coding capacity given
by Eq. (2) is S(ρ̃ ). In the presence of a random dephas-
ing channel, we can write S(ρ̃random) = S(p1ρ + p2UρU †),
where p1 = (1 − αp)(1 − p) and p2 = (1 + α(1 − p))p with
p being the noise parameter of the dephasing channel and α

the strength of non-Markovianity. Using concavity of entropy
[46], i.e., S(

∑
i piρi ) �

∑
i piS(ρi ) + H{pi}, we obtain

S

⎛
⎜⎜⎝p1ρ + cos6 ε

2
p2U

oρU o† + p2

∑
i, j
j 	=i

fi(ε) f j (ε)UiρU †
j

⎞
⎟⎟⎠
(19)

� S

(
p1ρ + cos6 ε

2
p2U

oρU o†

)

+p2

∑
i, j
j 	=i

fi(ε) f j (ε)S(UiρU †
j )

+ H{p1, p2, p2 fi(ε) f j (ε)}. (20)

We can neglect the last summation, since each fi(ε) is a
function of sin ε and we have assumed ε → 0, which also
implies cos6 ε → 1. Thus, we finally arrive at

S(ρ̃random) � S(ρ̃dph) + H{p1, p2} (21)

⇒ C1
noise(�random(ρ)) � C1

noise(�dph(ρ))

− H{p1, p2}. (22)

Numerical simulations confirm that S(ρ̃random) � S(ρ̃dph) for
small as well as moderate disorder strength, ε. Therefore, the
dense coding capacity for a state affected by random noise is
greater than that affected by Pauli noise. �

Remark. In the case of the dephasing channel, U min is
again chosen to be the identity operator in the proof for sim-
plicity. However, numerical simulations again show that the
results remain true even when optimization over unitaries is
performed.

A. Random dephasing noise on DCC

To begin our discussion on the effect of random noisy
channels, we first consider the dephasing channel composed
of two Kraus operators, one involving the identity and the
other involving σz. In the case of random channels, the pa-
rameters of unitaries are chosen from a Gaussian distribution
of standard deviation ε and mean fixed to the parameters of
the corresponding Pauli matrix. We notice that the presence
of such random noise provides a distinct advantage in the
dense coding protocol in comparison with the effects of a pure
dephasing channel, i.e., C1

noise(�p,α,ε (ρ)) � C1
noise(�p,α,0(ρ)),

where ε denotes the magnitude of randomness present in the
noise. Let us present our observations for the case of single-
and two-receiver scenarios.

1. Random channel affected dense coding involving a single
receiver: Comparison between gGHZ and gW states

2S-1R case. In the case of the three-qubit GHZ state, we
find that the average capacity increases steadily with ε for any
value of α as shown in Fig. 4(a). In fact, for sufficiently high
standard deviation, e.g., ε � 0.7, the quenched average dense
coding capacity does not collapse to its classical threshold
(which is 2) but reaches a minimum value (>2) and then rises
again with the noise strength p. In this case, pa decreases with
respect to both α and ε. The decrease in pa with ε predicts the
beneficial impact of randomness present in the noise acting on
the protocol. Qualitatively similar behavior is observed when
the W state is considered as the resource [see Fig. 4(b)]. This
demonstrates that if the dephasing channel is not perfect, the
protocol is much more beneficial in terms of dense coding
capacity.

When analyzed with respect to the state parameter, we
observe that the protocol becomes more and more efficient
for a given α as the standard deviation ε assumes higher and
higher values for the |gGHZ〉3 and |W1/2〉3 states. For any
given non-Markovianity strength and standard deviation, the
capacity becomes maximum at x = 1/

√
2 (the GHZ state) as

demonstrated in Fig. 4(c). An important feature of randomly
generated dephasing-type noise emerges—there exist some p
and x for which the Markovian pure dephasing channel offers
no quantum advantage with the |W1/2〉3 state although an in-
crease in the standard deviation makes the capacity overcome
the classical limit. Thus, the constructive effect of randomness
is again highlighted in the noisy DC protocol.

3S-1R scenario. The advantageous effect of randomness
still persists when we consider |GHZ〉4 but is much less pro-
nounced (see Fig. 5), with the revival of capacity beyond its
classical value (upon collapse) being absent. Thus, with an
increase in the number of senders, the destructive effect of the
noise cannot be avoided through its random implementation,
since more qubits are affected by it. In the protocol involving
three senders sharing a W state with a lone receiver, no quan-
tum advantage beyond that for the pure dephasing channel
is apparent no matter how high the value of ε is. For the
|gGHZ〉4 states, the random noise cannot help in overcom-
ing the classical limit of 3 for any value of ε or α. On the
other hand, for sufficiently high randomness (ε � 0.5), some
quantum advantage is observed for |W1/2〉4.

032616-9



MUHURI, GUPTA, GHOSH, AND SEN(DE) PHYSICAL REVIEW A 109, 032616 (2024)

FIG. 4. 2S-1R DC with random non-Markovian dephasing
noise. Quenched averaged dense coding capacity, 〈C1

noise〉 (ordinate),
with different disorder strength, ε, against the noise parameter p
in (a) and (b), and against the state parameter x and b (abscissa)
in (c) and (d), respectively. The states shared between senders and
the receiver are (a) the three-qubit GHZ, (b) W, (c) |gGHZ〉3, and
(d) |W1/2〉3 states. Squares, circles, triangles, and diamonds represent
ε = 0, ε = 0.5, ε = 0.7, and ε = 1.0, respectively. In all the cases,
the non-Markovianity parameter is fixed to α = 0.8. The horizontal
axis is dimensionless although the vertical axis is in bits.

2. Effects of random noise on distributed dense coding

When the dense coding protocol involves two receivers,
we consider four-qubit resource states shared between two
senders and two receivers. The principal difference in the
dense coding protocol involving two receivers, from that hav-
ing a single receiver, is that the random noisy channel exhibits
no effect when considering the gGHZ states. The construc-
tive effect of randomness is observed for the W and |W1/2〉4

states, in Figs. 6(b), 6(d), 7(b) and 7(d) respectively, where the
quenched averaged capacity increases with ε (however, it still
remains lower than the gGHZ states). Unlike the gGHZ state,
for which the region of quantum advantage is stretched across
the entire parameter regime, the |W1/2〉4 states demonstrate
quantum advantage only beyond b ≈ 0.1.

B. Depolarizing random noise on dense coding: Beneficial role

We have already observed that depolarizing channels act-
ing on the encoded qubits has extremely damaging effects
on the performance of DC. It will be interesting to find out
whether random channels can have a more destructive impact
or less. Our results can be listed according to the resource
states.

(1) gGHZ state as resource. Although the pure Markovian
depolarizing channel suppresses any quantum advantage, an
increase in ε at α = 0 causes an increment in the quenched av-
eraged capacity beyond its classical value both in the 2S-1R
and 3S-1R regimes. The advantage in the dense coding ca-
pacity is pronounced around x = 1/

√
2 with the region of

advantage increasing with an increase in the standard devi-
ation [see Table III for the GHZ state (x = 1√

2
)]. However, the

〈C1
noise〉 decreases with α for a given randomness parameter

ε as demonstrated in Figs. 6 and 5(c). Moreover, we observe
that the critical noise strength of collapse, pc, increases with
the randomness, thereby sustaining nonclassical capacity for
a large range of the noise parameter. The situation is similar
when the four-qubit gGHZ state is shared in the 2S-2R case.
The averaged capacity here undergoes improvements with
increasing ε, as shown in Fig. 5(a). The most important con-
structive feature is, for sufficient randomness in the channel
(ε > 0.5), that the quenched average capacity never reduces
to its classical value of 2, but rises after reaching a minimum
value. This is in contrast to the depolarizing noise without ran-
domness, where revival is observed after the capacity becomes
2. When the capacity attains a minimum value, an increase in
the standard deviation increases the noise strength at which
the minimum occurs, thereby again exhibiting a constructive
effect since the capacity remains high through a large noise
parameter regime.

(2) gW state. When a single receiver is involved in the
dense coding protocol, the behavior of the averaged capacity
of the gW state is similar to that of the gGHZ state, even
though the quantum advantage is markedly less. The random
noise allows for constructive effect in the two-receiver sce-
nario [see Fig. 5(b)], whereas the pure depolarizing channel
always caused the capacity to decrease with α; i.e., the random
channel causes an increase in the DCC with increasing ε.
Moreover, the probability of collapse, pc, also increases with
the standard deviation (see Table III). However, the noise
strength of collapse is lower for the W state as compared
to that for the GHZ state, thereby highlighting the increased
susceptibility of the W state to noise.

(3) A special class of gW state. For |W1/2〉3 and |W1/2〉4

shared with a single receiver, the dense coding capacity can
never overcome its classical threshold in the presence of
non-Markovian noise. However, as illustrated in Fig. 5(d), a
constructive impact of randomness is apparent in the 2S-2R
regime where the quenched average upper bound 〈B2

noise〉 in-
creases beyond the classical bound with an increase in ε.
Furthermore, the state parameter region beyond which quan-
tum advantage is obtained also expands with ε (for example,

TABLE III. Critical noise strength for collapse, pc, for GHZ and W states affected by random depolarizing noise.

GHZ W

2S-1R 3S-1R 2S-1R 3S-1R

α ε = 0.5 ε = 0.7 ε = 1.0 ε = 0.5 ε = 0.7 ε = 1.0 ε = 0.5 ε = 0.7 ε = 1.0 ε = 0.5 ε = 0.7 ε = 1.0

0.3 0.09 0.11 0.14 0.04 0.05 0.06 0.08 0.09 0.12 0.03 0.04 0.05
0.5 0.06 0.08 0.1 0.03 0.04 0.05 0.05 0.06 0.09 0.03 0.03 0.04
0.9 0.04 0.05 0.07 0.02 0.03 0.04 0.03 0.04 0.07 0.02 0.02 0.01
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FIG. 5. Advantage in random depolarizing noise in 3S-1R DC protocol. 〈C1
noise〉 (ordinate) against p (abscissa) for different disorder

strengths with the shared four-qubit GHZ state. (a) Markovian noise, i.e., α = 0.0, is compared with non-Markovian noise, (b) α = 0.3 and
(c) α = 0.5, respectively. All other specifications are the same as in Fig. 4.

at ε = 0.3, 〈B2
noise〉 > 2 for b � 0.15 whereas 〈B2

noise〉 > 2 be-
yond b = 0.1 when ε = 0.7), thereby providing a twofold
advantage in the protocol.

V. CONCLUSION

Quantum superdense coding illustrates quantum advantage
for transferring classical information encoded in quantum
states, provided an entangled state is a priori shared be-
tween the senders and the receivers. It is one of the first
information-theoretic protocols to be proposed and then ex-
perimentally realized [14,21,89,90]. During its realization,
it is imperative that environmental impacts would induce
unwanted noise in the system, thereby diminishing the per-
formance. To date, all the studies performed on the dense
coding protocol have been solely focused on how Markovian
noise affects the system’s encoded component. In a multipar-
tite domain with arbitrary senders and one or two receivers,
we found that when non-Markovian dephasing noise acts on
the encoded part (especially for the three-party generalized
Greenberger-Horne-Zeilinger shared state), the dense coding
capacity increases with an increase in non-Markovianity. This
non-Markovian enhancement is less prominent either when
the shared state is the W state or when one increases the
number of parties.

Noise is typically characterized by paradigmatic models
such as the dephasing and depolarizing channels [82]. From
the experimental point of view, the actions of exact dephasing
or depolarizing noise involving Pauli matrices on the sender’s

FIG. 6. The average upper bound on DCC under random non-
Markovian depolarizing noise when α = 0.9. All other specifications
are the same as in Fig. 4.

part is an extremely idealized situation. In reality, there must
be some deviation from the Pauli noisy channel. Therefore,
our work aimed to analyze how exactly the performance of
the dense coding scheme would be altered when the noise
itself behaved randomly. This formalism introduces unknown
stochastic elements into the implementation of the protocol,
which are completely beyond the user’s control. We addressed
this question of how the dense coding capacity gets affected
if we choose Kraus representations involving unitaries from
a Gaussian distribution with a mean around Pauli noise and
a finite standard deviation. Such a noise model, if present,
would have a profound impact on the realization of the dense
coding protocol; for example, it would destroy the covariant
nature of the depolarizing noise channel, thereby rendering
the experiment invalid if the assumption of that particular
channel is taken into account in the experiment. Furthermore,
not knowing exactly which form of noise acts on the sys-
tem would prevent the application of the entropy-minimizing
unitaries which are crucial for obtaining quantum advantage.
Therefore, it is intriguing to investigate the impact of random
noise on the capacity of classical information transmission in
networks, which is one of the important directions of research
in the quantum communication field. We dealt with multiple
senders and one or two receivers sharing multipartite entan-
gled states as the resource. Most strikingly, we showed both
analytically and numerically that in the presence of random
noisy channels, the dense coding capacity increases with the

FIG. 7. The quenched averaged upper bound on the dense cod-
ing capacity, 〈B2

noise〉 (ordinate), is demonstrated under random
non-Markovian dephasing noise with α = 0.9 in the two-senders–
two-receiver picture. All other specifications are the same as in
Fig. 4.
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increase of the strength of the randomness in the channel. Our
results showed that as we deviated from the Pauli nature of
the noise, the protocol furnished better results in the sense
that one can overcome the detrimental effects of noise on the
protocol. However, on increasing the standard deviation of
the Gaussian probability distribution, from which we sample
the noise parameters, the noise would eventually revert to its
Pauli characteristics at a certain point. Therefore, we inves-
tigated the interplay between the randomness present in the
noise and the enhanced quantum advantage due to noise. In
particular, quantum advantage actually persists if and only if
the stochastic nature of the noise is within close range of the
Pauli matrices. Therefore, we limited our analysis to standard
deviations up to unity, which also hints at how one could
construct the minimizing unitaries (by guessing the standard
deviation, it is possible to incorporate its effects on the min-
imizing unitaries through simple numerical calculations) in
the experiment. However, if the randomness in the noise is
unbounded, not only would it impart more destructive effects
on the protocol, but it would also create hindrances towards
the successful implementation through the inability to gauge
the minimizing unitaries. Furthermore, we also report that the
inherent randomness present in the noise would help to coun-
teract the destructive effects of non-Markovianity, thereby
highlighting a positive impact of an otherwise undesirable
element. Our work thus indicates that non-Markovianity and
random unitaries used in enhancing the performance of the
dense coding protocol have a trade-off relation.
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APPENDIX A: NON-MARKOVIAN NOISY CHANNELS

Noise acts on the states after encoding at the sender’s end
occurs. In this work, we concentrate on two channels, the
dephasing and the depolarizing channels. The non-Markovian
versions of the aforementioned channels are parametrized by
the non-Markovianity parameter α and the noise strength p.
The Kraus operators for the dephasing and depolarizing chan-
nels take the form as [50]

Kdph
I =

√
[1 − αp](1 − p)I,

Kdph
z =

√
[1 + α(1 − p)]pσz, (A1)

Kdp
I =

√
[1 − 3αp](1 − p)I,

Kdp
i =

√
[1 + 3α(1 − p)]p

3
σi. (A2)

Here, σi with i = x, y, z represent the well-known Pauli ma-
trices and the non-Markovianity parameter α lies between

0 and 1. For the dephasing channel, we have 0 � p � 0.5
whereas for the depolarizing channel p runs from 0 to 1/3α.
The Markovian limit is recovered by choosing α = 0, and a
higher value of α corresponds to a higher amount of non-
Markovianity in the channel [48].

APPENDIX B: NOISY DENSE CODING INVOLVING
A BELL STATE

Let us consider that the Bell state |φ+〉SR =
(1/

√
2)(|00〉 + |11〉) is shared between a sender S and a

receiver R. Upon encoding, the channel through which S
sends the qubit to R is either a non-Markovian dephasing
channel or a depolarizing one. The dense coding capacity is
given by

C1
noise(|φ+〉SR) = 2 − S(�(U min|φ+〉SR〈φ+|U min†)). (B1)

For analytical simplicity, we will not consider the unitaries
U min while calculating the capacity. This will not make any
qualitative changes in the end result. Note that the state is said
to be dense codable when S(�(|φ+〉SR〈φ+|)) � 1.

Let us first consider the depolarizing channel. The eigen-
values of �(|φ+〉SR〈φ+|) are given by {x, (1 − x)/3, (1 −
x)/3, (1 − x)/3} where x = (1 − p)(1 − 3αp) when α > 0
which reduces to x = (1 − p) in the Markovian limit. It can
easily be shown that the entropy term is below 1 when p �
1/3α, which is the range of operation for the depolarizing
channel. By setting α = 0, we find that in the case of the
Markovian channel, the state remains dense codable as long as
p � 0.19. Now, given the set of eigenvalues of the noisy state,
it is evident that the maximum of S(�(|φ+〉SR〈φ+|)) occurs
when x = 0.25. For the Markovian case, we have (1 − p) �
0.25 and p/3 � 0.25. Conversely, when α > 0, (1 − p)(1 −
3αp) � 0.25 and p(1 + 3α(1 − p))/3 � 0.25. Note that if the
eigenvalue less than 0.25 is greater in the non-Markovian case
as compared to the Markovian limit, then the last entropy
term is also greater when α 	= 0. We can indeed observe that
S(�NM (|φ+〉SR〈φ+|)) � S(�M (|φ+〉SR〈φ+|)) and the dense
coding capacity for the non-Markovian case is lower than that
of the Markovian case when the noisy channel is depolarizing
in nature.

We now move on to the case of the dephasing channel. The
eigenvalues of the noisy resource in this case read as { 1

2 (1 ±√
1 + 4p(p − 1)(α(p − 1) − 1)(αp − 1))}. We compare the

last term in the DCC for Markovian and non-Markovian chan-
nels. Since the eigenvalues are symmetric around 1/2, we can
conclude that S(�NM (|φ+〉SR〈φ+|)) � S(�M (|φ+〉SR〈φ+|))
when the lower eigenvalue for α > 0 is less than the lower
eigenvalue for α = 0 (which implies that the higher eigen-
value in the non-Markovian case is greater than that in the
Markovian limit). Let us define l as the difference between
the lower eigenvalues of the Markovian and non-Markovian
cases. It can easily be verified that as α → 1 and p → 0.5,
l � 0 since its minimum value is zero and its maximum
value ≈0.18. Thus, in the limit of high noise strength and
high non-Markovian parameter, the entropy term for the non-
Markovian channel is lower than that of the corresponding
Markovian one. Therefore, the dense coding capacity of the
non-Markovian channel is greater than that for α = 0. On
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the other hand, as p → 0, the dense coding capacity at low
noise strengths is higher for the Markovian channel than that
of the non-Markovian one. Thus, in the case of dephasing

noise, non-Markovianity allows for an advantage over the
Markovian regime only when the noise strength and the non-
Markovian parameter both take high values.
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and M. Żukowski, Rev. Mod. Phys. 84, 777 (2012).

[18] T. E. Northup and R. Blatt, Nat. Photonics 8, 356 (2014).
[19] J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, Nat. Phys. 4, 282

(2008).
[20] M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M.

Malik, and A. Zeilinger, Proc. Natl. Acad. Sci. USA 113, 13648
(2016).

[21] X. Fang, X. Zhu, M. Feng, X. Mao, and F. Du, Phys. Rev. A 61,
022307 (2000).

[22] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod.
Phys. 75, 281 (2003).

[23] L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys. 76,
1037 (2005).

[24] W. Yang and Z. Gong, J. Phys. B: At., Mol. Opt. Phys. 40, 1245
(2007).

[25] D. Gross, S. T. Flammia, and J. Eisert, Phys. Rev. Lett. 102,
190501 (2009).

[26] P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, and
W. K. Wootters, Phys. Rev. A 54, 1869 (1996).

[27] M. Horodecki, P. Horodecki, R. Horodecki, D. Leung, and B.
Terhal, Quantum Info. Comput. 1, 70 (2001).

[28] A. S. Holevo, Probl. Peredači Info. 9, 3 (1973).
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