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Adiabatic elimination for composite open quantum systems:
Reduced-model formulation and numerical simulations
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A numerical method is proposed for simulation of composite open quantum systems. It is based on Lindblad
master equations and adiabatic elimination. Each subsystem is assumed to converge exponentially towards
a stationary subspace, slightly impacted by some decoherence channels and weakly coupled to the other
subsystems. This numerical method is based on a perturbation analysis with an asymptotic expansion. It exploits
the formulation of the slow dynamics with reduced dimension. It relies on the invariant operators of the local
and nominal dissipative dynamics attached to each subsystem. Second-order expansion can be computed only
with local numerical calculations. It avoids computations on the tensor-product Hilbert space attached to the full
system. This numerical method is particularly well suited for autonomous quantum error correction schemes.
Simulations of such reduced models agree with complete full model simulations for typical gates acting on
one and two cat qubits (Z, ZZ, and CNOT) when the mean photon number of each cat qubit is less than eight.
For larger mean photon numbers and gates with three cat qubits (ZZZ and CCNOT), full model simulations are
almost impossible whereas reduced model simulations remain accessible. In particular, one observes numerically
the simultaneous capture of the dominant phase-flip error rate and of the very small bit-flip error rate with its
exponential suppression versus the mean photon number.
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I. INTRODUCTION

Quantum processors rely on controllable quantum systems
[1,2], which are prone to errors, mainly due to the environ-
ment, and therefore require quantum error correction with a
very large number of physical resources to operate [3–9]. To
reduce errors hence resource overheads, bosonic encodings
have emerged, taking advantage of the infinitely large Hilbert
space of harmonic oscillators for intrinsic autonomous error
correction [10–15].

However, with such infinite systems, capturing the physics
of gates and error processes becomes challenging. Classical
numerical simulations require taking into account many states
of the Hilbert space to model their dynamics [16,17]. In
addition, simulations of composite systems with more than
two modes are often intractable, as the dimension of the total
Hilbert space is exponential in the number of modes, each
mode description requiring a Hilbert-space of large dimen-
sion [18,19]. The computational requirements even quickly
surpass the capabilities of classical computers when consid-
ering only two bosonic qubits, and simulating gates involving
three bosonic qubits with high precision becomes unfeasible.
Model-reduction techniques have thus been developed and
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can use a more suitable basis of the Hilbert space to describe
the physical systems via a subsystem decomposition [19–21].

Other methods, such as adiabatic elimination, are used
to analyze the dynamics of open and dissipative quantum
systems under a deterministic Lindblad master equation. Adi-
abatic elimination corresponds to a perturbation technique
known in dynamical and control system theory as singular
perturbations for slow and fast systems. It is related to the
Tikhonov approximation theorem (see, e.g., Refs. [22,23])
and its coordinate-free formulation due to Fenichel [24] with
the notion of invariant slow manifold of a dynamical system
having two timescale dynamics: the fast and exponentially
converging ones and the slow ones of reduced dimension.
Adiabatic elimination produces low-dimensional dynamical
models via the derivation of the slow differential equa-
tion governing the evolution on the invariant slow manifold
[25–30].

In this context, we propose here an original numerical
method based on adiabatic elimination to simulate on a classi-
cal computer, quantum master equations modeling composite
systems having fast and local dissipation with weak cou-
pling between the subsystems and slow decoherence. These
calculations are simplified by exploiting the invariant op-
erators attached the fast dynamics of the local dissipation.
The resulting reduced model of the slow evolution yields an
efficient numerical method for classical simulations of com-
posite slow or fast systems having a too large Hilbert space
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for brute-force numerical integration of the original slow or
fast master equations. In particular, we show how to perform
classical simulations involving three bosonic qubits with high
precision.

Such low-dimensional reduced models are particularly
well suited for numerical simulation of autonomous quantum
error correction schemes developed for bosonic codes. In
particular, for cat qubit systems, around 50 to 100 photons
per cat qubit are required for simulating experimental setups,
corresponding to a mean photon number of 10 to 15. Two-
qubit quantum process tomography [31,32] is manageable via
standard simulation methods for a small mean photon number
but becomes infeasible when it exceeds 10. In the case of a
three-qubit gate with a truncation of 100, standard simulations
are impossible because they require storing density matrices
of dimension 1006, and quantum process tomography would
present even greater challenges. For such cat qubit systems,
several numerical simulations based on formal adiabatic cal-
culations and their numerical implementations are presented.
They succeed in capturing both the macroscopic phase-flip
errors associated with finite gate time and photon losses (the
dominant error process for harmonic oscillators), and also the
exponentially small bit-flip errors known to be much harder to
estimate [18,19]. This method enables reduced computations
with low-dimensional density operator for the global system
state (26 for a three-qubit gate).

In Sec. II, we recall for quantum master differential equa-
tions the formalism of stationary states and invariant operators
and detail the formal adiabatic calculations up to the second-
order of the continuous-time slow dynamics. These formal
calculations are then exploited numerically to simulate the
resulting second-order slow model for a Z gate on a single
cat qubit. Comparison with numerical simulations of the full
slow or fast model are given. In Sec. III, we then extend these
second-order calculations to a composite system of locally
stabilized subsystems. We show how their numerical imple-
mentations can be done with only local computations on the
Hilbert space of each subsystem. This avoids computations
on the full Hilbert space of the complete system. For the
composite system made of two (three) cat qubits, numerical
simulations of a ZZ (ZZZ) gate are presented with an em-
phasis on the different error rates. In Sec. IV, we adapt this
simulation method to composite systems for which one of
the subsystem is not stabilized. For two (three) cat qubits,
numerical simulations provide the error probabilities of a
CNOT (CCNOT) gate where the target qubit is not stabilized
during the gate. Sections in the Appendix are mainly devoted
to high-order adiabatic calculations, additional simulation re-
sults, discrete-time formulations with Kraus maps and the
derived time-discretization schemes underlying the numerical
simulations.

II. SECOND-ORDER EXPANSION AND Z-GATE
SIMULATIONS

A. Invariant manifold and slow dynamics approximation

The calculations of this subsection are very similar to
Secs. 2 and 3 of Ref. [33].

Consider the time-varying density operator ρt on underly-
ing Hilbert space H obeying to the following dynamics:

d

dt
ρt = L0(ρt ) + εL1(ρt ), (1)

with two Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
linear superoperators L0 and L1, where ε is a small positive
parameter. For σ = 0, 1 one has

Lσ (ρ) = − i[Ĥσ , ρ] +
∑

ν

L̂σ,νρL̂†
σ,ν

− 1

2
(L̂†

σ,ν L̂σ,νρ + ρL̂†
σ,ν L̂σ,ν ), (2)

with Ĥσ being the Hermitian operator and L̂σ,ν any operator
not necessarily Hermitian.

Assume that, for ε = 0 and any initial condition ρ0, the
solution of (1) converges exponentially towards a steady-state
depending a priori on ρ0. This means that we have a quantum
channel K0 defined by

lim
t �→+∞ etL0 (ρ0) � K0(ρ0). (3)

The range of K0 is denoted by D0, the set of steady-states cor-
responding to the kernel of L0, a vector subspace of Hermitian
operators. Denote by d̄ the dimension of D0 and consider an
orthonormal basis of D0 made of d̄ Hermitian operators Ŝ1,
..., Ŝd̄ such that Tr(Ŝd Ŝd ′ ) = δd,d ′ . To each Ŝd is associated an
invariant operator

Ĵd = lim
t �→+∞ etL∗

0 (Ŝd )

being a steady-state of the adjoint dynamics (according to the
Frobenius Hermitian product) d

dt Ĵ = L∗
0(Ĵ ), where L∗

0 is the
adjoint of L0 (see, e.g., Ref. [34]). For any solution ρt of
(1) with ε = 0, Tr(Ĵdρt ) is constant. This gives the following
expression for K0:

lim
t �→+∞ ρt =

d̄∑
d=1

Tr(Ĵdρ0 )̂Sd � K0(ρ0). (4)

Moreover, Tr(Ĵd Ŝd ′ ) = δd,d ′ since for any t > 0

Tr(etL∗
0 (Ŝd )̂Sd ′ ) = Tr(Ŝd etL0 (Ŝd ′ ))

= Tr(Ŝd Ŝd ′ ) = δd,d ′ (5)

using the fact that etL0 (Ŝd ′ ) = Ŝd ′ .
For ε > 0 and small, Eq. (1) also admits a d̄ dimensional

linear subspace denoted by Dε invariant and close to D0 (see
Ref. [35] for a mathematical justification in finite dimensions).
Thus, the set of d̄ real variables

x1 = Tr(Ĵ1ρ), . . . , xd̄ = Tr(Ĵd̄ρ)

can be chosen to be local coordinates on Dε : any density
operators ρ ∈ Dε reads ρ = ∑d̄

d=1 xd Ŝd (ε) with the perturbed
basis Ŝ1(ε), ..., Ŝd̄ (ε) and d̄ real numbers xd .

Invariance of Dε with respect to (1) means that, if at some
time t , the solution ρt of the perturbed system (1) belongs
to Dε , it remains on Dε at any time: d

dt ρt = (L0 + εL1)(ρt )

with ρt = ∑d̄
d=1 xd (t )̂Sd (ε). For any (x1(t ), . . . , xd̄ (t )) ∈ Rd̄ ,
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this invariance property reads

d̄∑
d=1

dxd

dt
Ŝd (ε) = (L0 + εL1)

⎛⎝ d̄∑
d=1

xd Ŝd (ε)

⎞⎠. (6)

Thus, for any d ∈ {1, . . . , d̄}, dxd/dt depends linearly on x =
(x1, . . . , xd̄ ), i.e.,

d

dt
xd =

∑
d ′

Fd,d ′ (ε)xd ′ . (7)

The invariance condition reads now

∀ (x1, . . . , xd̄ ) ∈ Rd̄ ,
∑
d,d ′

xd ′Fd,d ′ (ε )̂Sd (ε)

=
∑

d

xd (L0 + εL1)(Ŝd (ε)), (8)

which is equivalent to

∀ d ∈ {1, . . . , d̄},
d̄∑

d ′=1

Fd ′,d (ε )̂Sd ′ (ε) = (L0 + εL1)(Ŝd (ε)).

(9)

With the asymptotic expansion

Fd,d ′ (ε) =
∑
n�0

εnF (n)
d,d ′ , Ŝd (ε) =

∑
n�0

εnŜ(n)
d , (10)

one can compute recursively F (n)
d,d ′ and Ŝ(n)

d from F (m)
d,d ′ and Ŝ(m)

d
with m < n. The recurrence relationship is based on the iden-
tification of terms with same orders versus ε in the following
equations:

∀ d ∈ {1, . . . , d̄},
d̄∑

d ′=1

⎛⎝∑
n�0

εnF (n)
d ′,d

⎞⎠⎛⎝∑
n′�0

εn′
Ŝ(n′ )

d ′

⎞⎠
= (L0 + εL1)

⎛⎝∑
n�0

εnŜ(n)
d

⎞⎠. (11)

The zero-order condition is satisfied with F (0)
d,d ′ = 0 and

Ŝ(0)
d = Ŝd . The first-order condition reads

∀ d ∈ {1, . . . , d̄},
d̄∑

d ′′=1

F (1)
d ′′,d Ŝ(0)

d ′′ = L0
(
Ŝ(1)

d

) + L1
(
Ŝ(0)

d

)
.

(12)

Left multiplication by operator Ĵd ′ and taking the trace yields

F (1)
d ′,d = Tr

(
Ĵd ′L1

(
Ŝd

(0)
))

, (13)

since Tr(Ĵd ′ Ŝ(0)
d ′′ ) = δd ′,d ′′ and Tr(Ĵd ′L0(Ŵ )) = 0 for any oper-

ator Ŵ because L∗
0(Ĵd ′ ) = 0. Thus, Ŝ(1)

d is a solution X̂ of the
following equation:

L0(X̂ ) =
∑

d ′
Tr

(
Ĵd ′L1

(
Ŝ(0)

d

))
Ŝd ′ − L1

(
Ŝ(0)

d

)
= K0

(
L1

(
Ŝ(0)

d

)) − L1
(
Ŝ(0)

d

)
, (14)

where the quantum channel K0 is defined in (3). Following
Ref. [28], the general solution X̂ is given by the absolutely
converging integral,

X̂ =
∫ +∞

0
esL0

[
L1

(
Ŝ(0)

d

) − K0
(
L1

(
Ŝ(0)

d

))]
ds + Ŵ , (15)

where Ŵ belongs to D0 the kernel of L0. We consider the
solution with Ŵ = 0 and thus

Ŝ(1)
d =

∫ +∞

0
esL0

[
L1

(
Ŝ(0)

d

) − K0
(
L1

(
Ŝ(0)

d

))]
ds, (16)

where for all d ′, Tr(Ĵd ′ Ŝ(1)
d ) = 0. Thus, by construction,

Tr(Ĵd ′ (Ŝ(0)
d + εŜ(1)

d )) = δd,d ′ . The superoperator R0 defined
for any operator Ŵ by

R0(Ŵ ) =
∫ +∞

0
esL0 [Ŵ − K0(Ŵ )]ds (17)

provides thus the unique solution X̂ = R0(Ŵ ) of L0(X̂ ) =
K0(Ŵ ) − Ŵ such that, for all d , Tr(Ĵd X̂ ) = 0. To summarize,
the first-order terms in ε are

F (1)
d ′,d = Tr

(
Ĵd ′L1

(
Ŝd

(0)
))

and Ŝ(1)
d = R0(L1(Ŝd )). (18)

Second-order conditions are

∀ d ∈ {1, . . . , d̄},
d̄∑

d ′′=1

F (1)
d ′′,d Ŝ(1)

d ′′ + F (2)
d ′′,d Ŝ(0)

d ′′ = L0
(
Ŝ(2)

d

) + L1
(
Ŝ(1)

d

)
. (19)

Left multiplication by operator Ĵd ′ and taking the trace yields:

F (2)
d ′,d = Tr

(
Ĵd ′L1

(
Ŝ(1)

d

)) = Tr
(
L∗

1(Ĵd ′ )̂S(1)
d

)
. (20)

Computations similar to those performed for the first-order
conditions yield

Ŝ(2)
d = R0

⎛⎝L1
(
Ŝ(1)

d

) −
d̄∑

d ′′=1

F (1)
d ′′,d Ŝ(1)

d ′′

⎞⎠. (21)

Higher order formulas are given in Appendix A 1. The
equivalent of Eqs. (18) and (20) for a slow time dependency
are detailed in Appendix B and for discrete-time setting in
Appendix D 1.

B. Z-gate simulations for a single cat qubit

For a cat qubit system [18,36,37], the quantum state ρ is
attached to a harmonic oscillator. It is confined through an
engineered two-photon-driven dissipation process to have its
range close to a two-dimensional subspace spanned by two co-
herent wave functions | ± α〉 of opposite complex amplitudes
±α (in the following, we take α real, and thus identify α2 with
|α2|). This means that the support of ρ remains close to the
sub-Hilbert space of dimension 2 spanned by the orthonormal
wave functions (the Schrödinger cat states)∣∣C±

α

〉
:= N±(|α〉 ± |−α〉), (22)
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FIG. 1. Propagator error between the full-model (28) and
reduced model (30) for the Z gate with the mean photon
number α2 between 1 and 16. The error is computed as√

[Tr((GredG−1
full − I4)(GredG−1

full − I4)†)]1/2.

where N± = {2[1 ± exp(−2α2)]}−1/2 are normalizing con-
stants. The computational wave-function are given by the
following equations:

|0〉C = (|C+
α 〉 + |C−

α 〉)/
√

2 = |α〉 + O
(
e−2α2)

, (23)

|1〉C = (|C+
α 〉 − |C−

α 〉)/
√

2 = |−α〉 + O
(
e−2α2)

. (24)

The engineered two-photon-driven dissipation process can be
effectively modeled by as single Lindblad term of the form

L0(ρ) = DL̂0
(ρ) �

[
L̂0ρL̂†

0 − 1
2

(
L̂†

0 L̂0ρ + ρL̂†
0 L̂0

)]
, (25)

with L̂0 = √
κ2 (̂a2 − α2), κ2 > 0, and â being the photon

annihilator operator. Such a process can be engineered in
a superconducting platform [36]. It stabilizes exponentially
the cat qubit subspace corresponding then to D0 (called the
code subspace in the context of bosonic codes) [38]. Its real
dimension is d̄ = 4 with the following orthonormal operator
basis

Ŝ1 = (|C+
α 〉〈C+

α | + |C−
α 〉〈C−

α |)/
√

2,

Ŝ2 = (|C+
α 〉〈C+

α | − |C−
α 〉〈C−

α |)/
√

2,

Ŝ3 = (i|C+
α 〉〈C−

α | − i|C−
α 〉〈C+

α |)/
√

2,

Ŝ4 = (|C+
α 〉〈C−

α | + |C−
α 〉〈C+

α |)/
√

2. (26)

Among the errors and decoherence processes, the domi-
nant one is the undesired single-photon loss, modeled by

D√
κ1â(ρ) � κ1

[̂
aρâ† − 1

2

(̂
a†âρ + ρâ†â

)]
, (27)

where κ1 > 0. Usually the ratio κ1/κ2 is small: κ1 is the single-
photon loss rate, much smaller than κ2 the rate of mechanism
stabilizing the code space D0.

A Z-gate corresponds to a unitary transformation ex-
changing |C+

α 〉 and |C−
α 〉. Following Refs. [36,39], it can be

approximately engineered via the propagator of time dura-
tion T > 0 associated with the Hamiltonian Ĥ1 = εZ (̂a + â†)
where εZ = π/4αT has to be much smaller than κ2. The

FIG. 2. Real (left) and imaginary (right) part of the quantum-
error matrix χE . Panel (a) corresponds to no error with E = I4,
panel (b) corresponds to full model simulations (28) with α2 = 4
and E = Efull, panel (c) corresponds to reduced model simulations
(30) with α2 = 4 and E = Ered.

superoperators L0 and L1 corresponding here to Eq. (1) are
thus

L0(ρ) = κ2Dâ2−α2 (ρ),
(28)

εL1(ρ) = κ1Dâ(ρ) − i
π

4αT
[̂a + â†, ρ],

where κ1/κ2 and 1/T κ2 are much smaller than 1, ensuring
the scaling based on the small parameter ε. Moreover, re-
placing L1 in formulas (18) and (20) by the superoperator
κ1Dâ(•) − i π

4αT [̂a + â†, •] corresponding to εL1, provides di-
rectly εF (1)

d ′,d , εŜ(1)
d , and ε2F (2)

d ′,d without defining precisely ε.
Numerical simulations of Figs. 1–3 are based on a Galerkin

approximation of the Hilbert space relying on the photon-
number state |n〉 with n between 0 to N . The integer N is
chosen large enough to ensure that |〈α|N〉|2 = e−α2 |α|2N/N!
remains negligible. The time discretization of the resulting
finite-dimensional system of ordinary differential equations is
based on the numerical scheme described in Appendix C.
It provides a discrete-time setting ρ(t + δt ) = K0(ρ(t )) +
εK1(ρ(t )), where K0 is an exact quantum channel close to
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(a)

(b)

FIG. 3. Comparison between (a) X and (b) Z error probabilities
of a Z gate obtained via full model simulations for α2 � 8 (28)
(shown as gray circles) and the reduced model simulations (30)
(colored plus) for different mean photon numbers α2. A simple fit
yields an exponential suppression of bit flips with an exponential
coefficient of 2.46 ± 0.03 (dashed line).

identity with

κ2δt = 1

1000
, κ1 = κ2

100
,

εZ = π

4αT
= κ2

20
, 1 � α2 � 16 and N = 100. (29)

The operators Ŝ(0)
d = Ŝd with d = 1, . . . , 4 = d̄ are obtained

from truncated approximations of coherent states | ± α〉 ≈
e−α2/2 ∑N

n=0
(±α)n√

n!
|n〉. The associated invariant operators Ĵd

are obtained numerically via the discrete-time formulation
given in Appendix D. Similarly, the entries of εF (1)

d ′,d and

ε2F (2)
d ′,d are given by discrete-time formulas (D6) divided by

δt and where K1 stands for εδtL1. These matrices provide,
up to third-order terms, the generator of the continuous-time
reduced dynamics:

d

dt
x = (εF (1) + ε2F (2) )x = F (ε)x + O(ε3), (30)

where xd = Tr(Ĵdρ) for d = 1, . . . , 4.
On Fig. 1, the reduced model propagator Gred =

eT (εF (1)+ε2F (2) ), a 4 × 4 real matrix, is then compared with the
full model propagator Gfull, another 4 × 4 real matrix with

FIG. 4. One-qubit χ matrix representing the noise channel of an
imperfect gate reduced to a two-level system. The off-diagonal ele-
ments shown in gray are ignored since they do not cause symmetric
Pauli errors.

entries given by Tr(Ĵd ′Ŵd (T )), where Ŵd (t ) is the numerical
solution of the full model (1) truncated to N = 100 photons
and starting from initial condition Ŵd (0) = Ŝd . We observe
an error [Tr((GredG−1

full − I4)(GredG−1
full − I4)†)]1/2 of less than

0.014 for mean-photon number α2 between 1 and 16 (I4 is the
4 × 4 identity matrix).

Both Gred and Gfull are close to the ideal Z-gate matrix

Gideal =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎟⎠.

Thus, the reduced model error propagator Ered = G−1
ideal Gred

and the full model error propagator Efull = G−1
ideal Gfull are

close to identity matrix I4: they correspond in fact to quan-
tum channels usually close to identity and characterizing
the errors. These channels can be decomposed according to
the basis (Ŝ1, . . . , Ŝ4). This means that, for E = Ered , Efull,
the identity

∀ x ∈ R4,

4∑
d,d ′=1

Ed,d ′xd ′ Ŝd =
4∑

m,n=1

χE
m,nŜm

(
4∑

d=1

xd Ŝd

)
Ŝn

(31)

uniquely defines the χE matrix, a 4 × 4 matrix characterizing
the errors and close to χ I4 having a single nonzero entry
χ

I4
1,1 = 1. This is illustrated in Fig. 2.

Since X̂ = √
2Ŝ2, Ŷ = √

2Ŝ3 and Ẑ = √
2Ŝ4 correspond to

three Pauli operators on the code space, χE
2,2 (χE

3,3, χE
4,4) gives

roughly speaking the X error (Y error, Z error) probability,
see Fig. 4. These error probabilities have to be less than
some thresholds in order to be canceled by high-level error
correction code. For a cat qubit, Z-error probability is usually
much larger than the two other ones, X -error and Y -error
probabilities, called bit-flip errors. Simulations of Fig. 3(a)
show that the reduced model captures the very small error
probabilities associated with bit-flip errors known to be ex-
ponentially suppressed for large α2 as shown experimentally
in Ref. [40]. We emphasize that the accuracy of the results is
only based on numerical checks. A more formal analysis on
the capture of very small bit-flip errors by such second-order
approximation will be the object of future developments. We
found an exponential suppression of bit flips proportional
to exp−aα2

with a = 2.46 ± 0.03. The reduced model also
captures the phase-flips (Z error) in Fig. 3(b). It matches
well with full model simulations and also with an analytical
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formula obtained via a perturbation expansion given in
Ref. [19]: pZ = α2κ1T + ε2

ZT /α2κ2.
Z-gate simulations up to order five are discussed in Ap-

pendix A 2, showing the convergence of the X , Y , and Z error
probabilities by increasing the order of the perturbative anal-
ysis in Fig. 10. The equation (16) allows performing leakage
computation, defined as the population outside the code space,
see Appendix F 1 and Fig. 16(a).

III. COMPOSITE SYSTEMS AND ZZ- AND ZZZ-GATE
SIMULATIONS

A. Second-order approximation with only local computations

Take a bipartite system made of subsystems A and B with
Hilbert spaces HA and HB. The system Hilbert space is H =
HA ⊗ HB. Assume that the unperturbed dynamics L0 in (1)
admit the following structure:

L0 = LA,0 + LB,0, (32)

where DA,0 and DB,0 are the steady-state subspaces of oper-
ators on HA and HB of local Lindblad superoperators LA,0

and LB,0. These local nominal dynamics stabilize the sub-
spaces of dimensions d̄A and d̄B, having (ŜA,dA )1�dA�d̄A

and
(ŜB,dB )1�dB�d̄B

as orthonormal basis of Hermitian operators.
Thus, all Hermitian operators in D0, the kernel of LA + LB,
read ∑

dA,dB

xdA,dB ŜA,dA ⊗ ŜB,dB , (33)

where xdA,dB are arbitrary real numbers.
We assume that LA,0 and LB,0 ensure exponential conver-

gence towards DA,0 and DB,0: for any operators ρ on H,

lim
t �→+∞ et (LA,0+LB,0 )(ρ) = K0(ρ)

=
∑
dA,dB

Tr(ĴA,dA ⊗ ĴB,dBρ )̂SA,dA ⊗ ŜB,dB ,

(34)

where ĴA,dA and ĴB,dB are local invariant operators

ĴA,dA = lim
t �→+∞ etL∗

A,0 (ŜA,dA ),

ĴB,dB = lim
t �→+∞ etL∗

B,0 (ŜB,dB ). (35)

Assume that Ĥ1 and L̂1,ν defining the superoperator L1 in
(1) only involve finite sums of tensor products of operators on
HA and HB. This means that for any X̂A and X̂B local operators

on HA and HB,

L1(X̂A ⊗ X̂B) =
ν̄∑

ν=1

L̂A,ν X̂AR̂A,ν ⊗ L̂B,ν X̂BR̂B,ν , (36)

where ν̄ is a positive integer, L̂A,ν , R̂A,ν are operators on HA,
and L̂B,ν , R̂B,ν are operators on HB.

The operator Ĵd ′ appearing in (13) corresponds here to
ĴA,d ′

A
⊗ ĴB,d ′

B
with d ′ = (d ′

A, d ′
B). Similarly, Ŝd reads here

ŜA,dA ⊗ ŜB,dB with d = (dA, dB). With (36) one obtains

F (1)
(d ′

A,d ′
B ),(dA,dB ) =

ν̄∑
ν=1

Tr
(
ĴA,d ′

A
L̂A,ν ŜA,dA R̂A,ν

)
· · · Tr

(
ĴB,d ′

B
L̂B,ν ŜB,dB R̂B,ν

)
. (37)

For X = A, B, consider the local operators

ĴX,d ′
X ,ν = R̂X,ν ĴX,d ′

X
L̂X,ν , ŜX,dX ,ν = L̂X,ν ŜX,dX R̂X,ν . (38)

Then

F (1)
(d ′

A,d ′
B ),(dA,dB ) =

ν̄∑
ν=1

Tr
(
ĴA,d ′

A
ŜA,dA,ν

)
Tr

(
ĴB,d ′

B
ŜB,dB,ν

)
=

ν̄∑
ν=1

Tr
(
ŜA,dA ĴA,d ′

A,ν

)
Tr

(
ŜB,dB ĴB,d ′

B,ν

)
. (39)

This gives the first-order approximation of the reduced
dynamics for which the coordinate vector x = (xd ′

A,d ′
B
)d ′

A,d ′
B

evolves according to

d

dt
xd ′

A,d ′
B

=
∑
dA,dB

εF (1)
(d ′

A,d ′
B ),(dA,dB )

xdA,dB . (40)

Take the second-order correction F (2) given by the general
formula (20). We have

L∗
1(Ĵd ′ ) =

ν̄∑
ν ′=1

ĴA,d ′
A,ν ′ ⊗ ĴB,d ′

B,ν ′ ,

L1(Ŝd ) =
ν̄∑

ν=1

ŜA,dA,ν ⊗ ŜB,dB,ν , (41)

where d ′ = (d ′
A, d ′

B) and d = (dA, dB). By linearity of R0

L∗
1(Ĵd ′ )R0(L1(Ŝd )) =

ν̄∑
ν,ν ′=1

(
ĴA,d ′

A,ν ′ ⊗ ĴB,d ′
B,ν ′

)
× R0

(
ŜA,dA,ν ⊗ ŜB,dB,ν

)
. (42)

Combining esLA,0+sLB,0 = esLA,0 ⊗ esLB,0 with (17) and (34)
gives

R0
(
ŜA,dA,ν ⊗ ŜB,dB,ν

) =
∫ +∞

0

[
esLA,0

(
ŜA,dA,ν

) ⊗ esLB,0
(
ŜB,dB,ν

) −
∑
d ′′

A ,d ′′
B

Tr
(
ĴA,d ′′

A
ŜA,dA,ν

)
Tr

(
ĴB,d ′′

B
ŜB,dB,ν

)
ŜA,d ′′

A
⊗ ŜB,d ′′

B

]
ds. (43)
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(a) (b)

FIG. 5. Comparison between (a) X and (b) Z error probabilities of a ZZ gate, pZZ in green and pZ in blue, obtained via full model simulations
for α2 � 8 (45) (shown as gray circles) and the reduced model simulations (30) (colored plus) for different mean photon numbers α2. A simple
fit yields an exponential suppression of bit flips with an exponential coefficient of 2.20 ± 0.01 (dashed line).

Here, we are only interested in the trace of the product with ĴA,d ′
A,ν ′ ⊗ ĴB,d ′

B,ν ′ :

Tr
(
ĴA,d ′

A,ν ′ ⊗ ĴB,d ′
B,ν ′R0

(
ŜA,dA,ν ⊗ ŜB,dB,ν

))
=

∫ +∞

0

[
Tr

(
ĴA,d ′

A,ν ′esLA,0
(
ŜA,dA,ν

))
Tr

(
ĴB,d ′

B,ν ′esLB,0
(
ŜB,dB,ν

)) · · ·

− · · ·
∑
d ′′

A ,d ′′
B

Tr
(
ĴA,d ′′

A
ŜA,dA,ν

)
Tr

(
ĴB,d ′′

B
ŜB,dB,ν

)
Tr

(
ĴA,d ′

A,ν ′ ŜA,d ′′
A

)
Tr

(
ĴB,d ′

B,ν ′ ŜB,d ′′
B

)]
ds

=
∫ +∞

0

[
Tr

(
ĴA,d ′

A,ν ′esLA,0
(
ŜA,dA,ν

))
Tr

(
ĴB,d ′

B,ν ′esLB,0
(
ŜB,dB,ν

)) · · · − · · · GA,d ′
A,dA,ν,ν ′GB,d ′

B,dB,ν,ν ′

]
ds,

where for X = A, B,

GX,d ′
X ,dX ,ν,ν ′ =

∑
d ′′

X

Tr
(
ĴX,d ′

X
ŜX,d ′′

X ,ν ′
)
Tr

(
ĴX,d ′′

X
ŜX,dX ,ν

)
and using identities like Tr(ĴX,d ′

X
ŜX,d ′′

X ,ν ′ ) ≡ Tr(ŜX,d ′′
X
ĴX,d ′

X ,ν ′ ).
To conclude, one gets each entry of F (2) with only local

numerical computations on HA and HB:

F (2)
(d ′

A,d ′
B ),(dA,dB ) =

∑ν̄

ν,ν ′=1

∫ +∞

0

[
Tr

(
ĴA,d ′

A,ν ′esLA,0
(
ŜA,dA,ν

))
× Tr

(
ĴB,d ′

B,ν ′esLB,0
(
ŜB,dB,ν

))
· · · − · · · GA,d ′

A,dA,ν,ν ′GB,d ′
B,dB,ν,ν ′

]
ds. (44)

The equivalents of Eqs. (39) and (44) for a discrete time
setting are given in Appendix D 2.

B. ZZ gate

A ZZ gate corresponds to a unitary transformation chang-
ing |C±

α 〉|C±
α 〉 to |C∓

α 〉|C∓
α 〉 (parity change). As for the Z-gate

implementation, it can be approximately engineered via
the propagator of time duration T > 0 associated with the
Hamiltonian Ĥ1 = εZZ(̂âb† + â†b̂) where â (̂b) is the photon
annihilation operator on subsystem A (B) and where εZZ =
π/4α2T has to be much smaller than κ2. The superoperators

L0 and L1 corresponding here to Eq. (1) are thus

L0(ρ) = κ2[Dâ2−α2 + Db̂2−α2 ](ρ),

εL1(ρ) = κ1[Dâ + Db̂](ρ) − i
π

4α2T
[(̂âb† + â†b̂), ρ], (45)

where κ1/κ2 and 1/T κ2 are much smaller than 1.
εF (1)

(d ′
A,d ′

B ),(dA,dB ) and ε2F (2)
(d ′

A,d ′
B ),(dA,dB ) defined in (39) and (44)

are computed using discrete-time formulas and provide, up
to third-order terms, the generator of the continuous-time re-
duced dynamics of Eq. (30) with the coordinate vector x

x = (
x(dA,dB ) = Tr(ĴdA ⊗ ĴdBρ)

)
dA,dB=1,...,4.

The parameters of the numerical simulations of Fig. 5 are

κ2δt = 1

1000
, κ1 = κ2

100
,

εZZ = π

4α2T
= κ2

20
with 1 � α2 � 16,

where photon-number truncation N is equal to 100 for the
reduced model and to 40 for the full model.

As for the Z gate, the reduced model error propagator
Ered = G−1

ideal Gred and the full model error propagator Efull =
G−1

ideal Gfull are close to identity matrix I16 and characterize the
errors. These channels can also be decomposed according to
the basis (ŜA,1, . . . , ŜA,4) ⊗ (ŜB,1, . . . , ŜB,4). This means that
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for E = Ered , Efull, the identity

∀ x ∈ R16,

4∑
dA,dB,d ′

A,d ′
B=1

E(dA,dB ),(d ′
A,d ′

B )x(d ′
A,d ′

B )ŜA,dA ŜB,dB

=
4∑

mA,mB,nA,nB=1

χE
(mA,mB ),(nA,nB )ŜA,mA ŜB,mB

⎛⎝ 4∑
dA,dB=1

x(dA,dB )ŜA,dA ŜB,dB

⎞⎠ŜA,nA ŜB,nB (46)

uniquely defines the 16 × 16 χE matrix characterizing the
errors (close to χ I16 having a single nonzero entry χ

I16
1,1 = 1).

An illustration of χEred and χEfull is given in Appendix E,
Fig. 12 for α = 2. Coefficients of the diagonal of χE give
the Pauli errors of the gate. In Fig. 6, the total bit-flip error
probability is displayed as the sum of all the 12 Pauli errors
involving a bit flip (X or Y error) and simulated in Fig. 5(a).
We found an exponential suppression of bit flips proportional
to exp−aα2

with a = 2.20 ± 0.01. The reduced model also
captures the phase flips (Z error) in Fig. 5(b). It matches
well with full-model simulations and also with an analytical
formula obtained via a perturbation expansion derived from
the formula of the Z-gate errors: pZa = pZb = α2κ1T = πκ1

4εzz
,

pZaZb = πεzz
2|α|4κ2

+ pZa pZb (the last term coming from second-
order effects of the single-photon losses), see Appendix G.

Equation (16) allows us to perform a first-order computa-
tion of the leakage, see Appendix F 2 and Fig. 16(b).

C. ZZZ gate

A ZZZ-gate unitary corresponds to a transformation chang-
ing |C±

α 〉|C±
α 〉|C±

α 〉 to |C∓
α 〉|C∓

α 〉|C∓
α 〉. As for the Z and ZZ gate,

FIG. 6. Two-qubit χ matrix representing the noise channel of an
imperfect gate reduced to two two-level systems. The off-diagonal
elements shown in gray are not considered in such a rough analysis
based on symmetric Pauli errors.

it can be approximately engineered via the propagator of
time duration T > 0 associated with the Hamiltonian Ĥ1 =
εZZZ(̂a b̂ ĉ† + â† b̂† ĉ) where â (̂b, ĉ) is the photon annihilation
operator on subsystem A (B, C) and where εZZZ = π/4α3T
has to be much smaller than κ2. The superoperators L0 and L1

corresponding here to Eq. (1) are thus

L0(ρ) = κ2[Dâ2−α2 + Db̂2−α2 + Dĉ2−α2 ](ρ),

εL1(ρ) = κ1[Dâ+Db̂+Dĉ](ρ) − i
π

4α3T
[(̂a b̂ ĉ†+â† b̂† ĉ), ρ],

(47)

where κ1/κ2 and T κ2 are much smaller than 1.
Numerical simulations of the full-model were not per-

formed for computational limitations. We only report
reduced-model simulations based on the direct generalization
of (39) and (44) to a tripartite system. The parameters of the
numerical simulations of Figs. 7 are

κ2δt = 1

1000
, κ1 = κ2

100
,

εZZZ = π

4α2T
= κ2

20
with 1 � α2 � 16, N = 100.

The total bit-flip error probability is the sum of all
the 56 Pauli errors involving a bit flip (X or Y er-
ror) and simulated in Fig. 5(a). We found an exponen-
tial suppression of bit flips proportional to exp−aα2

with
a = 2.12 ± 0.01. The reduced model also captures the
phase flips (Z error) in Fig. 5(b). It matches well with
an analytical formula obtained via a perturbation expan-
sion detailed in Appendix G: pZa = pZb = pZc = α2κ1T =
πκ1/4|α|εZZZ, pZaZbZc = 3πεZZZ/4|α|κ2 + pZa pZb pZc , pZaZb =
pZaZc = pZbZc = pZ pZZZ + p2

Z. An illustration of a 64 × 64χE

matrix for the reduced propagator error Ered is given in Ap-
pendix E, Fig. 13. A first-order computation of the leakage is
shown in Fig. 16(b).

IV. COMPOSITE SYSTEMS WITH AN UNSTABILIZED
COMPONENT

A. Second-order approximation

Assume that LB,0 = 0 for the bipartite system of Sec. III.
Then (ŜB,dB )1�dB�d̄B

span all Hermitian operators on HB and
ĴB,dB = ŜB,dB . Following (33), all operators belonging to D0

read
∑

dA
ŜA,dA ⊗ ρB,dA with Hermitian operators on HB

ρB,dA =
∑

dB

xdAdB ŜB,dB (48)
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(a) (b)

FIG. 7. Comparison between (a) X and (b) Z error probabilities of a ZZZ gate, pZ (pZa = pZb = pZc ) in blue, pZZ (pZaZb = pZaZc = pZbZc ) in
green, and pZaZbZc in lavender, obtained via reduced model simulations (30) (colored plus) for different mean photon numbers α2. A simple fit
yields an exponential suppression of bit flips with an exponential coefficient of 2.12 ± 0.01 (dashed line).

and xdA,dB = Tr(ŜB,dBρB,dA ) real numbers. The mapping between x = (xdA,dB ) and the set (ρB,dA ) of d̄A operators on HB is linear
and bijective. We just translate here the formulas of Sec. III with xdA,dB variables in ρB,dA variables.

Combining (39) with (40), the first-order time evolution of the coordinate vector (xd ′
A,d ′

B
)d ′

A,d ′
B

reads

d

dt
xd ′

A,d ′
B

=
∑

ν,dA,dB

Tr
(
ĴA,d ′

A
L̂A,ν ŜA,dA R̂A,ν

) · · · · · · Tr
(
ŜB,d ′

B
L̂B,ν ŜB,dB R̂B,ν

)
xdA,dB .

Using (48), we get

d

dt
ρB,d ′

A
=

∑
ν,dA

Tr
(
ĴA,d ′

A
L̂A,ν ŜA,dA R̂A,ν

)
L̂B,νρB,dA R̂B,ν .

With F̄ (1)
d ′

A,dA,ν
= Tr(ĴA,d ′

A
L̂A,ν ŜA,dA R̂A,ν ), the first-order approximation of the slow dynamics reads

d

dt
ρB,d ′

A
=

∑
ν,dA

F̄ (1)
d ′

A,dA,ν
L̂B,νρB,dA R̂B,ν .

Using in (38), the superoperator R0 reads

R0
(
ŜA,dA,ν ⊗ ŜB,dB,ν

) =
∫ +∞

0

⎡⎣esLA,0
(
ŜA,dA,ν

) ⊗ ŜB,dB,ν −
∑
d ′′

A ,d ′′
B

Tr
(
ĴA,d ′′

A
ŜA,dA,ν

)
Tr

(
ŜB,d ′′

B
ŜB,dB,ν

)
ŜA,d ′′

A
⊗ ŜB,d ′′

B

⎤⎦ds

=
∫ +∞

0

⎡⎣esLA,0
(
ŜA,dA,ν

) −
∑
d ′′

A

Tr
(
ĴA,d ′′

A
ŜA,dA,ν

)
ŜA,d ′′

A

⎤⎦ds ⊗ ŜB,dB,ν = R0
(
ŜA,dA,ν

) ⊗ ŜB,dB,ν .

R0 is thus local on subsystem A. F (2) given by the formula (44) becomes then

F (2)
(d ′

Ad ′
B ),(dAdB ) = Tr

(
L∗

1

(
ĴA,d ′

A
⊗ ŜB,d ′

B

)
R0(L1(ŜA,dA ⊗ ŜB,dB )

)) =
∑
νν ′

F̄ (2)
d ′

A,dA,ν,ν ′Tr
(
ŜB,d ′

B
L̂B,ν ′ L̂B,ν ŜB,dB R̂B,ν R̂B,ν ′

)
,

where F̄ (2)
d ′

A,dA,ν,ν ′ = Tr(Ĵd ′
A,ν ′R0(ŜdA,ν )). With∑
dA,dB

F (2)
(d ′

A,d ′
B ),(dA,dB )

xdA,dB =
∑

dA,dB,νν ′
F̄ (2)

d ′
A,dA,ν,ν ′xdA,dB Tr

(
ŜB,d ′

B
L̂B,ν ′ L̂B,ν ŜB,dB R̂B,ν R̂B,ν ′

)
and ∑

dB

xdA,dB Tr
(
ŜB,d ′

B
L̂B,ν ′ L̂B,ν ŜB,dB R̂B,ν R̂B,ν ′

) = Tr
(
ŜB,d ′

B
L̂B,ν ′ L̂B,νρB,dA R̂B,ν R̂B,ν ′

)
,
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we get the following expression for the second-order approx-
imation using the parametrization based on the d̄A set of
Hermitian operators (ρB,d ′

A
) on HB:

d

dt
ρB,d ′

A
=

∑
ν,dA

F̄ (1)
d ′

A,dA,ν
L̂B,νρB,dA R̂B,ν

+
∑

ν,ν ′,dA

F̄ (2)
d ′

A,dA,ν,ν ′ L̂B,ν ′ L̂B,νρB,dA R̂B,ν R̂B,ν ′ . (49)

with F̄ (1)
d ′

A,dA,ν
= Tr(ĴA,d ′

A
L̂A,ν ŜA,dA R̂A,ν ) and F̄ (2)

d ′
A,dA,ν,ν ′ =

Tr(Ĵd ′
A,ν ′R0(ŜdA,ν )). The discrete-time formulations of F̄ (1)

d ′
A,dA,ν

and F̄ (2)
d ′

A,dA,ν,ν ′ can be obtained directly from Appendix D 2.

B. CNOT gate

A CNOT-gate corresponds to a π rotation in the phase space
of a qubit called the target qubit conditioned on the state of an-
other qubit called the control qubit, being on the |1〉C � | − α〉
state. Using cat qubits of complex amplitude α with α2 � 1, it
can be approximately engineered by stabilizing the control cat
qubit via two-photon dissipation and adding the Hamiltonian
Ĥ1 = π

4αT (̂a + â† − 2|α|)(̂b†b̂ − α2) where â (̂b) is the photon
annihilation operator on the control cat qubit A (the target cat
qubit B) and where T is the gate time.

The original implementation of the CNOT gate [18,19]
includes the target-qubit stabilization via a nonlocal time-
varying two-photon dissipation. This implementation is exper-
imentally difficult. Thus, we consider here an easier one with
only Ĥ1. This corresponds to a “stroboscopic stabilization”
where the target-qubit is stabilized before and after the gate.
The simulations below indicate that the exponential suppres-
sion of bit flips remains satisfied.

The superoperators L0 and L1 corresponding here to (1)
are thus

L0(ρ) = κ2Dâ2−α2 (ρ),

εL1(ρ) = κ1[Dâ + Db̂](ρ)

− i
π

4αT
[(̂a + â† − 2|α|)(̂b†b̂ − α2), ρ], (50)

where κ1/κ2 and π/4ακ2T are much smaller than 1.
The complex coefficients F (1)

d ′
A,dA,ν

and F̄ (2)
d ′

A,dA,ν,ν ′ of
(49) are computed using the discrete-time formulation of
Appendix D 2 with the following parameters:

κ2α
2δt = 1

1000
, κ1 = κ2

100
,

T = 1
κ2

with 1 � α2 � 16,

N (α) = max(20, �α2 + 20α�),

where �·� denotes the integer part. Figure 8 is based on the
numerical integration via an explicit Euler scheme of (49),
a linear system coupling d̄A = 4 Hermitian operators on HB:
(ρB,1, . . . , ρB,4).

As for the ZZ-gate simulation, the total bit-flip error prob-
ability is the sum of all the 12 Pauli errors involving a bit
flip (X or Y error) and corresponds in Fig. 8(a). We found
an exponential suppression of bit flips proportional to exp−aα2

with a = 2.204 ± 0.009. The reduced model also captures the

(a)

(b)

FIG. 8. Comparison between (a) X and (b) Z error probabilities
of a CNOT gate, pZaZb = pZb in green and pZa in blue, obtained via
full model simulations for α2 � 8 (50) (shown as gray circles) and
the reduced model simulations (49) (colored plus) for different mean
photon numbers α2. A simple fit yields an exponential suppression
of bit flips with an exponential coefficient of 2.204 ± 0.009 (dashed
line).

phase flips (Z error), as illustrated in Fig. 8(b). It matches
well with full-model simulations that have been performed for
α2 � 8. An illustration of 16 × 16χE matrix for the reduced
propagator error Ered and the full propagator error Efull is
given in Appendix E, Fig. 14. A first-order computation of
the leakage is shown in Appendix F 3 and Fig. 17(a).

C. CCNOT gate

A CCNOT-gate (Toffoli gate) corresponds to a π rotation
in the phase space of a target qubit conditioned on the state
of two control qubits being on the |1〉C |1〉C � | − α〉| − α〉
state. When α2 � 1, it can be approximately engineered by
stabilizing the two control cat qubits via two-photon dissipa-
tion and adding the Hamiltonian Ĥ1 = − π

8α2T [(̂a − |α|)(̂b −
|α|) + H.c.](̂c†ĉ − α2) where â (̂b, ĉ) is the photon annihila-
tion operator on subsystem A (B, C) and where T is the gate
time. The superoperators L0 and L1 corresponding here to
Eq. (1) are thus

L0(ρ) = κ2[Dâ2−α2 + Db̂2−α2 ](ρ),
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(a)

(b)

FIG. 9. Comparison between (a) X and (b) Z error probabilities
of a CCNOT gate, pZa = pZb in dark blue, pZc in green, pZaZb in
lavender, pZaZc = pZbZc in violet, and pZaZbZc in light blue, obtained
via reduced model simulations (49) (colored plus) for different mean
photon numbers α2. A simple fit yields an exponential suppression
of bit flips with an exponential coefficient of 2.131 ± 0.005 (dashed
line).

εL1(ρ) = κ1[Dâ + Db̂ + Dĉ](ρ) + i
π

8α2T

× {[(̂a − |α|)(̂b − |α|) + H.c.](̂c†ĉ − α2), ρ},
(51)

where κ1/κ2 and π/8α2κ2T are much smaller than 1.
Numerical simulations of the full model have not been

done because of computational limitation. We only report here
simulations based on the direct generalization of (49) to a
tripartite system where components one and two are stabilized
whereas the third one is not. The parameters of the numerical
simulations of Fig. 9 are

κ2α
2δt = 1

1000
, κ1 = κ2

100
, T = 1

κ2
with 1 � α2 � 16, N (α)

= max(20, �α2 + 20α�),

where �·� denotes the integer part.
As for the ZZZ-gate simulations, the total bit-flip error

probability is the sum of all the 56 Pauli errors involving a
bit flip (X or Y error) and simulated in Fig. 9(a). We found an

exponential suppression of bit flips proportional to exp−aα2

with a = 2.131 ± 0.005. The reduced model provides also
the phase flips (Z error) in Fig. 9(b). An illustration of a
64 × 64χE matrix for the reduced propagator error Ered is
given in Appendix E, Fig. 15. A first-order computation of
the leakage is shown in Fig. 17(b).

V. CONCLUDING REMARKS

We have introduced a new numerical method for simulat-
ing open quantum systems composed of several subsystems,
exponentially stabilized towards stationary subspaces. This
numerical method is based on a perturbation analysis with an
original asymptotic expansion exploiting the reduced model
formulation of the dynamics, relying on the invariant oper-
ators of the local and nominal dissipative dynamics of the
subsystems. The derivation was shown up to a second-order
expansion which can be computed with only local calculations
for each subsystem. We have applied this method on several
cat qubit gates (Z, ZZ, ZZZ, CNOT, and CCNOT) and shown that
the dominant phase-flip error rates and the exponentially small
bit-flip error rates are well described by such reduced-order
models and simulations up to 16 photons in each cat qubit.
Furthermore, this approach, which has provided significant
space savings, can be used to an even larger number of bosonic
qubits.

The two-photon dissipation of the cat qubit encoding
comes from a more complex master equation involving a
buffer mode coupled to the memory cavity via a two-photon
exchange Hamiltonian [36]. Similar analysis can thus be built
with such composite cavity-buffer description for each cat
qubit.

The derivations shown here can be further applied to other
similar composite systems with dominant local stabilization
used in autonomous quantum error correction schemes, such
as squeezed cat qubits [41,42] or grid states [43,44].

This numerical method exploiting strong local dissipation
with weak coupling and decoherence in many-body systems
has been presented in the context of continuous-time pro-
cesses and could also be useful for time-discrete processes,
see Appendix D such as those appearing in quantum error
correction schemes, as the repetition code [45] or the surface
code [46].
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FIG. 10. Relative error in the estimate of each Pauli X , Y , and Z error probabilities defined relative to the value at the highest expansion
order considered in the perturbative analysis, from one to five. The error probabilities are computed for a cat qubit on which we perform a Z

gate as in Sec. II B with α2 = 4. The second-order expansion is already very accurate, and the third-order expansion is almost indistinguishable
from higher-order expansions.

APPENDIX A: HIGH-ORDER EXPANSION
AND SIMULATIONS

1. Expansion order exceeding two

Take n � 2 and assume that we have computed all the
terms F (r)

d ′,d and Ŝ(r)
d ′ of order 0 < r < n with Tr(Ĵd ′ Ŝ(r)

d ) = 0

for all d and d ′. Thus, by construction, Tr(Ĵd ′
∑n−1

r=0 εr Ŝ(r)
d ) =

δd,d ′ . The invariance condition of order n reads

∀ d ∈ {1, . . . , d̄},
d̄∑

d ′′=1

n∑
r=1

F (r)
d ′′,d Ŝ(n−r)

d ′′ = L0
(
Ŝ(n)

d

) + L1
(
Ŝ(n−1)

d

)
.

Left multiplication by operator Ĵd ′ and taking the trace yields

F (n)
d ′,d = Tr

(
Ĵd ′L1

(
Ŝ(n−1)

d

)) = Tr
(
L∗

1(Ĵd ′ )̂S(n−1)
d

)
. (A1)

For Ŝ(n)
d we take the solution of

L0
(
X̂

) =
d̄∑

d ′′=1

n∑
r=1

F (r)
d ′′,d Ŝ(n−r)

d ′′ − L1
(
Ŝ(n−1)

d

)
,

such that, for all d ′, Tr(Ĵd ′ X̂ ) = 0:

Ŝ(n)
d = R0

⎛⎝L1
(
Ŝ(n−1)

d

) −
d̄∑

d ′′=1

n∑
r=1

F (r)
d ′′,d Ŝ(n−r)

d ′′

⎞⎠
=

∫ +∞

0
esL0

⎡⎣L1
(
Ŝ(n−1)

d

) −
d̄∑

d ′′=1

n∑
r=1

F (r)
d ′′,d Ŝ(n−r)

d ′′

⎤⎦ds.

(A2)

Since K0(Ŝn−r
d ′′ ) = 0 for any r ∈ {1, n − 1} and

K0(L1(Ŝ(n−1)
d )) = ∑d̄

d ′′=1 F (n)
d ′′,d Ŝ(0)

d ′′ , the above integral is
absolutely convergent.

With such an asymptotic expansion, we get an order-n
approximation of the dynamics on the invariant slow manifold
Dε , a reduced dynamical model of (1) based on the following
d̄-dimensional linear system:

d

dt
x(t ) =

(
n∑

r=1

εrF (r)

)
x(t ), (A3)

where ρt = ∑d̄
d=1 xd (t )(

∑n
r=0 εr Ŝ(r)

d ) satisfies (1) up to εn+1

terms. Here F (r) is the matrix of real entries F (r)
d,d ′ . Since xd =

Tr(Ĵdρt ), the dynamical system (A3) is an approximation of
order n for the reduced model slow dynamics of the nominal
invariant operators Ĵd : Up to εn+1 corrections we have in the
reduced-model picture:

∀ d ∈ {1, . . . , d̄},

d

dt
Ĵd � L∗

0(Ĵd ) + εL∗
1(Ĵd ) =

d̄∑
d ′=1

n∑
r=1

εrF (r)
d,d ′ Ĵd ′ + O(εn+1).

2. Z-gate simulations up to order five

An example of such higher-order approximation using
Eqs. (A2) and (A3) is given in Figs. 10 and 11 for the case of
a cat qubit on which we perform a Z gate as in Sec. II B with
α2 = 4. For the error probabilities, we see that the second-
order expansion is already very accurate, and the third-order
expansion is almost indistinguishable from higher-order ex-
pansions. Regarding leakage, we see that first-order leakage is
not enough to capture the leakage dynamics, but that second-

FIG. 11. Up to fifth-order leakage of the Z gate starting from the
|C+

α 〉 and ending in |C−
α 〉 for a cat qubit with α2 = 4 and the same

simulation parameters as in Sec. II B. All orders �2 are superposed.
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order leakage is already very accurate and indistinguishable
from higher-order expansions (Fig. 11).

APPENDIX B: SECOND-ORDER APPROXIMATION
WITH SLOW TIME DEPENDENCY

Here we only derive the second-order approximation with
slow time dependency. We are looking for solutions of the
perturbed system

d

dt
ρt = L0(ρt ) + εL1(εt, ρt ) (B1)

based on the following asymptotic expansion: ρt =∑d0
d=1 xd,t (Ŝ

(0)
d + Ŝ(1)

d ), where

Xt+1 = (F (0) + F (1) + F (2) )Xt ,

with F (0) = I , Xt = (x1,t , . . . , xd0,t )
T . We assume that the

GKSL superoperator L1 in (1) depends slowly on time, i.e.,
that the operators Ĥ1 and L̂1,ν are smooth functions of εt :

L1(εt, ρ) = − i[Ĥ1(εt ), ρ] +
∑

ν

L̂1,ν (εt )ρL̂†
1,ν (εt )

− 1

2
[L̂†

1,ν (εt )L̂1,ν (εt )ρ + ρL̂†
1,ν (εt )L̂1,ν (εt )].

Then for each n, F (n)
d ′,d ′ and Ŝ(n)

d depend also on εt . Thus, the
invariance condition (6) becomes

d̄∑
d=1

(
dxd

dt
Ŝd (ε) + xd

d

dt
Ŝd (ε)

)

= (L0 + εL1)

⎛⎝ d̄∑
d=1

xd Ŝd (ε)

⎞⎠,

where Fd,d ′ (εt, ε) = ∑
n�0 εnF (n)

d,d ′ (εt ) and Ŝd (εt, ε) =∑
n�0 εnŜ(n)

d (εt ). One has to identify terms with same
orders versus ε in

∀ d ∈ {1, . . . , d̄},
∑
n�0

εn d

dt
Ŝ(n)

d +
∑d̄

d ′=1

⎛⎝∑
n�0

εnF (n)
d ′,d

⎞⎠⎛⎝∑
n′�0

εn′
Ŝ(n′ )

d ′

⎞⎠
= (L0 + εL1)

⎛⎝∑
n�0

εnŜ(n)
d

⎞⎠, (B2)

using the fact that, for each n, d
dt Ŝ(n)(εt ) is of order ε.

The zero-order condition is satisfied with F (0)
d,d ′ = 0 and

Ŝ(0)
d = Ŝd . First-order condition remains unchanged and yields

as in (13) and (16)

F (1)
d ′,d (εt ) = Tr(Ĵd ′L1(εt, Ŝd )),

with

Ŝ(1)
d (εt ) =

∫ +∞

0
esL0 [L1(εt, Ŝd ) − K0(L1(εt, Ŝd ))]ds,

(B3)

where Tr(Ĵd ′ Ŝ(1)
d (εt )) = 0 and thus Tr(Ĵd ′ d

dt Ŝ(1)
d (εt )) = 0, for

all d ′ and t . The second-order condition is

∀ d ∈ {1, . . . , d̄},

d

d (εt )
Ŝ(1)

d (εt ) +
d̄∑

d ′′=1

(
F (1)

d ′′,d (εt )̂S(1)
d ′′ (εt ) + F (2)

d ′′,d Ŝd ′′
)

= L0
(
Ŝ(2)

d

) + L1
(
εt, Ŝ(1)

d (εt )
)
. (B4)

Multiplying by Ĵd ′ and tacking the trace show that the second-
order correction formula is identical to the one for time-
invariant L1. To summarize, we have either for time-invariant
or slowly-time-varying L1 the following second-order approx-
imation formula for the dynamics of x:

∀ d ′ ∈ {1, . . . , d̄}, d

dt
xd ′ =

d̄∑
d=1

[
εF (1)

d ′,d (εt ) + ε2F (2)
d ′,d (εt )

]
× xd , (B5)

with

F (1)
d ′,d (εt ) = Tr(Ĵd ′L1(εt, Ŝd )),

(B6)
F (2)

d ′,d (εt ) = Tr(L∗
1(εt, Ĵd ′ )R0(L1(εt, Ŝd ))),

where R0 is defined in (17).

APPENDIX C: TIME DISCRETIZATION OF
CONTINUOUS-TIME QUANTUM MASTER EQUATION

We propose here an adapted numerical scheme to con-
vert the continuous-time dynamics (1) into a discrete-time
dynamic (D1).

Take a time step δt > 0 very small compared with evo-
lution time constant of (1). An exact quantum channel
approximation of eδtL0 identical up to δt2 terms to the explicit
Euler scheme is the following (see Ref. [47], Appendix B):

ρt+δt = K0(ρt )[= eδt L0 (ρt ) + O(δt2)

= ρt + δtL0(ρt ) + O(δt2)], (C1)

where K0 admits the following Kraus structure:

K0(ρ) = Û0

[
M̂0Û0ρÛ †

0 M̂†
0 + δt

(∑
ν

L̂0,νÛ0ρÛ †
0 L̂†

0,ν

)]
Û †

0 ,

(C2)

with

Û0 = e−iδt Ĥ0/2, M̂0 = M̂0Ŵ
−1/2

0 , L̂0,ν = L̂0,νŴ −1/2
0 ,

(C3)

where

M̂0 = I −
∑

ν

δt

2
L̂†

0,ν L̂0,ν ,

Ŵ0 = M̂†
0 M̂0 + δt

∑
ν

L̂†
0,ν L̂0,ν .

Take as perturbation K1 the simplest approximation:

K1(ρ) = δtL1(ρ). (C4)
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APPENDIX D: ADIABATIC ELIMINATION
IN DISCRETE TIME

1. Single system

When t is an integer, (1) is replaced by

ρt+1 = K0(ρt ) + εK1(ρt ), (D1)

where K0 is a quantum channel stabilizing the subspace D0

spanned by the orthonormal basis Ŝd and with invariant op-
erator Ĵd = limt �→+∞(K∗

0 )t (Ŝd ) where (K∗
0 )t corresponds to t

iterates of the adjoint map K∗
0. For any ρ0 we have

lim
t �→+∞ (K0)t (ρ0) = K0(ρ0) =

∑
d

Tr
(
Ĵdρ0

)
Ŝd . (D2)

Invariance condition (6) reads then

d̄∑
d=1

xd (t + 1)̂Sd (ε) = (K0 + εK1)

⎛⎝ d̄∑
d=1

xd (t )̂Sd (ε)

⎞⎠, (D3)

with xd (t + 1) = ∑
d ′ Fd,d ′ (ε)xd ′ (t ). Combined with the series

expansion of Ŝd (ε) and Fd,d ′ (ε) it yields:

∀ d ∈ {1, . . . , d̄},
d̄∑

d ′=1

⎛⎝∑
n�0

εnF (n)
d ′,d

⎞⎠⎛⎝∑
n′�0

εn′
Ŝ(n′ )

d ′

⎞⎠
= (K0 + εK1)

⎛⎝∑
n�0

εnŜ(n)
d

⎞⎠.

The zero-order term is satisfied with F (0)
d,d ′ = δd,d ′ and Ŝ(0)

d =
Ŝd . First-order conditions read

∀ d ∈ {1, . . . , d̄}, Ŝ(1)
d +

d̄∑
d ′′=1

F (1)
d ′′,d Ŝ(0)

d ′′

= K0
(
Ŝ(1)

d

) + K1
(
Ŝ(0)

d

)
.

Left multiplication by operator Ĵd ′ and taking the trace yields

F (1)
d ′,d = Tr(Ĵd ′K1(Ŝd )), (D4)

since Tr(Ĵd ′ Ŝ(0)
d ′′ ) = δd ′,d ′′ and Tr(Ĵd ′K0(Ŵ )) = Tr(Ĵd ′Ŵ ) for

any operator Ŵ because K∗
0 (Ĵd ′ ) = Ĵd ′ . Thus, Ŝ(1)

d is a solution
X̂ of the following equation:

X̂ = K0(X̂ ) + K1
(
Ŝ(0)

d

) −
d̄∑

d ′′=1

F (1)
d ′′,d Ŝ(0)

d ′′ .

Since the quantum channel K0 is a contraction with a rate
assumed to be strictly less than 1, the following solution is
chosen:

Ŝ(1)
d =

∑
s�0

(K0)s
[
K1

(
Ŝ(0)

d

) − K0
(
K1

(
Ŝ(0)

d

))]
,

based on this absolutely converging series and satisfying
Tr(Ĵd ′ Ŝ(1)

d ) = 0 for all d ′. This defines the superoperator

R0(Ŵ ) =
+∞∑
s=0

(K0)s[Ŵ − K0(Ŵ )],

where (K0)0 stands for identity.

Take n � 2 and assume that we have computed all the
terms F (r)

d ′,d and Ŝ(r)
d ′ of order r < n with Tr(Ĵd ′ Ŝ(r)

d ) = 0 for
all d and d ′. The invariance condition of order n reads

∀ d ∈ {1, . . . , d̄}, Ŝ(n)
d +

d̄∑
d ′′=1

n∑
r=1

F (r)
d ′′,d Ŝ(n−r)

d ′′

= K0
(
Ŝ(n)

d

) + K1
(
Ŝ(n−1)

d

)
.

Left multiplication by operator Ĵd ′ and taking the trace
yields

F (n)
d ′,d = Tr

(
Ĵd ′K1

(
Ŝ(n−1)

d

)) = Tr
(
K∗

1 (Ĵd ′ )̂S(n−1)
d

)
.

For Ŝ(n)
d we take the solution such that, for all d ′, Tr(Ĵd ′ Ŝ(n)

d ) =
0,

Ŝ(n)
d = R0

⎛⎝K1
(
Ŝ(n−1)

d

) −
d̄∑

d ′′=1

n∑
r=1

F (r)
d ′′,d Ŝ(n−r)

d ′′

⎞⎠ · · · · · ·

=
∑
s�0

(K0)s

⎛⎝K1
(
Ŝ(n−1)

d

) −
d̄∑

d ′′=1

n∑
r=1

F (r)
d ′′,d Ŝ(n−r)

d ′′

⎞⎠.

The discrete-time reduced model is then

x(t + 1) = x(t ) +
(

n∑
r=1

εrF (r)

)
x(t ), (D5)

with ρt = ∑d̄
d=1 xd (t )(

∑n
r=0 εr Ŝ(r)

d ) satisfying (D1) up to εn+1

correction and for any d , xd (t ) = Tr(Ĵdρt ). Up to εn+1 correc-
tions, we have the following reduced-model dynamics for the
invariant operators

∀ d ∈ {1, . . . , d̄}, Ĵd (t + 1) � K∗
0 (Ĵd (t )) + εK∗

1 (Ĵd (t ))

= Ĵd (t ) +
d̄∑

d ′=1

n∑
r=1

εrF (r)
d,d ′ Ĵd ′ (t ) + O(εn+1).

The discrete-time version of equation (20) providing the
second-order approximation reads

F (1)
d ′,d = Tr(Ĵd ′K1(Ŝd )), F (2)

d ′,d = Tr(K∗
1 (Ĵd ′ )R0(K1(Ŝd )))

(D6)

and remains valid for a slowly-time-varying perturbation, i.e.,
for K1(εt, ρ) where the dependence versus εt of K1 is smooth:

F (1)
d ′,d (εt ) = Tr(Ĵd ′K1(εt, Ŝd )),

F (2)
d ′,d (εt ) = Tr(K∗

1 (εt, Ĵd ′ )R0(K1(εt, Ŝd ))). (D7)

2. Composite systems

Discrete-time bipartite structure is based on

K0 = KA,0 ⊗ KB,0, (D8)

where KA,0 and KB,0 are local quantum maps on HA and HB

stabilizing the local subspaces DA,0 and DB,0. Their dimen-
sions are d̄A and d̄B with (ŜA,dA )1�dA�d̄A

and (ŜB,dB )1�dB�d̄B
as

orthonormal basis of Hermitian operators. We assume that
KA,0 and KB,0 ensure exponential convergence towards DA,0
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and DB,0: for any operators on H,

lim
t �→+∞ (KA,0)t ⊗ (KB,0)t (ρ0) = K0(ρ0),

where K0 remains given by (34) with ĴA,dA and ĴB,dB as fol-
lows:

ĴA,dA = lim
t �→+∞(K∗

A,0)t (ŜA,dA ), ĴB,dB = lim
t �→+∞(K∗

B,0)t (ŜB,dB ).

Assume the superoperator K1 only involve finite sums of
tensor products of operators on HA and HB. This means that,
for any X̂A and X̂B local operators on HA and HB,

K1(X̂A ⊗ X̂B) =
ν̄∑

ν=1

L̂A,ν X̂AR̂A,ν ⊗ L̂B,ν X̂BR̂B,ν , (D9)

where ν̄ is a positive integer, L̂A,ν , R̂A,ν are operators on HA,
and L̂B,ν , R̂B,ν are operators on HB.

The discrete-time analog of (37) reads

F (1)
(d ′

A,d ′
B ),(dA,dB ) =

ν̄∑
ν=1

Tr
(
ĴA,d ′

A
ŜA,dA,ν

)
Tr

(
ĴB,d ′

B
ŜB,dB,ν

)
=

ν̄∑
ν=1

Tr
(
ŜA,dA ĴA,d ′

A,ν

)
Tr

(
ŜB,dB ĴB,d ′

B,ν

)
, (D10)

where for X = A, B

ĴX,d ′
X ,ν = R̂X,ν ĴX,d ′

X
L̂X,ν , ŜX,dX ,ν = L̂X,ν ŜX,dX R̂X,ν . (D11)

Similarly, we derive from (44) the second-order discrete-time
matrix F (2):

F (2)
(d ′

A,d ′
B ),(dA,dB ) =

∑ν̄

ν,ν ′=1

∑+∞
s=0

[
Tr

(
ĴA,d ′

A,ν ′ (KA,0)s
(
ŜA,dA,ν

))
× Tr

(
ĴB,d ′

B,ν ′ (KB,0)s
(
ŜB,dB,ν

)) · · ·
× · · · − GA,d ′

A,dA,ν,ν ′GB,d ′
B,dB,ν,ν ′

]
, (D12)

where

GX,d ′
X ,dX ,ν,ν ′ =

∑
d ′′

X

Tr
(
ĴX,d ′

X
ŜX,d ′′

X ,ν ′
)
Tr

(
ĴX,d ′′

X
ŜX,dX ,ν

)
for X = A, B.

APPENDIX E: PROPAGATOR SIMULATION RESULTS

In this Appendix, we give examples of χ error matrices
defined in (46) for the ZZ gate in Fig. 12, the ZZZ gate in
Fig. 13, the CNOT gate in Fig. 14 and the Toffoli gate in Fig. 15
from which we extracted the Pauli error models shown in
the main text, i.e., the diagonal of the χ error-matrix used in
quantum process tomography.

APPENDIX F: LEAKAGE COMPUTATION

1. Single-mode leakage

Equation (16) allows us to perform a first-order computa-
tion of the leakage, defined as the population outside the code
space. If we define Îc to be the projector on the code space of
our system, then the population of the state ρt at a given time

FIG. 12. χ error matrix of the ZZ gate with (a) full model
Galerkin truncation to 41 photons, and (b) second-order reduced
model where α = 2, κ1 = κ2/100, εZ = κ2/20.

t inside the code space is Tr(Îcρt ). In the context of cat qubit,
the code space projector is defined by

Îc = (|C+
α 〉〈C+

α | + |C−
α 〉〈C−

α |) ∼
√

2Ŝ1.

So for any state written at first-order ρt = ∑d0
d=1 xd,t (Ŝ

(0)
d +

Ŝ(1)
d ), the leakage l is given by

l (t ) = 1 − Tr(Îcρt ) = 1 −
d0∑

d=1

xd,t cd , (F1)

where

cd = Tr
(
Îc

(
Ŝ(0)

d + Ŝ(1)
d

)) =
√

2δ1,d + Tr(ÎcR0(L1(Ŝd ))).
(F2)
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FIG. 13. χ error matrix of the ZZZ gate obtained with simula-
tions based on the second-order reduced model where α = 2, κ1 =
κ2/100, εZZZ = κ2/20.

2. Composite-system leakage

In the case of a composite system, we can still compute
the leakage at first order, using the generalization of Eq. (16).
For (dA, dB), we define cdA,dB as cdA,dB = Tr(Îc,AÎc,BŜdA,dB (ε))
where ŜdA,dB (ε) = Ŝ(0)

dA,dB
+ Ŝ(1)

dA,dB
with Ŝ(0)

dA,dB
= Ŝ(0)

A,dA
Ŝ(0)

B,dB
and

Ŝ(1)
dA,dB

= R0
(
L1

(
Ŝ(0)

dA,dB

)) =
ν̄∑

ν=1

R0
(
ŜA,dA,ν ⊗ ŜB,dB,ν

)
.

So we find that cdA,dB = 2δ1,dAδ1,dB +∑ν̄
ν=1 Tr(Îc,AÎc,BR0(ŜA,dA,ν ⊗ ŜB,dB,ν )).
And finally, the leakage l of a state ρt =∑
dA,dB

xdA,dB,t ŜdA,dB is given by

l (t ) = 1 − Tr
(
Îcρt

) = 1 −
d0∑

dA,dB=1

xdA,dB,t cdA,dB . (F3)

However, second-order leakage can be obtained numerically
via the following relation

Tr
(
ÎcŜ(2)

d

) = Tr

⎛⎝R�

0

(
Îc

)⎡⎣L1
(
Ŝ(1)

d

) −
d̄∑

d ′′=1

F (1)
d ′′,d Ŝ(1)

d ′′

⎤⎦⎞⎠.

with only local computations.

3. Hybrid system leakage

For a composite state ρt = ∑
dA

ŜA,dAρB,dA where one sub-
system is not actively stabilized, one cannot in general define
the leakage on the full system but only on the stabilized
subsystems or use its full Hilbert space as the code space (see
Figs. 16 and 17). But if there is an explicit code space for all
the subsystems, then we can apply the definition of the leakage
for a composite system introduced in Sec. F 2 to this hybrid
case. For a bipartite system, we still write the code space
as Ic,A ⊗ Ic,B. At first-order, we have ρt = ∑

dA
ŜA,dAρB,dA =∑

dA
(Ŝ(0)

A,dA
+ R0(L1(ŜA,dA )))ρB,dA And so the leakage l can be

FIG. 14. χ error matrix of the CNOT gate with (a) the full model
and (b) the second-order reduced model where α = 2 and κ1 =
κ2/100.

expressed as

l =
∑

dA

cdA Tr(Ic,BρB,dA ),

where cdA has been defined in Eq. (F2):

cdA = Tr
(
Îc,A

(
Ŝ(0)

A,dA
+ Ŝ(1)

A,dA

))
=

√
2δ1,dA + Tr

(
Îc,AR0

(
L1

(
ŜA,dA

)))
.

APPENDIX G: ANALYTIC ERROR MODELS

In this section, we briefly recall the formalism of the shifted
Fock basis (SFB) introduced in Ref. [19] in the context of cat
qubits. We use the decomposition of the cat qubit into a two-
level system (TLS) and a gauge to derive analytical formulas
of phase-flip errors for the ZZZ gate.
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FIG. 15. χ error matrix of the CCNOT gate obtained with simula-
tions based on the second-order reduced model where α = 4, κ1 =
κ2/100. The diagonal elements show the Pauli errors. The top-left
coefficient displays the fidelity of the gate at 82%. The bottom-right
coefficient displays the ZZZ error of the gate at 0.5%.

The basis is defined as the displacement along the +α and
−α directions of the Fock states |n〉:

|±〉L ⊗ |n〉g := N±[D̂(α) ± (−1)nD̂(−α)]|n̂ = n〉.
We can equivalently think about it as a separation of the full
Hilbert space as a direct sum between the even an odd-parity
spaces or, after relabelling, as a tensor product structure of a
logical two-level system, a qubit encoding the logical state of
the cat-state mode, and a gauge mode ĝ of another oscillator:

H = C2
L ⊗ Hg.

For example, using this basis, the Schrödinger cat states |C±
α 〉

are given by ∣∣C±
α

〉 = |±〉L ⊗ |0〉g.

We use the following approximation of the annihilation
operator, valid for large cat qubits:

â
α2�d−→ Ẑ ⊗ (̂ga + α). (G1)

This decomposition of the annihilation operator of the full
mode as a Ẑ operator acting on a qubit tensored with a gauge
mode ĝa is well suited in the perturbative regime where the cat
qubit can be excited to its first-excited state but quickly decays
back to its ground state because of the engineered two-photon
dissipation.

Indeed, the operator of the dissipation mechanism â2 − α2

is more intuitive than the annihilation operator because it
corresponds to 2αÎ ⊗ ĝ, i.e., just to cool down the gauge mode
ĝ to vacuum.

In the following, we use these correspondences in order to
compute analytical expressions of the Z errors of the Z and ZZ

gates used in Sec. II B and Sec. III B, and explicitly derive the

FIG. 16. Leakage of a (a) Z gate, (b) ZZ gate, and (c) ZZZ gate
obtained via full model simulations (shown as gray circles) and the
reduced model simulations (colored plus) with κ1 = κ2/100, εZ =
κ2/20 for different mean photon number α2.

analytical expressions of the Z errors of the ZZZ gate involving
three cat qubits used in Sec. III C.

1. Z and ZZ gates

The analytical expressions of the Z errors of the Z gate
were derived using the SFB in Ref. [19] by adiabatically elim-
inating the gauge which decays to the ground-state manifold
with the two-photon dissipation and induces phase flips via
the coupling Hamiltonian: pZ = α2κ1T + ε2

ZT /α2κ2. For a ZZ

gate, the gauges of both modes are adiabatically eliminated
independently. The two-photon dissipators with a decay rate
κ = 4α2κ2 and the coupling Hamiltonian of rate g = εZZ sim-
plify into a single dissipator with a rate 2 × 4g2/κ = 2ε2

ZZ/κ2

causing a ZZ errors with probability pZaZb = π2/8α4κ2T =
πεZZ/2α2κ2 while the Za and Zb errors are pure photon loss er-
rors pZa = pZb = α2κ1T = πκ1/4εZZ. To obtain the total value
of pZaZb , one has to add the errors due to single-photon losses
on the two qubits pZa pZb .

2. ZZZ gate

We first recall the full master equation and then write
its expression in the SFB before performing an adiabatic
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FIG. 17. Leakage of a (a) CNOT gate, and (b) CCNOT gate obtained via full model simulations (shown as gray circles) and the reduced model
simulations (colored plus) with κ1 = κ2/100 for different mean photon number α2.

elimination of the three gauges to derive the ZZZ error rate.
As detailed in III C, the master equation of this tripartite
systems made of three cat qubits with annihilation operators
â, b̂, and ĉ and gauges ĝa, ĝa, and ĝc is composed of the sta-
bilization L0 and perturbations εL1 that can be split between
errors and gate dynamics:

L0(ρ) = Dâ2−α2 (ρ) + κ2Db̂2−α2 (ρ) + κ2Dĉ2−α2 (ρ),

εL1(ρ) = κ1Dâ(ρ) + κ1Db̂(ρ) + κ1Dĉ(ρ) − i[Ĥ1, ρ],

where Ĥ1 = εZZZ(̂a b̂ ĉ† + â† b̂† ĉ) is applied for a gate-time
T = π/4|α|3εZZZ.

In the SFB, the dissipation writes:

â2 − α2 = ĝ2
a + 2αĝa ∼ 2αĝa

and so the stabilization L0 becomes 4α2κ2(Dĝa + Dĝb +
Dĝc )(ρ). The one photon loss becomes κ1α

2DẐa
(ρ).

The gate dynamics Ĥ1 becomes

2|α|3εZZZ ẐaẐbẐc

+ εZZZα2ẐaẐbẐc ⊗ (̂ga + ĝ†
a + ĝb + ĝ†

b + ĝc + ĝ†
c).

The first term of the gate dynamics produces the desired
rotation. It comes with excitations on the gauges, each with

a coupling strength g = εZZZα
2, inflicting a ZZZ error on the

cat qubits. This excitation decays back to the code space (i.e.,
ground state of the gauges) with a decay rate κ = 4α2κ2 due
to L0. In the regime κ � g, the gauges remain mainly on
their ground states and thus can be adiabatically eliminated
by adding an effective ZZZ error rate on the qubits with a rate
3 × 4g2/κ , the factor of three coming from the three gauges
indistinctively. The effective master equation of the effective
system ρ therefore becomes

d

dt
ρ = κ1α

2
(
DẐa

+ DẐb
+ DẐc

)
(ρ(t ))

+ 3εZZZα2

κ2
DẐaẐbẐc

(ρ(t ))

− i[2|α|3εZZZ ẐaẐbẐc, ρ(t )].

The effective Hamiltonian term describes the gate dynamics.
We perform a rotation around the ZZZ axis of the qubits
with an angle θ = 4|α|3εZZZT . The first terms due to one
photon losses induces Z errors on the three cat qubits: pZa =
pZb = pZc = α2κ1T . The ZaZbZc errors due to the middle

term is given by 3 ε2
zzzα

2

κ2
T = 3πεZZZ/4ακ2 for a π rotation,

to which one has to add the errors due to single-photon
losses on the three qubits pZa pZb pZc to obtain the total value
of pZaZbZc .
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