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Sensitivity of Rydberg microwave electrometry limited by laser frequency noise

Bowen Yang ,1,2,3 Yuhan Yan,1,2,4 Xuejie Li,1,2,4 Haojie Zhao,1,2,3 Ling Xiao,1,2 Xiaolin Li ,5

Jianliao Deng,1,2,* and Huadong Cheng 1,2,3,†

1Key Laboratory of Quantum Optics and Center of Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics,
Chinese Academy of Sciences, Shanghai 201800, China

2Wangzhijiang Innovation Center for Laser, Aerospace Laser Technology and System Department,
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
4Department of Physics and Electronic Science, East China Normal University, Shanghai 200062, China

5School of Physics, East China University of Science and Technology, Shanghai 200237, China

(Received 8 September 2023; accepted 22 February 2024; published 11 March 2024)

Laser frequency or phase noise is a main factor that limits the sensitivity of Rydberg microwave (MW)
electrometry. In this study, we proposed a theoretical approach to estimate the effect of laser frequency noise
on the atomic coherence of Rydberg sensors based on an atomic superheterodyne receiver. The noisy lasers
were characterized using a phase-diffusion model. In particular, explicit formulas were derived to evaluate
the noise-limited sensitivity for a given laser linewidth. Furthermore, the effect of Doppler broadening on the
sensitivity of the Rydberg sensor at different atomic temperatures was estimated. Our theoretical results provide
guidance for the development of Rydberg MW sensors and the method discussed herein can be applied to many
other quantum systems.
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I. INTRODUCTION

The accurate and precise measurement of physical quanti-
ties, including time, magnetic field intensity, and gravitational
force, is of immense significance in the advancement of
physics. These efforts have led to remarkable progress in
quantum systems, such as optical clocks [1,2], atomic mag-
netometers [3,4], and atomic gravimeters [5,6]. Utilizing the
properties of Rydberg atoms with large dipole moments [7], a
new atomic sensor was proposed for measuring the incident
microwave (MW) electric field amplitude. The motivation
for developing Rydberg MW sensors stems from the supe-
rior performance of Rydberg sensors compared to those of
traditional antenna-based sensors [8], and their potential ap-
plications in radar [8] and modern communication [9–13].
In Rydberg sensors, MW measurement is achieved by mea-
suring the perturbations of atomic energy levels induced by
incident MWs, such as the Autler-Townes (AT) splitting in the
electromagnetically induced transparency (EIT) spectrum for
strong MWs [14–21], and oscillating optical readout in atomic
superheterodyne receivers for weak MWs [8,22,23].

Although the sensitivity of MW electrometry based on
atomic superheterodyne receivers has reached an unprece-
dented level [8], it is still far from the fundamental limit
predicted in Refs. [24,25]. The major noise that limits the
sensitivity comprises two types of noise: laser noise, in-
cluding the intensity and frequency noise, and atomic noise,
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including quantum projection and atomic transit noise [26].
Laser frequency or phase noise usually degrades the sensor
performance via phase-noise-to-intensity-noise conversion,
which has been widely studied in absorption spectroscopy
[27–30]. The spectral properties of a transmitted noisy laser
in an EIT medium have also been extensively studied [31–37].
In addition, the noise spectra induced by the laser frequency
noise have been used as a spectroscopic tool to measure the
AT splitting [38]. However, methods for estimating the effect
of laser frequency noise on the performance of Rydberg MW
electrometry are lacking.

In this study, we theoretically investigate the conversion of
laser frequency noise to atomic coherence noise in an atomic
superheterodyne receiver. We propose a theoretical model
for estimating the noise-limited sensitivity induced by laser
frequency fluctuations. We focus on the variation of the coher-
ence of the atomic system driven by noisy lasers modeled as a
phase-diffusion field, and we obtain the noise power spectral
density of atomic coherence by solving its stochastic differ-
ential equations (SDEs). Our results are significant for noise
analysis in Rydberg MW electrometry and can be extended to
other quantum sensors.

II. THEORETICAL MODEL

A. Description of the model

We briefly describe the principle of Rydberg MW elec-
trometry based on atomic superheterodyne receivers. A
typical experimental schematic diagram and a correspond-
ing energy-level diagram are shown in Figs. 1(a) and 1(b),
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FIG. 1. (a) Typical experimental schematic for atomic super-
heterodyne receiver. The probe and coupling laser beams counter-
propagate through the cell and pump atoms to the Rydberg state.
With the dressing of a strong local MW, the energy perturba-
tion induced by a small signal MW is measured by recording the
transmission signal of the probe laser using a photodetector (PD).
(b) Atomic energy level scheme involved. �p, �c, and �L are the
Rabi frequencies of the probe, coupling, and local MW fields, respec-
tively. The perturbed Rabi frequency of the weak signal MW is given
by δ�eiδst+φs . The levels |1〉 and |2〉 denote ground and excited states,
respectively, while the levels |3〉 and |4〉 are the two Rydberg states.
(c) Example probe transmission signal P as a function of coupling
detuning �c in the presence of a strong local MW field. The strong
resonant dressing of the local MW results in the appearance of AT
splitting and two dressed states |±〉 = 1√

2
(|3〉 ± |4〉) energetically

separated by h̄�L . The small energy shifts E± = ±δ� cos(δst + φs )
induced by the weak signal MW for the dressed states leads to a
dynamic change Ps(t ) in the resonant probe transmission, which then
can be used to measure the amplitude and phase of the signal MW.

respectively. The probe, coupling, and local MW fields inter-
act with atoms, generate the atomic coherence, and lead to
the EIT-AT spectrum in the transmitted probe signal shown in
Fig. 1(c). The two EIT peaks correspond to the two dressed
states |±〉 (superposition of two Rydberg states, |3〉 and |4〉)
induced by the strong local MW. Thus, the AT splitting of

the two EIT peaks is given by �L for �L � �EIT (�EIT is
the linewidth of EIT), which is also the energy separation
of two dressed states. The presence of weak signal MW δ�

perturbs two dressed states, leading to instantaneous energy
shifts E± = ±δ� cos(δst + φs) for two dressed states |±〉,
where δs and φs are the frequency difference and the phase
difference between local and signal MWs. This means both
amplitude and phase information of the signal MW are en-
coded into the dynamic energy separation of two dressed
states. As shown in Fig. 1(c), this variation is detected by mea-
suring the amplitude of the transmitted probe light resonantly
driving the atoms. For δs � �EIT, the dynamic change Ps(t )
in the resonant probe transmission induced by the weak signal
MW field can be expressed as

Ps(t ) =
∣∣∣∣ dP0

d�L

∣∣∣∣δ� cos (δst + φs), (1)

where P0 is the resonant probe transmission signal without
the signal MW. According to Eq. (1), the oscillating optical
readout can then be used to deduce the electric field amplitude
of the incident signal MW. However, fluctuations in atomic
coherence induced by the frequency noise of lasers limit the
minimum measurable perturbation induced by the weak sig-
nal MW, providing noise-limited sensitivity for Rydberg MW
electrometry.

B. Models for laser frequency fluctuations

The stochastic frequency or phase fluctuations of the probe
and coupling lasers are described by the phase-diffusion
model. Thus, the frequency noise is Gaussian δ-correlated,
and the spectral shapes of the lasers are Lorentzian [30].
Assuming that the probe and coupling lasers are completely
uncorrelated, the frequency fluctuations satisfy

〈δωp,c(t )〉 = 0, (2a)

〈δωp,c(t )δωp,c(t + τ )〉 = γp,cδ(τ ), (2b)

〈δωp(t )δωc(t + τ )〉 = 0, (2c)

where the angular brackets 〈·〉 denote the stochastic average;
δωp(t ) and δωc(t ) denote the frequency fluctuations of the
probe and coupling lasers, respectively; γp and γc are the
linewidth (full width at half maximum) of the probe and
coupling lasers, respectively; and δ(τ ) is the Dirac’s delta
function. Moreover, stochastic frequency fluctuations can be
considered as formal derivatives of random-phase fluctua-
tions. The corresponding stochastic-phase fluctuation φp,c(t )
is modeled as a Wiener process (Brownian motion) with
volatility

√
γp,c. Therefore, φp,c(t ) = √

γp,cWp,c(t ), where
Wp,c(t ) is the standard Wiener process satisfying

〈Wp,c(t )〉 = 0, (3a)

〈Wp,c(t )Wp,c(t ′)〉 = min{t, t ′}, (3b)

〈Wp(t )Wc(t ′)〉 = 0. (3c)

Here t and t ′ denote different moments in time, and min{} is
the function returning the smallest value in a set of values.
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C. Evolution equations of atomic coherence

The time evolution of the atomic density operator ρ is
determined using the master equation [39]

dρ

dt
= − i

h̄
[H, ρ] + Lρ, (4)

where H is the Hamiltonian for a single atom interacting
with three external fields and Lρ is the term that accounts
for the relaxation processes. For theoretical simplicity, we
restrict our discussion to the weak probe approximation. In
this case, we have the following optical Bloch equation for
atomic coherence:

dρ12

dt
= −[γ12 + i�1 + iδωp(t )]ρ12 + i

�c

2
ρ13 + i

�p

2
,

(5a)

dρ13

dt
= −[γ13 + i�2 + iδωp(t ) + iδωc(t )]ρ13

+ i
�c

2
ρ12 + i

�L

2
ρ14, (5b)

dρ14

dt
= −[γ14 + i�3 + iδωp(t ) + iδωc(t )]ρ14 + i

�L

2
ρ13,

(5c)

where γ12, γ13, and γ14 are the total the relaxation rates of the
corresponding atomic coherence; �1 = �p, �2 = �p + �c,
and �3 = �p + �c − �L are the single-photon, two-photon,
and three-photon detunings, respectively; δωp(t ) and δωc(t )
are the frequency fluctuations of the probe and coupling fields,
respectively; and �Z and �Z (Z ∈ {p, c, L}) are the optical
detuning and Rabi frequency of the corresponding field, re-
spectively. The relaxation rate in a Rydberg atomic system
is usually associated with the spontaneous decay rate, tran-
sit time broadening, atom-wall interactions, and atom-atom
collisions [24]. In our theoretical model, we considered only
the spontaneous decay rate and transit time broadening, be-
cause in hot atoms they are generally the main part for the
experiment with small beam size, such as Ref. [11]. Then, the
relaxation rates are given by

γ12 = �2

2
+ γt , γ13 = γ14 = �r

2
+ γt , (6)

where �2 = 2π × 6.07 MHz and �r = 2π × 10 kHz are the
typical spontaneous decay rates of the excited and Rydberg
states of 87Rb atoms, respectively, and γt = 2π × 500 kHz is
the typical transit relaxation rate. Note that if other relaxation
effects or atomic species are taken into account, we only need
to modify the relaxation rate in the model. We retained these
relaxation rates for all numerical simulations unless otherwise
specified. In addition, in this study, we focused on the resonant
condition for probe and local MW fields; thus, �p = 0 and
�L = 0 in all calculations.

As the MW measurement relates to the amplitude of the
transmitted light, we are interested in the variation of the
imaginary part of atomic coherence. According to Eqs. (5a),
(5b), and (5c), we can obtain similar evolution equations for
the imaginary and real parts of the atomic coherence. Consider

the vector variable defined as

X = {Re(ρ12), Im(ρ12), Re(ρ13),

Im(ρ13), Re(ρ14), Im(ρ14)}T , (7)

which satisfies the equation

dX
dt

= (F + δωp(t )Bp + δωc(t )Bc)X + C, (8)

where the definitions of the matrices F, Bp, Bc, and the vector
C are provided in Appendix A. The SDE of atomic coherence
in the Stratonovich sense is given by

dX = (FX + C)dt +
∑

i∈{p,c}

√
γiBiX ◦ dWi(t ), (9)

where ◦ denotes the Stratonovich integral, and Wp(t ) and
Wc(t ) are the standard Wiener processes described in Sec. II B.
A Stratonovich SDE can be converted to an equivalent SDE in
the Itô sense by a simple transformation given by

dX = (F ′X + C)dt +
∑

i∈{p,c}

√
γiBiXdWi(t ), (10)

where F ′ = F + γpB2
p/2 + γcB2

c/2. Appendix B provides the
proof of Eq. (10). This transformation effectively adds laser
decoherence rates to the relaxation rates of atomic coherence.
Applying a stochastic average to both sides of Eq. (10), we
obtain the evolution equation of 〈X〉, which is given by

d〈X〉
dt

= F ′〈X〉 + C. (11)

This form is consistent with those report in Refs. [40,41].
For the steady-state condition (i.e., t → ∞), we obtain the
stationary stochastic average X̄ = 〈X (∞)〉, which satisfies

F ′X̄ + C = 0. (12)

D. Fluctuations of atomic coherence

We now consider the time evolution of the fluctuation in
the atomic coherence, which is defined by �X (t ) = X (t ) −
X̄ . Then, according to Eq. (11), the stochastic average of �X
follows a similar equation:

d〈�X〉
dt

= F ′〈�X〉. (13)

Furthermore, using the regression theorem [42,43], the
stochastic average of the two-time correlation or covariance
function of atomic coherence follows the same equation:

dC(t + τ, t )

dτ
= F ′C(t + τ, t ), (14)

where τ > 0 and the matrix covariance function C(t, t ′) is
defined as

C(t, t ′) = 〈�X (t )�X T (t ′)〉. (15)

The covariance function can then be written as

C(t, t ′) =
{

exp[F ′(t − t ′)]P(t ′), if t � t ′,
P(t ) exp[F ′(t ′ − t )]T , if t < t ′,

(16)
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FIG. 2. (a) Negative of the Doppler-averaged atomic coherence as a function of �c for different Rabi frequencies of local MW with
�c = 2π × 3 MHz and γp = γc = 2π × 100 kHz. The Rabi frequency of local MW �L varied from �L/2π = 0 MHz (solid gray line) to
3.2 MHz (dotted black line) to 30 MHz (dashed purple line). Panels (b), (c), and (d) correspond to the atomic coherence noise amplitude
S′

ξ (0) transferred from laser frequency noise versus �c for �L = 0 MHz, �L = 2π × 3.2 MHz, and �L = 2π × 30 MHz, respectively. The
noise spectra of atomic coherence contributed by the different values of laser frequency noise in panels (b), (c), and (d) are represented by solid
yellow (γp = γc = 2π × 100 kHz), dotted blue (γp = 2π × 100 kHz and γc = 0 kHz), and dashed green (γp = 0 kHz and γc = 2π × 100 kHz)
lines, respectively.

where P(t ) = C(t, t ). As we are interested in the stationary
case, letting τ = t − t ′, the steady-state covariance or auto-
correlation function C(τ ) becomes

C(τ ) =
{

exp (F ′τ )P(∞), if τ � 0,

P(∞) exp (−F ′τ )T
, if τ < 0,

(17)

where P(∞) denotes the steady-state covariance. Appendix C
provides the derivation of P(∞). According to the Wiener-
Khinchin theorem, the Fourier transform of the autocorrela-
tion function is the power spectral density (PSD). Thus, we
have the following PSD matrix for the process �X (t ):

S(ω) = 1

2π

∫ ∞

−∞
dτ C(τ ) exp (−iωτ ),

= 1

2π
[P(∞)(−F ′ − iωI)−T + (−F ′ + iωI)−1P(∞)],

(18)

where I denotes the identity matrix.
In addition, owing to the Doppler effect, the frequencies

of the coupling and probe lasers seen by atoms with different
velocities shift. Assuming that the noise of atomic coherence
contributed by atoms with different velocity groups is com-
pletely uncorrelated, the PSD matrix with the Doppler average

is given by

S′(ω) = 1√
πvp

∫ ∞

−∞
dv S(ω; �′

p,�
′
c)e−v2/v2

p, (19)

where vp = √
2kBT/m denotes the most probable velocity of

the atoms. In this integration, the probe and coupling laser de-
tunings are modified to �′

p = �p − kpv and �′
c = �c + kcv,

where kp and kc are the wave vectors of the probe and cou-
pling light, respectively. The Doppler effect cannot be ignored
even for cold atoms because of the magnitude of the residual
two-photon Doppler width being comparable to the natural
linewidth of the Rydberg states (i.e., |kp − kc|vp/�r ∼ 6 for
T = 30 µK). Unless otherwise specified, all numerical calcu-
lations were performed with T = 300 K.

III. RESULTS AND DISCUSSION

A. Noise power spectral density of atomic coherence

We focused on the imaginary part of the atomic coher-
ence between |1〉 and |2〉, which is denoted by ξ ≡ Im(ρ12),
because it directly reflects the measured transmission signal.
Furthermore, its mean value 〈ξ ′〉 and noise PSD S′

ξ (ω) after
the Doppler average can be directly obtained from Eqs. (12)
and (19).

Figure 2(a) shows the numerical results for the EIT-AT
spectrum with different local MW Rabi frequencies, and
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FIG. 3. The normalized noise PSD of atomic coherence
10 log10(S′

ξ (ω)/S′
ξ (0)) for �L = 0 MHz (solid gray line) and �L =

2π × 3.2 MHz (dotted black line) with �c = 2π × 3 MHz, �c = 0,
and γp = γc = 2π × 100 kHz.

Figs. 2(b)–2(d) show the corresponding noise amplitude S′
ξ (0)

of atomic coherence transferred from laser frequency noise
as functions of coupling detuning �c for different laser
linewidths. It is apparent that two enhanced absorption dips
can be observed near each EIT transmission peak shown in
Fig. 2(a), which arises due to the wavelength mismatch be-
tween the coupling and probe lasers [44]. But we find that
similar dips are also present in Figs. 2(b)–2(d), except for
the noise spectra contributed from the coupling laser noise.
This distinct behavior may be attributed to the fact that the
frequency noise of the coupling laser does not contribute to
the one-photon detuning �1 and to the assumption of uncor-
related noise features for different velocity groups in Eq. (19).
In addition, as shown in Fig. 2(d), a similar AT splitting
appears in the noise spectra, which has been used for MW
measurements [38].

We also analyzed the frequency distribution for the trans-
ferred atomic coherence noise. Although our theory assumes
that the frequency noise of the laser is white noise, the
response of the atomic system is finite, leading to a non-white-
noise type of atomic coherence noise. Figure 3 shows two
example noise PSDs of atomic coherence transferred from
laser frequency noise. The noise PSD has a flat response at
low frequencies, and the −3-dB bandwidth of the transferred
atomic coherence noise is approximately 1.8 MHz. This re-
flects the response time of the atomic medium to some extent.
The results also indicate that low-frequency noise may be
characterized by a single noise value S′

ξ (0).

B. Noise-limited sensitivity

We evaluated the noise-limited sensitivity of atomic su-
perheterodyne receivers, which originates from the frequency
noise of lasers, by considering the equivalent noise of the
measured MW electric field amplitude. The small perturbation
of atomic coherence δξ induced by the small incident signal
MW δE satisfies

δξ = dξ

d�L

δEdR

h̄
, (20)

where dR is the dipole moment between |3〉 and |4〉, and h̄ is
the reduced Planck’s constant. Then, the equivalent one-sided

FIG. 4. Slope factor d〈ξ ′〉/d�L , noise PSD S′
ξ (0), and noise-

limited sensitivity
√

SδE (0) versus laser linewidth γ = γp = γc for
coupling Rabi frequencies �c = 2π × 1 MHz (solid blue line), �c =
2π × 3 MHz (dotted yellowish-brown line), and �c = 2π × 5 MHz
(dashed sky magenta line). (a) Slope factor. (b) Noise PSD. (c) Noise-
limited sensitivity. For each coupling Rabi frequency �c and laser
linewidth γ , we chose an optimal Rabi frequency of the local MW
�L which maximized the slope factor.

noise PSD of δE is

SδE ( f ) = 2

(
h̄

dR

1

(d〈ξ ′〉/d�L )

)2

2πS′
ξ (2π f ), (21)

where the factors 2 and 2π arise because S′
ξ (2π f ) is a two-

sided noise PSD, and we focused on the PSD in the Fourier
frequency f instead of the angular frequency ω. If we restrict
our discussion to the low-frequency regime, the noise-limited
sensitivity is given by

√
SδE (0). Furthermore, if we choose the

Rydberg transition 51D5/2 → 52P3/2 in 87Rb for the π polar-
ized field, the transition dipole moment with mj = 1/2 (mj is
the magnetic quantum number) is given by dR = 1640.18 ea0

[45].
Figure 4 shows the slope factor d〈ξ ′〉/d�L, noise PSD

S′
ξ (0), and noise-limited sensitivity

√
SδE (0) as functions of

the laser linewidth γ for different coupling Rabi frequen-
cies. The reduction in slope factor and the increase in noise
clearly deteriorate the sensitivity (lower value indicates bet-
ter performance) as the laser linewidth increases. Compared
to the fundamental sensitivity predicted in Refs. [24,25],
our results indicate that the laser frequency noise could be
the major factor limiting the sensitivity of Rydberg MW
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FIG. 5. Noise-limited sensitivity as a function of γ contributed
by different laser linewidths with �c = 2π × 3 MHz and optimal �L

for each linewidth γ . The solid yellow, dotted blue, and dashed green
lines correspond to γ = γp = γc, γ = γp, and γ = γc, respectively.

electrometry for large laser linewidths, which cannot be miti-
gated by an increase in the number of participating atoms. In
addition, we find that the noise in the broad linewidth regime
(i.e., γ > 2π × 10 MHz) begins to decrease slightly with
increasing laser linewidth, as shown in Fig. 4(b). This is simi-
lar to the behavior observed in the transmitted intensity noise
in a resonant vapor cell [28] and may be due to the broad-
ening effect induced by the increasing laser dephasing rates.
Furthermore, we note that a strong coupling Rabi frequency is
suitable for improving the sensitivity owing to an increase in
the slope factor d〈ξ ′〉/d�L.

The limited sensitivities owing to the frequency noise of
the coupling and probe lasers are shown in Fig. 5. In the small
linewidth regime (i.e., γ < 2π × 800 kHz), the noise-limited
sensitivities contributed by the coupling and probe lasers are
nearly equal, whereas in the broad linewidth regime (i.e.,
γ > 2π × 1 MHz), the noise-limited sensitivity deteriorates
rapidly with increasing linewidth and is dominated by the
frequency fluctuations of the probe laser.

Furthermore, we analyzed the dependence of the slope
factor, the noise PSD, and the noise-limited sensitivity on
the atomic temperature to determine the role of the Doppler
broadening effect in the noise conversion process, and the cor-
responding results are shown in Figs. 6(a)–6(c), respectively.
We adjusted the transit relaxation γt with γt = γ0

√
T/T0,

where γ0 = 2π × 500 kHz is the transit relaxation rate at
T0 = 300 K, because of the decreased atomic velocities with
the reduction in the atomic temperature. The slope factor
d〈ξ ′〉/d�L and the noise PSD S′

ξ (0) clearly decrease with
increasing atomic temperature. The noise-limited sensitivity
varies slightly when the temperature is below 10 mK, whereas
it worsens as the temperature increases from 10 mK to 80 K.
Moreover, the improvement in the noise-limited sensitivity
arises at a high temperature (i.e., T > 80 K). This can be
attributed to the fact that the reduction in noise outweighs the
effect of the decrease in the slope factor owing to the Doppler
average effect.

Our theoretical analysis is based on the assumption of a
Lorentzian shape of the laser spectrum. In a realistic case,
the laser frequency is generally affected by flicker noise at
low frequencies, which leads to a Gaussian line shape, and

FIG. 6. Slope factor d〈ξ ′〉/d�L , noise PSD S′
ξ (0), and noise-

limited sensitivity
√

SδE (0) as a function of the atomic temperature
T with �c = 2π × 3 MHz, γp = γc = 2π × 100 kHz, and optimal
�L maximizing d〈ξ ′〉/d�L for each temperature. (a) Slope factor.
(b) Noise PSD. (c) Noise-limited sensitivity.

white noise at high frequencies, which results in a Lorentzian
line shape [46]. However, atomic superheterodyne receivers
usually operate in the high-frequency regime to avoid 1/ f
noise. Thus, our scheme continues to reasonably estimate the
influence of laser frequency noise on the sensitivity of MW
electrometry. In addition, the transferred noise of atomic co-
herence, which stems from laser frequency fluctuations, might
be underestimated in a practical atomic vapor cell, especially
for an optically thick medium. This is because the incident
laser noise in an atomic medium generates atomic coherence
noise, which can reciprocally influence the laser and amplify
noise generation.

IV. CONCLUSION

In conclusion, we have proposed a theoretical model to
estimate the fundamental sensitivity of Rydberg MW elec-
trometry limited by the frequency fluctuations of lasers.
We established the correlation between the noise in atomic
coherence and laser frequency by incorporating stochastic
differential equations governing atomic coherence dynamics.
We analyzed the noise-limited sensitivity of atomic super-
heterodyne receivers with different laser linewidths and their
dependence on the atomic temperature. Our results provide
guidance for determining the maximum frequency linewidth
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of lasers to achieve future sensitivity limited by quantum pro-
jection noise. In addition, the proposed method can be directly
extended to other quantum systems driven by noisy lasers, and
hence, it is useful for applications such as atomic clocks and
magnetometers.
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APPENDIX A: DEFINITION OF THE COEFFICIENTS
IN EQ. (8)

The matrices F, Bp, and Bc and the vector C are defined as

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−γ12 �1 0 −�c/2 0 0
−�1 −γ12 �c/2 0 0 0

0 −�c/2 −γ13 �2 0 −�L/2
�c/2 0 −�2 −γ13 �L/2 0

0 0 0 −�L/2 −γ14 �3

0 0 �L/2 0 −�3 −γ14

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Bp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Bc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

C = (0 �p/2 0 0 0 0)T .

APPENDIX B: PROOF OF EQ. (10)

The difference between the Itô and Stratonovich senses is
introduced in the definition of a stochastic integral. In most
areas of physical science, where white noise is defined in
terms of a δ-function autocorrelation, Stratonovich calculus
is preferred [47]. However, we usually solve the SDEs in
the Itô sense because the Stratonovich integral is not a mar-
tingale, which makes its theoretical analysis more difficult.
A Stratonovich SDE can be converted into an equivalent Itô
equation using the following algorithm [48].

Algorithm. A SDE in the Stratonovich sense,

dX = f (X , t )dt + L(X , t ) ◦ dW (t ) (B1)

is equivalent to the following SDE in the Itô sense:

dX = f ′(X , t )dt + L(X , t )dW (t ), (B2)

where f (X , t ) is a vector-valued function, L(X , t ) is a matrix-
valued function, W (t ) is the vector Wiener process, and
f ′(X , t ) is given by

f ′
i (X , t ) = fi(X , t ) + 1

2

∑
j,l

∂Li j (X , t )

∂Xl
Ll j (X , t ). (B3)

In the case of Eq. (9), f (X , t ), L(X , t ), and W (t ) can be
expressed as

f (X , t ) = FX + C, (B4a)

L(X , t ) = (
√

γpBpX
√

γcBcX ), (B4b)

W (t ) = (Wp(t ) Wc(t ))T . (B4c)

Then, according to Eq. (B3),we derive the following rela-
tionship:

f ′
i (X , t ) =

∑
j

Fi jXj + Ci + 1

2

∑
l

(
∂Li1(X , t )

∂Xl
Ll1(X , t )

+∂Li2(X , t )

∂xl
Ll2(X , t )

)

=
∑

j

Fi jXj + Ci + 1

2

∑
l, j

(γpBpilBpl jXj

+ γcBcilBcl jXj )

=
∑

j

Fi jXj + Ci + 1

2

∑
j

(
γp

(
B2

p

)
i j

Xj

+ γc
(
B2

c

)
i jXj

)
. (B5)

Thus, expressing Eq. (B5) in vector form, we obtain

f ′(X , t ) = (
F + γpB2

p/2 + γcB2
c/2

)
X + C. (B6)

Subsequently, Eq. (10) is proved.

APPENDIX C: DERIVATION OF P(∞)

According to Eq. (10), the SDE of �X (t ) is given by

d�X = F ′�Xdt +
∑

i∈{p,c}

√
γiBi(�X + X̄ )dWi(t ), (C1)

Then the ordinary differential equation for the matrix second
moment P(t ) is given by [49]

dP
dt

= F ′P + PF ′T +
∑

i∈{p,c}
γiBiPBT

i + B(t ), (C2)

where

B(t ) =
∑

i∈{p,c}
γiBi(m(t )X̄ T + X̄mT (t ) + X̄ X̄ T )BT

i ,

m(t ) = 〈�X (t )〉. (C3)

Thus, for the steady-state case, the stationary covariance
P(∞) obeys the equation

F ′P(∞) + P(∞)F ′T +
∑

i∈{p,c}
γiBi(P(∞) + X̄ X̄ T )BT

i = 0.

(C4)

The numerical solution of Eq. (C4) yields a solution of P(∞).
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