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Robust atom-photon gate for quantum information processing
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We propose a scheme for two-qubit gates between a flying photon and an atom in a cavity. The atom-photon
gate setup consists of a cavity and a Mach-Zehnder interferometer with doubly degenerate ground- and excited-
state energy levels mediating the atom-light interaction. We provide an error analysis of the gate and model
important errors, including spatial mode mismatch between the photon and the cavity, spontaneous emission,
cavity losses, detunings, and random fluctuations of the cavity parameters and frequencies. Error analysis shows
that the gate protocol is more robust against experimental errors compared to previous atom-photon gates and
achieves higher fidelity.

DOI: 10.1103/PhysRevA.109.032602

I. INTRODUCTION

Interconnecting multiple quantum processors or sensors in
a quantum network [1] is a promising approach to achieve dis-
tributed quantum computing based on a modular architecture,
and enhanced quantum sensing [2–4]. Furthermore, quantum
networking enables quantum teleportation and secure quan-
tum communication over large distances [5–8]. Despite the
significant progress in the field, building a quantum network
with high entanglement fidelity and rate remains an outstand-
ing challenge [9–11]. Such a network relies on entangling
gates between stationary and flying qubits to distribute entan-
glement among remote quantum processors and sensors.

Twenty years ago in a pioneering work, Duan and Kimble
proposed the use of photon-atom interactions in a cavity to
realize entangling operations between atomic and photonic
qubits and between pairs of photonic qubits [12,13] (see
also Ref. [14]). This provided a new approach to remote
entanglement and opened the avenue for various applications
in quantum information processing, including deterministic
entanglement between atoms and photons, nondestructive
Bell state measurements, nondestructive photon measure-
ment, photon-photon entanglement, nonlocal entangling gates
between remote atoms, quantum teleportation by photons, and
generation of cat states, to name a few [6,15–22].

To realize atom-photon gates, traditional schemes use
atoms with three energy levels: two nondegenerate ground
states, and an excited state, which interact with right- or
left-hand circularly polarized photons [12,13,15]. Since the
first experimental realization of atom-photon gates to this day,
a major challenge has been to implement these gates with
high fidelity. The fidelity of atom-photon gates or applications
thereof (e.g., remote atom-atom entanglement, Bell state mea-
surements, teleportation, entangling two atoms in a cavity) has
been typically limited to the range of 75–80% (with the ex-
ception of teleportation with fidelity in the range of 85–90%)
[6,15,17,18,20]. Many sources of error have been identified
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as contributing to the infidelity, e.g., spatial mode mismatch
between the photon and the cavity mode, multiphoton effects
due to using coherent light sources, frequency fluctuations,
and cavity losses [6,15,17–21].

It was previously proposed, in the context of atoms coupled
to waveguides, that using an energy scheme with two degen-
erate ground states and excited states allows for atom-photon
gates that are more robust to errors [23]. In this paper, we
adopt such a scheme for atoms in a cavity interacting with
photons. We develop an error model that takes into account
spatial mode mismatch between the photon and the cavity,
spontaneous emission, cavity losses, finite cooperativity, and
photon-cavity and atom-cavity frequency detunings. Error
analysis shows that the new scheme can achieve higher av-
erage fidelity and is less sensitive to the errors just mentioned.
In Sec. II, we describe the energy scheme of the atom-photon
CZ gate and propose how to realize it in atom-cavity systems.
Section III is the result of our error analysis, where we com-
pare the fidelity and success probability in our scheme against
previous ones. Section IV concludes with a discussion.

II. ATOM-PHOTON TWO-QUBIT GATE

We will use a scheme that implements a two-qubit CZ gate
between atomic and photonic qubits by scattering a photon
off the atom-cavity system. One side of the cavity is perfectly
reflective while the other side is partially reflective. We will
use the energy scheme and the experimental setup proposed in
Ref. [23] but adopt it for an atom that is confined in a cavity
[12,13,24–26]. The relevant energy levels are shown in Fig. 1.
We have two degenerate ground states, {|g+〉, |g−〉}, and two
degenerate excited states, {|e+〉, |e−〉}. |g+〉 only couples to
|e+〉 via a |σ+〉 photon while |g−〉 only couples to |e−〉 via
a |σ−〉 photon. By scattering a photon off a cavity with an
atom inside we can achieve, as we show later, the following
relations:

|σ±〉|g±〉 → |σ±〉|g±〉, (1a)

|σ∓〉|g±〉 → −|σ∓〉|g±〉, (1b)
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FIG. 1. Energy levels needed for an entangling gate between
photonic and atomic qubits. (a) The ground and excited states are
doubly degenerate. Three possible candidate energy levels are shown
in (b), (c), and (d). The energy-level scheme can be realized using ac
Stark shift. The energy levels corresponding to |g±〉 and |e±〉 are in
blue.

i.e., there is no phase shift when the photon and the atom-
cavity system are coupled, and a phase shift of π when they
are uncoupled.

It follows from the above relations that if we scatter a
horizontally polarized photon, |H〉 = (|σ+〉 + |σ−〉)/

√
2, off

the cavity, then we will get

|H〉|g±〉 → ±|V 〉|g±〉 (2)

where |V 〉 = (|σ+〉 − |σ−〉)/
√

2 is vertical polarization. If we
denote |g+〉 = |0〉a and |g−〉 = |1〉a (the superscript a stands
for the atomic qubit), then Eq. (2) represents a Z gate on the
atomic qubit |φ〉a:

|H〉|φ〉a → Za|V 〉|φ〉a. (3)

Note that the photon polarization is flipped during the scatter-
ing.

The physical implementation of the atom-photon CZ gate
is shown in Fig. 2. The setup corresponds to a Mach-Zehnder
interferometer (MZI). The first polarizing beam splitter (PBS)
separates the |H〉 and |V 〉 components into two paths, such
that |V 〉 = |0〉p does nothing to the atomic qubit (because it

FIG. 2. CZ atom-photon gate setup. |V 〉 = |0〉p does nothing on
the atomic qubit as it does not scatter off the cavity. |H〉 = |1〉p does
a Z gate by scattering off the cavity. The combined operation gives
CZ. All three beam splitters here are polarizing beam splitters.

does not interact with the cavity), while |H〉 = |1〉p imple-
ments a Z gate on the atom by scattering (the superscript
p denotes the photonic qubit). After |H〉 is reflected off the
cavity, its polarization flips to |V 〉 and is reflected down by
the PBS. A half waveplate (HWP) is inserted to restore the
polarization back to |H〉. The third PBS combines the two
polarization components into a single path, and we end up
with a CZ operation between the atom and the photon.

To realize the required energy scheme of Fig. 1, we propose
to use ac Stark shifts, which can be realized in a linearly po-
larized optical dipole trap. Several possible candidate energy
levels are shown in Fig. 1. The ground-state energy levels F all
experience the same value of ac Stark shift while the excited
states F ′ experience a shift that depends on the Zeeman state.
More precisely the requirement is that the ground state only
has a scalar shift and that the excited state has tensor but no,
or negligible, vector shift. The rightmost and leftmost energy
levels of F and F ′ (in blue) correspond to |g±〉 and |e±〉. This
structure ensures that |σ+〉 and |σ−〉 have the same frequency,
and that |g±〉 only couple to |e±〉 via |σ±〉. This energy scheme
can be realized in many atoms. As an example, the energy-
level structure of Fig. 1(c) was previously experimentally
realized in 87Rb [15]. Another candidate for Fig. 1(d) is 171Yb
[27]. Details of the implementation for 87Rb are discussed in
Appendix A.

We proceed to describe how Eqs. (1a) and (1b) are real-
ized by scattering photons off a cavity [12,13,24–26]. First,
consider the energy levels of an atom in Fig. 1(a) that interact
with a |σ±〉 photon scattering off the cavity. Here we assume
that the photon frequency is ωp and the frequency between
the two atomic energy levels |g±〉 and |e±〉 is ωa. Using
the Jaynes-Cummings model and input-output theory, general
expressions for the reflection coefficient that the scattered
photon experiences, and which are valid in both the strong-
and weak-coupling regimes of the cavity, were derived in
Refs. [16,24,25]:

rc = (i�c − 1)(i�a + 1) + 2C

(i�c + 1)(i�a + 1) + 2C
, (4)

rNC = i�c − 1

i�c + 1
. (5)

Here rc is the reflection coefficient when the photon is coupled
to the atom-cavity system, i.e., |σ±〉|g±〉; rNC is the reflection
coefficient when the photon is not coupled, i.e., |σ±〉|g∓〉;
�c = (ωp − ωc)/κ , �a = (ωp − ωa)/γ are the fractional de-
tunings, ωc is the cavity frequency, C = g2/2γ κ is the the
cooperativity, g is the atom-cavity coupling constant, κ is
the cavity decay rate, and γ is the atom decay rate. These
expressions are valid for sufficiently large κ such that there
is only weak atomic excitation from the single-photon pulse
[24,25]. Here we use the expressions taken from Ref. [16] and
κ and γ are half width at half maximum quantities.

Thus we get the following scattering relations:

|σ±〉|g±〉 → rc|σ±〉|g±〉, (6)

|σ∓〉|g±〉 → rNC|σ∓〉|g±〉. (7)

In the limit of large C � 1 and small �c/a � 1, we have
rc ≈ 1, rNC ≈ −1, and we recover the desired relations
Eqs. (1).
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We proceed to describe the essential feature of this atom-
photon gate that makes it robust to errors. Consider a
horizontally polarized photon |H〉 impinging on the atom-
cavity state α|0〉a + β|1〉a from the input port on the left (see
Fig. 2). Ideally, if rc = 1 and rNC = −1, the photon performs
a Z gate on the atomic qubit, its polarization flips to |V 〉, and
then it will exit the system through the PBS on the bottom
right (output port). Detecting the photon heralds a successful
Z operation on the atomic qubit. However, if the cavity is
not ideal, i.e., rc 
= −rNC, then the quantum state immediately
after scattering becomes (see Appendix B 1)

(rc + rNC)|H〉(α|0〉a + β|1〉a) + (rc

− rNC)|V 〉(α|0〉a − β|1〉a). (8)

The first term is the error term where the photon failed
to perform a Z gate and its polarization remained the same
(which occurs with probability proportional to |rc + rNC|2).
The second term is where the photon successfully performed
a Z gate and its polarization flipped (which occurs with prob-
ability proportional to |rc − rNC|2). The error component (i.e.,
the horizontally polarized photon) is reflected back and exits
through the input port it originally came from. Therefore, the
error component is never detected at the output port (bot-
tom right). Only the second term with vertical polarization
and successful Z operation is reflected down and is detected
through the output port. Therefore, any failure to perform the
Z gate (due to errors) is rejected out of the system and is
never detected at the output port, i.e., the photon is lost instead
of affecting the fidelity. This same mechanism allows this
gate to reduce other error sources like spatial mode mismatch
between the photon and the cavity.

We would like to point out another feature of our scheme.
Because of the symmetric energy-level structure used, the
fidelity of the atom-photon CZ gate does not depend on the
initial atomic state α|0〉a + β|1〉a, i.e., the fidelity does not
depend on α and β even in the presence of the errors (see the
formula for the fidelity in Appendix B 1). This is a desirable
feature in quantum information processing, e.g., in quantum
teleportation of qubits. This is in contrast to earlier schemes
[12,13,15], where the gate fidelity is higher for certain initial
atomic qubit states and lower for others (see the formula for
the fidelity in Appendix B 2).

The atom-photon gate can be used to generate remote
atom-atom entanglement between two cavities as shown in
Fig. 3. The two interferometers next to the two cavities per-
form atom-photon CZ gates. The atom in node 1 is initially
prepared in |0〉a

x = (|0〉a + |1〉a)/
√

2 while the one in node 2
is in |1〉a

x = (|0〉a − |1〉a)/
√

2. We then input a |σ+〉 photon,
perform an atom-photon CZ gate at node 1, and use the output
photon to perform an atom-photon CZ gate at node 2. After the
output photon passes through a quarter waveplate (QWP), we
measure its polarization. Ideally, detection of the photon po-
larization heralds the generation of the maximally entangled
atom-atom Bell states according to (see Appendix B 1)

|H〉 :
|01〉a + |10〉a

√
2

, (9a)

|V 〉 :
|00〉a + |11〉a

√
2

, (9b)

FIG. 3. A setup to generate remote atom-atom entanglement be-
tween nodes using the proposed atom-photon gate. A |σ+〉 photon
from the outside hits the two cavities successively performing two CZ

gates. Measurement of the photon polarization heralds the generation
of atom-atom entanglement. All beam splitters are polarizing beam
splitters.

where |H〉 and |V 〉 correspond to clicks on detectors D1
and D2.

III. ERROR ANALYSIS

Previously, we have assumed no errors or losses in the
atom-photon two-qubit gate operation. In this section we esti-
mate the reduction in the gate fidelity and success probability
due to the following errors: spatial mode mismatch between
the photon and the cavity, spontaneous emission, cavity
losses, finite cooperativity, and photon-cavity and atom-cavity
frequency detunings.

We will assume that the photon wave packet has a nar-
row bandwidth around a central frequency ωp or equivalently
that the temporal pulse width T is large compared to 1/κ ,
i.e., κT � 1. Previous studies showed that this condition is
required to ensure high fidelity and no photon pulse shape
distortion [12,13].

We analyze the CZ gate setup in Fig. 2. We have an initial
photon state αp|V 〉 + βp|H〉 impinging on the cavity from
the left on the atomic qubit α|0〉a + β|1〉a. After the photon
reflects off the cavity and exits through the bottom PBS, we
end up with a CZ gate between the photon and the atom. Our
scheme fails whenever the photon is lost from the cavity or
when its polarization fails to flip during the scattering (and
subsequently gets lost from the system). In the case that the
photon is not lost, if we denote the final atom-photon state
after the nonideal gate operation as |ψout〉 and the output of
an ideal gate as |ψideal〉, then the fidelity is defined as F =
|〈ψideal|ψout〉|2. The success probability Psuccess is the prob-
ability that the photon is not lost during the gate operation
and available for detection. Psuccess = 100% corresponds to
a deterministic gate. Some applications require high Psuccess;
e.g., in a quantum network, it is crucial to have a large ratio
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between the remote entanglement success rate (which de-
pends on Psuccess) and the decoherence rate of the entangled
qubits [10]. Moreover, in quantum information processing ap-
plications, the efficiency of the scheme is an explicit function
of Psuccess (e.g., proportional to P2

success for remote entangle-
ment). Thus, F and Psuccess are measures of the gate quality
and efficiency, respectively.

The error analysis in Appendix B 1 provides analytic
expressions for F and Psuccess that depend on the initial
atom-photon amplitudes, the atom-cavity parameters, and
the mode matching efficiency. As a reference, we compare
our scheme to the one first proposed by Duan and Kimble
[12,13], which has been subsequently experimentally im-
plemented [6,15,17,18]. We introduce the same errors for
their scheme and perform an analogous error analysis in Ap-
pendix B 2. To show the reliability of the model presented
here, in Appendix C we analyze two previous atom-photon
gate experiments using the error model from Appendix B 2.
We show that the error model has good predictive power in
estimating reductions in fidelity and success probability in
actual experiments (due to the effects considered), where the
agreement between our error model and the experiments is
within 1–2%.

In Fig. 4, we show the results of the error analysis for the
atom-photon CZ gate for the present (orange) and previous
(blue) schemes. The figures on the left show the average
fidelity Favg and those on the right show the average success
probability Psuccess, averaged over all possible initial atom-
photon product states. We plot Favg and Psuccess versus four
experimental parameters of interest: ζ , the photon-cavity spa-
tial mode matching efficiency; κr/κ , which captures cavity
mirror losses (κr is the cavity decay rate into the desired mode
and κ is the total cavity decay rate including losses); �c, the
fractional photon-cavity detuning; and C, the atom-cavity co-
operativity. The values and ranges chosen for (ζ , κr/κ,�c,C)
are from previous atom-photon gate experiments (see also
Appendix C for details) [15,18].

First, consider spatial mode mismatch, which is the largest
source of infidelity in atom-photon gates [15,18]. As the spa-
tial mode matching efficiency ζ decreases from 100 to 80%,
the fidelity in the older scheme decreases by 15% while it only
decreases by 4% in the present scheme (see Fig. 4). Another
parameter of interest is cavity losses κr/κ . As κr/κ decreases
from 1 to 0.7, the fidelity in the older scheme decreases by
12.4% while it only decreases by 3.7% in the present scheme.
The error analysis shows that the fidelity and success prob-
ability have similar behavior versus C and �c both in the
older and the present scheme. All in all, Fig. 4 shows that,
in general, the present scheme has higher average fidelity and
success probability than the previous scheme. Moreover, the
new scheme is more robust against experimental errors like
losses, mismatch, and detunings. In Appendix D, we elaborate
on the connection between the CZ gate fidelity and photon loss
in the present scheme and propose how to increase the fidelity
further.

It is worth explaining why Psuccess in the present and the
previous schemes have opposite behavior versus ζ and �c.
First, consider the behavior versus ζ . If the mode matching
efficiency is ζ , it is empirically found that the mismatched
part of the optical mode 1 − ζ reflects completely without

FIG. 4. Average fidelity (Favg) and success probability (Psuccess)
for new (orange) and old (blue) atom-photon gates. ζ is the photon-
cavity spatial matching efficiency, κr the cavity decay rate into the
desired mode, κ the total cavity decay rate including losses, �c the
fractional photon-cavity detuning, and C the atom-cavity cooperativ-
ity. For each figure, all errors are fixed and one is varied. Values of
errors used when they are fixed: C = 4, κr/κ = 0.916, and ζ = 0.92.

any change or interaction with the cavity, and thus does not
lead to a Z gate. Under the present scheme, failure to perform
the Z gate is rejected from the system, which translates to
loss (see Sec. II). Therefore, the more there is a mismatch
(i.e., lower ζ ), the lower the success probability. Under the
previous scheme, the mismatched part is not rejected from
the system so it does not translate into loss. If there is more
mismatch, then there is a smaller fraction of the total light
that interacts with the cavity (i.e., the matched part, which can
get lost through spontaneous emission, scattering, or transmis-
sion) and a larger fraction that gets completely reflected back
(i.e., mismatched part), which translates into higher success
probability (albeit lower fidelity). The behavior versus �c is
explained in a similar fashion. For sufficiently large �c, the
photon is essentially not coupled to the atom-cavity system,
regardless of the atomic qubit state. Under the present scheme,
this leads to a failure in the Z gate, which again is rejected
and translates into loss. Under the previous scheme, failure
to perform the Z gate is not rejected from the system. There-
fore, a photon that is not coupled will be less likely to get
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FIG. 5. The infidelity 1 − F in atom-atom entanglement in
the present (orange) and previous (blue) papers vs C (assum-
ing no spatial mode mismatch). The following parameters for the
Gaussian distributions were used (X denotes the average of X
and σX denotes the standard deviation): κr/κ = 0.9, σκr/κ = 0.05,

�c = �a = 0, and σ�c = σ�a = 0.05. As we vary C in this plot, we
choose C = C and σc = 0.1C. This figure is a moving average of
each of 50 neighboring points (C, 1 − F ).

lost through spontaneous emission or scattering off the atom,
which increases the success probability.

Next, we investigate the infidelity 1 − F of remote atom-
atom entanglement due to random cavity parameter variations
and frequency fluctuations. The setup for generating atom-
atom entanglement in our scheme is shown in Fig. 3. In
Appendices B 1 and B 2, we derive the entanglement fidelity
as a function of the parameters of the two cavities (C,�c,�a,

and κr/κ), assuming no spatial mode mismatch. We charac-
terize the robustness of the resultant atom-atom entanglement
against cavity parameter variations and frequency fluctua-
tions as follows. We treat all the cavity parameters and the
frequency fluctuations as random Gaussian variables, and
compute the infidelity both in our scheme and the previous
scheme. The parameters of the Gaussian distribution (average
and standard deviation) are chosen such that they are close to
the values of recent experiments [15,17,18,20]. The result is
shown in Fig. 5, where we plot the average infidelity 1 − F
versus C for the present (orange) and previous scheme (blue),
and we randomly vary all the parameters of the two cavities
(assuming Gaussian distributions). In the previous scheme,
the average infidelity is large for small C (C < 3), and for
higher C it fluctuates around 2%. The present scheme is less
sensitive to the various random fluctuations, where the infi-
delity varies around 0.3% regardless of C.

In Fig. 6, in addition to the cavity parameters and frequency
fluctuations introduced earlier, we introduce random phase
fluctuation in the arms of the MZI in the atom-photon gate
(see Figs. 2 and 3). This phase fluctuation acts as a dephasing
error and increases the infidelity in our scheme. For small
phase fluctuations (below 0.1 rad), 1 − F remains below 1%
in the present scheme (orange). However, for sufficiently large
phase fluctuations (above 0.3 rad), the present scheme (black)
performs comparably to or worse than the previous scheme
(blue) for large C. This shows the importance of interferomet-
ric stability in the present scheme to achieve high fidelity.

FIG. 6. Same as Fig. 5 but with the addition of phase fluctuation
in the present scheme (orange and black). The phase fluctuation φ

introduced is a Gaussian random variable with φ = 0 with σφ = 0.1
radians (orange) and σφ = 0.3 rad (black).

IV. DISCUSSION

Our analysis assumed a single-photon source and perfect
photon detection, and ignored other error effects. These ef-
fects will further reduce both the fidelity and the success
probability in both schemes. Multiphoton effects stemming
from the use of a weak coherent photon source are par-
ticularly important. In recent experiments, typically a weak
coherent source of photons with a Poissonian distribution
is used, i.e., P(n) = n̄ne−n̄/n!, where n̄ is the mean pho-
ton number and P(n) is the probability to have n photons.
For example, consider an experiment to generate atom-
photon Bell states (starting from a photon and an atom
both in an equal superposition state) with the parameters
[18] n̄ = 0.13, an average single-photon detection efficiency
of η = 55%, ζ = 0.92, C = 4, and κr/κ = 0.916. The to-
tal success probability to generate atom-photon Bell states
is then reduced from Psuccess = 70%(80%) in the previous
(new) schemes, respectively, to P(1)ηPsuccess = 4.4%(5%),
in the previous (new) schemes, respectively. Thus, we ex-
pect that the success probability will be comparable in both
schemes. To significantly improve the success probability, us-
ing single-photon sources and better single-photon detectors
is necessary.

There are two categories of errors that contribute to the
infidelity of the atom-photon gate. The first is scheme depen-
dent errors related to the gate operation itself (e.g., the errors
considered in this paper). The second is not directly related to
the gate operation but still causes infidelities (e.g., nonideal
single-photon source, nonideal photon detection, multipho-
ton effects, atomic state preparation errors, readout, detector
dark counts, atomic decoherence, and nonideal optical com-
ponents). The relative contributions of these error categories
depend on the experiment itself [6,17,18–21], but both gen-
erally contribute significantly to the infidelity (e.g., in one
atom-photon gate experiment [15], the infidelity contributions
of the two error types were 8(3) and 10%, respectively; see
also Appendix C). The contribution of the present paper is
a proposal to reduce the first error type, i.e., a higher atom-
photon gate quality. To achieve very high fidelities (�99%),
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significant effort in experimentally eliminating the second
error category is also necessary.

In summary, we introduced a scheme to perform atom-
photon gates using symmetric energy levels. Error analysis
shows that the gate fidelity is more robust against errors like
spatial mode mismatch between the photon and the cavity,
spontaneous emission, cavity losses, finite cooperativity, and
photon-cavity and atom-cavity frequency detunings. More-
over, the fidelity of the atom-photon gate does not depend on
the state of the atomic qubit, a desirable feature in quantum
information processing applications. The gate robustness is
advantageous in other contexts such as remote atom-atom
entanglement, where the fidelity is less sensitive to random
variations of the parameters of the cavities and frequency
fluctuations. A potential bottleneck in this scheme is inter-
ferometric stability, where phase stabilization is required to
ensure high-fidelity gate operations. The error analysis sup-
ports the feasibility of reaching high fidelity with only modest
requirements on the interferometric phase stability, that are
compatible with current technology.
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APPENDIX A: IMPLEMENTATION WITH 87Rb

The atomic energy-level scheme in Fig. 1(c) can
be implemented with 87Rb using |F = 2, mF = ±2〉 and
|F ′ = 3, mF ′ = ±3〉 for the lower and upper states, respec-
tively, i.e., |g±〉 are 5 2S1/2|2,±2〉 and |e±〉 are 52P3/2|3,±3〉.
The states |F ′ = 3, |mF ′ | < 3〉 can be shifted away from the
F = 2 ↔ F ′ = 3 resonance to isolate the stretched state tran-
sitions by means of the tensor shift imparted by a dipole
trap with linear polarization parallel or perpendicular to the
quantization axis [15]. In particular, a 1064 dipole trap polar-
ized parallel to the quantization axis with a depth of 2.5 mK
will induce shifts relative to |F = 3, mF = ±3〉 of 52 MHz
for |F = 3, mF = ±2〉, 83 MHz for |F = 3, mF = ±1〉, and
93 MHz for |F = 3, mF = ±0〉 [28]. These shifts are suffi-
cient for ensuring negligible coupling to states in F = 3 with
|mF | < 3. The Landé gF factors for the F = 2 and F ′ = 3
levels are 0.7 and 0.93 MHz/G, respectively. This gives a
±1.39-MHz/G first-order differential Zeeman shift for the
two transitions, or a differential sensitivity of 2.78 MHz/G.

Typical magnetic noise is on the order of 1 mG. Magnetic
stability better than 50 µG has been demonstrated using an
active feedforward approach [29]. Magnetic noise can also
affect the coherence of the atomic qubit, which is encoded in
the magnetically sensitive |F = 2, mF = ±2〉 states. This sen-
sitivity can be reduced using microwave- or radio-frequency
dressing [30,31]. Operating with a bias field of 0.5 G and 1-
mG rms noise, by applying a single microwave dressing field
linearly polarized along x, with detuning �/2π = 1 MHz

from the hyperfine splitting frequency (6.834 GHz) and Rabi
frequency �/2π = 23.47 kHz, T ∗

2 can exceed 8 ms, com-
pared with 0.5 ms with no dressing for the same bias field
and noise. Finally, the equal superposition state |0〉a

x = (|0〉a +
|1〉a)/

√
2 can be generated by a sequence of π and π/2 pulses

[32].

APPENDIX B: FIDELITY AND SUCCESS
PROBABILITY ANALYSIS

1. Present paper

a. Atom-photon CZ gate

The setup is shown in Fig. 2. We start with the photon-atom
product state:

|ψ〉 = (αp|V 〉 + βp|H〉)(α|0〉 + β|1〉)

= αp|V 〉(α|0〉a + β|1〉a) + βp|H〉(α|0〉a + β|1〉a).

(B1)

The first PBS separates |H〉 and |V 〉 into paths r1 and p2

respectively:

|ψ〉 = αp|V 〉p2
(α|0〉a + β|1〉a) + βp|H〉r1

(α|0〉a + β|1〉a).
(B2)

The photon in path r1 scatters off the cavity under the follow-
ing scattering relations:

|0〉a|σ+〉 → rc|0〉a|σ+〉 + tc|L〉, (B3)

|1〉a|σ−〉 → rc|1〉a|σ−〉 + tc|L′〉, (B4)

|0〉a|σ−〉 → rNC|0〉a|σ−〉 + tNC|L′′〉, (B5)

|1〉a|σ+〉 → rNC|1〉a|σ+〉 + tNC|L′′′〉 (B6)

where [16]

rc = 1 − 2 κr
κ

(i�a + 1)

(i�c + 1)(i�a + 1) + 2C
, (B7)

rNC = 1 − 2 κr
κ

i�c + 1
. (B8)

Here we take into account that not all incident light is
reflected from the cavity (|rc|, |rNC| < 1), because there is a
probability to lose the photon due to spontaneous emission
into free space, transmission through the highly reflective
mirror, or scattering with the atom or the cavity mirrors into
free space. Note that κ = κr + κloss, where κr is the cavity
decay rate through the coupling mirror (desired mode), while
κloss encompasses the contributions due to loss by transmis-
sion through the other mirror or scattering off the mirrors.
To take losses after scattering into account, we introduce the
“loss” states |L〉, |L′〉, |L′′〉, and |L′′′〉 with amplitudes tc and
tNC. By probability conservation, the probabilities to lose the
photon are then |tc|2 = 1 − |rc|2 and |tNC|2 = 1 − |rNC|2 for
the coupled and uncoupled cases.

We would like to add another important source of nonide-
ality, namely spatial mode mismatch between the photon and
the cavity mode. If the mode matching efficiency is ζ , it is em-
pirically found that the mismatched part reflects completely
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without any change. Thus we need to modify our reflection
coefficients as [16]

|r|2 → (1 − ζ ) + ζ |r|2. (B9)

To take this into account, we introduce two orthogonal spatial
modes |mat〉 (“matched”) and |mis〉 (“mismatched”) with the
following relative amplitudes:√

1 − ζeiθ |mis〉 +
√

ζ |mat〉. (B10)

Thus, we divide the entire initial quantum state into matched
and mismatched modes:

|ψ〉 = |φ〉p2
+

√
1 − ζeiθβp|H, mis〉r1

(α|0〉a + β|1〉a)

+
√

ζβp|H, mat〉r1
(α|0〉a + β|1〉a) (B11)

where

|φ〉p2
=

√
1 − ζeiθαp|V, mis〉p2

(α|0〉a + β|1〉a)

+
√

ζαp|V, mat〉p2
(α|0〉a + β|1〉a). (B12)

Expanding the matched part |H, mat〉r1
in terms of |σ±, mat〉r1

,

|ψ〉 = |φ〉p2
+

√
1 − ζeiθβp|H, mis〉r1

(α|0〉a + β|1〉a)

+
√

ζ
βp√

2
{|σ+, mat〉r1

(α|0〉a + β|1〉a)

+ |σ−, mat〉r1
(α|0〉a + β|1〉a)}. (B13)

Only the matched mode in r1 experiences the scattering rela-
tions Eqs. (B3)–(B6). The state after scattering then becomes

|ψ〉 = |φ〉p2
+

√
1 − ζeiθβp|H, mis〉r1

(α|0〉a + β|1〉a)

+
√

ζ
βp√

2
{|σ+, mat〉r1

(αrc|0〉a + βrNC|1〉a)

+ |σ−, mat〉r1
(αrNC|0〉a + βrc|1〉a) + αtc|L〉

+ βtc|L′〉 + αtNC|L′′〉 + βtNC|L′′′〉}. (B14)

The total probability to lose the photon out of the cavity into
free space is then

Ploss = P(|L〉) + P(|L′〉) + P(|L′′〉) + P(|L′′′〉)

= ζ
|βp|2

2
(|tc|2 + |tNC|2)

= ζ
|βp|2

2
(2 − |rc|2 − |rNC|2) (B15)

where |t |2 = 1 − |r|2 and we assumed that the lost states
are orthogonal (the validity of this assumption and our error
model more generally is evaluated in Appendix C). Since we
are interested in the case where the photon is detected and the
scheme succeeds, we consider the quantum state when it gets
projected into the “not lost” state and gets reflected out of the
cavity:

|ψ〉 = 1

Nl

[
|φ〉p2

+
√

1 − ζeiθβp|H, mis〉r1
(α|0〉a + β|1〉a)

+
√

ζ
βp√

2
{|σ+, mat〉r1

(αrc|0〉a + βrNC|1〉a)

+ |σ−, mat〉r1
(αrNC|0〉a + βrc|1〉a)}

]
(B16)

where Nl = √
1 − Ploss is the normalization constant. We can

rewrite the state as

|ψ〉 = 1

Nl

[
|φ〉p2

+
√

1 − ζeiθβp|H, mis〉r1
(α|0〉a + β|1〉a)

+
√

ζβp

{
rc − rNC

2
|V, mat〉r1

(α|0〉a − β|1〉a)

+ rc + rNC

2
|H, mat〉r1

(α|0〉a + β|1〉a)

}]
. (B17)

There is another source of photon loss. After reflection,
there is a probability that the photon polarization does not flip
during the scattering and remains in |H〉r1

. This component
will not be reflected down by the PBS to the path d1, and it
will be lost from the system. The probability for this to happen
is

P(H ) = 1

|Nl |2
[

(1 − ζ )|βp|2 + ζ
|βp|2

4
|rc + rNC|2

]
. (B18)

In the event that the photon is detected, the quantum state will
be projected to the state without the |H〉r1

component:

|ψ〉 = 1

NlNh

[
|φ〉p2

+
√

ζβp
rc − rNC

2

× |V, mat〉r1
(α|0〉a − β|1〉a)

]
(B19)

where Nh = √
1 − P(H ) is the normalization constant. After

scattering, |V 〉r1
is reflected down to path d1 by the PBS.

Moreover, the HWP in d1 flips the polarization of the photon
to |H〉d1

. Thus we have

|ψ〉 = 1

NlNh

[
|φ〉p2

+
√

ζβp
rc − rNC

2

× |H, mat〉d1
(α|0〉a − β|1〉a)

]
. (B20)

Finally, after we combine the two paths of the photon by the
PBS, we get the output state:

|ψ〉 = 1

NlNh

[
|φ〉 +

√
ζβp

rc − rNC

2
|H, mat〉(α|0〉a − β|1〉a)

]

(B21)

where we have removed the path information (d1 and p2).
Compare this with the output of an ideal CZ:

|ψideal〉 = αp|V 〉(α|0〉a + β|1〉a) + βp|H〉(α|0〉a − β|1〉a).
(B22)

Thus our output state is

|ψout〉 = 1

NlNh

[√
1 − ζeiθαp|V, mis〉(α|0〉a

+ β|1〉a) +
√

ζ |ψideal, mat〉 +
√

ζ
βp

2
|H, mat〉

× (rc − rNC − 2)(α|0〉a − β|1〉a)

]
. (B23)

The fidelity is defined as F = |〈ψideal|ψout〉|2 where after
taking the inner product 〈ψideal|ψout〉, we trace over both the

032602-7



NAGIB, HUFT, SAFARI, AND SAFFMAN PHYSICAL REVIEW A 109, 032602 (2024)

matched and mismatched modes (i.e., when the photon gets
detected it is projected to a state of definite polarization and
spatial mode). Using all the relevant equations above, we get

F = 1

|NlNh|2
{

(1 − ζ )|αp|4 + ζ

×
∣∣∣∣1 + |βp|2 (rc − rNC − 2)

2

∣∣∣∣
2}

. (B24)

If there is a phase difference φ between the arms of the MZI,
then the fidelity gets modified to

F = 1

|NlNh|2
{

(1 − ζ )|αp|4 + ζ

∣∣∣∣|αp|2eiφ + |βp|2

+ |βp|2 (rc − rNC − 2)

2

∣∣∣∣
2}

. (B25)

No photon is detected if it is lost (Ploss) or the polarization
fails to flip and remains horizontal after scattering [P(H )].
Therefore, our success probability is

Psuccess = 1 − Pfail = 1 − [Ploss + (1 − Ploss )P(H )]

= |NlNh|2. (B26)

To get the average fidelity Favg, F is averaged over all possible
initial atom-photon product states. Noting that here F only
depends on the photon’s initial amplitude, the average is taken
over the Bloch sphere of the photon by making the substitution
αp → cos(θ/2)ei� and βp → sin(θ/2) in F :

Favg = 1

4π

∫ π

0

∫ 2π

0
dθd� F sin θ. (B27)

b. Remote atom-atom entanglement

Here we start with the photon-atom-atom product state
|σ+〉|0〉a

x |1〉a
x (see Fig. 3). For simplicity, we assume no spatial

mode mismatch. After the first CZ gate between |σ+〉 and |0〉a
x ,

we get (ignoring normalization and assuming the photon was
not lost) [

|V 〉|0〉a
x + rc − rNC

2
|H〉|1〉a

x

]
|1〉a

x . (B28)

After applying the HWP, we have
(

|H〉|0〉a
x + rc − rNC

2
|V 〉|1〉a

x

)
|1〉a

x . (B29)

We send the photon to the second cavity on the right. After the
second CZ gate, we get

(r′
c − r′

NC)|H〉|00〉a
x + (rc − rNC)|V 〉|11〉a

x (B30)

where r′
c − r′

NC are the reflection coefficients of the second
cavity, which in general are different from those of the first
cavity rc − rNC. After the photon passes through a QWP, we
get

|V 〉{(r′
c − r′

NC)|00〉a
x + (rc − rNC)|11〉a

x

}
− |H〉{(r′

c − r′
NC)|00〉a

x − (rc − rNC)|11〉a
x

}
. (B31)

Measuring the photon polarization results in the following
atom-atom entangled states:

|V 〉 : (r′
c − r′

NC)|00〉x + (rc − rNC)|11〉x, (B32)

|H〉 : (r′
c − r′

NC)|00〉a
x − (rc − rNC)|11〉a

x . (B33)

If the two cavities are identical, i.e., r′
c − r′

NC = rc − rNC, then
we get the maximally entangled Bell states:

|V 〉 : |00〉a
x + |11〉a

x, (B34)

|H〉 : |00〉a
x − |11〉a

x . (B35)

These Bell states correspond to |00〉a + |11〉a and |01〉a +
|10〉a in the z basis, respectively. If the two cavities are not
identical, then the fidelity of the atom-atom Bell states is

F = 1

2

|(r′
c − r′

NC) + (rc − rNC)|2
|r′

c − r′
NC|2 + |rc − rNC|2 . (B36)

If there is a phase difference φ1 and φ2 between the arms of
the first and second MZI that implement the CZ gates, then the
fidelity will be modified as

F = 1

2

|(r′
c − r′

NC) + (rc − rNC)ei(φ2−φ1 )|2
|r′

c − r′
NC|2 + |rc − rNC|2 . (B37)

2. Previous schemes

a. Atom-photon CZ gate

We perform a similar error analysis for the scheme first
proposed by Duan and Kimble [12,13]. Subsequent schemes
are similar or slightly modified variations [24–26], and they
have also been experimentally implemented [15,17,18]. More
precisely, we analyze a variant of the Duan and Kimble
scheme that was implemented by Reiserer et al. [15] as there
are available experimental data for it. This allows us to eval-
uate the predictive power of our error model in Appendix C.
This scheme for atom-photon gates uses three energy levels:
two ground states |0〉a and |1〉a that are not degenerate, and
an excited state |e〉a; |1〉a couples to |e〉a by |σ+〉 while |0〉a is
far detuned. Here the photon path is not separated by an MZI,
but the entire photon hits and reflects off the cavity. This gives
the following scattering relations between the photon and the
atom:

|0〉a|σ+〉 → rNC|0〉a|σ+〉 + tNC|L〉, (B38)

|1〉a|σ−〉 → rNC|1〉a|σ−〉 + tNC|L′〉, (B39)

|0〉a|σ−〉 → rNC|0〉a|σ−〉 + tNC|L′′〉, (B40)

|1〉a|σ+〉 → rc|1〉a|σ+〉 + tc|L′′′〉. (B41)

Ideally, rc = 1, rNC = −1, and tc = tNC = 0, which imple-
ments an atom-photon CZ gate assuming the encoding |σ+〉 =
|1〉p and |σ−〉 = |0〉p (which is different from our scheme). As
before, the initial state of the atom and the photon will have a
matched and mismatched part:

|ψ〉 =
√

1 − ζeiθ |ψi, mis〉 +
√

ζ |ψi, mat〉 (B42)
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where

|ψi〉 = αp|σ−〉(α|0〉a + β|1〉a) + βp|σ+〉(α|0〉a + β|1〉a). (B43)

After the photon hits the cavity, only the matched part will experience the scattering relations above and we get

|ψ〉 =
√

1 − ζeiθ |ψi, mis〉 +
√

ζ {αp|σ−, mat〉(αrNC|0〉a + βrNC|1〉a) + βp|σ+, mat〉(αrNC|0〉a + βrc|1〉a)

+ αpαtNC|L′′〉 + αpβtNC|L′〉 + βpαtNC|L〉 + βpβtc|L′′′〉}. (B44)

The probability to lose the photon is

Ploss = P(|L′′〉) + P(|L′〉) + P(|L′〉) + P(|L′′′〉) = ζ [|tNC|2| + |βpβ|2(|tc|2 − |tNC|2)]. (B45)

To consider the case when the photon is not lost, the state gets projected into

|ψ〉 = 1

Nl
[
√

1 − ζeiθ |ψi, mis〉 +
√

ζ {αp|σ−, mat〉(αrNC|0〉a + βrNC|1〉a) + βp|σ+, mat〉(αrNC|0〉a + βrc|1〉a)}] (B46)

with the normalization constant Nl = √
1 − Ploss. The ideal output of the CZ gate here is

|ψideal〉 = −[αp|σ−〉(α|0〉a + β|1〉a) + βp|σ+〉(α|0〉a − β|1〉a)]. (B47)

The fidelity |〈ψideal|ψout〉|2 is then given by

F = 1

|Nl |2 {(1 − ζ )(|αp|2 + |βp|2[|α|2 − |β|2])2 + ζ ||αp|2rNC + |βp|2(rNC|α|2 − rc|β|2)|2} (B48)

while the success probability is

Psuccess = 1 − Ploss = 1 − ζ [|tNC|2| + |βpβ|2(|tc|2 − |tNC|2)]. (B49)

To get the average fidelity Favg, F is averaged over all possible initial atom-photon product states. The average is taken over the
Bloch spheres of the atom and the photon by making the substitutions α → cos(θ1/2)ei�1 , β → sin(θ1/2), αp → cos(θ2/2)ei�2 ,
and βp → sin(θ2/2) in F :

Favg = 1

(4π )2

∫
dθ1d�1dθ2d�2 F sin θ1 sin θ2 (B50)

where �1,2 and θ1,2 are the azimuthal and polar angles of the Bloch spheres, respectively.

b. Remote atom-atom entanglement

In this scheme, to generate atom-atom entanglement, we start with the photon-atom-atom product state |H〉|0〉a
x |0〉a

x . The
photon hits the two cavities successively, then the photon passes through a QWP. Finally, we measure its polarization, which
results in an atom-atom Bell state. Again, for simplicity we assume no spatial mode mismatch. After the first CZ gate between
|H〉 and |0〉a

x we get (ignoring normalization and assuming the photon was not lost)

{|σ−〉(rNC|0〉a + rNC|1〉a) + |σ+〉(rNC|0〉a + rc|1〉a)}|0〉a
x (B51)

where rc and rNC are the reflection coefficients of the first cavity. After the CZ gate between the photon and the second cavity, we
get

{|σ−〉(rNC|0〉a + rNC|1〉a) + |σ+〉(rNC|0〉a + rc|1〉a)}r′
NC|0〉a

+{r′
NC|σ−〉(rNC|0〉a + rNC|1〉a) + r′

c|σ+〉(rNC|0〉a + rc|1〉a)}|1〉a (B52)

where r′
c and r′

NC are the reflection coefficients of the second cavity. After the photon passes through a QWP we get

|σ−〉{2r′
NCrNC|00〉a + (r′

NCrNC + r′
NCrc)|10〉a + (r′

NCrNC + r′
crNC)|01〉a + (r′

NCrNC + r′
crc)|11〉a}

+ |σ+〉{(r′
NCrNC − r′

NCrc)|10〉a + (r′
NCrNC − r′

crNC)|01〉a + (r′
NCrNC − r′

crc)|11〉a}. (B53)

Measuring the photon polarization gives the following atom-atom entangled states:

|σ−〉 : 2r′
NCrNC|00〉a + (r′

NCrNC + r′
NCrc)|10〉a + (r′

NCrNC + r′
crNC)|01〉a + (r′

NCrNC + r′
crc)|11〉a (B54)

|σ+〉 : (r′
NCrNC − r′

NCrc)|10〉a + (r′
NCrNC − r′

crNC)|01〉a + (r′
NCrNC − r′

crc)|11〉a. (B55)

Observe that even if the two cavities are identical we will not get the maximally entangled Bell states here. We get the
maximally entangled states only if the two cavities are ideal, i.e., rc = r′

c = 1 and rNC = r′
NC = −1:

|σ−〉 : |00〉a + |11〉a, (B56)

|σ+〉 : |10〉a + |01〉a. (B57)
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If the two cavities are not ideal, then the fidelity becomes

F (|φ+〉) = 1

2

|2r′
NCrNC + (r′

NCrNC + r′
crc)|2

|2r′
NCrNC|2 + |r′

NCrNC + r′
NCrc|2 + |r′

NCrNC + r′
crNC|2 + |r′

NCrNC + r′
crc|2 , (B58)

F (|ψ+〉) = 1

2

|(r′
NCrNC − r′

NCrc) + (r′
NCrNC − r′

crNC)|2
|r′

NCrNC − r′
NCrc|2 + |r′

NCrNC − r′
crNC|2 + |r′

NCrNC − r′
crc|2 (B59)

where |φ+〉 = (|00〉a + |11〉a)/
√

2 and |ψ+〉 = (|01〉a + |10〉a)/
√

2 are the maximally entangled Bell states.

APPENDIX C: PREDICTIVE POWER
OF THE ERROR MODEL

Here, we would like to assess how well our error model
is able to estimate fidelity and success probability in actual
experiments.

1. Experiment 1: Atom-photon entanglement

We compare our model (from the previous Appendix) with
data from experiments by Reiserer et al. [15]. In one of the ex-
periments, they hit the the cavity with a single photon with the
initial atom-photon state |00〉ap

x . Ideally, this would execute
a controlled-NOT gate with the atom-photon Bell state output
(|00x〉ap + |11x〉ap)/

√
2. The experimentally measured fidelity

is 80.7%, with the following effects leading to the infidelity.
First, a nonunity mode matching efficiency of 92% and photon
loss from the cavity lead to 8(3)% fidelity reduction. The
analytic formula for fidelity from the previous Appendix is

F = 1

|Nl |2 {(1 − ζ )(|αp|2 + |βp|2[|α|2 − |β|2])2

+ ζ ||αp|2rNC + |βp|2(rNC|α|2 − rc|β|2)|2}. (C1)

The parameters of their experiment are [15,16,19] |αp| =
|βp| = |α| = |β| = 1/

√
2, ζ = 0.92, C = 3, �c = (ωp −

ωc)/κ = 300 kHz/(2.5MHz) = 0.12, �a = 0.83�c (assum-
ing ωp − ωc = ωp − ωa), and κr/κ ≈ 2.3/2.5 = 0.92. This
gives F ≈ 90%. This is within 2% of the experimentally es-
timated fidelity reduction due to mode mismatch and photon
loss. Note that our model does not take into account other ef-
fects of infidelity (atomic state preparation, readout, rotation,
detector dark counts, nonideal PBS, and multiphoton effects),
which contribute to a further fidelity reduction of 10% in the
experiment. If we additionally take these effects into account,
then this gives F ≈ 90 − 10 = 80%, in close agreement with
the measured fidelity of 80.7%.

Next, we compare the success probability. Because of
mode mismatch, 8% of the light is totally reflected. Of the
92% matched light that couples to the cavity, only 69% is
measured to reflected. Thus, the experimentally measured
total probability that the photon is reflected back is 0.08 +
(0.92)(0.69) = 71.5%. This also measures the success prob-
ability of the scheme (loss due to the photon not reflecting
from the cavity leads to failure). From the previous section our
formula gives

Psuccess =1− Ploss =1− ζ [|tNC|2| + |βpβ|2(|tc|2 − |tNC|2)].

(C2)

Plugging in the same parameters above, we get Psuccess =
69%, which is within 2.5% of the measured value.

2. Experiment 2: Atom-atom entanglement

The second experiment we analyze is by Welte et al. [18].
Here they also use the same energy scheme from the previous
section. They have two atoms in a cavity. By reflecting |σ+〉
off the cavity, the atoms will experience no phase shift when
either one or both are coupled to the photon (i.e., when the
atoms are in |11〉a, |10〉a, or |01〉a), and they will experience
a sign flip only when both atoms are uncoupled (i.e., |00〉a).
The photon is always disentangled from the two atoms before
and after reflection. If we have the initial atom-atom superpo-
sition state |11〉a

x = 1/2(|11〉a − |10〉a − |01〉a + |00〉a), then
scattering a |σ+〉 photon creates the entangled atom-atom state
1/2(|11〉a − |10〉a − |01〉a − |00〉a) (equivalent to a Bell state
up to a global rotation). Using an error model and experimen-
tal data, the authors found that in the absence of all errors
except cavity losses and finite cooperativity, the estimated
fidelity (assuming the photon is detected after reflection) is
99.7%. They also found that spatial mode mismatch alone
contributes 6% reduction in fidelity (assuming everything else
is ideal). The measured probability to lose the photon during
reflection is 33%. If we carry out the same analysis as before
for this particular initial atom-atom state, we will arrive at the
following equation for the fidelity of the final atom-atom Bell
state:

F = 1

1 − Ploss

{
(1 − ζ )

1

4
+ ζ

∣∣∣∣3rc − rNC

4

∣∣∣∣
2}

(C3)

with

Ploss = ζ

4
(3|tc|2 + |tNC|2). (C4)

The parameters of this experiment are ζ = 0.92, C = 4, �c =
�a = 0 (the authors set it to zero during their error analy-
sis when computing the reflection coefficients), and κr/κ ≈
2.29/2.5 = 0.916. Using our error model and the parameters
of their experiment, the estimated fidelity (assuming the pho-
ton is detected after reflection and losses only due to cavity
and finite cooperativity) is 99.96%, higher than the estimated
fidelity of the authors by about 0.26%.

According to our formula and using the experimental pa-
rameters as input, the probability to lose the photon during
reflection is Ploss = 32.3%, within 0.7% of the experimen-
tally measured value. To compute the contribution due to
mode mismatch, we assume everything is perfect (rc =
1, rNC = −1, tc = 0, tNC = 0), and set ζ = 0.92 in our equa-
tion for fidelity. This gives F = (1 − 0.92)/4 + 0.92 = 0.94.
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Therefore, the reduction in fidelity due to mode mismatch is
6%, in agreement with their analysis.

APPENDIX D: PHOTON LOSS AND CZ GATE FIDELITY

It was shown in Sec. II that the present scheme is able
to execute an ideal Z gate by dissipating the error-inducing
photons. However, it does not follow from this that this would
lead to an ideal CZ gate (although it still leads to an im-
provement as shown in Fig. 4). Generally, photon losses do
not affect the fidelity of the CZ gate only if the photon loss
probability is the same for all photonic and atomic qubit basis
states (i.e., same for |V 〉|0〉a, |V 〉|1〉a, |H〉|0〉a, and |H〉|1〉a).
On the other hand, if the photon loss probability is different
for each basis state, then the fidelity of the CZ will not be
1 even if we perform a perfect Z gate. To illustrate with an
example, consider an initial atom-photon equal superposition
state 0.5|V 〉(|0〉a + |1〉a) + 0.5|H〉(|0〉a + |1〉a). The output of
an ideal CZ acting on this state is

0.5|V 〉(|0〉a + |1〉a) + 0.5|H〉(|0〉a − |1〉a). (D1)

Under the present scheme, numerical analysis shows that the
output will be (using the parameters in Fig. 4 and ignoring
spatial mode mismatch)

0.548 333|V 〉(|0〉a + |1〉a) + 0.446 465|H〉(|0〉a − |1〉a).
(D2)

The present scheme performs the Z gate correctly (i.e., phase
flip only for |H〉|1〉a). However, the relative amplitudes are not
equal because the photon loss probabilities are different for
|V 〉 (which does not interact with the cavity so its probability
of loss is zero; see Fig. 2) and |H〉 (which experiences losses
through cavity interactions). Therefore, one way to increase
the CZ fidelity in this scheme further is to deliberately intro-
duce losses in one of the MZI arms (labeled p2 in Fig. 2) to
balance the relative populations of |H〉 and |V 〉. This can be
done by a tunable optical attenuator for example.

It is worth pointing out that this relation between photon
loss probabilities and CZ gate fidelity is not unique to the
present scheme, and it applies to others; e.g., see Fig. 5(b)
in Ref. [33], where the CZ fidelity is 1 only when the relative
photon success probabilities are equal [see also Eq. (4) in that
paper].

[1] H. J. Kimble, The quantum internet, Nature (London) 453, 1023
(2008).

[2] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P.
Maunz, L.-M. Duan, and J. Kim, Large-scale modular quantum-
computer architecture with atomic memory and photonic
interconnects, Phys. Rev. A 89, 022317 (2014).

[3] D. P. Nadlinger, P. Drmota, B. C. Nichol, G. Araneda, D. Main,
R. Srinivas, D. M. Lucas, C. J. Ballance, K. Ivanov, E. Y.-Z.
Tan, P. Sekatski, R. L. Urbanke, R. Renner, N. Sangouard, and
J.-D. Bancal, Experimental quantum key distribution certified
by Bell’s theorem, Nature (London) 607, 682 (2022).

[4] W. Zhang, T. van Leent, K. Redeker, R. Garthoff, R.
Schwonnek, F. Fertig, S. Eppelt, W. Rosenfeld, V. Scarani,
C. C.-W. Lim, and H. Weinfurter, A device-independent quan-
tum key distribution system for distant users, Nature (London)
607, 687 (2022).

[5] S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M.
Duan, and C. Monroe, Quantum teleportation between distant
matter qubits, Science 323, 486 (2009).

[6] S. Langenfeld, S. Welte, L. Hartung, S. Daiss, P. Thomas, O.
Morin, E. Distante, and G. Rempe, Quantum teleportation be-
tween remote qubit memories with only a single photon as a
resource, Phys. Rev. Lett. 126, 130502 (2021).

[7] B. C. Nichol, R. Srinivas, D. P. Nadlinger, P. Drmota, D. Main,
G. Araneda, C. J. Ballance, and D. M. Lucas, An elementary
quantum network of entangled optical atomic clocks, Nature
(London) 609, 689 (2022).

[8] V. Krutyanskiy, M. Canteri, M. Meraner, J. Bate, V. Krcmarsky,
J. Schupp, N. Sangouard, and B. P. Lanyon, Telecom-
wavelength quantum repeater node based on a trapped-ion
processor, Phys. Rev. Lett. 130, 213601 (2023).

[9] M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers,
P. C. Humphreys, R. N. Schouten, R. F. L. Vermeulen, M. J.
Tiggelman, L. dos Santos Martins, B. Dirkse, S. Wehner, and R.

Hanson, Realization of a multinode quantum network of remote
solid-state qubits, Science 372, 259 (2021).

[10] J. P. Covey, H. Weinfurter, and H. Bernien, Quantum networks
with neutral atom processing nodes, npj Quantum Inf. 9, 90
(2023).

[11] C. B. Young, A. Safari, P. Huft, J. Zhang, E. Oh, R. Chinnarasu,
and M. Saffman, An architecture for quantum networking of
neutral atom processors, Appl. Phys. B 128, 151 (2022).

[12] L. M. Duan and H. J. Kimble, Scalable photonic quantum com-
putation through cavity-assisted interactions, Phys. Rev. Lett.
92, 127902 (2004).

[13] L. M. Duan, B. Wang, and H. J. Kimble, Robust quantum gates
on neutral atoms with cavity-assisted photon scattering, Phys.
Rev. A 72, 032333 (2005).

[14] H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, Opti-
mized phase switching using a single-atom nonlinearity, J. Opt.
B 5, 218 (2003).

[15] A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, A quantum
gate between a flying optical photon and a single trapped atom,
Nature (London) 508, 237 (2014).

[16] A. Reiserer and G. Rempe, Cavity-based quantum networks
with single atoms and optical photons, Rev. Mod. Phys. 87,
1379 (2015).

[17] S. Daiss, S. Langenfeld, S. Welte, E. Distante, P. Thomas,
L. Hartung, O. Morin, and G. Rempe, A quantum-logic gate
between distant quantum-network modules, Science 371, 614
(2021).

[18] S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, Photon-
mediated quantum gate between two neutral atoms in an optical
cavity, Phys. Rev. X 8, 011018 (2018).

[19] A. Reiserer, S. Ritter, and G. Rempe, Nondestructive detection
of an optical photon, Science 342, 1349 (2013).

[20] S. Welte, P. Thomas, L. Hartung, S. Daiss, S. Langenfeld, O.
Morin, G. Rempe, and E. Distante, A nondestructive Bell-state

032602-11

https://doi.org/10.1038/nature07127
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1038/s41586-022-04941-5
https://doi.org/10.1038/s41586-022-04891-y
https://doi.org/10.1126/science.1167209
https://doi.org/10.1103/PhysRevLett.126.130502
https://doi.org/10.1038/s41586-022-05088-z
https://doi.org/10.1103/PhysRevLett.130.213601
https://doi.org/10.1126/science.abg1919
https://doi.org/10.1038/s41534-023-00759-9
https://doi.org/10.1007/s00340-022-07865-0
https://doi.org/10.1103/PhysRevLett.92.127902
https://doi.org/10.1103/PhysRevA.72.032333
https://doi.org/10.1088/1464-4266/5/3/304
https://doi.org/10.1038/nature13177
https://doi.org/10.1103/RevModPhys.87.1379
https://doi.org/10.1126/science.abe3150
https://doi.org/10.1103/PhysRevX.8.011018
https://doi.org/10.1126/science.1246164


NAGIB, HUFT, SAFARI, AND SAFFMAN PHYSICAL REVIEW A 109, 032602 (2024)

measurement on two distant atomic qubits, Nat. Photon. 15, 504
(2021).

[21] B. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li,
and G. Rempe, Deterministic creation of entangled atom-light
Schrödinger-cat states, Nat. Photonics 13, 110 (2019).

[22] I. Cohen and K. Mølmer, Deterministic quantum network for
distributed entanglement and quantum computation, Phys. Rev.
A 98, 030302(R) (2018).

[23] Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, Robust-fidelity
atom-photon entangling gates in the weak-coupling regime,
Phys. Rev. Lett. 109, 160504 (2012).

[24] J.-H. An, M. Feng, and C. H. Oh, Quantum-information pro-
cessing with a single photon by an input-output process with
respect to low-Q cavities, Phys. Rev. A 79, 032303 (2009).

[25] Q. Chen and M. Feng, Quantum gating on neutral atoms in low-
Q cavities by a single-photon input-output process, Phys. Rev.
A 79, 064304 (2009).

[26] G.-Y. Wang, Q. Liu, H.-R. Wei, T. Li, Q. Ai, and F.-G. Deng,
Universal quantum gates for photon-atom hybrid systems as-
sisted by bad cavities, Sci. Rep. 6, 24183 (2016).

[27] S. Ma, A. P. Burgers, G. Liu, J. Wilson, B. Zhang, and J. D.
Thompson, Universal gate operations on nuclear spin qubits

in an optical tweezer array of 171Yb atoms, Phys. Rev. X 12,
021028 (2022).

[28] F. Le Kien, P. Schneeweiss, and A. Rauschenbeutel, Dynamical
polarizability of atoms in arbitrary light fields: general theory
and application to cesium, Eur. Phys. J. D 67, 92 (2013).

[29] B. Merkel, K. Thirumalai, J. E. Tarlton, V. M. Schäfer, C. J.
Ballance, T. P. Harty, and D. M. Lucas, Magnetic field stabiliza-
tion system for atomic physics experiments, Rev. Sci. Instrum.
90, 044702 (2019).

[30] L. Sárkány, P. Weiss, H. Hattermann, and J. Fortágh, Con-
trolling the magnetic-field sensitivity of atomic-clock states by
microwave dressing, Phys. Rev. A 90, 053416 (2014).

[31] G. A. Sinuco-Leon, H. Mas, S. Pandey, G. Vasilakis, B. M.
Garraway, and W. von Klitzing, Decoherence-free radio-
frequency-dressed subspaces, Phys. Rev. A 104, 033307
(2021).

[32] P. Thomas, L. Ruscio, O. Morin, and G. Rempe, Efficient gener-
ation of entangled multiphoton graph states from a single atom,
Nature (London) 608, 677 (2022).

[33] J. Cho and H.-W. Lee, Generation of atomic cluster states
through the cavity input-output process, Phys. Rev. Lett. 95,
160501 (2005).

032602-12

https://doi.org/10.1038/s41566-021-00802-1
https://doi.org/10.1038/s41566-018-0339-5
https://doi.org/10.1103/PhysRevA.98.030302
https://doi.org/10.1103/PhysRevLett.109.160504
https://doi.org/10.1103/PhysRevA.79.032303
https://doi.org/10.1103/PhysRevA.79.064304
https://doi.org/10.1038/srep24183
https://doi.org/10.1103/PhysRevX.12.021028
https://doi.org/10.1140/epjd/e2013-30729-x
https://doi.org/10.1063/1.5080093
https://doi.org/10.1103/PhysRevA.90.053416
https://doi.org/10.1103/PhysRevA.104.033307
https://doi.org/10.1038/s41586-022-04987-5
https://doi.org/10.1103/PhysRevLett.95.160501

