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A major current challenge in solid-state quantum computing is to scale qubit arrays to a larger number of
qubits. This is hampered by the complexity of the control wiring for the large number of independently tunable
interqubit couplings within these arrays. One approach to simplifying the problem is to use a qubit array with
fixed Ising (ZZ) interactions. When simultaneously driving a specific subset of qubits in such a system, the
dynamics are confined to a set of commuting su(2) subalgebras. Within these su(2)s we describe how to perform
X-gates and π

2 ZZ rotations robustly against either leakage, which is the main source of error in transmon qubits,
or coupling fluctuations, which is the main source of infidelity in flux or semiconductor spin qubits. These gates
together with virtual-z gates form a universal set of gates for quantum computing. We construct this set of robust
gates for two-edge, three-edge, and four-edge vertices, which compose all existing superconducting qubit and
semiconductor spin qubit arrays.

DOI: 10.1103/PhysRevA.109.032605

I. INTRODUCTION

Full-scale quantum computing requires a large number of
logical qubits, which consist of even more physical qubits
combined through error-correcting codes. For these error-
correcting codes to succeed at arresting errors, the infidelity
of the physical qubit operations must be upper-bounded by
a threshold value, estimated to be between 10−4 and 10−2,
depending on the specific code [1–3]. One- and two-qubit op-
erations have reached this range of infidelities in many types
of qubits, such as trapped ion [4–7], semiconductor electron
spin [8–13], and superconducting qubits [14–17]. However,
it remains a challenge to scale up these systems to a large
number of qubits while maintaining subthreshold infidelities.

Scaling qubit arrays made from electron spins confined by
quantum dots in semiconductor devices is promising because
of the existing semiconductor industry [18,19]. However,
maintaining high fidelity in large semiconductor spin arrays is
difficult in part because of charge noise, capacitive crosstalk
between all of the barrier gates that control the exchange
coupling, and variability in the dynamic range of the exchange
between different pairs [20]. Examples of existing arrays con-
sist of four to six qubits in a linear chain or square array
[21–23]. Meanwhile, the arrays of superconducting qubits
from IBM [24,25] and Google [26] already contain on the
order of 100 qubits. However, this is still small compared
to the estimated number of physical qubits needed for prac-
tical problems—on the order of a million [3]. Qubit arrays
with tunable two-qubit coupling require calibration of each
coupling [27]. Additionally, they can suffer from residual ex-
change, although this can be mitigated using modified driving
techniques [28].

In both the semiconductor spin qubit case and the super-
conducting qubit case, using fixed coupling arrays can help
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circumvent these difficulties while lowering fabrication over-
head for coupling controls [29]. The tradeoff to using fixed
coupling is that implementing a universal set of gates with
a coupling that cannot be turned off is not trivial. However,
by driving a specific subset of qubits in a fixed Ising (ZZ)
coupling array, the Hamiltonian decomposes into a set of
commuting su(2) subalgebras. Reference [30] shows how to
create a universal set of gates in a chain and honeycomb array
of qubits in the absence of error using this decomposition.
A universal set of gates robust against coupling and ampli-
tude fluctuations for a honeycomb array of flux qubits has
been numerically found [29] using a similar decomposition.
This is a logical choice since the main source of infidelity
in flux qubits is flux noise that causes fluctuating coupling
[31]. Similarly, the main source of infidelity in semiconductor
spin qubits is charge noise, which also causes fluctuations in
coupling strength [32]. However, the main cause of infidelity
for fast gating of transmon qubits is leakage [33]. Therefore,
in this paper, we show how to use this decomposition to
create a universal set of gates that is robust either to coupling
fluctuations or leakage for any commonly used qubit array
structure.

This work is structured as follows. First in Sec. II, we
explain the method for decomposing the arrays into two-edge,
three-edge, and four-edge vertices. In Sec. III we describe the
numerical method for creating gates robust to coupling fluc-
tuations or leakage. Then in Sec. IV A we present a universal
set of gates robust to fluctuations in coupling for each type of
vertex, while in Sec. IV B we present a universal set of gates
robust to leakage. We summarize and conclude in Sec. V.

II. HAMILTONIAN

To make use of the Hamiltonian decomposition in
Ref. [30], Ising coupling is required for each type of qubit
array. Therefore, we begin this section by deriving Ising
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coupling for each type of qubit array. Then the general qubit
Hamiltonian used for the optimization is found. Finally, the
choice of universal gate set for this Hamiltonian is discussed.

A. Ising coupling for semiconductor spin qubits

Ising coupling can be directly implemented in a semicon-
ductor spin qubit device through the exchange interaction.
The exchange interaction is the simplest two-qubit interac-
tion in these devices and comes from the overlap of the
electron wave functions of neighboring qubits [34]. Scaling
this interaction to a large number of qubits is conventionally
achieved by placing dots close to each other in an array
and controlling the overlap of their wave functions with
barrier gates [21–23], but other scaling methods exist [35].
Although next-nearest-neighbor interactions have been mea-
sured for the standard operating regime, we assume they are
negligible [36]. The Hamiltonian terms that result from the
exchange interaction have the form J

4 (XX+YY+ZZ), which
can be derived using a Schrieffer-Wolff transformation on the
Hubbard model [37,38]. After applying the rotating-wave ap-
proximation (RWA) in the presence of a large Zeeman energy
difference (i.e., a Hamiltonian term of the form ZI-IZ), only
the ZZ term is left. Single-qubit driving is usually achieved
through electron spin resonance (ESR) or electron dipole spin
resonance (EDSR), but other novel methods exist as well
[39,40]. Additionally, we assume the driving phase can be
changed freely such that virtual-z gates can be implemented
[41].

The largest source of infidelity in silicon semiconduc-
tor spin qubits is charge noise. Charge noise causes voltage
fluctuations, which results in 1/ f frequency-dependent fluc-
tuations in the exchange J [42]. Gates robust to quasistatic
J fluctuations also perform well against 1/ f frequency-
dependent J fluctuations. Therefore, a set of gates robust to
quasistatic J fluctuations will be optimized in this work. A
smaller source of infidelity in purified silicon semiconductor
qubits is fluctuating Zeeman energy caused by charge noise.
If the dependence of Zeeman energy on voltage is known, it
could also be taken into account in the optimization, but we do
not need to do so because the effect is small: For a typical volt-
age fluctuation of 10 µV, the Zeeman energy fluctuates about
10−4 MHz while the exchange fluctuates about 10−3 MHz,
assuming a g-factor sensitivity �g = 0.002/V [43] and the
device parameters from Ref. [44].

B. Ising coupling for transmon or flux qubits

Although different types of couplings result in Ising cou-
pling between superconducting qubits, this section derives ZZ
interaction for inductive coupling because of its simplicity.
Inductive coupling can be modeled by Hamiltonian terms pro-
portional to sin(φ1 + ϕ) sin(φ2 + ϕ), where φi is the phase of
the ith qubit and ϕ is the external flux [45]. At ϕ = π

2 this cou-
pling is −(φ2

1 + φ2
2 ) + φ2

1φ
2
2 + 1/144(φ4

1 + φ4
2 ) if expanded

to fourth order in φi. The φ2
i and φ4

i terms are an effective
adjustment of the resonant frequencies and anharmonicities,
respectively. The φ2

1φ
2
2 term results in Ising coupling in the

logical subspace. Additionally, using the RWA, the inductive

coupling between leakage states is negligible in the frame
rotating with the qubit frequencies.

Ising coupling between superconducting qubits can also
be created by using a transmon element as a coupler [46].
Alternatively, Ising coupling can be derived by applying a
Schrieffer-Wolff frame transformation to direct capacitive
or resonator-mediated coupled superconducting qubits [47].
However, single-qubit driving in the original frame of that
method ends up driving both qubits in the transformed frame.
Therefore, in that case, the driving method and device param-
eters would need to be carefully tuned such that the driving
in the transformed frame is on one qubit and the decompo-
sition from Sec. II D still works. Additional sources of static
ZZ coupling between qubits from higher qubit levels would
only change the strength of the coupling [48]. Scaling fixed
Ising coupled superconducting arrays using capacitive or in-
ductive coupling elements should be simpler compared to
conventional scaling of transmon arrays using coupling ele-
ments that are tuned during operation.

The main source of infidelity for flux qubits is fluctuations
in the magnetic flux called flux noise. Fluctuations in the
magnetic field result in fluctuations of the coupling strength,
J , when using inductive coupling. Additionally, these fluctu-
ations are approximately 1/ f frequency-dependent [49]. This
means that a solution that is robust against quasistatic J fluc-
tuations will perform well against both flux noise and charge
noise. For this reason, we only need to theoretically find one
set of gates robust to J fluctuations, which can then be applied
to either superconducting flux qubits or silicon semiconductor
spin qubits.

The main source of infidelity for transmon qubits is leak-
age. Taking the first leakage level into account leads to
modified decomposition in terms of a set of su(3) Hamiltoni-
ans. For the modified decomposition, we design a set of gates
robust to leakage rather than J fluctuations.

C. Types of vertices

We represent a qubit array in terms of a graph of vertices
(qubits) and undirected edges (coupling links). Any of the
standard 2D arrays currently used for quantum computing
can be represented using only two-edge, three-edge, and four-
edge vertices, as depicted in Fig. 1. The quantum computing
devices IBM has produced with transmon qubits [25] can be
constructed using the two-edge and three-edge vertices. The
square qubit arrays composed of semiconductor spin qubits
[21–23] or superconducting qubits [26] can be constructed
from two-edge vertices at the corners, three-edge vertices on
the edges, and four-edge vertices for all other qubits. There-
fore, it is sufficient to show how to create a universal gate set
within these three types of vertices for universal control of
qubit arrays.

D. Hamiltonian decomposition

The decomposition described in this section applies to any
qubit array with ZZ interactions between nearest neighbors
with the extra condition that the set of nearest neighbors is
disjoint from the set of next nearest neighbors for every qubit
in the array. Additionally, we assume single qubit control
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FIG. 1. The two-edge (left), three-edge (right), and four-edge
(bottom) vertices of which arrays are composed. k indicates the
driven center qubit, while the lines indicate the fixed interaction. The
center qubit’s ith nearest-neighbor qubit is labeled with nn(k, i).

is possible for every qubit as it is necessary for universal
quantum computation. The Hamiltonian, H , for this system
is

H =
N∑

i=1

�i

2
[cos(φi )Xi + sin(φi )Yi]

+ 1

2

N∑
i=1

ni∑
j=1

Jnn(i, j)

4
ZiZnn(i, j), (1)

where N is the number of qubits, �i and φi are the driving
strength and phase on the ith qubit, Xi is the x Pauli operator
on the ith qubit, ni is the number of nearest neighbors of
the ith qubit, nn(i, j) is the jth nearest neighbor of the ith
qubit, and Jnn(i, j) is the coupling strength between the ith
qubit and its jth nearest neighbor. Since the coupling terms
are counted twice, there is a factor of one-half in front of
the coupling sum. Additionally, the coupling coefficient J/4
is conventional for semiconductor spin exchange interaction,
whereas in the superconducting context this would typically
be denoted as simply J . As stated at the beginning of this
section, we are considering qubit arrays that can be decom-
posed into two sets of qubits where no two qubits in a given
set are directly coupled. Two such sets are shown in Fig. 2.
By locally driving only within one of these sets at a time, one
ensures that the part of the Hamiltonian involving operators
on a given qubit commutes with the rest of the Hamiltonian.
The whole Hamiltonian is thus a sum of mutually commuting
terms,

H =
∑

k

Hk, (2)

with

Hk = �k

2
[cos(φk )Xk + sin(φk )Yk]

+
n∑

j=1

Jnn(k, j)

4
ZkZnn(k, j), (3)

FIG. 2. Generic qubit array represented by dots where the cou-
pling between qubits is indicated by lines. Two sets of qubits needed
for the decomposition are shown in solid black and half-filled red.
The Hamiltonian decomposes into sets of commuting su(2) subalge-
bras when driving all red or black qubits.

where k runs only over the vertices in the driven set. The kth
term further decomposes into a set of 2n su(2) Hamiltonians,
where n is the number of neighbors the kth vertex has. The
resulting decomposition into su(2) Hamiltonians was shown
in Ref. [30] for two and three neighbors, and that result
generalizes to

Hk =
∑

�s
Hk,�s, (4)

where �s = (s1, s2, . . . , sn), si ∈ {+,−},

Hk,�s = 1

4

n∑
i=1

siJnn(k,i)Zk,�s + �k

2

(
n∏

i=1

si

)

× [cos(φk )Xk,�s + sin(φk )Yk,�s], (5)

and we have defined

Xk,�s = 1

2n
Xk

n∏
i=1

(Znn(k,i) + siInn(k,i) ), (6)

and likewise for Y and Z .
For transmon qubits, including the first excited leakage

state, |2〉, of each qubit slightly modifies Eq. (5) into the form

Hk,�s = 1

4

n∑
i=1

siJnn(k,i)Zk,�s + �k

2

(
IL
k,�s − ZL

k,�s
)

+ �k

2

(
n∏

i=1

si

)[
cos(φk )

(
Xk,�s + λ2X L

k,�s
)

+ sin(φk )
(
Yk,�s + λ2Y

L
k,�s

)]
, (7)

where λ2 is the ratio of the driving strength between the |1〉 ↔
|2〉 transition and the |0〉 ↔ |1〉 transition (which later will be
set to λ2 = 1 for the optimization), X L

k,�s is defined as in Eq. (6)
except that it acts on the subspace formed by {|1〉 , |2〉} instead
of {|0〉 , |1〉}, and � is the anharmonicity.

Despite the always-on ZZ couplings, we can use this de-
composition to design a pulse that individually controls any
qubit. This decomposition also works for any coupling that
can be written as a direct product of local operators, excluding
identities.
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E. Universal gate set

A universal set of gates consisting of π
2 ZZ rotations, X-

gates, and arbitrary angle Z rotations are presented in this
work. Arbitrary angle Z rotations can be implemented virtu-
ally [41]. Nonrobust X-gates can be implemented analytically
by using square pulse sequences for two-edge and three-edge
vertices as shown in Ref. [30]. However, designing X-gates
robust to J fluctuations or leakage analytically would be very
challenging, so in this work we find them numerically with
smooth control pulses as described in Sec. III. ZZ rotations
between two specific qubits cannot be directly implemented
in the decomposed Hamiltonian since all couplings are on at
the same time. Nonetheless, it is possible to isolate a particular
ZZ coupling by echoing out any unwanted ZZ rotations with
X-gates on the untargeted nearest-neighbor qubits.

In addition to performing the desired gate on a target qubit,
it is also necessary for the other qubits to remain in the same
state. In the absence of driving, idle qubits entangle through∑n

j=1 ZkZnn(k,i) rotations. In the absence of J fluctuations, it
is possible in principle to time the gates such that all the∑n

j=1 ZkZnn(k,i) evolution is a multiple of a local π ZZ rotation
which can be reversed using virtual-z gates. This method is
even possible in the presence of leakage because inductive
coupling does not cause leakage. However, this is only practi-
cal if the couplings in the array take only a small set of discrete
values. Furthermore, in the presence of J fluctuations, free
evolution of the coupling would lead to decoherence.

A more general approach is to create an identity gate by
performing an X-gate in the middle and at the end of the time
for which the qubit is desired to remain idle. This is because
any ZZ rotation in the first half would be canceled by the
echoed opposite sign rotation in the second half. Further, if
a qubit needs to be idle for a long time, it might be beneficial
for many echoes to be performed in a manner similar to Carr-
Purcell-Meiboom-Gill (CPMG) dynamical decoupling pulses
[50,51]. Additionally, the idle time needs to be at least as
long as the time to perform the two X-gates that implement
the identity gate. Alternatively, it is possible to find a robust
identity gate that takes the same time as the π

2

∑n
j=1 ZkZnn(k,i)

rotation and X-gates. This is the approach taken in Sec. IV A
for pulses robust to J fluctuations.

For pulses robust to leakage, only X-gates were optimized
because the Z-gates can be done virtually and the π

2 ZZ
rotations and identity gates can be implemented using X-
gate echoes. Therefore, for transmons, only X-gates robust
to leakage were optimized for each vertex. However, for flux
and semiconductor spin qubits, X-gates, identity gates, and
π
2

∑n
j=1 ZcZc,nn(c,i) rotations robust to coupling fluctuations

were optimized for each type of vertex.

III. NUMERICAL OPTIMIZATION METHOD

We find gates robust against J fluctuation or leakage by
numerically minimizing a cost function consisting of three
terms,

C = Cgate + Crobust + Cconstraint. (8)

The first term guides the gate produced to minimize its
trace infidelity with the desired target gate. Because of the

Hamiltonian decomposition, this term can be broken down
into the projections of the targeted gate into the distinct
SU(2)s generated by the su(2) subalgebras of Eq. (5). Al-
though there are a daunting 2n such terms for a vertex with
n neighbors, most of them are identical in the symmetric
case Jnn(k,i) = J , leaving only Np distinct SU(2) evolutions,
where Np = 3, 4, or 5 for a two-edge, three-edge, or four-edge
vertex respectively. Thus, we choose the cost function to be
the weighted average of the individual SU(2) trace infidelities,

Cgate =
Np∑
i=1

wi

[
1 −

∣∣∣∣1

2
Tr(Uc,iU

†
t,i )

∣∣∣∣
2
]
, (9)

where Uc,i is the gate resulting from the control pulse in
question in the absence of error, projected onto the ith SU(2),
and Ut,i is the target gate, also projected onto the same SU(2).
wi is the number of times the ith distinct SU(2) evolutions
occur in the full evolution.

To make a gate robust against quasistatic J fluctuations, we
use the first-order Magnus expansion. An error in the physical
coupling, δJnn(k,i), results in errors on all the decomposed
Hamiltonians of Eq. (5). For a small δJnn(k,i) the gate, Ui, can
be approximated as

Ui ≈ Uc,ie
iEi . (10)

Ei is the integral of the error Hamiltonian Hε,i = δJ�sZ�s in the
toggling frame, i.e., Ei = ∫ T

0 U †
c,iHε,iUc,idt . If Ei is minimized,

the gate is robust to errors δJ�s. In our case, the error Hamil-
tonians, J�si Z�si , appear within each su(2) and are independent
just as the physical errors δJi are assumed to be independent.
Therefore, to create a gate robust against J fluctuations, the
second term in the cost function is the weighted sum of the
square of the Frobenius norms of Ei,

Crobust = 0.3
Np∑
i=1

wi

∣∣∣∣
∫ JT

0
U †

c,i

(
τ

J

)
Z�siUc,i

(
τ

J

)
dτ

∣∣∣∣, (11)

where we empirically found the 0.3 weighting to give a good
compromise between noiseless gate fidelity (9) and robustness
(11) in Eq. (8). To account for leakage in transmon qubits,
we use the expanded su(3) Hamiltonians from Eq. (7), which
include the first leakage level. As stated in Sec. II B, inductive
coupling does not couple different subspaces to each other.
This means that the gate is robust to leakage as long as the gate
in the logical subspace, {|0〉 , |1〉}, is the desired gate. Since the
infidelity in Eq. (9) is defined for the logical space, optimizing
it leads to a leakage robust gate.

We optimize the driving strength, �(t ), and phase, φ(t ),
via the parametrization

�(t ) cos (φ(t )) =
m/2∑
n=1

an sin

(
nπt

T

)
,

�(t ) sin (φ(t )) =
m∑

n=m/2+1

an sin

(
nπt

T

)
. (12)

In Eq. (12) there are m free parameters, an, split over
the in-phase and quadrature parts of the driving field. This
parametrization intrinsically respects the physical considera-
tions of a limited bandwidth and a driving strength that starts
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and ends at zero. However, the physical constraint on available
driving strength is not built in, so we have included it via the
cost function,

Cconstraint = 0.003
1

T

∫ T

0
relu

[
1 −

(
�(t )

�max

)2
]

dt, (13)

where relu is the rectified linear unit function, and we
empirically found the 0.003 weighting to achieve a good
fidelity and robustness while staying below the maximum
driving strength. The evolution operator for each Hamilto-
nian was numerically solved in Julia with the BS5 solver
from the DifferentialEquations.jl package. The cost function
was minimized using the BFGS algorithm from the Optim.jl
package.

IV. RESULTS

The pulses presented in this section were optimized to
be robust either to leakage or J fluctuations for each type
of vertex. We report the fastest optimal pulses we found for
the two-, three-, and four-edge vertices. A similar perfor-
mance can also be obtained for longer pulse times, and when
dealing with a qubit array consisting of multiple types of
vertices, all gates could be performed in parallel by using
the same gate time for all the vertices, in which case that
time would be determined by whichever vertex has the most
neighbors.

A. Gates robust to J fluctuations

Here we consider systems in which the main cause of
infidelity is fluctuations of the interaction strength J . This
includes electron spin qubits in silicon quantum dots (whether
Si/SiO2 or Si/SiGe heterostructures), where the main source
of infidelity is charge noise, as well as fluxonium qubits,
where the main source of infidelity is flux noise. The pulse
times for the two-edge, three-edge, and four-edge vertices
are T = 4.5π/J , 6π/J , and 10π/J , respectively. The max-
imum driving strength used in this section, �max = 0.4J , is
consistent with semiconductor spin qubit experimental values
[12,22,52], while Ref. [29] used a much larger maximum driv-
ing strength relevant to superconducting qubits. The results in
this section can also be used for flux qubits by choosing J
appropriately.

The optimized weights of the sine series parameterizing
� cos(φ) and � sin(φ) are reported in the Ref. [53]. The
optimization for the identity gate and π

2 ZZ rotations for
every type of vertex resulted in nearly identical in-phase
and quadrature components of the driving field, effectively
driving the X+Y√

2
axis. The orientation of the X and Y axes

does not matter for these gates, therefore by changing the
driving phase by π

4 , these gates can be performed with single-
axis driving. The highest frequencies used in the optimized
gates for the two-edge, three-edge, and four-edge vertices are
40/(9π )J ≈ 1.5J , 30/(12π ) ≈ 0.8J , and 50/(20π )J ≈ 0.8J .
For J ∼ 10 MHz these frequencies are significantly lower
than the ∼100 MHz low-pass filters used in experiments
[44,54].

The trace infidelity of the n + 1 qubit gates, 1 − F , versus
quasistatic fluctuations of J for the different gates is shown in

FIG. 3. Top: Infidelity of the π

2 ZZ rotation, X-gate, and identity
gate for a chain vertex as a function of quasistatic fluctuations in
coupling strength, δJ , in units of the coupling strength J . Bottom:
Filter function of the same gates as a function of frequency ω in units
of the coupling strength J .

Figs. 3–5 for two-edge, three-edge, and four-edge vertices, re-
spectively. All these gates reach an infidelity below 10−5 in the
absence of any fluctuations and scale better than

∑n
i δJ2

nn(k,i)
versus quasistatic fluctuations. The dips in infidelity for some
low values of δJ in Figs. 3–5 are artifacts of some pulses
coincidentally working well with those particular constant δJ
values during the whole pulse, but these dips would disap-
pear upon more realistically averaging over a distribution of
exchange with standard deviation δJ .

However, in reality, charge and flux noise are not merely
quasistatic but have a roughly 1/ f frequency dependence.
Rather than averaging over a quasistatic distribution, we carry
out a more realistic analysis of the effect of frequency-
dependent noise on the gate infidelities using the filter func-
tion formalism [55]. The filter function, F (ω), is the Fourier
transform of the physical error Hamiltonians, Jnn(k,i)

4 ZkZnn(k,i),
in the interaction frame

F (ω) =
n∑

i=0

4n+1∑
j=0

Jnn(k,i)

2n+3
Tr

(
σ j

∫ T

0
eiωtU †

c ZkZnn(k,i)Ucdt

)
,

(14)
where σi is the ith basis matrix of SU(2n+1) formed from
Kronecker products of Pauli matrices. The filter functions as
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FIG. 4. Top: Infidelity of the π

2 ZZ rotation, X-gate, and identity
gate for a honeycomb vertex as a function of quasistatic fluctuations
in coupling strength, δJ , in units of the coupling strength J . Bottom:
Filter function of the same gates as a function of frequency ω in units
of the coupling strength J .

a function of frequency for the different vertices are shown in
Figs. 3–5. The infidelity as a result of noise spectral density,
S(ω), is calculated with 1 − F = 1

2π

∫ ∞
ωir

S(ω)F (ω)dω. We
take the power spectral density of charge or flux noise to have
the form

S(ω) =
{

A2
0/ω for ωir � ω � ωcutoff,

A2
0ωcutoff/ω

2 for ωcutoff � ω � ∞.
(15)

Using a calibration cutoff ωir = 10−3 Hz, a cutoff frequency
ωcutoff = 100 MHz and a 1 Hz variance A0 = 3 µV/

√
Hz for

charge noise results in an infidelity below 10−3 for all gates
for each vertex [42]. An additional fluctuation in the Zeeman
energy of 10−4 MHz would not result in an appreciable change
in infidelity for any of the gates shown.

B. Gates robust to leakage

As explained in Sec. II E, when leakage is the dominant
source of error, we only need to find a robust X-gate for all
three vertex types.

The device parameters used in this section are an anhar-
monicity of � = 300 MHz, an inductive coupling strength
of J = 30 MHz, and a maximum driving strength of �max =
300 MHz. These values have been reached in experiment

FIG. 5. Top: Infidelity of the π

2 ZZ rotation, X-gate, and identity
gate for a square vertex as a function of quasistatic fluctuations in
coupling strength, δJ , in units of the coupling strength J . Bottom:
Filter function of the same gates as a function of frequency ω in units
of the coupling strength J .

[56]. The optimized pulse shapes resulting in X-gates are
shown in Fig. 6. Creating an X-gate in the presence of
fixed coupling is nontrivial and requires a longer time than
it would if the coupling were not present. Gate times for
the two-edge, three-edge, and four-edge vertices are T =
3π/J , T = 5π/J , and T = 7π/J , respectively. This is still
considerably faster than the T ≈ 18/J it takes to implement
the nonrobust piecewise constant X-gate for a two-edge ver-
tex from Ref. [30]. Shorter nonrobust pulses could also be
created, but depending on the level of noise and decoher-
ence times, they could perform worse than the longer robust
pulses and would still have complex pulse shapes. Nothing
required for the pulses we present is beyond the level of
sophistication that is already necessary for scalable quantum
computing.

The X-gates reach an infidelity below 10−7 for each type
of vertex. However, the infidelities are very dependent on the
value of the anharmonicity. For a miscalibration in the anhar-
monicity of 5 kHz, an infidelity of around 10−3 is reached
for each of the optimized pulses. This would mean that the
anharmonicity would need to be measured with an accuracy
of 5 kHz to maintain a good infidelity. If the anharmonicity
is found by measuring the difference between the |0〉 ↔ |1〉,
|0〉 ↔ |2〉, and |1〉 ↔ |2〉 transition frequencies, which are

032605-6
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FIG. 6. Driving fields on the X operator, � cos(φ), and Y opera-
tor, � sin(φ), for X-gates that compensate for leakage in a two-edge
vertex (top), three-edge vertex (middle), and four-edge vertex (bot-
tom) in units of the coupling strength J as a function of time in units
of 1/J .

in the GHz range [57], a resonator with a quality factor
Q = 5 × 105 [58,59] would be needed to achieve a 5 kHz ac-
curacy in measuring the anharmonicity. The highest frequency
used in the two-edge, three-edge, and four-edge vertex pulses
is 50/(6π ) ≈ 2.7J , 100/(10π ) ≈ 3.2J , and 100/(14π ) ≈
2.3J , respectively. At J = 30 MHz these frequencies are be-
low the Gaussian filter width of 225 MHz used on the controls
in superconducting experiments [60,61].

V. SUMMARY AND CONCLUSION

To help scale qubit devices, we investigated semiconduc-
tor spin and superconducting qubit arrays with fixed Ising
coupling since they require less control wiring and calibra-
tion. Creating a universal set of gates for quantum computing
within such an array is not trivial because of the fixed cou-
pling. Therefore, we simplify the Hamiltonian by considering
driving on a specific subset of qubits of such an array that
results in a decomposition of the Hamiltonian into a set
of commuting su(2) subalgebras for each driven qubit. We
previously showed how to analytically create square pulse
sequences that result in a universal set of gates for a chain
or honeycomb array in Ref. [30]. Now, in this work, we
numerically found a universal set of gates robust to either
the main source of error in semiconductor spin and flux
qubits, namely fluctuating coupling, or the main source of
error in transmon qubits, namely leakage. In the latter case,
we only needed to optimize the robustness of X-gates, and
the rest of the universal set of gates could be constructed
by using these X-gates to form echo sequences for isolating
specific interqubit coupling terms and by combining them
with virtual-z gates to perform local rotations. In contrast,
in the presence of fluctuating coupling, we had to opti-
mize robust X-gates, identity gates, and π

2

∑n
j=1 ZcZc,nn(c,i)

rotations. In all cases, we optimized pulses for two-edge,
three-edge, and four-edge vertices, as shown in Fig. 1, so that
our pulses can be used in any currently common qubit array
structure.

We have explicitly shown that even in a qubit array with
fixed Ising coupling and only local control, it is possible to
create a universal set of robust, high-fidelity gates. This result
shows one particular path towards fault-tolerant control of a
scalable quantum computer.
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