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Quantum magnetometry using discrete-time quantum walk
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Quantum magnetometry uses quantum resources to measure magnetic fields with a precision and accuracy that
cannot be achieved by its classical counterparts. In this paper, we propose a scheme for quantum magnetometry
using discrete-time quantum walk (DTQW) where multipath interference plays a central role. The dynamics
of a spin-half particle implementing DTQW on a one-dimensional lattice gets affected by magnetic fields and
the controlled dynamics of DTQW help in estimating the fields’ strength. To gauge the effects of the field, we
study the variance of the particle’s position probability distribution (PD) and use it to determine the direction
of the magnetic field maximally affecting the quantum walk. We then employ statistical tools like quantum
Fisher information (QFI) and Fisher information (FI) of the particle’s position and spin measurements to assess
the system’s sensitivity to the magnetic fields. We find that one can use the position and spin measurements to
estimate the strengths of the magnetic fields. Calculations for an electron implementing quantum walk of 50 time
steps show that the estimate has a root-mean-square error of the order of 0.1 picoTesla. Moreover, the sensitivity
of our system can be tuned to measure any desired magnetic field. Our results indicate that the system can be
used as a tool for optimal quantum magnetometry.
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I. INTRODUCTION

To detect weak magnetic fields with ultrahigh precision
is an essential endeavor in diverse areas of science and
technology. The leading contender in this field is quantum
magnetometry [1–5]. Its applications stretch from examining
neural activities and cardiac signals for diagnosing medical
conditions [6–9], detecting magnetic minerals and magnetic
anomalies in the mining industries [10], to fundamental stud-
ies of magnetism [11] and several other areas of physics
research [12,13]. Quantum magnetometry employs quantum
resources like superposition, interference, and entanglement
to make high-resolution measurements of magnetic fields in
a wide range of frequencies. Quantum magnetometers use
quantum systems called quantum probes that respond sensi-
tively to the changes in their environment. These probes are
usually microscopic, disturb the environment very weakly,
and are noninvasive and hence ideal for detection. Quantum
magnetometers exploit the inherent fragility of these quantum
systems, making them very sensitive to magnetic fields and
thus suitable for various applications.

However, we have yet another quantum tool: a quan-
tum analog of the classical random walk called discrete-time
quantum walk (DTQW) [14,15]. DTQW exhibits quantum
mechanical properties such as superposition and interference
right from the very first step of the walk. Furthermore, by
tuning the parameters of the operators evolving the quantum
walk, one can control multipath interference and engineer
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its dynamics. Consequently, DTQW has been applied to
a wide variety of problems. Examples include modeling
the dynamics of quantum systems like energy transport in
photosynthesis [16,17]; simulating quantum phenomena like
neutrino oscillation [18–20], localization [21–23], and topo-
logical phase [24,25]. Variants of the quantum walk have also
been used to simulate the Dirac equation [26–28], model-
ing relativistic quantum dynamics [29,30] and in designing
quantum algorithms [31–33] and quantum computation mod-
els [34,35]. Apart from their uses in theoretical modeling
and simulation, quantum walks have also been experimentally
implemented in multiple physical systems, including nuclear
magnetic resonance (NMR) [36], photonics [37–40], cold
atoms [41,42], Bose-Einstein condensates [43], and trapped
ions [44–46].

A fairly recent work by Razzoli et al. [47] connected
the idea of quantum magnetometry with the continuous time
version of DTQW, known as continuous-time quantum walk
(CTQW) [14]. CTQW evolves a particle in a Hilbert space
exclusively defined by the position sites, depicting its evolu-
tion as a continuous function of time. The study focused on a
charged spinless particle undergoing CTQW on a finite two-
dimensional (2D) square lattice in the presence of a locally
transverse magnetic field. The paper revealed that position
measurements on the ground state of the system can be em-
ployed to realize nearly optimal magnetometry. Contrary to
CTQW, DTQW evolves the particle in discrete steps of time
and in a Hilbert space composed of the tensor product of
the position space and the two-dimensional coin space. The
coin operator associated with the coin space makes DTQW
more controllable and better suited for engineering the walk
dynamics.
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In this paper, we propose a quantum magnetometry tech-
nique that uses DTQW to detect and estimate static magnetic
fields homogeneous in space. We assume that their direction is
known in advance, and our focus is on detecting the strengths
of these magnetic fields. To do so, we implement DTQW on a
spin-half particle over a one-dimensional lattice and study the
effects of the fields on this system. Our work revolves around
two important questions. First, which magnetic field direction
affects the DTQW by the largest amount? Second, can we use
the fact that magnetic fields affect DTQW to detect them and
estimate their magnitudes? The second question is naturally
followed by finding out the magnitudes and directions which
are the most estimatable.

To answer the first question, we use the variance of the
particle’s position and spin probability distributions (PD). Our
results indicate that, based on the form of coin operator used to
evolve the quantum walk and the magnitude of field applied,
there are some preferred directions of magnetic fields that
affect the DTQW of the particle maximally. Moreover, by
changing the coin parameter, we can change the direction that
has the maximum effect.

Next, to answer the second question, i.e., to quantitatively
assess the sensitivity of our system, we use quantum Fisher
information (QFI) [48,49] as a figure of merit. In addition,
we use Fisher information (FI) to find whether measuring
the position and spin of the particle provides any information
about the external field. The FI we calculate shows that spin
and position measurements can indeed be used for optimum
magnetometry. The peak value of FI obtained in both cases
turns out to be proportional to the square of the total time steps
of the DTQW, which is in agreement with the bound set by
QFI of DTQW [50]. Furthermore, by changing the parameters
of operators evolving the walk, the peaks of the QFI and
FI plots can be desirably shifted. This implies that one can
tune the system to be maximally sensitive around any desired
magnetic field, making the overall scheme flexible and re-
silient. Calculations done for an electron undergoing DTQW
of only 50 steps show that the magnetometer can estimate the
strengths of magnetic fields with the root-mean-square error
(RMSE) in the estimate of the order of 0.1 picoTesla.

The paper is structured as follows. In Sec. II, we introduce
the system and derive its Hamiltonian for a general static
homogeneous magnetic field. We also discuss the evolution
of spin-half particle in the DTQW framework. In Sec. III,
we discuss the effect of magnetic field over DTQW. We
study the variance distribution over magnetic fields of differ-
ent magnitudes and in different directions. We also analyze
which directions of magnetic fields affect the quantum walk
maximally. Section IV discusses the theoretical framework
of quantum estimation theory (QET) used in this work and
the main results. Here, we assess the scheme using Fisher
information and show why this system has the potential to
be a possible magnetometer. Section V closes the paper with
some concluding remarks and possible outlooks.

II. PROBING SYSTEM

The quantum system consists of a one-dimensional (1D)
lattice (see Fig. 1) made up of 2N + 1 discrete points marked
using integers from −N to N . Over this lattice, a spin-half

FIG. 1. A possible way to design the quantum probe to detect
magnetic fields. The red dot is the point |x = 0〉, where a spin-half
particle begins the DTQW. The 1D lattice is wrapped in a zigzag
manner inside a square to increase the surface area prone to the
magnetic field.

fermion undergoes DTQW. To the entire system, a static ho-
mogeneous magnetic field, B = B0n̂, is applied; we intend to
estimate its magnitude.

The Hamiltonian describing a spin-half particle in a mag-
netic field [51] is given by

Ĥ = −γ Ŝ · B, (1)

where Ŝ = (Ŝx, Ŝy, Ŝz ) is the spin angular momentum op-
erator of the particle and γ Ŝ = μ is its intrinsic magnetic
moment. Since we use a static magnetic field, Ĥ is time-
independent. Using Ŝ = h̄σ̂/2 where σ̂ = (σ̂x, σ̂y, σ̂z ) and
choosing

ω = γ B0/2, (2)

the unitary operator evolving the state of the particle under the
influence of the static magnetic field [52] can be expressed as

Û(t ) = exp

(
−iĤt

h̄

)

= cos (ωt )Î + i(σ̂ · n̂) sin (ωt ). (3)

The particle also undergoes DTQW over the one-dimensional
(1D) lattice, which we will discuss next.

A general DTQW [14,15] is defined on the Hilbert space
H = C ⊗ Hp where C = span of {|0〉 , |1〉} is called the coin-
space of the walker and Hp = span of {|x〉 : x ∈ Z} is called
the position-space. In our system, the coin-space is the spin-
space of the particle spanned by the eigenvectors of Ŝz

operator. The position-space Hp is spanned by states {|x〉}
where x = {−N,−N + 1, . . . , N}. A DTQW is evolved and
governed by the following two operators.

(1) The coin operator acting on the coin-space C of the
walker given by

Ĉ(τ, ξ , ζ , θ ) = eiτ

(
eiξ cos(θ ) eiζ sin(θ )

−eiζ sin(θ ) e−iξ cos(θ )

)
. (4)

Throughout our study, we use the coin operator of the form

Ĉ(θ ) =
(

cos(θ ) −i sin(θ )

−i sin(θ ) cos(θ )

)
. (5)
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FIG. 2. Probability distribution of the position eigenvalues of a spin-half particle after 50 time steps of a bounded DTQW in one dimension.
The quantum walk occurs in the presence of magnetic fields of different magnitudes (ω) in the x, y, and z directions from left to right,
respectively. The initial spin states |0〉, |1〉, and |+〉 = 1√

2
(|0〉 + |1〉), respectively, are used. In all cases, the coin parameter is set to 3π/8.

(2) The conditional unitary shift operator acting on com-
plete Hilbert space (H = C ⊗ Hp) classifies DTQW into two
types. The first one is unbounded DTQW, where the walker
moves on a position-space of infinite size with the associated
shift-operator defined as


̂∞
p =

∑
x

|0〉 〈0| ⊗ |x − 1〉 〈x| + |1〉 〈1| ⊗ |x + 1〉 〈x| . (6)

The second type is bounded DTQW (which we use in this
paper). It evolves on position-space Hp with a finite number
of sites. The associated position shift-operator bounds the
evolution of walk between [−a, a] (a ∈ Z) with boundary
condition |�a+1〉 = |�−a−1〉 = 0. We define the shift operator
as


̂B
p = |1〉 〈0| ⊗ |−a〉 〈−a| +

a∑
x=−a+1

|0〉 〈0| ⊗ |x − 1〉 〈x|

+
a−1∑

x=−a

|1〉 〈1| ⊗ |x + 1〉 〈x| + |0〉 〈1| ⊗ |a〉 〈a| . (7)

The operator representing a single step of the DTQW is
given by

Ŵ = 
̂p(Ĉ ⊗ Ip). (8)

The quantum walker starts from the position site at the center
of the lattice with an initial state of the form |�(0)〉 = |s〉 ⊗
|x = 0〉. The coin operator generally evolves the coin-state |s〉
to some superposition of two or more states. The shift operator
then shifts those states to the next and/or previous position
based on their respective coin states. In the next section, we
discuss the effects of magnetic fields on DTQW.

III. EFFECT OF MAGNETIC FIELD ON DTQW

In the presence of a magnetic field, the DTQW can be
described in the following way. The particle begins at time
t = 0, with the initial state |�(0)〉. The operator Ŵ [Eq. (8)]
acts on it after regular time intervals of τ seconds, acting
on |�(0)〉 for the first time at t = τ seconds. At any time t ,
the state |�(t )〉 of the particle is also evolved by the unitary
operator Û(t ) [Eq. (3)] in the presence of a magnetic field.
Thus, before the step operator Ŵ acts for the first time, the
particle is in the state |� ′(τ )〉 = (Û(τ ) ⊗ Ip) |�(0)〉. The state

of the particle at time t = τ (when Ŵ has acted) is thus
given by

|�(τ )〉 = Ŵ(Û(τ ) ⊗ Ip) |�(0)〉 . (9)

Throughout our work, we take the time τ = 1s. However,
depending on the situation, one can change the time step value
(τ ). The state of the particle after n time steps is given by

|�(n)〉 = Ŵ[Û(1) ⊗ Ip] |�(n − 1)〉 . (10)

Figure 2 shows the probability distribution (PD) of position
measurements after 50 steps of a bounded DTQW. The walks
evolve in the presence of magnetic fields of different mag-
nitudes in the x, y, and z directions, respectively. Magnetic
fields in the x and y directions (Bî and Bĵ) can change the
spread of the walk. For magnetic fields in the z direction, we
observe that the spread of the walk is not much affected; how-
ever, the PD gets skewed. Furthermore, the PD is positively
(negatively) skewed when the field direction is towards the
positive (negative) z direction. We will discuss the changes to
the spread and the skewness of the walk in some detail now.

Effect of magnetic field on the position probability distribution
of DTQW

In this section, we aim to quantify the effect of a magnetic
field on the position PD of the quantum walk. To carry out this
task, we use the variance of the position PDs: Pick one direc-
tion and study how the variance is distributed over different
magnitudes of the field in that direction. Additionally, we use
the difference of the variance

�σ 2(B) = |σ 2(B) − σ 2(B = 0)|, (11)

as a measure of how strongly a field affects the quantum walk.
This helps us identify the direction(s) of the magnetic field(s),
which affects the quantum walk maximally. We begin with
magnetic field in an arbitrary direction.

For a static magnetic field, homogeneous in space, B =
B0n̂, the evolution operator ÛB(1) [Eq. (3)] takes the follow-
ing form:

ÛB(1) =
(

cos(ω) + inz sin(ω) sin(ω)(ny + inx )

sin(ω)(−ny + inx ) cos(ω) − inz sin(ω)

)
,

(12)
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FIG. 3. After 50 steps of the DTQW of a spin-half particle, the variance of the position probability distribution is plotted against various
magnitudes (ω) of magnetic fields. Magnetic fields in the x, y, and z directions, from left to right, are used, respectively. Initial spin state |+〉 is
used in all plots.

where n̂ = (nx, ny, nz ) is an arbitrary direction. Let

ĈB = (Ĉ ⊗ Ip)(ÛB(1) ⊗ Ip), (13)

substituting Eq. (13) into Eq. (10) and using Eq. (8), we can
write the state of the walker after t steps of DTQW in the
presence of B as

|�B(t )〉 = 
̂pĈB |�B(t − 1)〉 . (14)

Magnetic fields affect the coin operator of DTQW. Based on
the direction and magnitude of the field, ĈB takes different
forms and evolves the walk in different ways.

We call the direction along the spin |0〉, satisfying Ŝz |0〉 =
h̄/2 |0〉, the positive z direction. The coin operator C(θ )
[Eq. (5)], undisturbed by the magnetic field, is of the form
exp (−iθσx ). Hence, it rotates the spin by angle 2θ about the
positive x direction, ascertaining the x direction for us. The
positive y direction is chosen perpendicular to both x and z,
following the right-handed coordinate system.

Figure 3 illustrates how variance is distributed over dif-
ferent magnitudes (ω = γ B0/2) of magnetic fields in the x,
y, and the z directions, respectively. The rightmost panels in
Figs. 2 and 3 show that the magnetic field in the z direc-
tion, Bk̂, changes the skewness of the position PD and min-
imally affects its variance. This behavior is attributed to the
resulting form of the coin operator ĈB when B = B0k̂ is
applied to the system, given by

ĈB0k̂ =
(

cos(θ ) exp(iω) −i sin(θ ) exp(−iω)

−i sin(θ ) exp(iω) cos(θ ) exp(−iω)

)
. (15)

Direct calculations with θ = π/2 starting from the walker’s
initial state |+〉 ⊗ |x = 0〉 reveal that the walker lands in the
state “− |+〉 ⊗ |x = 0〉” after just two steps of DTQW. This
explains the flat “zero” line for θ = π/2 in the rightmost
panel of Fig. 3. Notably, this nature remains independent of
ω, rendering it impossible to estimate the value of ω using
ĈB0k̂ with θ = π/2. The skewness of the position PD can
also be seen right from the first step of DTQW in presence
of Bk̂. Using Eq. (15), starting from initial spin state |+〉 if
we calculate the probability of measuring x = −1 and x = 1
after the first step of the walk, we get

P(x = ±1) = 1 ± sin(2ω) sin(2θ )

2
, (16)

showing that Bk̂ (−Bk̂) skews the position PD towards posi-
tive (negative) direction in the lattice right from the first step of
the walk. In contrast, using Ĉ(θ ) [Eq. (5)], the coin operator in
the absence of B, results in a symmetric PD with P(x = ±1)
equal to half.

The field along the x direction, Bî, is unique in the sense
that the variance plot σ 2

x (ω) can be shifted by any desired
amount (�ω) by changing the coin parameter θ by the same
amount. In fact, from numerical results we found the analyti-
cal expression governing the variance distribution

σ 2
x = −T 2| sin(ω − θ )| + T 2, (17)

where T corresponds to the total time steps the walker takes
in the DTQW. This equation holds true only when the total
time steps of the walker is less than or equal to the boundary
point of the 1D lattice (T � a) and initial spin state |+〉 =
1/

√
2(|0〉 + |1〉) is used. However, even for cases when the

initial spin state |s〉 	= |+〉 and T � a, the variance (σ 2
x ) shows

a similar nature and shifts by an amount equal to the change
in coin parameter (�θ ). This happens due to the nature of
the coin operator ĈB when B = B0 î. The operator takes the
following form:

ĈB0 î =
(

cos(θ − ω) −i sin(θ − ω)

−i sin(θ − ω) cos(θ − ω)

)
, (18)

explaining the shift observed exclusively for magnetic fields
in the x direction.

The variance σ 2
x (ω) for cases when |s〉 	= |+〉 and T � a

must be solutions of the wave-like differential equation

∂2u

∂ω2
+ ∂2u

∂θ2
= 0, (19)

where u = σ 2
x (ω, θ ). We assert this because of the shift ob-

served in all the cases when fields in the x direction affect the
DTQW.

In the presence of Bĵ, the variance distribution σ 2
y (ω) can

only be shifted by multiples of π/2. Whereas σ 2
z (ω), due to

Bk̂, cannot be shifted (see Fig. 3). At θ = π/4, the variance
distribution σ 2

y due to Bĵ becomes constant, implying that

when coin parameter is set to θ = π/4, Bĵ does not affect the
position PD of the particle.
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It is important to emphasize that static homogeneous mag-
netic fields alter the coin operator in DTQW [Eq. (13)]. To
gain a deeper understanding of the walk’s dynamics in the
presence of any magnetic field, we can analyze the impact
of the effective coin operator, similar to our examination of
Bk̂ [Eq. (15)] and Bî [Eq. (18)]. The availability of no-shift,
limited-shift and complete-shift options for Bk̂, Bĵ, and Bî,
respectively, is attributed to the nature of the obtained ĈB
for these fields. Specifically, for Bk̂, ω only appears as a
phase [Eq. (15)], whereas for Bĵ and Bî, ω appears in the
form f (ω − θ ) (allowing the shift) within the effective coin
operator.

To determine the direction of the field maximally affecting
the quantum walk, we use Eq. (11) and plot the values on
a sphere. The position vectors of the points on the sphere
are mapped to the vectors ωn̂. Hence, the radius of the
sphere reflects the magnetic field strength, its spacial location
depicts the direction of the field, and the color bar shows the
value of �σ 2 calculated at that field. As the field strength is
changed, the direction maximally affecting the position PD
also changes [see Figs. 4(a), 4(b), and 4(d)]. Due to the shift
available for fields in the x direction, we can make the x direc-
tion as the maximally affecting direction for any magnitude
of the field being used [depicted in Figs. 4(c) and 4(e)]. It can
be done by simply putting ω = θ in Eq. (18). This turns ĈB0 î
into an identity operator allowing the shift operator to take
the position state(s) of the walker to the end(s) of the lattice
maximizing the variance.

It is, however, important to note the following: To make a
magnetic field have the maximum impact on the position PD,
the changes done to the coin operator may not allow the field
to become easily estimatable. In particular, turning the coin
operator into an identity reduces the estimatability by inhibit-
ing the multipath quantum interference otherwise available in
DTQW dynamics (see the minima in Fig. 5). In the following,
we delve into the tools and techniques employed to assess
and increase the estimatability of magnetic fields within our
proposed scheme.

IV. QUANTUM ESTIMATION IN DISCRETE-TIME
QUANTUM WALK

This section is divided into two parts. The first part
discusses the theoretical tools for estimating an unknown
parameter. We review concepts such as Fisher information
(FI), quantum Fisher information (QFI), and the Cramer-Rao
bound and discuss how we use them in our work. In the second
part, we state the main results of this paper and assess the
performance of our system in estimating B0.

A. Statistical tools for parameter estimation

The problem of quantum parameter estimation [48] is de-
scribed as follows: We have a quantum system that interacts
with some physical quantity with some unknown parameter,
say λ. Here, the unknown parameter λ = B0, B0 being the
magnitude of the static homogeneous magnetic field we aim to
detect. The system’s state depends on the unknown parameter
and is defined by the density matrix ρλ. Our aim is to estimate
the value of the unknown parameter (λ).

FIG. 4. The variance difference, �σ 2(B) [Eq. (11)], is plotted
for magnetic field vectors (ωn̂) mapped to position vectors of the
points on the spheres. In plots (a), (b), and (d) the coin parameter θ =
π/4 is used for the field of magnitudes ω = π/4, π/2, and 3π/4,
respectively. In plots (c) and (e), coin parameters θ = ω = π/2 and
θ = ω = 3π/4, respectively, are used.

One usually performs measurements on an ensemble of
copies of the system to estimate λ. The results form a random
sample: {x1, x2, . . . , xM}. The unknown parameter λ, is then
estimated by some data processing of the sample using a func-
tion of the form λ̂ = f (x1, x2, . . . , xM ), called the estimator
of λ.

The simplest way to characterize the quality of the estimate
is by calculating the root-mean-square error (RMSE) [49] of
the estimated value (λ̂) from the true value (λ) of the parame-
ter. The RMSE is given by

δλ̂M =
√

〈(λ̂ − λ)2〉 =
√

Var(λ̂) + [ b(λ̂)]2, (20)

where M is the number of measurements made, Var(λ̂) =
〈(λ̂ − 〈λ̂〉)2〉 is the variance, and b(λ̂) = 〈λ̂〉 − λ is the bias
of the estimator calculated over all possible random samples.
When the mean of the estimator 〈λ̂〉 is equal to the true value
of the parameter, i.e., when the estimator is unbiased, the
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FIG. 5. Distribution of quantum Fisher information over field magnitudes (ω) after 50 steps of DTQW. Initial spin state |+〉 = 1/
√

2(|0〉 +
|1〉) is used for the DTQW in all three plots at the top. Whereas a particle with initial spin state |0〉 or |1〉 is used for three plots at the bottom.
From left to right, magnetic fields in the x, y, and z directions are used.

RMSE becomes equal to the square root of the estimator’s
variance. The smaller the RMSE the better is the estima-
tion accuracy. Assuming that the estimator is asymptotically
locally unbiased, the lower bound on the RMSE is given by
the Cramer-Rao inequality

δλ̂M =
√

Var(λ̂) � 1√
MF (λ)

, (21)

where the quantity F (λ) is called the Fisher information. It is
defined as

F (λ) =
∫

dx p(x|λ)[∂λ ln p(x|λ)]2, (22)

where p(x|λ) is the conditional probability of getting an out-
come x when the value of parameter is λ.

In the quantum setting, the probability of getting xi as
the result of a measurement is given by p(xi|λ) = Tr[�iρλ],
where the set of operators {�i} satisfying

∫
dxi �i = 1, form

a positive operator-valued measure (POVM). When ρλ is a
pure state, �i is the projection operator (|xi〉 〈xi|) correspond-
ing to eigenvalue xi. When the eigenspectrum of an observable
is discrete, the Fisher information takes the form

F (λ) =
∑

i

[∂λ p(xi|λ)]2

p(xi|λ)
=

∑
i

(∂λTr[�iρλ])2

Tr[�iρλ]
. (23)

The above formula gives the Fisher information provided by
measurements related to POVM {�i} on a system described
by the density matrix ρλ. For different POVMs, one gets
different values of FI. This immediately demands finding
a POVM which maximizes Fisher information for a given
density matrix. We then get the so-called quantum Fisher
information (QFI) that theoretically gives the maximum in-
formation a system can provide about an unknown parameter.

Note that the POVM corresponding to QFI may not always
translate to a physically measurable observable.

To calculate QFI, a quantity called symmetric logarithmic
derivative (SLD) can be introduced satisfying the relation

1

2
(Lλρλ + ρλLλ) = ∂ρλ

∂λ
. (24)

Using SLD, quantum Fisher information [H (λ)] can be writ-
ten in the following form:

F (λ) � H (λ) = Tr[ρλL2
λ], (25)

where F (λ) is the FI. The SLD can be written in a simplified
form when one works with pure states. For pure states, we
have ρ2

λ = ρλ and hence, ∂λρλ = (∂λρλ)ρλ + ρλ(∂λρλ). Using
the last equation, SLD reduces to

Lλ = 2(∂λρλ). (26)

The inequality in Eq. (25) indicates that, to assess the per-
formance of measurements corresponding to a POVM in
estimating an unknown parameter, we can use the ratio

R = F (λ)

H (λ)
� 1. (27)

The closer the ratio is to 1, the higher the efficiency of the
POVM. In addition, assuming an unbiased efficient estimator
saturating Cramer-Rao Bound [Eq. (21)] is available, we can
use Eq. (21) and employ the RMSE to gauge the accuracy and
the precision of our estimation with respect to the true value
of the unknown parameter.
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B. QFI of the system and FI of particle’s position and spin
measurements after DTQW in the presence of a magnetic field

We begin by performing some calculations needed to com-
pute the QFI provided by our system. As mentioned before,
we assume that the direction (n̂) of the magnetic field is
already known, and the unknown parameter (λ) we want to
estimate is its magnitude, B0. The state of the walker after t
steps of DTQW in the presence of B is given by Eq. (14).
The partial derivative of the density matrix, ρB = |�B〉 〈�B|,
is then given by

∂B0ρB = |∂B0�B〉 〈�B| + |�B〉 〈∂B0�B| , (28)

where |∂B0�B〉 at some time step (t) can be written using
Eq. (14) as

|∂B0�B(t )〉 = 
̂pĈB |∂B0�B(t − 1)〉
+ 
̂p(∂B0 ĈB) |�B(t − 1)〉 . (29)

Sequentially substituting Eq. (29) in Eq. (28), Eq. (28) in
Eq. (26), and Eq. (26) into Eq. (25), we can calculate the QFI
provided by our system after t time steps.

Similarly, to calculate the FI provided by the position (PFI)
and spin (SFI) measurements, we use Eq. (23), replacing
the trace operator with partial trace over spin and position
states, respectively. Let us first discuss how the theoretical
maximum sensitivity of our magnetometer, provided by the
QFI, is spread over the magnetic field strengths.

QFI increases as total time steps (T ) increases irrespective
of what initial spin state (|s〉) and direction (n̂) of the magnetic
field is chosen. QFI is a periodic function with a period of
π . The variables on which the evolution of DTQW depends
are the initial spin state |s〉, the ratio of total time steps to the
boundary point of the lattice (T/a), and the coin parameter
(θ ). We now examine the effects of each variable on the QFI
distributions H (λ).

1. QFI of DTQW in presence of Bî [Hx(ω)]

Similar to their variance counterparts (σ 2
x ), points to where

QFI peaks can also be shifted when Bî is affecting the DTQW
(see Fig. 5). To shift Hx(ω) by an amount (�ω), change the
coin parameter (θ ) by the same value. Moreover, the maxi-
mum value of Hx(ω) gets doubled when |s〉 is changed from
|+〉 to |0〉 or |1〉. Keeping the total time steps (T ) fixed and
reducing the boundary points of the lattice (a) less than a
certain number N0 changes the nature of Hx(ω). This indicates
that if we do not reduce a less than N0, we can get the same
information about the unknown parameter, B0. Decreasing a
below N0 distorts Hx(ω) without raising its maximum value;
hence, it is of no potential use.

2. QFI of DTQW in presence of B ĵ [Hy(ω)]

When Bĵ is present, QFI [Hy(ω)], similar to its variance
cousin (σ 2

y ), can only be shifted in steps of π/2 (Fig. 5). Apart
from shifting Hy(ω) by a rigidly fixed amount, a change in
θ can reduce the height of its peak but cannot increase it. At
coin parameter θ = π/4, Hy(ω) becomes constant irrespective
of whether |+〉 or |0〉 or |1〉 is used as the initial spin state.
Again, decreasing boundary point a up to a fixed number N0

does not change Hy(ω). When a < N0, Hy(ω) gets distorted
without increasing its maximum value.

3. QFI of DTQW in presence of Bk̂ [Hz(ω)]

The peaks of Hz(ω) are fairly rigid. We cannot shift them
by changing the coin parameter θ (see Fig. 5). A change in
the value of θ only changes the value of Hz(ω), which shifts
the entire plot in the vertical direction with minor changes
in their forms. For |s〉 = |+〉 when T/a = 1 and θ = 0, we
get a surprisingly high and constant value of Hz(ω). For other
values of θ , when the spin state |+〉 is used, Hz(ω) takes
sinusoidal form similar to σ 2

z . When we use unsymmetrical
spin state |0〉 or |1〉, Hz(ω) becomes a constant function of ω

for all values of θ . Decreasing the boundary point a reduces
the maximum value of Hz(ω) and distorts its form.

The field magnitudes (ω = γ B0/2) where the QFI drops
to minimum values are tough to estimate. This is because the
Fisher information obtained by any measurement will be less
than the QFI [F (ω) � H (ω)]. However, for fields in the x di-
rection, owing to their shift property, we can reliably estimate
any magnitude by suitably shifting the peaks. For fields in the
y direction, however, the magnitudes where Hy(ω) drops to
minima cannot be precisely estimated.

4. FI provided by the spin and the position measurements

Having discussed the maximum theoretical efficiency of
our system, we assess how well our system estimates the un-
known parameter B0 by using the results of spin and position
measurements. We eliminated fields in the y direction as the
minima cannot be shifted; magnetic fields in the z direction
showed the highest QFI. However, neither the position FI nor
the spin FI show peaks higher than 1% of the peaks achieved
by PFI and SFI for Bî. Hence, detecting Bk̂ is less fruitful
than detecting Bî even though QFI provided by the first case
is higher (in one case) than the second. As a result, we will
exclusively discuss the Fisher information provided by spin
and position measurements when the magnetic field is in the
x direction.

Figure 6 shows that PFI [Fpx(ω)], as expected, can be
shifted by any desired amount by changing the coin parameter
θ . Again it comes as no surprise that using the initial spin state
|0〉 or |1〉 turns out to give higher maximum value of Fx(ω)
than when |+〉 is used [considering Hx(ω) attained higher
maximum value when |s〉 = |0〉 or |1〉 was used]. SFI Fsx(ω)
behaves in a similiar fashion. Its peaks can be shifted, |0〉 or
|1〉 gives higher maximum than |+〉. However, the maximum
value of Fsx(ω) is double of that of Fpx(ω). In particular,
F max

sx = 2F max
px = 2T 2, for DTQW of T time steps. The peaks

are sharper and further apart in Fsx (ω) than Fpx(ω) (see Fig. 6).
Thus, if we already know the possible magnitude of Bî (say
through some theoretical calculation or prior measurements)
and we need to verify the results with higher precision, we
measure the spin of the walker at the end of the quantum
walk. In contrast, when we want our system to be sensitive
to a broader range of magnetic field strengths, position mea-
surement is a better option.

Notice that, similar to Hx, the nature of Fpx(ω) and Fsx(ω)
do not change if we keep total time steps (T ) constant and
reduce the boundary points of our lattice (a) up to a fixed
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FIG. 6. Fisher information provided by position measurements
(Fpx , left panel) and spin measurements (Fsx , right panel) of the
particle undergoing DTQW with T = 50 is plotted against different
field magnitudes (ω). A ratio of total time steps to the boundary of
1D lattice (T/a) equal to 1 is used for the two plots in the top panels.
While T/a = 2 and T/a = 50 are used for the two plots in the middle
and the two at the bottom, respectively. In all cases, the particle
begins with initial spin state |1〉, magnetic fields in the x direction
are applied to the system.

amount N0 (N0 < T ). In Fig. 6, we show this by plotting
Fpx and Fsx for T/a = 1 (in the top panel) and T/a = 2 (in
the middle panel). The two sets of plots are identical even
though the boundary of the lattice is reduced from a = 50
to a = 25, keeping the total time steps unchanged (T = 50
in both cases). Estimating the parameter B0 with the same
precision but using a smaller lattice size saves considerable
space. We found that, when DTQW with T time steps is
being used, it is sufficient to use a lattice with boundaries at
−T/2 and T/2 to estimate the magnitude of a magnetic field
without losing any precision. The reasons are discussed in the
Appendix.

Finally, in Fig. 7, we show the ratio R of the Fisher infor-
mation to the quantum Fisher information [R = FI/QFI] to
assess the performance of our scheme for both position and
spin measurements. For position measurements (top panel,
Fig. 7), we get peaks close to one for the field magnitudes
where both Fpx and Hx dropped to the minimum. Therefore,
although these magnitudes seem to be optimally estimable,
one should tune the peaks with Rpx = 0.5 to be around those
field magnitudes that need to be precisely estimated. Because
at ω values where Rpx = 0.5, both Fpx and Hx are the highest.
Contrarily, for spin measurements (bottom panel, Fig. 7), the
field magnitudes, where Fsx and Hx attain the highest values

FIG. 7. Ratio of the Fisher information provided by position
measurement of the particle to the quantum Fisher information
(QFI), Rpx , is plotted against various magnitudes (ω) of the magnetic
fields (top). The ratio of spin Fisher information to QFI, Rsx , is
plotted (bottom). In all cases, magnetic fields in the x direction are
used. All plots are plotted after fifty steps of DTQW.

are also the points where their ratio Rsx = 1. Consequently,
spin measurements provide optimum estimability of the field
magnitudes where Rsx peaks. Moreover, the freedom to shift
the peaks to any desired field magnitude makes the scheme
robust and tunable.

C. Minimum RMSE in the estimation of magnetic field

As discussed, assuming an efficient unbiased estimator is
available, the inequality in Eq. (21) saturates. Thus, we can
calculate the RMSE using FI. Using the peak values of PFI
(F max

px ) and SFI (F max
sx ) turning the inequality in Eq. (21) into

an equality, the RMSE in estimating ω using position mea-
surements takes the form

δω = 1

T
√

M
. (30)

Note that δω = γ (δB)/2 and γ = gsμB/h̄, where is gs is
the gyromagnetic ratio, μB is the Bohr magneton. Say we
use an electron with gs = −2.0023 undergoing DTQW of
total time steps 50 over a 1D lattice of size 51 (a = 25).
We align the system such that the magnetic field takes the x
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direction with respect to the system. Using a single position
measurement (M = 1) and an efficient unbiased estimator, we
can estimate the magnitude of the field with the RMSE in the
estimate of the order 0.1 picoTesla.

V. CONCLUSION

In this work, we studied the effects of homogeneous
magnetic fields on a spin-half particle undergoing DTQW.
The study supports the use of DTQW of the spin-half particle
as a magnetometer for detecting and estimating magnetic
fields. In our study we showed that magnetic fields affect
the multipath interference of a particle undergoing DTQW.
We used the variance of the position probability distributions
to examine the effects of the magnetic fields. We found
that variance is distributed periodically over the magnetic
field’s magnitude and shows different natures for fields in
different directions. In particular, for magnetic fields in the
x direction, the variance plots can be shifted by changing
the parameter of the coin operator evolving the walk.
We found that the direction of the magnetic field, maximally
affecting the quantum walk, changes with the field magnitude.
Furthermore, using the shift property of magnetic fields in the
x direction, by suitably changing the coin parameter, we can
make the x direction the maximally affecting direction for all
magnitudes. However, doing that required turning the coin
operator to the identity operator which impedes the multipath
interference otherwise provided by DTQW and reduces the
estimatability of the field magnitude.

Therefore, we turned our attention to assessing how well
our system can estimate the strengths of magnetic fields. We
used QFI to study the maximum sensitivity of our system. We
also examined whether the position and spin measurements
of the particle can be used to estimate the magnitude of the
field. The plots of position and spin Fisher information (PFI
and SFI, respectively) showed that this indeed is possible. The
Fisher information plots showed peaks around some specific
field magnitudes, suggesting that they are more efficiently es-
timatable than the other magnitudes. In addition, we observed
the shift property of fields in the x direction for FI plots as
well, which allows us to shift the peaks of the PFI and SFI
plots to any desired magnitude of the magnetic field. This
showed that our system, as a magnetometer, can be tuned to
detect desired magnetic fields by simply changing the coin
parameter used in the DTQW. Furthermore, high values of FI
or QFI ratios indicated that carefully selecting the coin param-
eter (θ ) maximizes the information extraction about the field’s
magnitude from the DTQW of the particle. In particular, when
calculations were done for an electron undergoing DTQW of
50 time steps, i.e., using the system for 50 seconds, the RMSE
in the estimate calculated using a single position measurement
was of order of 0.1 picoTesla. Two leading candidates for
detecting weak magnetic fields are magnetometers utilizing
nitrogen-vacancy (NV) centers in diamond, boasting sensitiv-
ities of order of picoTeslas (15 pT/

√
Hz [13] for ensemble DC

magnetometry), and superconducting quantum interference
devices (SQUIDs), reaching sensitivities in the femtoTesla
range (1–7 fT/

√
Hz) [5] at the cost of cryogenic cooling. The

sensitivity of our scheme, contrastingly, depends on the time
steps of DTQW and the number of measurements and can

hence be further improved by using an ensemble of magne-
tometers (increasing M) for higher time intervals (increasing
T) [Eq. (30)] without possibly needing cryogenic cooling.

Detection is limited to static homogeneous magnetic fields.
One way to overcome this shortcoming is that, when a unidi-
rectional inhomogeneous magnetic field is present, one can
use several setups to detect the magnetic field strengths at dif-
ferent points. Reliable detection of the direction of magnetic
fields is also a challenge. Moreover, Eq. (30) clearly shows
that, by using the DTQW of a single fermion, we can hit
the so-called standard quantum limit (SQL) having a 1/

√
M

dependence on the number of measurements. However, this
limit is beaten by the ultimate quantum limit of precision:
the Heisenberg limit [53]. Contrary to SQL, the Heisenberg
limit has 1/M dependence and can be achieved by care-
fully choosing entangled states that exhibit strong correlations
among the particles. Through this work, we achieved the SQL
of precision in estimating magnetic fields by using quantum
interference and entanglement of the spin and position of
a fermion provided by DTQW dynamics. The entanglement
between position and spin allowed us to effectively estimate
the magnetic fields’ magnitudes by measuring the particle’s
position or spin. Meanwhile, future research ventures utilizing
multifermion configurations, meticulously crafted entangled
states, and tailored measurement protocols can be potentially
explored to unlock the Heisenberg limit within the DTQW
framework. If we can surmount the experimental challenges
to make a suitably small setup, this magnetometer has the
potential to be used in vast arenas wherever magnetic field
strengths are required to be estimated with ultrahigh precision.
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FIG. 8. Position PD histograms for unbounded (left panels) and
bounded (right panels) DTQW after 50 time steps. Initial spin state
|+〉 is used for both plots in top panels while |1〉 is used for the rest.
Position PD histograms of bounded DTQWs are obtained by folding
that of the unbounded DTQWs about a verticle line at x = ±25.5
units along the x axis.
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APPENDIX: EFFECT OF LATTICE SIZE

We observed that the nature of QFI and PFI remained
unchanged when we decreased the lattice boundaries a up
to a certain number N0. We will discuss the reasons in this
Appendix. In a bounded DTQW, the walker’s superposition
terms hitting the bounds (±a) get reflected. This occurs due
to the structure of the shift-operator [Eq. (7)] evolving the
bounded walk. From Fig. 8, we observe that the position PD
histogram of the unbounded walk folds inwardly from verticle
lines at x = a + 0.5 and x = −a − 0.5 to give the bounded
walk position PD. Equivalently, the probability amplitudes of
the bounded walk [pB(x)] and the unbounded walk [pinf (x)]

are related as pinf (x = a + k) = pB(x = a − (k − 1)) when
all parameters are kept identical for both kinds of walks.
Figure 8 further illustrates this: showing the probability val-
ues by putting a = 25 and k = 19 for both variants. In an
unbounded DTQW with even T , the probability amplitudes
at odd position spaces are zero. When we keep a an odd
number, the unbounded walk folds in the following manner:
the probability values at even sites beyond the bounds (±a)
goes to the odd sites between them. For DTQW with even T ,
the smallest safest bound that accomplishes this task is T/2.
Consequently, the position PD of the bounded walk formed in
this manner contains the same information present in that of
the unbounded version (see Fig. 6).
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