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We consider how the theory of optimal quantum measurements determines the maximum information
available to the receiving party of a quantum key distribution (QKD) system employing linearly independent
but nonorthogonal quantum states. Such a setting is characteristic of several practical QKD protocols. Due to
nonorthogonality, the receiver is not able to discriminate unambiguously between the signals. To understand
the fundamental limits that this imposes, the quantity of interest is the maximum mutual information between
the transmitter (Alice) and the receiver, whether legitimate (Bob) or an eavesdropper (Eve). To find the optimal
measurement—taken individually or collectively—we use a framework based on operator algebra and general
results derived from singular-value decomposition, achieving optimal solutions for von Neumann measurements
and positive operator-valued measures (POVMs). The formal proof and quantitative analysis elaborated for two
signals allow us to conclude that optimal von Neumann measurements are uniquely defined and provide a higher
information gain compared to POVMs. Interestingly, collective measurements not only do not provide additional
information gain with respect to individual ones but also suffer from a gain reduction in the case of POVMs.
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I. INTRODUCTION

In this paper, we consider a general quantum key dis-
tribution (QKD) scheme in which the sender transmits
nonorthogonal quantum bits and operates with a given choice
of the basis. The aim is to address the issue of opti-
mal detection of N qubits encoded in signal states |�i〉,
with i = 1, 2, . . . , N . The optimal detection strategy may be
equivalently seen as an optimal interception strategy by an
eavesdropper as well as an optimal measurement strategy at
the receiver’s end. We denote the receiver as Bob whether he
is the intended party or an eavesdropper.

The importance of the result is that collective attacks will
be more practical when quantum computing technology has
developed beyond the current level, which is exactly the cir-
cumstances for which QKD is advocated. The topic is of
general interest in quantum cryptography, including time-bin
encoded QKD protocols such as coherent one way [1] and
differential phase shift [2].

We assume a quantum key encoding scheme in which
the sender, Alice, prepares signal states represented as |�i〉k ,
which identifies the kth logical qubit of signal i. Moreover,
we assume that the signal states form a set of nonorthogonal
linearly independent quantum states in the vector space of
the signals. Nonorthogonal signal states are typical of QKD
protocols based on coherent pulses.
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In order to optimally determine the state sent by Alice, the
receiver (Bob) may choose to perform an unambiguous-state-
discrimination positive operator-valued measure (POVM) [3]
or a von Neumann projective measurement [4]. The first
strategy is generally adopted in quantum cryptography and
allows for the discrimination of two signal states with cer-
tainty, leaving Bob with a finite margin of error, referred to
as an “inconclusive answer.” The second strategy consists in
abandoning certainties in favor of probabilities by perform-
ing a projective measurement. The latter strategy generally
increases the mutual information gain of the process and is
adopted by information theorists.

In the following sections we address the main question of
the paper: Can optimal collective measurements outperform
individual ones when discriminating among nonorthogonal
QKD states? To answer this question, we compare the use of
individual measurements with collective measurements, where
two (or potentially more) signal states are measured jointly.
To this end, we consider both collective projective (von Neu-
mann) measurements and POVMs. The comparison is based
on the optimization of mutual information gain. Finally, we
discuss the use of entanglement in optimizing collective mea-
surements.

The solution to this problem is inspired by the seminal
work by Peres and Wootters on optimal detection of quantum
information [5], suggesting that combined entangled measure-
ments perform better than individual measurements in the
detection of pairs of nonorthogonal tensor-product quantum
states. In their work, Peres and Wootters analyze the opti-
mal detection of pairs of spin particles aligned along three
nonorthogonal directions (along the z axis and tilted by 120◦
in opposite directions). Note that even though each signal state
is a separable state of the two particles, their optimal detection
was found to be represented by an entangled operator on the
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state space of the two systems. In a subsequent work [6],
Wootters found a joint yet separable (nonentangled) measure-
ment that could attain the same optimal information gain.
The problem was solved for specific signal states, leaving
open the question about the generalization of their results
to arbitrary pairs of product states. Note that, analogous to
Refs. [5,6], the property we wish to investigate is whether col-
lective and, specifically, entangled measurements outperform
individual measurements when applied to separable, nonen-
tangled signal states and whether this property holds also in
the case of states like the time-bin ones that do not rely on an
additive-group-structure property (e.g., the spin coupling and
Clebsch-Gordan decomposition for quantum angular momen-
tum states).

Based on the seminal works by Eldar and Forney [7,8],
we address these questions by deriving the optimal measure-
ments using both a von Neumann projective approach and
POVM operators. The optimization exploits the properties
of singular-value decomposition (SVD) and, in particular, its
derivation, known as the Eckart-Young theorem [9]. Different
from the previous works by Eldar and Forney, we focus on
the maximization of the average information gain, for which
we provide the demonstration of uniqueness and optimality of
von Neumann measurements. Moreover, our results apply to
practical QKD systems, allowing us to answer the question on
whether collective measurements can be more beneficial than
the individual ones. We conclude our study by analyzing the
effects of both von Neumann and POVM measurements on
the initial quantum signals and comparing the use of Shannon
and von Neumann entropies as a measure of disturbance.

II. OPTIMAL VON NEUMANN MEASUREMENTS

A. Optimizing the information gain

We quantify the information gained by the measurement in
terms of average information gain, defined as the difference
between the Shannon entropy of Alice’s initial preparation Hin

and the average final entropy after performing the measure-
ment Hfin [3,5]:

Iav = Hin − Hfin. (1)

For N equiprobable signal states |�i〉 , ri = 1/N (1 � i �
N ), the initial entropy is

Hin = −
∑

i

ri log2(ri) = log2(N ). (2)

The assumption of equiprobable signals sent by Alice is im-
portant for maximizing the entropy of the source and thus
determining the maximum possible information gain of the
receiver. The optimization of the information gain equally
applies to the intended party or to an eavesdropper.

On the other side, the average final entropy at Bob’s (Eve’s)
end depends on the measurement results {μ} and on the
specific measurement strategy. We shall later compare the
optimal information gain of projective von Neumann mea-
surements with that obtained by applying a POVM.

To maximize the average information gain, the measure-
ment strategy should aim at minimizing the final entropy Hfin.
Having found a specific result μ, Bob’s posterior conditional

probability for state i is given by Bayes’s theorem [10]:

Qi,μ = Pμ,i ri

qμ

∀ i, μ = 1, . . . , N, (3)

where Pμ,i is the probability of detecting state μ if the input
state is i and

qμ =
∑

j

Pμ, j r j ∀μ = 1, . . . , N (4)

is the total probability for result μ. For equiprobable signals
ri = 1/N (1 � i � N), Eq. (3) becomes

Qi,μ = Pμ,i∑
j Pμ, j

∀ i, μ = 1, . . . , N. (5)

After result μ is obtained, the associated entropy relative to μ

is
Hμ = −

∑
i

Qi,μ log2(Qi,μ) ∀μ = 1, . . . , N, (6)

while the average final entropy over all possible results is

〈Hfin〉 =
∑

μ

qμHμ. (7)

The information gain (1) is maximized when the initial
entropy is maximized while the average final entropy (7) is
minimized. The maximum initial entropy is achieved when
the signal states are equiprobable, as assumed in Eq. (2). The
average final entropy is minimized when the terms Qi,μ in
Eq. (6) take either of the extreme values of the probability
range, i.e., 0 or 1 (see the Appendix). In the specific case of or-
thonormal signals by Alice, this corresponds at the receiver’s
end to performing a von Neumann measurement using the
same orthonormal basis as the transmitter.

B. Determining optimal von Neumann measurements
for a given set of input states

In order to translate the above observation into a quan-
titative condition on Bob’s measurement, it is convenient to
express both Alice’s input states and Bob’s measurement pro-
jectors in matrix form.

Let |�i〉 , i = 1, 2, . . . , N , be Alice’s input vector states
with real elements, and define A to be the matrix having as
columns these vectors expressed with respect to a given basis
in the Hilbert space HA:

A =

⎛
⎜⎜⎝

�11 �21 · · · �N1

�12 �22 · · · �N2

· · · · · · · · ·
�1N �2N · · · �NN

⎞
⎟⎟⎠. (8)

Let {�i = |�i〉〈�i|}i be a complete set of orthonormal
projectors on HA corresponding to Bob’s von Neumann mea-
surement. Analogously to (8), let us define B to be the matrix
having as columns the vectors |�i〉 , i = 1, 2, . . . , N , in the
same basis with 〈�i|� j〉 = δi, j :

B =

⎛
⎜⎜⎝

�11 �21 · · · �N1

�12 �22 · · · �N2

· · · · · · · · ·
�1N �2N · · · �NN

⎞
⎟⎟⎠. (9)

Correspondingly, the elements Pμ,i in (5), which are given
by

Pμ,i = |〈�μ| |�i〉|2, (10)
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can be collected in a probability matrix P:

P = (BT A) ◦ (BT A)∗, (11)

where the symbol ◦ indicates the Hadamard product between
matrices and the symbol ∗ denotes the entrywise complex
conjugate of the matrix.

Matrix P is normalized on the columns, i.e.,∑
μ

Pμ,i = 1 ∀ i, (12)

since each input i is mapped with a certain probability onto
one of the possible N measurement outcomes, so that the total
probability sums to 1. This follows from the measurement
completeness condition and holds both for von Neumann
measurements and for POVMs. If also∑

i

Pμ,i = 1 ∀μ, (13)

then matrix P is normalized on both columns and rows and
thus is called doubly stochastic. As we show below that
the double stochasticity of P is a necessary and sufficient
condition for the determination of a unique orthogonal mea-
surement minimizing the average final entropy in (7).

We recall here the main properties of doubly stochastic
matrices [11].

Theorem 1. Birkhoff’s theorem. The set of n × n doubly
stochastic matrices is a convex set whose extreme points are
the permutation matrices.

A very useful corollary to Birkhoff’s theorem is the follow-
ing:

Corollary 1. The maximum (minimum) of a convex (con-
cave) real-valued function on the set of doubly stochastic
n × n matrices is attained at a permutation matrix.

Given the convexity of the entropy function to minimize,
we may apply the above corollary to (1) to derive that the
average final entropy is minimum when P is a permutation
matrix (i.e., with a single element equal to 1 for each row and
column and null otherwise). This corresponds, as observed
earlier, to each row of Q having just one element equal to 1
and the others equal to 0, Qi,μ ∈ {0; 1}.

Without loss of generality (and optimality), we can restrict
the class of permutation matrices to the identity matrix 1 since
any other permutation matrix may be obtained by applying a
permutation R to the identity.

Thus, the objective is to find the coefficients of B such that

BT A → 1. (14)

By multiplying the left side by a permutation matrix R,

R BT A → R 1 = R, (15)

it is possible to explore all the other possible optimal solutions
with swapped rows and columns, leading to the same value
of minimal entropy. Relation (14) is realized with equality
only when A is also orthonormal, i.e., Alice sends orthogo-
nal signals. For nonorthogonal signals, the optimal matrix B
realizing (14) is the closest orthonormal matrix which approx-
imates A in the least-squares sense.

In order to solve matrix equation (14) for unknown B (ma-
trix A is given by Alice’s choice of signal states), we make use
of the Eckart-Young [9] and Mirsky [12] theorems of linear

algebra in the “minimal transformation to orthonormality”
formulation derived by Johnson [13]. We briefly recall the
main statement and proof of this theorem.

Theorem 2. Johnson’s theorem. Let X be an n × n com-
plex full-rank matrix. Then the minimal transformation to
orthonormality approximating X is given by Z such that

Objective function: min Tr{(X − Z)T (X − Z)}, (16)

Constraint: ZT Z = 1, (17)

where Tr indicates the trace of the matrix.
The proof of Johnson’s theorem is based on the Eckart-

Young formulation of the SVD, allowing the derivation of the
orthonormal matrix Z minimizing (16). Note that the objective
function (16) is equivalent to

min Tr{(ZT X − 1)T (ZT X − 1)}, (18)

thus translating into the closest approximation to the identity
of matrix ZT X. In our notation, Johnson’s X matrix corre-
sponds to Alice’s A, while Z is Bob’s B. Matrix A can be
decomposed into the product of matrix U, having as columns
the eigenvectors of AAT; the diagonal singular-value matrix
�; and matrix V, having as columns the eigenvectors of ATA:

A = U � VT , (19)

where UUT = 1 and VVT = 1. The orthonormal matrix B
that best approximates A,

min Tr(B − A)T (B − A), (20)

is given by

B = U VT , (21)

which is the product of the two orthonormal matrices derived
from the SVD decomposition of A. Note that whenever A
admits distinct singular values, the solution defined by (21)
is unique up to column permutations and yields

BT A = V � VT , (22)

which defines a symmetric matrix (as the right-side and left-
side orthonormal matrices are identical).

Being symmetric, P resulting from (11) is a doubly
stochastic matrix. Thus, if P is a doubly stochastic matrix,
the optimal measurement matrix B maximizing the average
information gain (1) is derived by virtue of Birkhoff’s theorem
by (15) and uniquely defined by (21).

Conversely, assuming that B = U VT is the optimal solu-
tion to maximizing the average information gain, substituting
(22) into (11), we obtain a doubly stochastic matrix. The proof
of the latter implication is a straightforward consequence
of the symmetry of the matrix product (22). We are able,
therefore, to state that double stochasticity is a necessary and
sufficient condition for the determination of a unique optimal
orthonormal B of the form B = U VT .

So far, the search for Bob’s optimal measurement assumed
a doubly stochastic matrix P. We wish now to explore opti-
mality while relaxing this initial condition. By definition P
is positive semidefinite because its elements correspond to
the transition probabilities between Alice’s states and Bob’s
measurement vectors. In probabilistic terms, P is a stochastic
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matrix describing the transitions of a Markov chain [14].
When Alice’s states are linearly independent, P is, in fact,
strictly positive. We recall here the following set of results
for strictly positive n × n matrices derived by Marcus and
Newman [15] and Sinkhorn and Knopp [16].

Theorem 3. Sinkhorn’s theorem. Let X be a strictly positive
n × n matrix. Then to X there corresponds a unique doubly
stochastic matrix TX which can be expressed in the form

TX = D1 X D2, (23)

where D1 and D2 are diagonal matrices with positive entries.
D1 and D2 are unique themselves up to a scalar factor.

The doubly stochastic matrix TX is derived as a limit of
the sequence of matrices generated by alternately normalizing
the rows and the columns of X until convergence. A sufficient
condition for this scaling process to converge is provided by
the following.

Corollary 2. Marcus and Newman corollary. If X is strictly
positive and symmetric, there exists a diagonal matrix D with
positive main diagonal entries such that

TX = D X D (24)

is doubly stochastic.
Sinkhorn and Knopp [16] later showed that the sequence

of matrices generated by alternately normalizing the rows and
the columns of X converges to the doubly stochastic limit
TX = D1 XD2 if and only if X 	= 0 and each positive entry
of X is contained in a positive diagonal.

Matrices for which the normalizing sequence converges
are called scalable. For such matrices, the best-known scal-
ing algorithm consists of applying a “coordinate-descending”
method known as RAS or biproportional fitting algorithm
[17,18]. Note that in all cases in which the algorithm con-
verges to a doubly stochastic matrix, we return to the same
initial assumptions enabling the implementation of Johnson’s
theorem and thus to the same optimal solution (21). The latter
consideration also provides an answer to the question raised
long ago in the seminal work by Hausladen and Wootters
discussing the optimality of their “pretty good measurement”
with respect to maximizing average information gain [19].
Their density operator ρ corresponds to

ρ = ATA (25)

and thus the pretty-good-measurement matrix to M =
A(ATA)−

1
2 . By substituting the SVD expression A = U � VT

and taking into account the unitarity of U and V, it is straight-
forward to check that M = UVT coincides with the optimal
B. This provides a rigorous demonstration of the optimality
of their pretty good measurement by virtue of the scaling
properties of the probability.

We summarize our findings in the following theorem.
Theorem 4. Optimal detection of nonorthogonal signals.

Let |�i〉 , i = 1, 2, . . . , N , be a set of nonorthogonal linearly
independent signal states on Alice’s Hilbert space HA and
|�μ〉 , μ = 1, 2, . . . , N , be a set of orthonormal states on
Bob’s HB, with dim(HA) = dim(HB ) = N . Let A and B be
the matrices with these states as column vectors and P =
(BT A) ◦ (BT A)∗ be the corresponding stochastic matrix of
transition probabilities. The following propositions hold: If

(1) P is doubly stochastic, (2) P is strictly positive and sym-
metric, or (3) P is scalable to a doubly stochastic limit matrix,
then the optimal von Neumann measurement B maximizing
the average information gain defined in (1) is uniquely de-
termined by B = U VT , where U and V are unitary operators
diagonalizing A AT and AT A, respectively.

III. COLLECTIVE VERSUS INDIVIDUAL
MEASUREMENTS

In this section, we use the results derived above to com-
pare individual and collective von Neumann measurements.
The question is motivated by considering a general QKD
scenario in which Alice transmits a sequence of K (K � 2)
signals. Instead of measuring each signal individually, Bob
may decide to store the K signals in a quantum memory
and perform a collective measurement. We will consider
the case with K = 2 independent signals because the result
can then be trivially extended to any K > 2. We may think
of them as states belonging to consecutive time slots (i.e.,
generated by QKD systems operating in time-division mul-
tiplexing). If each of the signals is represented as before by
|�i〉 , i = 1, 2, . . . , N , the possible pairs are represented by
|�i, j〉 , i, j = 1, 2, . . . , N , in the Hilbert space of dimension
N2 HA ⊗ HA:

|�i, j〉 = |�i〉 ⊗ |�i〉 ∀ i, j = 1, 2, . . . , N, (26)

where ⊗ is the tensor or Kronecker product. Let A2 be the
matrix with the vectors |�i, j〉 as columns, or, equivalently,

A2 = A ⊗ A. (27)

Among Bob’s joint measurements we may further distin-
guish between collective (or joint) uncorrelated measurements
described by tensor-product states or collective entangled
measurements. For example, Ref. [5] showed that for the
so-called double-trine states the optimal measurement was
global and entangled. Later, Wootters [6] determined a global
yet unentangled measurement that performed equally well in
obtaining the same optimal mutual information gain. Analo-
gously, in our case Bob may consider collective von Neumann
measurements defined by product states

|�μ,ν〉 = |�μ〉 ⊗ |�ν〉 ∀μ, ν = 1, 2, . . . , N (28)

or by general superpositions of such states (including entan-
gled ones)

|�M,N 〉 =
∑
μ,ν

Bμ,ν;M,N |�μ〉 ⊗ |�ν〉 . (29)

The corresponding elements of the probability matrix P are
labeled by a double-index measurement result and a double-
index input signal:

PM,N ;i, j = | 〈�M,N | |ψi, j〉 |2 (30)

=
∣∣∣∣∣
∑
μ,ν

Bμ,ν;M,N 〈�μ| |ψi〉 〈�ν | |ψ j〉
∣∣∣∣∣
2

. (31)

For product states, the matrix B2, having the set of or-
thonormal vectors |�i, j〉 = |�i〉 |� j〉 as columns, can be
written as

B2 = B ⊗ B. (32)
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Analogously, for general superposition including entangled
measurements, B2 corresponds to linear combinations of such
products,

B2 =
∑
μ,ν

Bμ,ν Bμ ⊗ Bν, (33)

where the multi-index μ in matrix Bμ defines a specific per-
mutation of the column vectors |�i〉 , i = 1, 2, . . . , N , and
the superposition coefficients Bμ,ν ∈ C are normalized in the
square modulus

∑
μ,ν |Bμ,ν |2 = 1.

The optimal von Neumann product measurement leads to
the probability matrix P2 as

P2 = (
B2

T · A2
) ◦ (

B2
T · A2

)∗

= [(B ⊗ B)T · (A ⊗ A)] ◦ [(B ⊗ B)T · (A ⊗ A)]∗

= [(BT · A) ⊗ (BT · A)] ◦ [(BT · A) ⊗ (BT · A)]∗

= [(BT · A) ◦ (BT · A)∗] ⊗ [(BT · A) ◦ (BT · A)∗]

= P ⊗ P, (34)

where the mixed-product property for Kronecker and
Hadamard products was used, along with Eqs. (11), (27), and
(32). For general superposition measurements, each term in
(34) (B2

T · A2) becomes( ∑
μ,ν

Bμ,νBμ ⊗ Bν

)T

· (A ⊗ A). (35)

To derive the optimal superposition measurement, we use the
optimization for the optimal B in (16),

min Tr

{[
(A ⊗ A) −

(∑
μ,ν

Bμ,ν Bμ ⊗ Bν

)]T

×
[

(A ⊗ A) −
( ∑

μ′,ν ′
Bμ′,ν ′ Bμ′ ⊗ Bν ′

)]}
, (36)

which leads to the following equivalent condition, after the
products within the trace are developed:

max Tr

(∑
μ,ν

Bμ,ν

(
BT

μ A
) ⊗ (

BT
ν A

))

= max
∑
μ,ν

Bμ,νTr
(
BT

μ A
)

Tr
(
BT

ν A
)

� max
∑
μ,ν

|Bμ,ν |Tr
(
BT

μ A
)

Tr
(
BT

ν A
)

� max
[
Tr

(
BT

μ A
)

Tr
(
BT

ν A
)]

, (37)

under the orthogonality condition for matrices Bμ and Bν .
In the above relations we used the linearity of the trace

operator, the property Tr(X ⊗ Y) = Tr(X)Tr(Y), and the fact
that the maximum of a convex combination is in one of the
extreme points. Recalling the derivation in Johnson’s theorem
in [13], determining max Tr(BT

μ A) leads to a unique optimal
solution B up to column permutations.

The result indicates that the matrix of the collective mea-
surement probability P2 can be written as a Kronecker product
of the matrices representing the individual measurement prob-
abilities P for both product and superposition measurements.

Thus, there is no information gain in performing a collective
measurement—either uncorrelated or entangled—over two
(or more) nonorthogonal signals when using a von Neumann
projection.

IV. OPTIMAL UNAMBIGUOUS STATE DISCRIMINATION

Optimal unambiguous state discrimination (USD) was first
solved for the case of two signals by Ivanovic [20], Dieks [21],
and Peres [22] and for three signals by Peres and Terno [23].
Partial results for N nonorthogonal linearly independent sig-
nals were provided by Chefles [24], while a complete solution
in terms of semidefinite programming was found by Eldar [8]
and improved recently by Karimi [25].

Optimal USD is based on POVMs. Whereas a projective
or von Neumann measurement generates probabilities, a USD
POVM either identifies the correct state with certainty or
generates an inconclusive answer. Referring to the above def-
inition of Qi,μ (3), applying a USD POVM, we have

Qi,μ = δiμ ∀ i, μ = 1, . . . , N, (38)

where δiμ is the Kronecker delta, and thus, (6) becomes

Hμ = 0 ∀μ = 1, . . . , N. (39)

Therefore, the only non-null term contributing to the final
entropy is the one associated with the inconclusive answer
μ = 0:

Qi,0 = P0,i ri

q0
∀ i = 1, . . . , N, (40)

and correspondingly,

H0 = −
∑

i

Qi,0 log2(Qi,0), (41)

〈Hfin〉 = q0H0 = −
∑

i

P0,i log2

(
P0,i∑
j P0, j

)
. (42)

In the following the final entropy is optimized by minimiz-
ing the probability of an inconclusive result. Indeed, by setting
P0,i = pinc, i = 1, . . . , N , we obtain

〈Hfin〉 = pinc log2(N ), (43)

where we also used equal probabilities for Alice’s input
states |�i〉.

The optimal POVM operators {�i}i=0,1,...,N such that

N∑
i=0

�i = 1,

N∑
i=1

�i � 1 (44)

can be derived following the demonstration in [8]. Let |�̃〉 be
the reciprocal states associated with Alice’s states |�〉, such
that 〈�h|�̃k〉 = δhk (1 � h, k � N ); i.e., the reciprocal states
are orthogonal to Alice’s states. Define

�i = (1 − pinc) |�̃i〉 〈�̃i| (45)

and Ã as the matrix whose columns are the reciprocal states
|�̃i〉 , i = 1, . . . , N . The matrix Ã is orthogonal to A, i.e.,

ÃT · A = 1, (46)

showing similarity to Eq. (14) for the von Neumann case.
The solution can be found by resorting to the Moore-Penrose
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pseudoinverse [26], i.e.,

ÃT = (AT A)−1 AT . (47)

By applying the SVD to A = A � VT, we find that the
matrix of the reciprocal states is given by

Ã = U �−1 VT ; (48)

i.e., its singular values are the inverse of those of A but with
the same eigenvector matrices U and V.

For equiprobable signals, the summation in (44) is equal to

(1 − pinc)
N∑

i=1

|�̃i〉 〈�̃i| = Ã ÃT = U �−2 UT , (49)

and the probability of a conclusive result (i.e., 1 − pinc) is
maximized when it is equal to the inverse of the maximum
eigenvalue of

∑
i 〈�̃i|�̃i〉 or, equivalently, to the minimum

singular value of �2.

V. PAIRS OF NONORTHOGONAL SIGNALS

We examine first the application of the present framework
to the case of a single qubit in two equally likely nonorthogo-
nal states. Such states are representative of the nonorthogonal
signals used in some QKD protocols [27,28]. The angle be-
tween them is identified as θ ∈ (0, π/2]. When θ = π/2, the
two signals become orthogonal and thus perfectly distinguish-
able by a standard von Neumann measurement in the same
basis. The signals can be generally expressed as

�1 =
(

cos
(

θ
2

)
sin

(
θ
2

)
)

, �2 =
(

cos
(

θ
2

)
− sin

(
θ
2

)
)

, (50)

which correspond to Bennett et al.’s “parity bits” [29].
By replacing c = cos( θ

2 ) and s = sin( θ
2 ), the correspond-

ing matrix A is given by

A =
(

cos
(

θ
2

)
cos

(
θ
2

)
sin

(
θ
2

) − sin
(

θ
2

)
)

=
(

c c
s −s

)
(51)

and can be SVD decomposed into

A = U � VT

=
(

1 0
0 1

)(√
2 c 0
0

√
2 s

)(
1/

√
2 1/

√
2

1/
√

2 −1/
√

2

)
. (52)

Based on (21), the optimal von Neumann measurement is thus

B = U VT = VT = 1√
2

(
1 1
1 −1

)
, (53)

i.e., a rotation by π/4 of Alice’s basis, followed by a reflec-
tion.

The associated probability matrix for individual measure-
ments is

P = (V � VT ) ◦ (V � VT )∗ = 1

2

(
(c + s)2 (c − s)2

(c − s)2 (c + s)2

)

= 1

2

(
1 + sin(θ ) 1 − sin(θ )
1 − sin(θ ) 1 + sin(θ )

)
. (54)

Note that P is doubly stochastic since the sum of the elements
in each row is equal to 1, as is the sum of the elements in each
column. Indeed, each element of V has a square value of 1/2,
which is a sufficient condition for the doubly stochasticity of
P. When θ = π/2 (i.e., the two signals are orthogonal), P = 1
and reaches the maximum possible entropy.

The average information gain for von Neumann measure-
ments computed from (1)–(7) is

Iav =1 + (c+s)2

2
log2

(c+s)2

2
+ (c−s)2

2
log2

(c−s)2

2
.

(55)

With POVM measurements, the probability of an inconclusive
result is derived from the smallest singular value of � (i.e.,√

2s), leading to pinc = 1 − (
√

2 s)2. The average information
gain is obtained by applying (1) and (43), leading to Iav = 2 s2.

For the case of two nonorthogonal signals, a generic SO(2)
rotation matrix can be written as

BSO(2) =
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)
, (56)

with φ ∈ (0, 2π ]. In this case it is easily seen that the generic
BSO(2) matrix leads to a scalable PSO(2) in the sense of Theo-
rem 4 since

PSO(2) = (BSO(2)
T A) ◦ (BSO(2)

T A)∗

=
(

[c cos(φ) + s sin(φ)]2 [c cos(φ) − s sin(φ)]2

[c sin(φ) − s cos(φ)]2 [c sin(φ) + scos(φ)]2

)
(57)

is doubly stochastic ∀ θ ∈ (0, π/2] if and only if

sin2(φ) = cos2(φ) ⇒ sin(φ) = ± cos(φ), (58)

leading to the same optimal B derived in Eq. (53) and
demonstrating the uniqueness of the optimal solution and its
convergence.

For collective measurements on pairs of two signals �i ⊗
� j (i, j = 1, 2), the resulting matrix A is

A2 =

⎛
⎜⎜⎝

c2 c2 c2 c2

cs −cs cs −cs
cs cs −cs −cs
s2 −s2 −s2 s2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 1/

√
(2) 1/

√
(2) 0

0 1/
√

(2) −1/
√

(2) 0
0 0 0 −1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

2 c2 0 0 0
0 2 c s 0 0
0 0 2 c s 0
0 0 0 2 s2

⎞
⎟⎟⎠

× 1

2

⎛
⎜⎜⎝

1 1 1 1√
2 0 0 −√

2
0 −√

2
√

2 0
−1 1 1 −1

⎞
⎟⎟⎠, (59)
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FIG. 1. Average information gain vs the angle between the two
nonorthogonal signals θ for individual (K = 1) and collective (K =
2) measures normalized to K .

whereas the optimal von Neumann measurement is

B2 = U2 V2
T = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠ = B ⊗ B, (60)

leading to the probability matrix

P2 = 1

4

⎛
⎜⎜⎝

(c + s)4 (c2 − s2)2 (c2 − s2)2 (c − s)4

(c2 − s2)2 (c + s)4 (c − s)4 (c2 − s2)2

(c2 − s2)2 (c − s)4 (c + s)4 (c2 − s2)2

(c − s)4 (c2 − s2)2 (c2 − s2)2 (c + s)4

⎞
⎟⎟⎠

= P ⊗ P. (61)

With POVM measurements, the probability of an inconclu-
sive result is derived from the square of the smallest singular
value of � (i.e., 2s2), leading to pinc = 1 − (2 s2)2. The aver-
age information gain obtained from (1), (2), and (43) is thus

Iav = log2(4) − [1 − (2 s2)2] log2(4) = 8 s4. (62)

The quantitative results presented in this section are repre-
sented in Fig. 1, which shows the average information gain for
optimal von Neumann and POVM measurements. Individual
(K = 1) and collective (K = 2) measurements are compared,
and thus, the average information gain is normalized to K . The
maximum information gain is achieved with the von Neumann
measurements independently of the type of measurement (i.e.,
individual or collective). The Iav advantage of von Neumann
with respect to POVM measurements is plotted in Fig. 2,
which shows that performing collective POVM measurements
reduces the information gain. This behavior is possibly at-
tributable to the fact that the entropy of inconclusive results
is spread over a larger number of signals and increases with
the dimension of the spanned Hilbert space.

VI. QUANTUM STATE AFTER THE MEASUREMENT
AND VON NEUMANN ENTROPY

Bob’s measurement and its related information gain gen-
erate a disturbance of the initial quantum state sent by Alice.
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FIG. 2. Difference of normalized average information gain (be-
tween von Neumann and POVM measurements) as a function of θ

for individual (K = 1) and collective (K = 2) measures.

The trade-off between information gained during a measure-
ment and quantum state disturbance is an important factor in a
cryptographic protocol and was first analyzed for nonorthog-
onal signals by Fuchs and Peres [30]. In their work, the
disturbance (discrepancy rate) on each of Alice’s n signals
{|�i〉} was defined as

D = 1 − 〈�i| ρfin,i |�i〉 , (63)

where 〈�i| ρfin,i |�i〉 = F denotes the fidelity between the ini-
tial state |�i〉 and the final state after the measurement ρfin,i.

For initial and final mixed states, the definition can be
modified using Jozsa’s approach for density matrices’ fidelity
[31]

D = 1 − F (ρin, ρfin) = [Tr(
√√

ρinρfin
√

ρin )]2, (64)

where ρin = ∑
i ri |�i〉 〈�i| is the statistical mixture of Alice’s

input states, while the state after the measurement becomes

ρvN
fin =

∑
μ

PμρinPμ (65)

for a von Neumann projective measurement with Pμ =
|�μ〉 〈�μ| and

ρPOVM
fin =

∑
μ

√
�μρin

√
�μ (66)

for a POVM {�μ}μ=0,1,...,N , as defined in (44) [32].
In our case, assuming an initial density operator given by

an equal distribution over Alice’s input states |�i〉, the final
density operator resulting from the measurement is

ρvN
fin =

∑
μ

∑
i

1

N
|〈�μ||�i〉|2|�μ〉〈�μ| (67)

for a von Neumann measurement and

ρPOVM
fin =

∑
μ

∑
i

(1 − pinc)

N
| 〈�̃μ| |�i〉 |2 |�̃μ〉 〈�̃μ| (68)
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for a POVM. In both cases we may compare the disturbance
produced on the state with the information gained by the
measurement.

Another way to evaluate the impact of the measurement on
the quantum state transmitted by Alice is to compute the von
Neumann entropy of the density operator before and after the
measurement.

Analogously to the disturbance factor, the change in von
Neumann entropy also provides a measure of the modification
produced by Bob’s measurement. However, rather than being
directly associated with the state fidelity, the von Neumann
entropy is associated with the increase of disorder in the
statistical mixture of states composing ρin.

We consider, for ρ = ρin, ρfin, the von Neumann entropy to
be defined as [32,33]

S(ρ) = −Tr(ρ log2 ρ) (69)

and compare the entropy of the initial state with the en-
tropy after the measurement. We refer to the case of the two
equiprobable signals defined in (50) and use

ρin =
(

c2 0
0 s2

)
(70)

for the initial state. The state after the measurement can be
computed by means of equations (65) and (66) and consider-
ing the optimal von Neumann and POVM measurements for
two nonorthogonal signals analyzed in the previous section.
The optimal von Neumann projectors are given by (53)

P1 = 1

2

(
1 1
1 1

)
, P2 =

(
1 −1

−1 1

)
, (71)

while the optimal USD POVM operators may be written as

�1 = α(1 − |�2〉 〈�2|), (72)

�2 = α(1 − |�1〉 〈�1|), (73)

�0 = 1 − �1 − �2, (74)

where the coefficient α is obtained by minimizing the prob-
ability of an inconclusive answer and can be expressed as
α = (2c2)−1. The optimal USD POVM operators for the states
(50) are explicitly given by

�1 = α

(
s2 cs
cs c2

)
, (75)

�2 = α

(
s2 −cs

−cs c2

)
, (76)

�0 =
(

c2 − s2 0
0 0

)
, (77)

where c = cos( θ
2 ) and s = sin( θ

2 ). Using the above expres-
sions, by means of (65) and (66), we derive the density
matrices after the measurement

ρvN
fin = 1

21 (78)

and

ρPOVM
fin = 1

2

(
1 + cos2(θ ) 0

0 sin2(θ )

)
. (79)
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FIG. 3. Initial Shannon entropy Hin and von Neumann entropy
Sin vs θ for individual von Neumann and POVM measures.

Figure 3 shows the initial Shannon entropy and von Neu-
mann entropy as the angle between the two nonorthogonal
signals defined in (77) increases. The corresponding final
entropies for von Neumann and POVM measurements are
represented in Fig. 4.

We observe that the initial von Neumann entropy is always
increased by projective measurements, while POVMs may
decrease it since the initial set of states is not forced into
an equal distribution of perfectly distinguishable outcomes.
Instead, for the same reason, the final Shannon entropy is
lower than the von Neumann entropy, leading to a higher
average information gain.

The von Neumann and Shannon entropies provide a com-
plementary view of the disturbance on the state resulting
from the measurement process, as shown in Fig. 5 for the
two nonorthogonal signals. Indeed, the von Neumann entropy
measures the closeness to a completely mixed state in the
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FIG. 4. Final Shannon entropy Hfin and von Neumann entropy
Sfin vs θ for individual von Neumann and POVM measures.

032615-8



OPTIMAL INDIVIDUAL AND COLLECTIVE … PHYSICAL REVIEW A 109, 032615 (2024)

0 /4 /2
0

0.2

0.4

0.6

0.8

1

D
is

tu
rb

an
ce

POVM meas.
von Neumann meas.

FIG. 5. Disturbance vs θ for individual von Neumann and
POVM measures.

signal’s Hilbert space. On the other hand, the Shannon en-
tropy provides a view of the receiver’s conditional probability
distribution.

VII. CONCLUSIONS

The matrix-based formulation of the entropy optimization
problem can be optimally solved for nonorthogonal signals
by leveraging operator algebra and well-known theorems. We
demonstrated that the optimal von Neumann measurements
are unique and achieve the same information gain for individ-
ual and collective measurements regardless of whether they
are uncorrelated or entangled. By contrast, not only is the
information gain of POVMs lower than that for projective von
Neumann measurements, but it also decreases when the num-
ber of signals collectively measured increases. We provided a
comparative analysis of von Neumann and Shannon entropies
to analyze the disturbance of the initial signal produced by the
quantum measurement.

The present approach finds direct application in several
QKD protocols based on weak coherent states. Such systems
are also used to implement the Bennett-Brassard 1984 (BB84)
protocol, in which each basis consists of two orthogonal sig-
nals. However, signal generation using weak coherent states
and the effect of the transmission medium may affect the
orthogonality of the signals received by Bob (or Eve). As
such, the presented results can be applied to a given basis
of the BB84 protocol to compute and optimize the average
information gain in the considered basis.
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APPENDIX: MINIMIZING THE FINAL ENTROPY

The problem of minimizing the final entropy, i.e.,

Min Hμ = Min

(
−

N∑
i=1

Qi,μ log2(Qi,μ)

)
(A1)

with the constraint that
N∑

i=1

Qi,μ = 1, (A2)

can be solved using the method of Lagrange multipliers.
Let the Lagrange function be defined as

L(Q1,μ, Q2,μ, . . . , λ) = −
∑

i

Qi,μ log2(Qi,μ)

+ λ

(∑
i

Qi,μ − 1

)
. (A3)

The optimization problem can be solved by imposing that the
gradient of the Lagrange function is

∇Q1,μ,...,Q2,μ,λL(Q1,μ, Q2,μ, . . . , λ) = 0. (A4)

The partial derivatives are
∂

∂Qi,μ
L(Q1,μ, Q2,μ, . . . , λ) = − log2 Qi,μ − 1

ln 2
+ λ,

(A5)
∂

∂λ
L(Q1,μ, Q2,μ, . . . , λ) =

∑
i

Qi,μ − 1. (A6)

By imposing the condition in (A4), the following system
of equations is obtained:

− log2 Qi,μ − 1

ln 2
+ λ = 0 ∀ i = 1, . . . , N,∑

i

Qi,μ − 1 = 0, (A7)

which has the solution

Qi,μ = 1

N
∀ i = 1, . . . , N. (A8)

This critical point leads to an entropy of

Hμ = − log2
1

N
, (A9)

and it is possible to demonstrate that it is a point of absolute
maximum. Since the entropy is a continuous function, the
points of absolute minimum are at the border, which is when

Qj,μ = 1 j ∈ 1, 2, . . . , N,

Qi,μ = 0 ∀ i 	= j, i ∈ 1, 2, . . . , N . (A10)
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