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for solving nonlinear partial differential equations
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In 2020 and 2021, the author introduced quantum algorithms for solving the Navier-Stokes equations and
systems of nonlinear partial differential equations (PDEs), respectively. These algorithms make use of three
quantum oracles. In this paper, we show how all three oracles can be implemented as quantum circuits. We cost
the circuit implementations, determining their depth, width, and number of non-Clifford gates used as a function
of user-specified (i) error tolerances, and (ii) algorithm success probability. With these quantum oracle circuits
in hand, the quantum Navier-Stokes and PDE algorithms are now completely specified as quantum circuits.
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I. INTRODUCTION

More than 40 years ago, Feynman [1] argued that a quan-
tum computer (if one could be built) would be capable of
efficiently simulating the dynamics of a quantum system. This
is in stark contrast to the situation with a classical computer
for which such a simulation is an intractable problem, requir-
ing computational resources that grow exponentially with the
size of the quantum system. Following Feynman’s seminal
work, much subsequent research on quantum simulation has
focused on quantum systems as the simulation target.

Recent work [2,3] has pointed to a large new applica-
tion area for quantum computing: quantum simulation of
classical nonlinear continuum systems and fields. Simulating
such systems is also difficult for a classical computer, as
it requires solving systems of nonlinear partial differential
equations (PDEs). Important examples with substantial sci-
entific and economic interest are viscous fluids, plasmas, and
nonlinear optical media. Their simulation is the central task
of the trillion-dollar aerospace industry, the design of fusion
reactors, and determination of the performance of fiber-optics
communication systems, respectively. References [2] and [3]
showed that a quadratic speed-up is possible for these quan-
tum simulations.

Our focus in this paper will be on the quantum algorithms
introduced in Refs. [2,3]. The first finds solutions of the
Navier-Stokes equations which govern the motion of viscous
fluids [2], and the second, more generally, finds solutions of
systems of nonlinear PDEs [3]. We note that other quantum
algorithms for fluid dynamics [4–13] have been introduced,
though we will not consider them here. The algorithms in
Refs. [2,3] make use of three quantum oracles. In the fol-
lowing, we show how these oracles can be implemented as
quantum circuits.

To place these two quantum algorithms in context, we
note that they are the most recent in a line of extensions
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of the quantum phase estimation algorithm (QPEA) intro-
duced by Kitaev [14] in 1995. In 2000, Brassard et al.
[15] introduced the quantum amplitude estimation algorithm
(QAEA), whose computational engine is the QPEA, and they
showed how it could be used to determine the average value
of a Boolean function. In 2001 and 2002, Novak [16] and
Heinrichs [17], respectively, showed how the QAEA could
be used to find the average of a real-valued function, making
possible a quantum integration algorithm that approximates
the value of a definite integral. In 2006, Kacewicz [18] showed
how these quantum integration algorithms could be used as
the basis for a quantum algorithm for solving systems of
nonlinear ordinary differential equations (ODEs). Finally, in
2020 and 2021, Refs. [2,3] showed how Kacewicz’ quantum
ODE algorithm could be promoted to a quantum algorithm for
solving the Navier-Stokes equations, and systems of nonlinear
PDEs, respectively. We see that over a period of 26 years, the
QPEA, originally introduced to factor integers, has provided
the computational basis for a sequence of quantum algorithm
extensions, each building on its predecessor, that has made it
possible to solve a progressively larger family of important
applications.

The structure of this paper is as follows. In Sec. II we
briefly review the construction of the quantum PDE (QPDE)
algorithm. We shall see that it only uses a quantum computer
to approximate the value of definite integrals that arise as part
of its construction. We also briefly review Novak’s quantum
integration algorithm and the QAEA. This will allow us to
identify the three oracles used by the quantum PDE algorithm,
denoted O, Q, and �(Q), and to specify their action. It is these
actions that the oracle circuits must implement. In Secs. III,
IV, and V we present the oracle circuits for O, Q, and �(Q),
respectively. For each circuit, we show that it implements the
corresponding oracle action given in Sec. II, and we determine
its depth, width, and number of non-Clifford gates used as a
function of the user-specified error tolerances and algorithm
success probability. We stress that our goal in this paper is to
obtain circuit implementations for O, Q, and �(Q). We leave
to future work the tasks of making these implementations
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fault-tolerant and optimal. Finally, in Sec. VI we make closing
remarks, and in the Appendix we show how a multi-controlled
NOT gate can be implemented as a quantum circuit.

II. PRELIMINARIES

In this section, we summarize the construction of the
QPDE algorithm [2,3]. We describe the algorithm’s construc-
tion in Sec. II A, and we will see that it only uses a quantum
computer to evaluate definite integrals that arise in its con-
struction. Novak’s [16] quantum integration algorithm (QIA)
is used to evaluate these integrals, which we briefly describe
in Sec. II B. We shall see that it uses the QAEA to return an
approximate value for each integral. The QAEA is described
in Sec. II C, and we shall see that it, in turn, uses the QPEA
to determine the approximate value of the integral. As we
proceed through this section, we identify (i) the quantum
oracles O, Q, and �(Q) used in the QIA and QAEA; and
(ii) their action on quantum states. It is this action that will
be implemented by the oracle circuits presented in Secs. III,
IV, and V. Throughout this section, our goal is to present the
QPDE algorithm with sufficient detail to allow us to identify
the quantum oracles used. Other aspects of the algorithm such
as quantum speed-up can be found in Refs. [2,3].

A. QPDE algorithm

The task for the QPDE algorithm is to find an approximate
solution of a system of nonlinear PDEs,

∂U
∂t

= F[U, Ui, . . . , Ui1,...,in ], (1)

where the exact solution U(x, t ) is a d-component vector
field defined on (i) a spatial region D with boundary ∂D;
and (ii) a time interval 0 � t � T . The driver function F is
assumed to be nonlinear, and depends on U and its spatial
partial derivatives up to order n, where Ui = ∂U/∂xi; ...;
Ui1···in = ∂nU/∂xi1 · · · ∂xin . The solution satisfies (i) the initial
condition U(x, 0) = g(x), and (ii) a suitable set of bound-
ary conditions that might be of, say, Dirichlet, Neumann, or
Robin type. In Sec. SI-2 of the supporting information for
Ref. [3], we showed how systems of nonlinear PDEs contain-
ing time partial derivatives of order greater than 1 and/or a
nonautonomous driver function F[t, U, Ui, . . . , Ui1···in ] could
be reduced to the form given in Eq. (1). The QPDE algorithm
is thus applicable to a large family of systems of nonlinear
PDEs, which includes those typically encountered in science
and engineering applications.

At the coarsest level of description, the QPDE algorithm
consists of two steps.

Step 1. Replace the spatial continuum by a spatial grid,
while leaving the time t a continuous parameter. This reduces
the uncountable number of degrees of freedom of the PDE
solution at each time t to a finite number. Many methods
are available to implement the spatial discretization (finite
difference, finite element, spectral, finite volume, etc.). The
result of the spatial discretization is to reduce the system of
nonlinear PDEs to a system of nonlinear ODEs,

d

dt
U(I, t ) = f[U(I, t )], (2)

where the exact solution U is now only defined on the spatial
grid points I.

Step 2. Use a quantum algorithm for solving nonlinear
ODEs to solve Eq. (2). In Refs. [2] and [3] we used Kacewicz’
quantum nonlinear ODE algorithm [18], though any quantum
nonlinear ODE algorithm could be used instead. The initial
condition for Eq. (2) follows from that of the original system
of PDEs, where now g(x) is only evaluated at the grid points
I. Similarly, the boundary conditions on the solution of Eq. (2)
follow from those of the system of PDEs, only now evaluated
at the spatial grid points lying on the boundary. The QPDE
algorithm returns the approximate solution α(I, t ) found by
the quantum ODE algorithm as the approximate solution of
the system of nonlinear PDEs.

1. Quantum ODE algorithm

We briefly describe Kacewicz’ quantum ODE algorithm
[18]. For a more detailed presentation, see Ref. [18] and also
Refs. [2,3].

The task is to find an approximate, bounded solution α(t )
to the system of ODEs,

d

dt
U(t ) = f[U(t )], (3)

over the time interval 0 � t � T , and subject to the initial
condition

U(0) = α(0) = U0. (4)

The driver function f[U(t )] is assumed to be nonlinear and a
Hölder class function (see Sec. II A 2 for further discussion).

The construction of Kacewicz’ quantum ODE algorithm
breaks up into five steps.

(i) The algorithm begins by partitioning the time interval
0 � t � T into n primary subintervals by introducing n + 1
intermediate times t0 = 0, . . . , ti, . . . tn = T , where ti = t0 +
ih, and h = T/n. Let Ti = [ti, ti+1] denote the ith primary
subinterval.

(ii) Each primary subinterval Ti is further subdi-
vided into Nk = nk−1 secondary subintervals by introducing
Nk + 1 intermediate times ti,0 = ti, . . . , ti, j, . . . , ti,Nk = ti+1,
where ti, j = ti,0 + jh and h = h/Nk = T/nk . We denote the
jth secondary subinterval in the ith primary subinterval by
Ti, j = [ti, j, ti, j+1]. We explain how the parameters n and k are
assigned values in Sec. II A 2.

(iii) Kacewicz introduces n parameters {yi|0 � i � n − 1},
where yi is associated with the initial time ti of the ith primary
subinterval Ti. The parameter y0 is defined to be equal to the
ODE initial condition:

y0 ≡ U0. (5)

The remaining {yi|1 � i � n − 1} approximate the exact so-
lution at times ti: yi ≈ U(ti ). We explain how these parameters
are assigned values in step (v) below.

(iv) Within each secondary subinterval Ti, j , Taylor’s
method [19,20] is used to approximate the exact solution
using a truncated Taylor series about the initial time ti, j of
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the secondary subinterval Ti, j :

αi, j (t ) = αi, j (ti, j ) +
r∑

ν=0

1

(ν + 1)!

dνf
dtν

∣∣∣∣
αi, j (ti, j )

(t − ti, j )
ν+1

+ O(h̄r+2). (6)

The parameter r is chosen so that the O(h̄r+2) error is suf-
ficiently small. Thus αi, j (t ) approximates the exact solution
U(t ) in the secondary subinterval Ti, j . The approximate solu-
tion αi(t ) in the ith primary subinterval Ti is defined to be

αi(t ) = αi, j (t ), (7)

when t ∈ Ti, j . It is demanded that the approximate solution
αi(t ) be continuous throughout Ti. This requires that the ap-
proximate solutions for two adjacent secondary subintervals
be equal at their common boundary time

αi, j+1(ti, j+1) = αi, j (ti, j+1). (8)

Finally, it is required that the value of αi(t ) at the initial time
ti of the ith primary subinterval Ti = [ti, ti+1] be yi:

αi(ti ) = αi,0(ti,0) ≡ yi. (9)

Given yi, Eqs. (6), (8), and (9) allow the approximate solution
αi(t ) to be constructed throughout the primary subinterval Ti.
This follows since Eq. (9) gives the value of αi,0(t ) at the
initial time ti,0 = ti, which allows all the coefficients appear-
ing in Eq. (6) (when j = 0) to be evaluated. This then gives
αi,0(t ) throughout the secondary subinterval Ti,0. Equation (8)
then gives the initial value αi,1(ti,1) for αi,1(t ). This initial
value then allows αi,1(t ) to be constructed using Eq. (6), and
Eq. (8) then gives the initial value for αi,2(t ). Iterating this
procedure across all the secondary subintervals Ti, j gives αi(t )
throughout Ti as claimed. We see that once the parameters
{ yi | 0 � i � n − 1 } are known, we can determine the approx-
imate solutions for all of the primary subintervals { αi(t ) | 0 �
i � n − 1 }. They then allow the approximate solution α(t ) to
the system of ODEs to be determined by defining

α(t ) = αi(t ) (10)

when t ∈ Ti.
(v) At this point in the algorithm only y0 is known. To de-

termine the remaining parameters {yi|1 � i � n − 1}, Eq. (3)
is integrated over the primary subinterval Ti = [ti, ti+1], giving

U(ti+1) = U(ti ) +
∫ ti+1

ti

dt f[U(t )]. (11)

Kacewicz then adds and subtracts the integral of f[αi(t )] to
Eq. (11) to obtain

U(ti+1) = U(ti )

+
∫ ti+1

ti

dt f[αi(t )]

+
∫ ti+1

ti

dt { f[U(t )] − f[αi(t )] }, (12)

which is still exact. To obtain a relation between the {yi} he
makes two approximations. First, recalling that U(ti ) ≈ yi, he
replaces U(ti+1) and U(ti ) with yi+1 and yi, respectively, in

Eq. (12). Second, he discards the third term on the right-hand
side (RHS) of Eq. (12) since it is small. Eq. (12) becomes

yi+1 = yi +
∫ ti+1

ti

dt f[αi(t )], (13)

with 0 � i � n − 1. Finally, the integral over Ti is broken up
into a sum of integrals over secondary subintervals Ti, j , and he
makes the change of integration variable t = ti, j + h̄τ in each
secondary subinterval, giving

yi+1 = yi + Nk

Nk−1∑
j=0

h̄

Nk

∫ 1

0
dτ f[αi, j (t (τ ))]. (14)

Given yi and the integrals over the secondary subintervals,
Eq. (14) determines yi+1. This allows the {yi} to be de-
termined iteratively. The iteration begins with the primary
subinterval T0 where we have y0 = U0 [see Eq. (5)]. As noted
above, knowing y0 allows the { α0, j (t ) | 0 � j � Nk − 1} to
be determined, and thus α0(t ). This then determines the in-
tegrands appearing in Eq. (14) for i = 0. Once the integrals
are evaluated, Eq. (14) determines y1. We can now repeat
this procedure. Knowing y1 determines the { α1, j (t )}, and thus
α1(t ). This determines the integrands for Eq. (14) when i = 1.
Evaluating the integrals and adding the result to y1 determines
y2. In this way, the algorithm steps through all the primary
subintervals. Along the way, the approximate solutions for the
primary subintervals { αi(t ) | 0 � i � n − 1} are determined,
which then give the approximate solution α(t ) of the system
of ODEs through Eq. (10).

Kacewicz uses a quantum integration algorithm to evaluate
the integrals over the secondary subintervals. It is important
to appreciate that this is the only task in Kacewicz’ quantum
ODE algorithm (and thus also in the QPDE algorithm) that re-
quires a quantum computer. In Sec. II B we focus on Novak’s
QIA [16], showing how it is constructed, and meeting the first
of our quantum oracles.

2. Loose ends

Here we make good on two promises made in the above
discussion. (a) We define Hölder class functions, and (b) we
explain how the time partitioning parameters n and k are
assigned values.

(a) As noted above, we consider nonlinear driver functions
f[U(t )] ≡ F(t ) that are Hölder class functions. Such a driver
function belongs to one of a family of function spaces {Cr,ρ }
parametrized by r and ρ [21]. Elements of Cr,ρ are contin-
uously differentiable up to order r, with the rth derivative
satisfying the upper bound,∥∥∥∥drF(t )

dtr
− drF(t ′)

dtr

∥∥∥∥ < C
∣∣t − t ′∣∣ρ, (15)

where the Hölder exponent ρ satisfies 0 < ρ � 1. Kacewicz
showed that for Hölder class driver functions, the error in the
approximate solution α(t ) returned by his algorithm satisfies

ε = sup
0�t�T

‖ U(t ) − α(t ) ‖ = O(1/nαk ) (16)

with probability 1 − δ. Here n is the number of primary subin-
tervals; k is related to the number of secondary subintervals
in a primary subinterval: Nk = nk−1, αk = k(q + 1) − 1, and
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q = r + ρ. To achieve this performance, the error ε1 in the
result returned by the QAEA (see Sec. II C) must satisfy

ε1 = 1/nk−1, (17)

and the QAEA success probability 1 − δ1 must satisfy

1 − δ1 = ( 1 − δ )1/nk
, (18)

where δ is the failure probability defined below Eq. (16).
(b) Here we explain how n and k are assigned values.

Because Kacewicz’ algorithm is an explicit algorithm, the
smallest timescale h̄ must be less than the Courant-Friedrichs-
Lewy (CFL) time 
tCFL if simulation of the algorithm is to
be stable [22]. For an example of how 
tCFL is calculated, see
Sec. SI-5E in the supplementary information of Ref. [2]. Let
Ntot be defined by the relation T = Ntot
tCFL, where T is the
run-time of the quantum algorithm. In Kacewicz’ time parti-
tioning, a total of nk secondary subintervals of duration h̄ are
introduced so that T = h̄nk . Equating these two expressions
for T gives

h̄


tCFL
= Ntot

nk
. (19)

We require h̄/
tCFL < 1 so that the time partition is compati-
ble with the CFL stability criterion. We choose n and k so that
this is true. To that end, we solve Eq. (17) for k:

k = 1 + �log2 (1/ε1)/ log2 n�, (20)

where �x� is the smallest integer greater than x. We use the
following iterative procedure to assign values to n and k. First,
we choose values for Ntot and ε1, and we make an initial guess
nin for n. Set n0 = nin and use Eq. (20) to determine k0 using
n0 for n. Then evaluate the ratio Ntot/nk0

0 . If the ratio is less
than 1, then Eq. (19) gives h̄/
tCFL < 1 and we accept n0

and k0 as n and k. Otherwise, increment ni = ni−1 + 1 and
determine ki using Eq. (20). Then determine the new ratio
Ntot/nki

i and repeat this procedure until the current value of
Ntot/nka

a is less than 1 for the first time. Accept na and ka as n
and k and use these values to partition the time interval [0, T ]
as described in Sec. II A 1.

B. QIA

We saw in Sec. II A that the QPDE algorithm only uses a
quantum computer to evaluate definite integrals [see Eq. (14)]
of the form

I =
∫ 1

0
dτ f (τ ), (21)

where we focus on a single component of the integrand
f[ αi, j (t (τ ))] in Eq. (14). Novak [16] and Heinrich [17] in-
troduced quantum algorithms that approximate the value of a
definite integral such as I using the QAEA [15]. The latter al-
gorithm requires 0 � f (τ ) � 1, which is not true for arbitrary
definite integrals for at least two reasons. First, the integration
domain [a, b] need not be [0,1]. This is easily rectified by a
linear transformation mapping [a, b] → [0, 1]. Second, f (τ )
may not be restricted to the range [0,1]. This too can be easily
dealt with. Since f (τ ) is assumed to be continuous over the
integration domain, it has bounded variation and so takes a
maximum (minimum) value fmax ( fmin) over this domain. We

introduce a new function g(τ ), which is a shifted and rescaled
version of f (τ ):

g(τ ) = f (τ ) − fmin


 f
, (22)

where 
 f ≡ fmax − fmin. By construction, 0 � g(τ ) � 1.
Solving Eq. (22) for f (τ ) and inserting the result into Eq. (21)
gives the relation

I = fmin + 
 f G, (23)

where

G =
∫ 1

0
dτ g(τ ). (24)

The definite integral G has the properties required for applica-
tion of the QAEA, and hence the QIA. We will use Novak’s
QIA to determine an approximate value for G, which then
[through Eq. (23)] gives an approximate value for the desired
integral I.

Novak’s QIA begins by replacing G by its Riemann
sum GR,

G → GR = 1

M2

M2−1∑
j=0

g(τ j ), (25)

where g(τ ) is evaluated at M2 uniformly spaced points in the
integration domain [0,1]. We write M2 to match the notation
used in Sec. III.

Novak introduced a quantum oracle O that encodes the
M2 values of g(τ ) appearing in the Riemann sum GR into
the quantum state of two registers. The first register contains
m2 = �log2 M2� qubits, while the second contains one qubit.
The oracle O acts on the initial state |ψ0〉:

|ψ0〉 = ( Hm2 ⊗ X )|0〉m2 ⊗ |0〉1

= 1√
M2

M2−1∑
j=0

| j〉m2 ⊗ |1〉1, (26)

where Hm2 denotes the Hadamard gate H applied transver-
sally to the qubits in the first register, and X is the one-qubit
Pauli X gate. A subscript m on a quantum state indicates that
it is an m-qubit state. In the following, this subscript will be
omitted when context makes clear its value. The computa-
tional basis states (CBS) { | j〉 | 0 � j � M2 − 1} for the first
register are

| j〉 = | j0〉 ⊗ · · · ⊗ | jm2−1〉, (27)

where j = ∑m2−1
k=0 jk2k . The action of O on |ψ0〉 is defined

to be

|ψ〉 = O |ψ0〉

≡ 1√
M2

M2−1∑
j=0

| j〉 ⊗ [
√

g(τ j )|1〉 + √
1 − g(τ j )|0〉].

(28)
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Introducing the normalized and mutually orthogonal states
|n1〉 and |n0〉,

|n1〉 = 1√
M2

M2−1∑
j=0

√
g(τ j )

ḡ
| j〉 ⊗ |1〉, (29)

|n0〉 = 1√
M2

M2−1∑
j=0

√
1 − g(τ j )

1 − ḡ
| j〉 ⊗ |0〉, (30)

allows |ψ〉 to be written as

|ψ〉 = √
a |n1〉 + √

1 − a |n0〉, (31)

where

ḡ = 1

M2

M2−1∑
j=0

g(τ j ), (32)

and direct calculation shows that

a = ḡ. (33)

Comparing Eqs. (32) and (25), we see that

a = ḡ = GR. (34)

Thus, determining a in Eq. (31) determines the desired ap-
proximation for the integral G, and hence for I [Eq. (23)]. As
we shall see in Sec. II C, given the state |ψ〉, the QAEA returns
an estimate for a, and thus for I. We discuss the error in this
estimate in Sec. II C.

C. QAEA

Here we briefly describe the QAEA. (i) We identify the
oracles Q and �(Q) introduced by the algorithm and present
their action on states (Sec. II C 1); and (ii) we relate the error
in the estimate returned by Novak’s QIA for the value of
a definite integral (Sec. II C 2) to the error in the estimate
returned by the QAEA for the value of the integral’s Riemann
sum.

1. Q and �(Q)

The QAEA [15] assumes the Hilbert space H partitions
into two subspaces H1 and H0 referred to as the “good”
and “bad” subspaces, respectively. It also assumes a quantum
algorithm A exists that implements the unitary operator A,
whose action on the |0〉 CBS produces a state |ψ〉 of the form

|ψ〉 = A|0〉
= √

a|n1〉 + √
1 − a|n0〉. (35)

Here, (i) |n1〉 and |n0〉 are normalized, orthogonal states, with
|n1〉 (|n0〉) belonging to the good (bad) subspace H1 (H0);
and (ii)

√
a is the amplitude that a measurement of |ψ〉 in the

computational basis (CB) will yield a good state. The task of
the QAEA is to return an estimate

√
ã of the amplitude

√
a,

and a bound on the error δa = |ã − a|.
To that end, a Grover-like operator Q is introduced whose

action on the two-dimensional subspace Hψ spanned by |n1〉
and |n0〉 is defined as

Q = UψUn0 , (36)

ψ

Λ

FIG. 1. Quantum circuit for the QPEA. The circuit acts on two
registers: the first contains m1 qubits, and the second contains m2 + 1
qubits. The first register starts in the |0〉 CB state and the second
starts in the state |ψ〉. The circuit first applies the quantum Fourier
transform to the first register, then the operator �(Q) is applied to
both registers. The inverse quantum Fourier transform is next applied
to the first register, and finally, the first register is measured in the CB.

where

Uψ = I − 2|ψ〉〈ψ | = A{I − 2|0〉〈0|}A−1, (37a)

Un0 = I − 2|n0〉〈n0|. (37b)

Direct calculation shows that Q rotates Hψ by an angle 2θa:

Q|n1〉 = cos 2θa|n1〉 − sin 2θa|n0〉, (38a)

Q|n0〉 = sin 2θa|n1〉 + cos 2θa|n0〉, (38b)

where
√

a ≡ sin θa and 0 � θa � π/2. With this definition,
the task of estimating

√
a reduces to estimating the angle θa.

The QAEA uses the QPEA [14] to estimate θa. The circuit for
the QPEA appears in Fig. 1.

The QPEA circuit acts on two registers, the first contain-
ing m1 qubits, and the second containing m2 + 1 qubits. We
explain how m2 and m1 are determined in Secs. III and IV,
respectively. The initial state |ψ〉 for the second register has
the form appearing in Eq. (35). The circuit first applies the
quantum Fourier transform to the first register; then it applies
the operator �(Q) to both registers; next the inverse quantum
Fourier transform is applied to the first register; and finally,
the first register is measured in the CB.

The operator �(Q) has the following action on the two-
register CB states:

�(Q) | j〉m1 ⊗ |k〉m2+1 = | j〉m1 ⊗ Q j |k〉m2+1. (39)

�(Q) thus applies Q to the second register j times when the
first register is in the CB state | j〉.

The QAEA thus makes use of the two related oracles Q
and �(Q), as well as the oracle A used to prepare the state |ψ〉
[Eq. (35)]. As seen above, the QPDE algorithm uses Novak’s
oracle O to prepare the state |ψ〉 [Eqs. (28) and (31)], which
has the form appearing in Eq. (35):

|ψ〉 = O(Hm2 ⊗ X ) |0〉m2 ⊗ |0〉1

= √
a|n1〉 + √

1 − a|n0〉, (40)

with |n1〉 and |n0〉 defined in Eqs. (29) and (30), respectively.
Thus Novak’s QIA prepares the state |ψ〉 using the operator

A = O(Hm2 ⊗ X ). (41)
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Equations (28), (38)–(39) thus specify the action of the oracles
O, Q, and �(Q), respectively. Quantum circuits implementing
these actions appear in Secs. III, IV, and V, respectively.

2. Error bounds

The QAEA provides an upper bound on the error δa =
|ã − a|,

δa � 2πk

M1

√
a(1 − a) +

(
kπ

M1

)2

, (42)

which is satisfied with probability 1 − δ1: (i) of at least 8/π2

when k = 1; and (ii) greater than 1 − 1/{2(k − 1)} for k � 2.
Here M1 = 2m1 and so the error δa decreases exponentially
with the number of qubits m1 (see Fig. 1). Note that, as
shown in Ref. [17], by running the QAEA multiple times, and
returning the median of the ã values found, the probability
1 − δ1 of satisfying the error bound can be brought arbitrarily
close to 1. See Sec. VI for further discussion.

For Novak’s QIA we saw that a = ḡ = GR [Eq. (34)]. If
g̃ denotes the estimate returned by the QAEA for ḡ, then
Eq. (42) gives the error δg ≡ |g̃ − ḡ|:

δg � 2πk

M1

√
ḡ(1 − ḡ) +

(
kπ

M1

)2

. (43)

For M1 � 1 and k = 1, this becomes

δg � 2π

M1
. (44)

If the desired error tolerance for δg is denoted ε1, then choos-
ing M1 > 2π/ε1 insures

δg < ε1 (45)

and so

δg = O(ε1). (46)

As we saw in Sec. II B, the QIA algorithm returns an estimate
of the definite integral

I =
∫ 1

0
dτ f (τ ). (47)

If we replace I by a Riemann sum IR,

IR = 1

M2

M2−1∑
j=0

f (τ j ) ≡ f̄ , (48)

then we have

I = IR + O(1/M2). (49)

The resulting discretization error

εd = |I − IR| (50)

is thus

εd = O(1/M2). (51)

Equation (23) relates I to the integral G of the shifted and
rescaled function g(τ ) [Eq. (24)],

I = fmin + 
 fG, (52)

and a similar relation holds for the Riemann sums,

IR = fmin + 
 fGR. (53)

Since IR = f̄ [Eq. (48)] and ḡ = GR, Eq. (53) can be
rewritten as

f̄ = fmin + 
 f ḡ. (54)

We define the estimate f̃ for f̄ in terms of the QAEA estimate
g̃ as

f̃ = fmin + 
 f g̃. (55)

Let δ f = | f̃ − f̄ | = | f̃ − IR|. Then, Eqs. (46), (54), and (55)
give

δ f = 
 f δg = O(ε1). (56)

The error δI ≡ |I − f̃ | in the estimate of I is then

δI � |I − IR| + ∣∣IR − f̃
∣∣ = εd + δ f . (57)

We see that the error δI in the value of the integral I is the
sum of (i) the discretization error εd due to replacing I by
a Riemann sum, and (ii) the QAEA error δ f = O(ε1) in the
estimate of the Riemann sum:

δI = O(εd ) + O(ε1). (58)

As will be seen in Sec. III, Eq. (58) will receive a third
contribution due to the necessarily finite resources present in
a quantum computer [see Eq. (75)].

III. IMPLEMENTING O

In this section, we present the circuit that implements
Novak’s oracle O. As we have seen, O’s action is to encode the
integrand values {g(τ j )} (of the integral whose approximate
value we desire) into the state of an m2 + 1 qubit register
[see Eqs. (24), (25), and (28)]. As we shall see below, it
does this using operators R and S, where R is a controlled-
rotation operator whose rotation angles produce the above
encoding [Eq. (80)]. Once O has acted, the register state is
|ψ〉 = √

a|n1〉 + √
1 − a|n0〉, where the approximate value of

the integral is stored in the squared amplitude a ≡ sin2 θa. The
QPEA is used to determine an approximate value for θa, and
thus of the desired integral.

The circuit for O is presented in Sec. III A, and that of
the operators R and S in Secs. III B and III C, respectively.
Section III D pulls together intermediate results from the
above sections to determine the resource requirements needed
to implement O.

A. Quantum circuit for O

As seen in Sec. II B, Novak’s QIA uses the QAEA to obtain
an estimate g̃ for the Riemann sum GR = ḡ,

ḡ = 1

M2

M2−1∑
j=0

g(τ j ), (59)

where the g(τ j ) are known. As seen in Eq. (28), the oracle O
encodes the g(τ j ) into the state |ψ〉. Since M2 is the number
of function evaluations appearing in Eq. (59), it sets the scale
for the computational work required to determine ḡ.
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Before introducing the circuit for O, some preliminary
remarks are in order.

1. Preliminaries

By construction, the values g(τ j ) satisfy 0 � g(τ j ) � 1.
This allows the introduction of angles γ̂ ( j),

cos

(
π

2
γ̂ ( j)

)
≡ √

g(τ j ) (0 � j � M2 − 1). (60)

By definition, 0 � γ̂ ( j) � 1, and so it has the binary
expansion

γ̂ ( j) = γ̂0( j)

(
1

2

)1

+ · · · + γ̂i−1( j)

(
1

2

)i

+ · · · . (61)

The coefficients γ̂i( j) are (i) binary variables (bits) taking
values of 0 or 1; and (ii) easily determined from γ̂ ( j).

Since computers, quantum or classical, have finite re-
sources, the binary expansion in Eq. (61) must be truncated to
a finite number of terms. Let γ̄ ( j) be the m3-bit approximation
of γ̂ ( j):

γ̄ ( j) ≡ γ̄0( j)

(
1

2

)1

+ · · · + γ̄m3−1( j)

(
1

2

)m3

, (62)

where γ̄i( j) ≡ γ̂i( j) for 0 � i � m3 − 1. From Eqs. (61) and
(62), the truncation error δγ̂ ( j) ≡ |γ̂ ( j) − γ̄ ( j)| satisfies

δγ̂ ( j) = O(1/2m3+1). (63)

For later purposes, we define M3 ≡ 2m3 so that

δγ̂ ( j) = O(1/M3). (64)

When implementing the quantum circuit for O, we must work
with γ̄ ( j) (finite resources again) instead of γ̂ ( j). Conse-
quently, we define

G(τ j ) ≡ cos2 π

2
γ̄ ( j) (65)

and

Ḡ ≡ 1

M2

M2−1∑
j=0

G(τ j ). (66)

Because we work with the γ̄ ( j), the oracle circuit for O will
produce the state |ψ〉 in Eq. (28), but with g(τ j ) → G(τ j ).
Following the discussion in Sec. II C, the QAEA will then
return an estimate G̃ for Ḡ with error

δG = |G̃ − Ḡ| = O(ε1), (67)

where ε1 > 2π/M1, M1 = 2m1 , and m1 is the width of the first
quantum register in Fig. 1. The error δg in the QAEA estimate
of the Riemann sum ḡ is then

δg = |G̃ − ḡ| � |G̃ − Ḡ| + |Ḡ − ḡ|. (68)

Defining δḡ ≡ |Ḡ − ḡ|, together with Eq. (67), Eq. (68) can be
rewritten as

δg � δG + δḡ. (69)

We can determine δḡ using Eqs. (59), (60), (65), and (66),

δḡ = 1

M2

∣∣∣∣∣∣
M2−1∑

j=0

{
cos2

(
π

2
γ̄ ( j)

)
− cos2

(
π

2
γ̂ ( j)

)}∣∣∣∣∣∣
� 1

M2

M2−1∑
j=0

|sin πγ̄ ( j)| π

2
δγ̂ ( j) + O(δγ̂ ( j))2. (70)

Let εγ denote the error tolerance for δγ̂ ( j). If M3 > 1/εγ ,
then Eq. (64) gives δγ̂ ( j) = O(εγ ), and so, from Eq. (70),

δḡ = O(εγ ). (71)

The error δG = |G̃ − G| in the estimate of the integral G
[Eq. (24)] now includes a contribution arising from the use
of γ̄ ( j) instead of γ̂ ( j). The result is

δG = |G̃ − G| � |G̃ − Ḡ| + |Ḡ − ḡ| + |ḡ − G| (72)

or

δG � δG + δḡ + εd , (73)

where εd ≡ |ḡ − G| is the discretization error due to replacing
G by the Riemann sum GR = ḡ. Using Eqs. (67) and (71) gives

δG = O(ε1) + O(εγ ) + O(εd ). (74)

As in the calculations following Eq. (52), a similar formula
holds for the error δI in the estimate of the integral I
[Eq. (21)]:

δI = O(ε1) + O(εγ ) + O(εd ). (75)

This error reduces to Eq. (58) when γ̄ ( j) → γ̂ ( j) as this
causes the O(εγ ) → 0.

As seen above, ε1 > 2π/M1, εd = O(1/M2) [Eq. (51)], and
εγ > 1/M3, so that

M1 = O(1/ε1),

M2 = O(1/εd ),

M3 = O(1/εγ ). (76)

Recalling that m1 = log2 M1, m2 = �log2 M2�, and m3 =
log2 M3, Eq. (76) gives

m1 = O( log2(1/ε1)),

m2 = O( log2(1/εd )),

m3 = O( log2(1/εγ )). (77)

From Fig. 1 and Eq. (77) we see that the widths m1 and
m2 + 1 of the two quantum registers appearing in the quantum
circuit for the QPEA are determined by the errors ε1 and εd ,
respectively. We shall see shortly that m3 is also the width of
a quantum register which, by Eq. (77), is determined by the
error εγ . We will return to these formulas in Sec. III D.

Finally, we use the binary coefficients {γ̄i( j)|0 � i � m3 −
1} with 0 � j � M3 − 1 to define the collection of CB states
|γ̄ ( j)〉m3 :

|γ̄ ( j)〉m3 ≡ |γ̄0( j)〉 ⊗ · · · ⊗ |γ̄m3−1( j)〉. (78)

These states play an important role in the remainder of this
section.
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FIG. 2. Quantum circuit for A. The operator O is Novak’s quan-
tum oracle, Hm2 denotes transversal application of Hadamard gates
to the qubits in the first register, and X is the Pauli X gate.

2. Quantum circuit

We have seen that for Novak’s QIA, the operator A used to
prepare the state |ψ〉 [Eqs. (40) and (41)] is

A = O( Hm2 ⊗ X ). (79)

The circuit for A appears in Fig. 2. Implementing A thus
reduces to implementing Novak’s oracle O. The circuit for O
appears in Fig. 3. The operator R is defined to have the action

R |γ̄ ( j)〉m3 ⊗ |1〉1

≡ |γ̄ ( j)〉m3 ⊗ U [γ̄ ( j)]|1〉
= |γ̄ ( j)〉m3 ⊗ [

√
G(τ j )|1〉1 + √

1 − G(τ j )|0〉1]. (80)

Here U [γ̄ ( j)] ≡ exp[i(π/2)γ̄ ( j)Y ], and Y is the Pauli Y op-
erator. In going from the first to the second line, we have used
Eq. (65) and

U [γ̄ ( j)]|1〉1 = cos
π

2
γ̄ ( j)|1〉1 + sin

π

2
γ̄ ( j)|0〉. (81)

The action for S is

S| j〉m2 ⊗ |0〉m3 ≡ | j〉m2 ⊗ |γ̄ ( j)〉m3 , (82)

where |γ̄ ( j)〉m3 was defined in Eq. (78).

FIG. 3. Quantum circuit for O. The operators R and S are defined
in the text. The second register is an ancilla register needed for
intermediate operations. It is disentangled from the other registers
by S−1 and discarded upon circuit completion. The operator U [γ̄ ( j)]
is defined in Eq. (87).

We saw in Sec. II B that Novak’s oracle O implemented the
action:

O

⎡
⎣ 1√

M2

M2−1∑
j=0

| j〉m2 ⊗ |1〉1

⎤
⎦

= 1√
M2

M2−1∑
j=0

| j〉m2

× ⊗ [
√

G(τ j |1〉1 + √
1 − G(τ j |0〉1], (83)

where g(τ j ) → G(τ j ), since we must work with γ̄ ( j) instead
of γ̂ ( j) (finite resources again). We now show that the circuit
in Fig. 3 implements this action. Suppressing the normaliza-
tion factor, the action of the circuit is

S−1RS

⎧⎨
⎩

M2−1∑
j=0

| j〉m2 ⊗ |0〉m3 ⊗ |1〉1

⎫⎬
⎭

= S−1R

⎧⎨
⎩

M2−1∑
j=0

| j〉m2 ⊗ |γ̄ ( j)〉m3 ⊗ |1〉1

⎫⎬
⎭

= S−1

⎧⎨
⎩

M2−1∑
j=0

| j〉m2 ⊗ |γ̄ ( j)〉m3 ⊗ U [ γ̄ ( j)]|1〉1

⎫⎬
⎭

=
M2−1∑

j=0

| j〉m2 ⊗ |0〉m3 ⊗ U [ γ̄ ( j)]|1〉1. (84)

Since the second register is not entangled with the other reg-
isters at the end of the circuit, it can be discarded. Reinstating
the normalization factor, and suppressing the second register,
we see that

S−1RS

⎧⎨
⎩

M2−1∑
j=0

| j〉m2 ⊗ |1〉1

⎫⎬
⎭

= 1√
M2

M2−1∑
j=0

| j〉m2

× ⊗ [
√

G(τ j )|1〉1 + √
1 − G(τ j )|0〉1 ], (85)

where we have used Eq. (81). Comparing the RHSs of
Eqs. (83) and (85) we see that the circuit in Fig. 3 does in
fact implement O.

Finally, note that the circuit for A−1 applies the circuit for A
in reverse order with O → O−1, and the circuit for O−1 is the
same as that of O, but with R → R−1. We present the circuits
for R and S, and their inverses, in Secs. III B and III C.

B. Quantum circuit for R

The circuit for R appears in Fig. 4. To see that it correctly
implements R’s action,

R |γ̄ ( j)〉m3 ⊗ |1〉1 = |γ̄ 〉m3 ⊗ U [γ̄ ( j)]|1〉1, (86)

where

U [γ̄ ( j)] ≡ exp [i(π/2)γ̄ ( j)Y ] (87)
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FIG. 4. Quantum circuit for R. The circuit acts on two registers.
The first is an m3-qubit register and the second is a one-qubit register.
The qubits in the first register act as control qubits, and the qubit
in the second register is the target qubit. The operator ρ is defined in
Eq. (90).

and

γ̄ ( j) ≡ γ̄0( j)

(
1

2

)1

+ · · · + γ̄m3−1( j)

(
1

2

)m3

, (88)

we insert Eq. (88) into Eq. (87). This gives

U [ γ̄ ( j) ] = ⊗m3−1
k=0 exp

[
i

π

2k+2
γ̄k ( j)Y

]

= [ ρ2m3−1
]γ̄0( j) · · · [ ρ2m3−1−k

]γ̄k ( j) · · · [ ρ20
]γ̄m3−1( j),

(89)

where

ρ ≡ exp

[
i

π

2m3+1
Y

]
. (90)

We see that the kth factor in Eq. (89) corresponds to the
controlled–ρ2m3−1−k

gate in Fig. 4, with 0 � k � m3 − 1. Once
the circuit has completed, U [ γ̄ ( j) ] has been applied to the
initial state |1〉1 of the second register, while the first register
remains in the state |γ̄ ( j)〉m3 . This is the R action of Eq. (86).
The circuit for R−1 applies the circuit for R in reverse order
with ρ → ρ−1.

We see that the circuit for R applies up to M3 − 1
controlled-ρ operations, and so

#(controlled-ρ)R = O(M3), (91)

and this is also the circuit depth

D(R) = O(M3). (92)

Finally, the circuit width is W (R) = m3 + 1, and so

W (R) = O(log2 M3). (93)

C. Quantum circuit for S

The action for S appears in Eq. (82), where | j〉m2 =
| j0 · · · jm2−1〉 is a CB state, and |γ̄ ( j)〉m3 is defined in
Eq. (78). As discussed in Sec. III A 1, the angles γ̄ ( j) (0 �
j � M2 − 1) are known, as are the associated bit-values
γ̄0( j), . . . , γ̄m3−1( j) [Eq. (62)]. In a slightly abbreviated
notation, let w( j) denote the weight of the bit-string

FIG. 5. Action of the multi-controlled NOT gate Cj (X ). For this
circuit, j = 4 so that j0 = 0, j1 = 0, and j2 = 1. Open (closed)
circles indicate that the associated control qubit must be in the |0〉
(|1〉) state for the gate to act nontrivially, and ⊕ denotes binary
addition. Consequently, the open and closed circles ensure the circuit
applies X to the target qubit only when k0 = 0, k1 = 0, and k2 = 1
(viz. |k〉 = | j〉 = |4〉), and acts as the identity for all |k〉 �= |4〉.

γ̄0( j) · · · γ̄m3−1( j):

w( j) =
m3−1∑
k=0

γ̄k ( j). (94)

It is thus the number of bit-values γ̄k ( j) that are equal to 1,
and so satisfies the bound w( j) � m3.

Note that to produce the action of Eq. (82), we simply need
to flip |0〉 → |1〉 for the qubits in the second register whose
qubit label k matches the bit labels k for which γ̄k ( j) = 1.
A key ingredient for doing this are the multi-controlled NOT

gates Cj (X ), 0 � j � M2 − 1, which have m2 control qubits
and one target qubit. If the coefficients in the binary expansion
of j are ( j0, . . . , jm2−1), then the action of Cj (X ) on the CB
states |k〉m2 ⊗ |i〉1 is

Cj (X )|k〉m2 ⊗ |i〉1

= |k〉m2 ⊗ X (1⊕ j0⊕k0 )×···×(1⊕ jm2−1⊕km2−1 )|i〉1,

(95)

where ⊕ denotes binary addition. Thus Cj (X ) applies X when
|k〉m2 = | j〉m2 , and acts as the identity when |k〉m2 �= | j〉m2 . For
example, suppose m2 = 3 and j = 4 so that j0 = 0, j1 = 0,
and j2 = 1. Figure 5 contains the circuit that applies C4(X ).
Open (closed) circles in Fig. 5 indicate that the associated
control qubits must be in the |0〉1 (|1〉1) states or the C4(X )
gate will not act. It is clear that the final state is |k〉3 ⊗ |1〉1

when k = j, and is |k〉3 ⊗ |0〉1 when k �= j. This is the action
of Eq. (95).

The next step towards implementing the action of Eq. (82)
is applying Cj (X ) w( j) times, where the control register con-
tains m2 qubits and the target register contains m3 qubits. The
w( j) target qubits for the Cj (X ) gates have qubit labels k that
match the bit labels k for which γ̄k ( j) = 1. An example will
help to illustrate this. Suppose that m2 = 3, m3 = 2, j = 4,
and |γ̄ (4)〉2 = |11〉. Thus |4〉3 = |001〉, the weight of |γ̄ (4)〉2

is w(4) = 2, and γ̄k (4) = 1 for k = 0 and 1. The circuit in
Fig. 6 thus applies two C4(X ) gates whose target qubits are
qubit 0 and qubit 1 in the second register. We see that when
k0 = 0, k1 = 0, and k2 = 1, the final state of the two regis-
ters is |001〉 ⊗ |11〉 = |4〉3 ⊗ |γ̄ (4)〉 as desired. For all other
values of k0, k1, and k2, the final state is |k0k1k2〉 ⊗ |00〉 =
|k〉3 ⊗ |00〉 so that the circuit acts as the identity, as desired.
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FIG. 6. Building block circuit for implementing S—illustrative
example. For this circuit, j ≡ 4, and so j0 = 0, j1 = 0, j2 = 1. We
also set |γ̄ (4)〉 = |11〉 so that w(4) = 2. The circuit thus applies two
C4(X ) gates, and the target qubits are qubit 0 and qubit 1 in the
second register. The circuit leaves the second register in the state
|γ̄ (4)〉2 when the input state |k0k1k2〉 = |001〉 = | j〉3 = |4〉3, and acts
as the identity when |k〉3 �= |4〉3.

Since the circuit in Fig. 6 applies a linear operation, its action
on a superposition of states |k〉3 ⊗ |00〉 follows from linearity.

To construct a circuit that implements S, we use as the basic
building block the strategy underlying the construction of the
circuit in Fig. 6. For each j value (0 � j � M2 − 1) we apply
Cj (X ) gates w( j) times as just described. As we have seen, the
gates for a specific j value only act nontrivially when the first
register is in the CB state | j〉m2 = | j0 · · · jm2−1〉. The circuit
sequentially applies Cj (X ) gates w( j) times for all j values
to produce the S-action of Eq. (82). To illustrate the S-circuit
construction, suppose again m2 = 3, m3 = 2, and

|γ̄ (0)〉 = |01〉 → w(0) = 1,

|γ̄ (1)〉 = |10〉 → w(1) = 1,

|γ̄ (2)〉 = |00〉 → w(2) = 0,

|γ̄ (3)〉 = |11〉 → w(3) = 2,

|γ̄ (4)〉 = |01〉 → w(4) = 1,

|γ̄ (5)〉 = |10〉 → w(5) = 1,

|γ̄ (6)〉 = |11〉 → w(6) = 2,

|γ̄ (7)〉 = |00〉 → w(7) = 0. (96)

The S-circuit for this example appears in Fig. 7. When the
input to the first register is |k〉 = |k0k1k2〉, then all Cj (X ) gates

FIG. 7. Quantum circuit for S—illustrative example. For this cir-
cuit, m2 = 3, m3 = 2, and the γ̄ ( j) (0 � j � 7) are given in Eq. (96).
The circuit sequentially applies Cj (X ) gates w( j) times, starting
with j = 0 and ending with j = 7. The circuit takes |k〉3 ⊗ |00〉 to
|k〉3 ⊗ |γ̄ (k)〉2.

act as the identity except for the w( j) gates that have j = k,
and so they are triggered by the input values k0, k1, and k2.
These gates toggle the second register initial state so as to
produce |γ̄ (k)〉 as the second register final state. By linearity,
the circuit produces the action

1√
C

M2−1∑
k=0

|k〉m2 ⊗ |0〉m3 → 1√
C

M2−1∑
k=0

|k〉m2 ⊗ |γ̄ (k)〉m3 , (97)

which is the desired S-action. Finally, since all gates in the
circuit for S are their own inverse, the circuit for S−1 is
obtained by reversing the sequence of gates in the circuit
for S.

The number η of multi-controlled NOT gates is

η =
M2−1∑
k=0

w(k) � M2 log2 M3 = O(M2 log2 M3), (98)

where we have used that w(k) � m3 = log2(M3). In the
Appendix, we show that each multi-controlled NOT gate can
be implemented using 2m2 − 3 = 2 log2 M2 − 3 Toffoli gates
and log2 M2 − 2 ancilla qubits when m2 � 2. We do not count
the X gates needed to implement the open circle triggering as
these are Clifford gates, which are easier to implement than
the non-Clifford Toffoli gates. The number of Toffoli gates
T (S) is then

T (S) = (2 log2 M2 − 3)η = O(M2 log2 M2 log2 M3). (99)

This is also the circuit depth D(S) = T (S). The circuit width
W (S), including the Toffoli ancilla, is

W (S) = log2 M2 + log2 M3 + (log2 M2 − 2)

= O(log2 M2) + O(log2 M3). (100)

Having shown how to implement the circuits for R, S, and
S−1, the circuits appearing in Figs. 2 and 3 then show how to
implement the state preparation operator A and the oracle O,
respectively.

D. Resource requirements

Here we gather together the resource requirements found
for R, S, and S−1 in Secs. III B and III C, and we use them
to determine the resources needed to implement Novak’s or-
acle O and the state preparation operator A. We make use of
Eqs. (76) and (77) to rewrite these requirements in terms of
the error tolerances ε1, εd , and εγ . We do this to underscore
that it is these tolerances that drive the resource demands for
O and A. Recall that (i) ε1 [Eq. (45)] is the error tolerance
for the error in the QAEA estimate for the Riemann sum GR;
(ii) εd [Eq. (50)] is the error arising from replacing the integral
I by the Riemann sum IR; and (iii) εγ is the error tolerance
[Eq. (71)] for the truncation error δγ̂ ( j).

Resources for R: From Sec. III B, the depth of the circuit
for R goes as

D(R) = O(M3) = O(1/εγ ); (101)

its width goes as

W (R) = O(log2 M3) = O(log2 1/εγ ); (102)
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and the number of controlled small-angle rotations goes as

#(controlled-ρ)R = O(M3) = O(1/εγ ). (103)

Resources for S and S−1: From Sec. III C, the depth of the
circuits for S and S−1 goes as

D(S) = D(S−1) = O( (1/εd )(log2 1/εd )(log2 1/εγ )); (104)

its width goes as

W (S) = W (S−1) = O(log2 1/εd ) + O(log2 1/εγ ); (105)

and the number of Toffoli gates goes as

T (S) = T (S−1) = O( (1/εd )(log2 1/εd )(log2 1/εγ )). (106)

Resources for O: From Fig. 3, the depth of the circuit for O
goes as

D(O) = D(S) + D(S−1) + D(R)

= O( (1/εd )(log2 1/εd )(log2 1/εγ )) + O(1/εγ );

(107)

its width goes as

W (O) = W (S) + W (R)

= O(log2 1/εd ) + O(log2 1/εγ ); (108)

the number of Toffoli gates used goes as

T (O) = T (S) + T (S−1)

= O( (1/εd )(log2 1/εd )(log2 1/εγ )); (109)

and the number of controlled small-angle rotations goes as

#(controlled-ρ)O = #(controlled-ρ)R = O(1/εγ ). (110)

Resources for A: From Fig. 2 the depth of the circuit for A
goes as

D(A) = D(O)

= O( (1/εd )(log2 1/εd )(log2 1/εγ )) + O(1/εγ );

(111)

its width goes as

W (A) = W (O) = O(log2 1/εd ) + O(log2 1/εγ ); (112)

the number of Toffoli gates used goes as

T (A) = T (O) = O( (1/εd )(log2 1/εd )(log2 1/εγ )), (113)

and the number of controlled small-angle rotations goes as

#(controlled-ρ)A = #(controlled-ρ)O = O(1/εγ ). (114)

IV. IMPLEMENTING Q

In this section, we present the circuit implementation of the
Grover-like oracle Q. The circuit is presented in Sec. IV A and
makes use of operators U0 and Un0 , whose circuit implemen-
tations appear in Secs. IV B and IV C, respectively. Finally,
Sec. IV D gathers together the resource requirements needed
to implement Q.

FIG. 8. Quantum circuit for oracle Q. The circuit first applies the
inversion operator Un0 , then applies the operator A−1 which maps
the state |ψ〉 = √

a|n1〉 + √
1 − a|n0〉 to the m2 + 1 qubit CBS |0〉.

The inversion operator U0 is then applied, and finally, the operator
A is applied. (i) The circuits for U0 and Un0 appear in Secs. IV B
and IV C, respectively; while (ii) the circuits for A and A−1 appear in
Sec. III A 2.

A. Quantum circuit for Q

The action of the oracle Q on the 2D subspace Hψ spanned
by |n0〉 and |n1〉 is [Eqs. (36) and (37)]

Q = AU0 A−1 Un0 , (115)

where

U0 = I − 2|0〉〈0|, (116a)

Un0 = I − 2|n0〉〈n0|, (116b)

and [Eq. (41)]

A = O[ Hm2 ⊗ X ]. (117)

The m2 + 1 qubit state |n0〉 appears in Eq. (30), and |0〉 =
|0 · · · 0〉m2 ⊗ |0〉1 is an m2 + 1 qubit CBS.

The action of U0 on the m2 + 1 qubit CBS | j〉 =
| j0 · · · jm2−1〉 ⊗ | jm2〉 is easily seen to be

U0| j〉 =
{−|0〉 ( j = 0),

| j〉 ( j �= 0). (118)

Similarly, the action of Un0 on the states |n0〉 and |n1〉 is

Un0 |n0〉 = −|n0〉, (119a)

Un0 |n1〉 = |n1〉. (119b)

The circuit for Q follows from Eq. (115) and appears in
Fig. 8, while the circuits for A and A−1 appear in Sec. III A 2.
We will determine the resource requirements for the circuit
implementation of Q in Sec. IV D, after presenting the circuits
for U0 and Un0 .

B. Quantum circuit for U0

The circuit that implements U0 appears in Fig. 9. To see
that it implements the action of Eq. (118), we step through
the circuit’s operation. The circuit acts on two registers. The
first register contains m2 + 1 qubits whose CBSs are | j〉 =
| j0 · · · jm2〉, where 0 � j � 2M2 − 1 and M2 = 2m2 . The sec-
ond register contains a single ancilla qubit.

Let the initial state |ψ0〉 of the circuit have the first register
in an arbitrary superposition of CBSs, and the second register
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FIG. 9. Quantum circuit for U0. The circuit begins by applying
Pauli X gates transversally to the m2 + 1 qubits in the first register
whose CBS are | j〉 = | j0 · · · jm2 〉. The circuit then applies the multi-
controlled NOT gate C2M2−1(X ) that applies a Pauli X gate to the
single qubit in the second register when all control qubits are in the
|1〉1 state, and it acts as the identity for all other control inputs. A
controlled-Z gate is applied using the ancilla qubit in the second
register as the control qubit and the 0-qubit in the first register as
the target qubit. To disentangle the second register from the first, the
multi-controlled NOT gate C2M2−1(X ) is applied again. The second
register is then discarded. Finally, Pauli X gates are transversally
applied to the first register.

in the |0〉 state:

|ψ0〉 =
2M2−1∑

j=0

a( j)| j0 · · · jm2〉 ⊗ |0〉. (120)

Applying the Pauli X gates transversally to the first register
gives the state

|ψ1〉 =
2M2−1∑

j=0

a( j)|(1 ⊕ j0) · · · (1 ⊕ jm2 )〉 ⊗ |0〉. (121)

The multi-controlled NOT gates in Fig. 9 are C2M2−1(X ), which
only act when all control qubits are in the |1〉1 state (viz. all
closed circles). The action of the first multi-controlled NOT

gate gives the state

|ψ2〉 =
2M2−1∑

j=0

a( j)|(1 ⊕ j0) · · · (1 ⊕ jm2 )〉 ⊗ |χ ( j)〉, (122)

where

χ ( j) ≡ (1 ⊕ j0) × · · · × (1 ⊕ jc)

=
{

1 ( j0 = · · · = jm2 = 0),
0 (otherwise). (123)

The circuit then applies a controlled-Z gate to the ancilla qubit
and the 0-qubit in the first register. Recall that the action of the
controlled-Z gate, Zλ (λ = 0, 1), is to apply the Pauli Z gate
when the control qubit is in the |λ = 1〉1 state, and the identity
when in the |λ = 0〉1 state. The action of Zλ on the state |ψ2〉
is then

|ψ3〉 =
2M2−1∑

j=0

(−1)χ ( j)(1⊕ j0 )

× a( j)|(1 ⊕ j0) · · · (1 ⊕ jm2 )〉 ⊗ |χ ( j)〉. (124)

To disentangle the second register from the first, the circuit
applies the second multi-controlled NOT gate, C2M2−1(X ), to
|ψ3〉. The result is

|ψ4〉=
2M2−1∑

j=0

(−1)χ ( j)(1⊕ j0 ) a( j) |(1 ⊕ j0)· · · (1 ⊕ jm2 )〉 ⊗ |0〉.

(125)

The second register can now be safely discarded. Applying
the final Pauli X gates to the first register gives

|ψ f 〉 =
2M2−1∑

j=0

(−1)χ ( j)(1⊕ j0 ) a( j) | j0 · · · jm2〉. (126)

To see that this is the action of Eq. (118), suppose that
a(0) = 1 and a( j) = 0 for all j �= 0 so that the initial state
is |ψ0〉 = |0〉. From Eq. (126), the final state is then

|ψ f 〉 = −|0〉, (127)

and the circuit thus maps |0〉 → −|0〉 as in Eq. (118). Simi-
larly, let a( j) = 1 for j �= 0 and a(k) = 0 for all k �= j so that
|ψ0〉 = | j〉. Then, from Eq. (126),

|ψ f 〉 = | j〉, (128)

and the circuit thus maps | j〉 → | j〉 as in Eq. (118). Thus the
circuit in Fig. 9 has reproduced the action of Eq. (118).

The resource requirements needed to implement U0 follow
from Fig. 9. Since the Clifford gates add three steps to the
circuit depth in Fig. 9, independent of the number of qubits
m2 + 1 in the first register, they will have a negligible im-
pact on the scaling of the circuit depth. Instead, the depth is
controlled by the two multi-controlled NOT gates. From the
Appendix we know that the depth of the circuit for a multi-
controlled NOT gate is O(log2 M2) = O( log2(1/εd )). Thus the
U0 circuit depth is

D(U0) = O( log2 ( 1/εd )). (129)

Similarly, the U0 circuit width is controlled by the width of the
multi-controlled NOT gate circuit. From the Appendix, this is
W (C2M2−1(X )) = O( log2(1/εd )). Thus

W (U0) = O( log2 ( 1/εd )). (130)

The number of Toffoli gates needed to implement U0 is equal
to the number used to implement the multi-controlled NOT

gates. From the Appendix we know that T (C2M2−1(X )) =
O( log2(1/εd )) so that

T (U0) = O( log2 ( 1/εd )). (131)

Finally, no controlled-ρ rotations are used to implement U0 so
that

#(controlled-ρ)U0 = 0. (132)

C. Quantum circuit for Un0

The action Un0 that applies to the states |n0〉 and |n1〉 (that
span the 2D subspace Hψ ) is given in Eq. (119). The quantum
circuit that implements this action appears in Fig. 10. The
circuit acts on two registers: the first contains m2 qubits, while
the second contains one qubit.
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FIG. 10. Quantum circuit for Un0 . The quantum circuit acts on
two registers: the first contains m2 qubits and the second contains a
single qubit. The circuit applies Pauli X and Z gates to the qubit in
the second register as shown. The qubits in the first register are not
acted upon.

From Sec. II B,

|n1〉 = 1√
M2

M2−1∑
j=0

√
g(τ j )

ḡ
| j〉 ⊗ |1〉

≡ |γ 〉 ⊗ |1〉, (133a)

|n0〉 = 1√
M2

M2−1∑
j=0

√
1 − g(τ j )

1 − ḡ
| j〉 ⊗ |0〉

≡ |β〉 ⊗ |0〉. (133b)

The circuit in Fig. 10 applies the operator XZX to the qubit in
the second register so that

XZX |n1〉 = |γ 〉 ⊗ XZX |1〉
= |γ 〉 ⊗ |1〉
= |n1〉 (134)

and

XZX |n0〉 = |β〉 ⊗ XZX |0〉
= −|β〉 ⊗ |0〉
= −|n0〉. (135)

Equations (134) and (135) are the action appearing in
Eq. (119), and so the circuit in Fig. 10 does, in fact,
implement Un0 .

The resource requirements for Un0 are easily determined
from Fig. 10. The circuit depth is 3, and so

D(Un0 ) = O(1). (136)

Its width is m2 + 1, and so

W (Un0 ) = O(m2) = O(log2 1/εd ). (137)

Finally, the number of Toffoli gates and controlled-ρ gates is

T (Un0 ) = #(controlled-ρ)Un0
= 0. (138)

D. Resource requirements

The resources needed to implement Q follow from Fig. 8.
The circuit depth D(Q), width W (Q), number of Toffoli gates
T (Q), and number of controlled-ρ gates needed are

D(Q) = D(Un0 ) + D(A−1) + D(U0) + D(A), (139a)

W (Q) = W (Un0 ) + W (A−1) + W (U0) + W (A), (139b)

T (Q) = T (Un0 ) + T (A−1) + T (U0) + T (A) (139c)

#(controlled-ρ)Q

= #(controlled-ρ)Un0
+ #(controlled-ρ)A−1

+ #(controlled-ρ)U0
+ #(controlled-ρ)A.

(139d)

Sections III D, IV B, and IV C give the depth, width, number
of Toffoli gates, and controlled-ρ gates for A, U0, and Un0 ,
respectively. The resources needed for A−1 are clearly the
same as for A.

For the circuit depth, we see that the depths of A and A−1

dominate the depths of U0 and Un0 . Thus,

D(Q) = O[(1/εd )(log2 1/εd )(log2 1/εγ )] + O(1/εγ ).

(140)

The widths W (A), W (A−1), W (U0), and W (Un0 ) are compara-
ble, and so

W (Q) = O(log2 1/εd ) + O(log2 1/εγ ). (141)

The number of Toffoli gates T (A) and T (A−1) dominate
T (U0) and T (Un0 ), and so

T (Q) = O[(1/εd )(log2 1/εd )(log2 1/εγ )]. (142)

Finally, only A and A−1 make use of controlled-ρ gates,
and so

#(controlled-ρ)Q = O(1/εγ ). (143)

V. IMPLEMENTING �(Q)

In this section, we present the circuit implementation for
our final oracle �(Q). The circuit for �(Q) is presented in
Sec. V A and makes use of the controlled-Q operator. The cir-
cuit for this latter operator appears in Sec. V B and makes use
of controlled-Un0 and controlled-U0 operators whose circuit
implementations appear in Secs. V C and V D, respectively.
Finally, Sec. V E gathers together the resource requirements
needed to implement �(Q).

A. Quantum circuit for �(Q)

The action of �(Q) on CBS is

�(Q)| j〉m1 ⊗ |k〉m2+1 = | j〉m1 ⊗ Q j |k〉m2+1, (144)

where 0 � j � M1 − 1, M1 = 2m1 , 0 � k � 2M2 − 1, and
M2 = 2m2 . We begin with the binary decomposition of j,

j = j0 20 + · · · + jm1−1 2m1−1, (145)

where the coefficients ji are binary variables that take values
of 0 or 1. We can thus write

Q j =
m1−1∏
i=0

(Q2i
) ji . (146)

Note that each factor on the RHS of Eq. (146) is a controlled
operation. For example, the ith factor applies Q2i

when ji = 1,
and applies the identity when ji = 0. Thus the binary coeffi-
cients { ji} control whether the operators {Q2i} are applied. The
quantum circuit in Fig. 11 makes use of this observation to
apply the RHS of Eq. (146) and thus applies the �(Q)-action

032604-13



FRANK GAITAN PHYSICAL REVIEW A 109, 032604 (2024)

FIG. 11. Quantum circuit for �(Q). The quantum circuit acts on
two registers: the first contains m1 qubits and the second contains
m2 + 1 qubits. The circuit applies up to M1 − 1 controlled-Q opera-
tions, where M1 = 2m1 . We show how to implement the controlled-Q
operation in Sec. V B.

given in Eq. (144). Specifically, each controlled operation in
Fig. 11 applies one of the factors in Eq. (146), with the ith
qubit in the first register controlling whether the operator Q2i

is applied. At the end of the circuit, all factors in Eq. (146)
have been applied and so the circuit applies �(Q). The circuit
acts on two registers: the first contains m1 qubits, while the
second contains m2 + 1 qubits. The initial state for the circuit
in Fig. 11 assumes the first and second registers are in the
CBS | j〉m1 = | j0 · · · jm1−1〉m1 and |k〉m2+1 = |k0 · · · km2〉m2+1,
respectively. Because the circuit applies a linear operation,
its action on an arbitrary superposition of CBS follows from
linearity. As seen in Fig. 11, the �(Q) circuit applies up to
M1 − 1 controlled-Q operations. We present the circuit im-
plementation of the controlled-Q operation in Sec. V B.

B. Quantum circuit for controlled-Q

From Sec. II C 1, Q = AU0A−1Un0 . We now show that the
circuit in Fig. 12 implements a controlled-Q operation (Qλ).
The circuit acts on two registers. The first contains a sin-
gle qubit which acts as the control qubit, while the second
contains m2 + 1 qubits and is the target of the controlled-Q
operation. Note that when the control qubit is in the |λ = 0〉
state, the controlled-Un0 and controlled-U0 operations act as
the identity. The circuit then applies the identity operation

FIG. 12. Quantum circuit for controlled-Q. The quantum circuit
acts on two registers: the first contains a single qubit which acts
as the control qubit, and the second contains m2 + 1 qubits which
are the target of the controlled-Q operation. The circuit applies
(i) controlled-Un0 and controlled-U0 operations whose circuit imple-
mentations appear in Secs. V C and V D, respectively; and (ii) A and
A−1 operations whose circuit implementations appear in Sec. III A 2.

FIG. 13. Quantum circuit for controlled-Un0 . The quantum cir-
cuit acts on two registers. The first contains a single qubit which acts
as the control qubit, and the second is composed of two subregis-
ters: subregister 2A contains m2 qubits, and subregister 2B contains
a single qubit. The composite second register is the target of the
controlled-Un0 operation. The circuit applies a Pauli X gate to the
qubit in subregister 2B. It then applies a controlled-Z operation to
the qubit in the first register and the qubit in subregister 2B. Finally,
an X gate is applied to the qubit in subregister 2B.

AA−1 = I to the second register, which is the desired oper-
ation when the control qubit is in the |λ = 0〉 state. When
|λ = 1〉, the controlled-Un0 and controlled-U0 operations are
applied and the total operation applied to the second register
is AU0A−1Un0 = Q as desired. We see that the circuit in Fig. 12
does indeed apply a controlled-Q operation. Sections V C
and V D present the quantum circuits that implement the
controlled-Un0 and controlled-U0 operations, respectively. The
circuit implementations for A and A−1 appear in Sec. III A 2.

C. Quantum circuit for controlled-Un0

We saw in Sec. IV C that Un0 acts on two registers, the first
containing m2 qubits, the second containing a single qubit, and
that it applied the operator XZX to the qubit in the second reg-
ister. With this in mind, we now show that the circuit in Fig. 13
implements a controlled-Un0 operation (U λ

n0
). The circuit acts

on two registers. The first contains a single qubit that acts
as the control qubit of U λ

n0
, and the second contains m2 + 1

qubits and is the target. The second register is composed of
two subregisters: the first (register 2A) contains m2 qubits, and
the second (register 2B) contains a single qubit.

From Fig. 13 we see that the circuit first applies a Pauli
X gate to the qubit in subregister 2B. It then applies a
controlled-Z gate between the qubit in register 1 and the qubit
in subregister 2B. Finally, an X gate is applied to the qubit in
subregister 2B. When the control qubit is in the state |λ = 0〉,
the controlled-Z gate does not act and so the identity operation
X 2 = I is applied to the composite second register. This is the
desired action when the control qubit is in the state |λ = 0〉.
When the control qubit is in the state |λ = 1〉, the controlled-Z
gate applies a Pauli Z gate to the qubit in subregister 2B. The
total operation applied to subregister 2B is XZX = Un0 , which
is the desired action when the control qubit is in the state
|λ = 1〉. The circuit thus applies a controlled-Un0 operation.

The resource requirements follow easily from Fig. 13. The
circuit depth is

D
(
U λ

n0

) = 3 = O(1). (147)
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FIG. 14. Quantum circuit for controlled-U0 (U λ
0 ). The circuit acts

on two registers and two ancilla qubits. The ancilla qubits are dis-
carded upon completion of the circuit. The first register contains a
single qubit and the second contains m2 + 1 qubits. Comparing the
circuit here with the circuit for U0 in Fig. 9, we see that they are
nearly identical. The circuit here has added a one-qubit first register
that acts as the control for the U λ

0 operation, a second ancilla qubit,
and two Toffoli gates that use the qubit in the first register and the first
ancilla qubit as controls, and the second ancilla qubit as the target.

The circuit width is

W
(
U λ

n0

) = m2 + 2 = O(log2 1/εd ). (148)

Finally, the number of Toffoli gates and controlled-ρ gates is
zero:

T
(
U λ

n0

) = 0, (149)

#(controlled-ρ)U λ
n0

= 0. (150)

D. Quantum circuit for controlled-U0

The U0-action on an m2 + 1 qubit CBS is given by
Eq. (118). With this in mind, we now show that the circuit
in Fig. 14 implements a controlled-U0 operation (U λ

0 ). The
circuit acts on two registers. The first is a one-qubit register
that acts as the control qubit for U λ

0 , while the second register
contains m2 + 1 qubits and is the target. It also contains two
ancilla qubits which are discarded at the end of the circuit. To
see that the circuit applies U λ

0 , we step through its execution.
To begin, we assume that the circuit’s initial state |ψ0〉 has

the first and second registers in an arbitrary state, while the
two ancilla qubits are both in the state |0〉:

|ψ0〉 =
1∑

λ=0

2M2−1∑
j=0

a( j, λ)|λ〉| j0 · · · jm2〉|0〉|0〉. (151)

We have suppressed the tensor product symbol, and we will
suppress the summation symbols for the duration of the cal-
culation. At the end of the calculation, we will choose values
for the coefficients a( j, λ) to show that U λ

0 has been applied.
The circuit begins by applying transversal X gates to the

target register. The resulting state is

|ψ1〉 = a( j, λ)|λ〉|(1 ⊕ j0) · · · (1 ⊕ jm2 )〉|0〉|0〉. (152)

The circuit then applies the multi-controlled NOT gate
C2M2−1(X ) using the second register as the control and the first
ancilla qubit as the target. This gives

|ψ2〉 = a( j, λ)|λ〉|(1 ⊕ j0) · · · (1 ⊕ jm2 )〉|χ ( j)〉|0〉, (153)

where

χ ( j) = (1 ⊕ j0) × · · · × (1 ⊕ jm2 ) =
{

1 ( j = 0),
0 ( j �= 0). (154)

Next, a Toffoli gate is applied using the first register qubit and
first ancilla qubit as controls, and the second ancilla qubit as a
target. The state is then

|ψ3〉 = a( j, λ)|λ〉|(1 ⊕ j0) · · · (1 ⊕ jm2 )〉|χ ( j)〉|λχ ( j)〉.
(155)

The circuit now applies a controlled-Z to the 0-qubit in the
second register and the second ancilla qubit giving

|ψ4〉 = a( j, λ)( −1)λχ ( j)(1⊕ j0 )

× |λ〉|(1 ⊕ j0) · · · (1 ⊕ jm2 )〉|χ ( j)〉|λχ ( j)〉. (156)

The circuit now acts to disentangle the ancilla qubits so that
they can be safely discarded. Applying the second Toffoli gate
gives

|ψ5〉 = a( j, λ)( −1)λχ ( j)(1⊕ j0 )

× |λ〉|(1 ⊕ j0) · · · (1 ⊕ jm2 )〉|χ ( j)〉|0〉. (157)

Applying the second C2M2−1(X ) gate gives

|ψ6〉 = a( j, λ)( −1)λχ ( j)(1⊕ j0 )

× |λ〉|(1 ⊕ j0) · · · (1 ⊕ jm2 )〉|0〉|0〉. (158)

Discarding the ancilla qubits, applying the final X gates, and
restoring the suppressed summation symbols gives the final
state

|ψ f 〉 =
1∑

λ=0

2M2−1∑
j=0

a( j, λ)( −1)λχ ( j)(1⊕ j0 )|λ〉| j0 · · · jm2〉.

(159)

To see that this is the final state produced by U λ
0 , suppose

the first register qubit (that acts as the control for U λ
0 ) is in

the state |λ = 0〉 so that a( j, 1) = 0 for all j. The initial state
[Eq. (151)] is then (suppressing the ancilla qubits)

|ψ0〉 = |λ = 0〉
2M2−1∑

j=0

a( j, 0)| j0 · · · jm2〉. (160)

The final state [Eq. (159)] in this case is

|ψ f 〉 = |λ = 0〉
2M2−1∑

j=0

a( j, 0)| j0 · · · jm2〉. (161)

Note that the factor in Eq. (159) that is a power of −1 is equal
to 1 since λ = 0 in the exponent. We see that |ψ0〉 = |ψ f 〉
and so the circuit has applied the identity operation to the
second register when the control qubit is in the state |λ = 0〉
as desired. Now suppose that |λ = 1〉 so that a( j, 0) = 0 for
all j. Suppressing the ancilla qubits again, the initial state is
now [Eq. (151)]

|ψ0〉 = |λ = 1〉
2M2−1∑

j=0

a( j, 1)| j0 · · · jm2〉. (162)

032604-15



FRANK GAITAN PHYSICAL REVIEW A 109, 032604 (2024)

The final state [Eq. (159)] is now

|ψ f 〉 = |λ = 1〉

× ⊗
⎡
⎣−a(0, 1)|0 · · · 0〉 +

2M2−1∑
j=1

a( j, 1)| j0 · · · jm2〉
⎤
⎦.

(163)

To compare with Eq. (118), suppose a(0, 1) = 1 and a( j, 1) =
0 for j �= 0. Then from Eq. (162), |ψ0〉 = |λ = 1〉|0〉, and
from Eq. (163),

|ψ f 〉 = −|λ = 1〉|0〉, (164)

in agreement with Eq. (118). Similarly, suppose a( j, 1) = 1
and a(k, 1) = 0 for k �= j. The initial state is now |ψ0〉 = |λ =
1〉| j〉, and the final state is

|ψ f 〉 = |λ = 1〉| j〉, (165)

in agreement with Eq. (118). Thus, when the control is in the
state |λ = 1〉, the circuit applies U0 to the second register, as
desired. We see that the circuit in Fig. 14 does indeed apply a
controlled-U0 operation.

The resource requirements for the controlled-U0 circuit
follows from Fig. 14 and our discussion of U0 in Sec. IV B.
Notice that the circuit in Fig. 14 is nearly identical to the
circuit for U0 that appears in Fig. 9. It has added a one-qubit
first register, a second ancilla qubit, and two Toffoli gates.
These increase the circuit depth and width, and the number
of Toffoli gates, but these increases are independent of εd and
so will not impact the scaling of resource requirements with
εd . These requirements result from the part of the circuit (in
Fig. 14) that is identical with the U0 circuit. Thus the circuit
depth is [see Eq. (129)]

D
(
U λ

0

) = O(log2 1/εd ). (166)

Similarly, the circuit width is [see Eq. (130)]

W
(
U λ

0

) = O(log2 1/εd ), (167)

and the number of Toffoli gates is [Eq. (131)]

T
(
U λ

0

) = O(log2 1/εd ). (168)

Finally, from Fig. 14, we see that there are no controlled-ρ
gates and so

#(controlled-ρ)U λ
0

= 0. (169)

E. Resource requirements

The resources needed to implement �(Q) follow from
Fig. 11 and the results of Sec. IV D. From Fig. 11 we see
that implementing �(Q) requires up to M1 − 1 controlled-Q
operations, while the resources needed to apply Q are given in
Eqs. (140)–(143).

The depth D(�(Q)) is thus upper-bounded by (M1 −
1)D(Q). From Eq. (140) and M1 = O(1/ε1), we have

D(�(Q)) = O[(1/ε1εd )(log2 1/εd )(log2 1/εγ )] + O(1/ε1εγ ).

(170)

TABLE I. Resource requirements for the three oracles O, Q, and
�(Q) as a function of the error tolerances ε1, εd , and εγ . See the text
for further discussion.

Oracle O Q �(Q)

Depth D1
a D1

a D2
b

Width W1
c W1

c W2
d

Toffolis T1
e T1

e T2
f

Controlled-ρ C1
g C1

g C2
h

aD1 = O[(1/εd )(log2 1/εd )(log2 1/εγ )] + O(1/εγ ).
bD2 = O[(1/ε1εd )(log2 1/εd )(log2 1/εγ )] + O(1/ε1εγ ).
cW1 = O(log2 1/εd ) + O(log2 1/εγ )
dW2 = O(log2 1/ε1) + O(log2 1/εd ) + O(log2 1/εγ ).
eT1 = O[(1/εd )(log2 1/εd )(log2 1/εγ )].
fT2 = O[(1/ε1εd )(log2 1/εd )(log2 1/εγ )].
gC1 = O(1/εγ ).
hC2 = O(1/ε1εγ ).

From Fig. 11 we see that the circuit width of �(Q) is m1 +
W (Q). From Eq. (141) and m1 = O(log2 1/ε1), we have

W (�(Q)) = O(log2 1/ε1) + O(log2 1/εd ) + O(log2 1/εγ ).

(171)

The number of Toffoli gates is upper-bounded by (M1 −
1)T (Q). From Eq. (142) we have

T (�(Q)) = O[(1/ε1εd )(log2 1/εd )(log2 1/εγ )]. (172)

Finally, the number of controlled-ρ operations is upper-
bounded by (M1 − 1)[#(controlled-ρ)Q]. Using Eq. (143), we
have

#(controlled-ρ)�(Q) = O(1ε1εγ ). (173)

VI. DISCUSSION

(a) In this paper, we have presented quantum circuits that
implement the three oracles used in the quantum Navier-
Stokes and quantum PDE algorithms of Refs. [2,3], and we
determined the resources needed to implement these circuits.
Specifically, we determined the circuit depths and widths, as
well as the number of non-Clifford gates (Toffoli gates and
controlled-small-angle rotations). The resource requirements
were given as a function of the error tolerances ε1 (error in the
QAEA estimate of a Riemann sum), εd (error in approximat-
ing a definite integral by a Riemann sum), and εγ (truncation
error in approximating an integrand by an m3-bit approxima-
tion). We collect these costs in Table I. As noted in Sec. I, our
goal in this paper has been to obtain circuit implementations
for the quantum oracles O, Q, and �(Q). We leave the task
of making these circuits optimal and fault-tolerant to future
work.

In Sec. II A 2 we noted that the approximate solution α(t )
satisfies an error upper bound [Eq. (16)] with probability
1 − δ. The failure probability δ is user-specified. It is related
to the probability δ1 that a run of the QAEA yields an estimate
that violates the error upper bound appearing in Eq. (43). The
two failure probabilities are related through Eq. (18). As seen
in the remarks following Eq. (42), a single run of the QAEA
has a failure probability δ1 ∼ 0.19 (when k = 1). As noted

032604-16



CIRCUIT IMPLEMENTATION OF ORACLES USED IN A … PHYSICAL REVIEW A 109, 032604 (2024)

there, Heinrichs [17] showed that by running the QAEA M
times and returning the median of the M results, the failure
probability δ1 becomes

δ1 = exp [−M/8]. (174)

In this way, the failure probability δ1 can be made as small as
desired by rerunning the QAEA a sufficient number of times.
Having said that, it is actually more useful to solve Eq. (174)
for M:

M = 8�ln (1/δ1)�. (175)

The reason is that, given a desired failure probability δ, we
can determine the necessary δ1 through Eq. (18). Having δ1,
Eq. (175) determines the number of times, M, that the QAEA
must be rerun so that the QPDE algorithm has failure proba-
bility δ.

We see that the parameters ε1, εd , εγ , and δ determine
the resource requirements for the oracle circuits presented
in this paper. Important next steps are constructing oracle
circuits that have reduced resource requirements, and are
fault-tolerant.

(b) We close with a few remarks related to quantum speed-
up for classical and quantum algorithms containing oracles,
in the case in which the quantum oracles have known circuit
implementations.

We begin with a few definitions. Suppose the quantum
(classical) algorithm uses Nq (Nc) total oracle calls. Suppose
further that the quantum algorithm uses kq oracles Oq

i that take
time τ

q
i to execute, with 1 � i � kq. Similarly, let the classical

algorithm use kc oracles Oc
j which execute in time τ c

j , with
1 � j � kc. Finally, let τq = maxi(τ

q
i ) and τc = max j (τ c

j ) be
the time to execute the slowest quantum and classical oracles,
respectively.

When discussing algorithms with oracles, the first level of
analysis assumes an oracle call takes a single time step [23].
One algorithm then has a speed-up over another if it uses
fewer oracle calls for all instances of the problem of interest.
We assume the quantum algorithm has a power-law speed-up
over the classical algorithm, Nq = (Nc)α , where 0 < α < 1.
Let Tq (Tc) be the time to execute the quantum (classical)
algorithm. We go beyond this first level of analysis and define
speed-up to mean Nq = (Nc)α and Tq < Tc.

The time Tc is then

Tc =
kc∑

j=1

νc
j τ

c
j � Ncτc, (176)

where νc
j is the number of times oracle Oc

j is used.
Similarly, the time Tq is

Tq =
kq∑

i=1

ν
q
i τ

q
i � Nqτq, (177)

where ν
q
i is the number of times oracle Oq

i is used. Let Ci de-
note the quantum circuit for oracle Oq

i , D(Ci ) its circuit depth,
and D = maxi (D(Ci )) the maximum oracle circuit depth. Let
oracle circuit Ci∗ be the circuit for which D(Ci∗ ) = D, and
let τg be the time needed to implement its slowest quantum
gate. If more than one circuit satisfies this condition, we pick

FIG. 15. Quantum circuit implementing the multi-controlled
NOT gate Cj (X ) for j = 4 and m = 3. The binary coefficients for
j = 4 are j0 = 0, j1 = 0, and j2 = 1. This is Fig. 5, except that we
have used Pauli X gates to convert open circles to closed circles. As
before, the circuit applies X to the target qubit only when k0 = 0,
k1 = 0, and k2 = 1 (viz. |k〉 = | j〉 = |4〉), and it acts as the identity
for all |k〉 �= |4〉. The gate at the center of the figure is Cj (X ) with
j = M − 1 and M = 2m = 8. It acts as the identity for all CB states
|k〉 �= |7〉, and applies X to the target qubit when |k〉 = |111〉.

the circuit with the largest τg. Then τq � Dτg and Eq. (177)
becomes

Tq � NqDτg. (178)

We can ensure that Tq < Tc if we require NqDτg < Tc. This
leads to a sufficient condition for quantum speed-up,

τg <

(
Nc

Nq

)
τc

D = (Nc)1−α τc

D , (179)

where 0 < α < 1. Thus, if the time τg to run the slowest gate
appearing in Ci∗ satisfies this upper bound, there is a quantum
speed-up [Tq < Tc and Nq = (Nc)α]. This requirement on τg is
a condition placed on the quantum hardware. The RHS upper
bound depends on the classical algorithm through Nc; the clas-
sical hardware through τc; the oracle circuit implementations
through D; and the first level quantum speed-up through the
exponent α. We see that the (RHS) upper bound increases with
decreasing α, making the speed-up inequality easier to satisfy
in this regime. Similarly, the upper bound decreases as the
maximum oracle circuit depth D increases, making speed-up
harder to achieve in this regime.
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APPENDIX: QUANTUM CIRCUIT FOR THE Cj (X ) GATE

Here we show how the Cj (X ) gate (Sec. III C) can be
implemented using Toffoli gates and Pauli X gates. See also
Refs. [24–26].

Referring to Eq. (95), we see that (i) the Cj (X ) gate acts
on two registers, the first containing m2 → m qubits and the
second containing one qubit; (ii) the binary coefficients of j
are j0, . . . , jm−1; and (iii) those of k are k0, . . . , km−1. Fig-
ure 5 showed the circuit diagram for Cj (X ) when j = 4 and
m = 3. Figure 15 redraws C4(X ) using Pauli X gates to con-
vert open circles to closed circles [27]. Thus implementing
Cj (X ) reduces to implementing CM−1(X ), where M = 2m. In
the case of Fig. 15, M − 1 = 7.
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FIG. 16. Implementing the action of the multi-controlled NOT

gate Cj (X ) for j = 4 and m = 3 using Toffoli gates and Pauli X
gates. The net effect of the three Toffoli gates (and the discarded
ancilla qubit) is to apply CM−1(X ) with M − 1 = 7. As before, the
circuit applies X to the target qubit only when k0 = 0, k1 = 0, and
k2 = 1 (viz. |k〉 = | j〉 = |4〉), and acts as the identity for all |k〉 �= |4〉.

The basic ingredient for implementing CM−1(X ) is the
Toffoli gate UTof, whose action is well-known:

UTof |k0〉 ⊗ |k1〉 ⊗ |i〉 = |k0〉 ⊗ |k1〉 ⊗ |i ⊕ k0k1〉. (A1)

The Toffoli gate multiplies the control inputs k0 and k1 and
adds their product to the target qubit input i using binary
addition. Note that when i = 0, the final target state |k0k1〉
stores the product of the control inputs in the label of the
target final state. We utilize this in the circuit implementation
of CM−1(X ).

Suppose there are m control inputs k0, . . . , km−1 whose
product we want to add to the target input i. We use
Toffoli gates to build up the product k0 · · · km−1 iteratively.
The first Toffoli gate acts on control qubits 0 and 1 and uses
an ancilla qubit in the initial state |0〉 as the target. The Toffoli
gate leaves the ancilla in the state |k0k1〉 as explained in the
previous paragraph. The second Toffoli gate uses control qubit
2 and the first ancilla as control qubits, and a second ancilla

in the state |0〉 as the target. The second Toffoli gate leaves
the second ancilla in the state |k0k1k2〉. Repeating this process
m − 2 times leaves ancilla m − 2 in the state |k0 · · · km−2〉. To
complete constructing the product, we apply another Toffoli
gate using control qubit m − 1 and ancilla m − 2 as controls
and the single qubit in the original second register whose
initial state is |i〉 as the target qubit. The final state of the
second register qubit is then |i ⊕ k0 · · · km−1〉. It is important
to note that at this point the m − 2 ancilla qubits are entangled
with the original two registers. To disentangle them, we must
reapply the first m − 2 Toffoli gates in reverse order. Once this
is done, we discard the unentangled ancilla qubits. The origi-
nal two registers are left in the state |k〉m ⊗ |i ⊕ k0 · · · km−1〉1,
which is the desired state on the right-hand side of Eq. (95).

Before illustrating this circuit construction with an exam-
ple, we determine the resources used. The number of Toffoli
gates used when m � 2 is

T = (m − 2) + 1 + (m − 2) = 2m − 3, (A2)

and the number of ancilla qubits used is

A = m − 2. (A3)

The circuit depth is controlled by the number of Toffoli gates,
and so

D(Cj (X )) = 2m − 3 = O(log2 M ), (A4)

and the circuit width (including ancilla qubits) is

W (Cj (X )) = m + 1 + (m − 2) = O(log2 M ). (A5)

To illustrate this construction, Fig. 16 shows how to imple-
ment Cj (X ) for j = 4, m = 3. As seen before, j0 = 0, j1 = 0,
and j2 = 1. We see that the circuit uses 2m − 3 = 3 Toffoli
gates and m − 2 = 1 ancilla qubit. We leave it as an exercise
to implement Cj (X ) for j = 4 and m = 4. This will require
five Toffoli gates, two ancilla qubits, and six Pauli X gates.
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