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Proposal for a nonadiabatic geometric gate with an Andreev spin qubit
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We study a hybrid structure of a ferromagnetic insulator and a superconductor connected by a weak link,
which accommodates Andreev bound states whose spin degeneracy is lifted due to the exchange interaction with
the ferromagnet. The resultant spin-resolved energy levels realize a two-state quantum system, provided that a
single electron is trapped in the bound state, i.e., an Andreev spin qubit. The qubit state can be manipulated
by controlling the magnetization dynamics of the ferromagnet, which mediates the coupling between external
fields and the qubit. In particular, our hybrid structure provides a simple platform to manipulate and control the
spin qubit using spintronic techniques. By employing a modified Hahn spin echo protocol for the magnetization
dynamics, we show that our Andreev spin qubit can realize a nonadiabatic geometric gate.
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I. INTRODUCTION

Motivated by the prospect of scalable device fabrication
and circuit design, the search for two-state quantum systems
or qubits in solid-state systems has been a major experi-
mental and theoretical endeavor [1,2]. Among all, Andreev
physics-based qubits present a particularly promising route.
In the superconducting state at low temperatures, the Fermi-
level degrees of freedom are frozen out. Therefore, most of
the dissipative mechanisms are eliminated, so that the qubit
may exhibit long coherence times [3–5]. In this paper, we
study a hybrid structure of a ferromagnetic insulator (FI)
connected by a weak link (a normal region N) to an s-wave
superconductor (S) that accommodates spin-resolved Andreev
bound states (ABS) in the weak link [see Fig. 1(a)]. We
show that a pair of spin-resolved ABS, when occupied by an
electron, creates an Andreev spin qubit (ASQ). On account
of a large level spacing in our ASQ, which is due to the
exchange field of the FI, the external fields controlling the
FI magnetization are strongly coupled to the qubit spin. Due
to the strong coupling, we expect that spin-flipping errors
originating from weak random fields in the environment, such
as in the case of hyperfine coupling to nuclei [6], will be
suppressed.

A hallmark feature of the ABS formed in a Josephson junc-
tion is that the occupied levels modify a supercurrent across
the junction [7,8] so that transitions between Andreev levels
can be detected by means of transport measurement. This is
the physical basis of Andreev level qubits [5,9]. It was also
observed that in spin active weak links, e.g., with spin-orbit
coupling [4,7], or magnetic impurity [10], the spin degeneracy
of the levels can be lifted, so that the supercurrent flow would
depend on the spin state of the electron trapped in the bound
state. In our ASQ, the exchange field of the FI breaks the
spin degeneracy of the levels, so that quantum information
can be stored in the spin state of the electron [11]. Similarly, to
detect or read out the qubit state we study the superconducting
current affected by the occupied spin-resolved levels.

Generically, the unwanted qubit coupling to the environ-
ment and inaccurate external control can reduce the qubit
state coherence time, which hinders the experimental imple-
mentation of scalable qubit designs [1,2]. The qubits with
gates based on the geometric phases may have the inherently
fault-tolerant advantage due to the fact that the geometric
gates depend only on some global geometric features of the
evolution but independent of evolution details, so that they can
be robust against control errors [12–14]. Moreover, utilizing
nonadiabatic gates with high operation speed may reduce
exposure time to the environment, rendering a high-fidelity
gate [15]. Here, we will show that our hybrid structure is a
natural platform to realize a nonadiabatic geometric gate.

II. THE HYBRID STRUCTURE
WITH SPIN-RESOLVED ABS

Consider the FI-N-S hybrid structure with the following
Bogoliubov–de Gennes Hamiltonian:

ĤFINS =
(

H0(p, m) i�S(x) σy

−i�S(x) σy −H∗
0 (−p, m)

)
, (1)

where H0(p, m) = p2

2m − μ + V (x) + �xc(x)m(t ) · σ, μ is the
chemical potential, �xc(x) = −�xc �(−x) is the magnetic
exchange field, and �S(x) = �S �(x − dN) is the supercon-
ducting pair potential, both written in terms of the Heavi-
side step function. The scalar potential V (x) = V0 �(−x) +
h̄vFZδ(x) models the FI electron gap where V0 > (μ + �S +
�xc), and Z parametrizes an interface barrier potential where
vF is the Fermi velocity. The unit vector m(t ) gives the time-
dependent direction of the magnetization, and σ = (σx, σy, σz )
are Pauli matrices operating in spin space.

Our goal is to find the subgap (|ε| < �S) energy spectrum
of bound states, which are confined in the normal region.
Imposing a condition for a constructive quantum interference
in a McMillan-Rowell process for the electrons—four times
crossing N with two Andreev conversions as well as two

2469-9926/2024/109(3)/032601(6) 032601-1 ©2024 American Physical Society

https://orcid.org/0000-0003-1362-8107
https://orcid.org/0000-0002-3277-3695
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.032601&domain=pdf&date_stamp=2024-03-01
https://doi.org/10.1103/PhysRevA.109.032601


TANHAYI AHARI AND TSERKOVNYAK PHYSICAL REVIEW A 109, 032601 (2024)

FIG. 1. (a) A schematic for our hybrid structure realizing An-
dreev spin qubit due to the spin-resolved Andreev levels formed in
the N region. (b) The spin-resolved ABS as a function of exchange
field �xc when Z = 0 and dN/ξ = 0.8. (c) The spin-resolved ABS vs
Z when �xc/μ = 0.6 and dN/ξ = 0.8. (d) The spin-resolved ABS vs
dN, with Z = 0 and �xc/μ = 0.6. In these plots and throughout this
paper, we have chosen V0/μ = 1.7 and �S/μ = 0.003.

reflections from FI, once as electron and once as hole [16]—
results in a transcendental equation

ϕσ (ε) + 2θA + 4θN = 2πn, n = 0,±1, . . . , (2)

whose solutions are the discrete bound states energy lev-
els ε (measured from μ). Here, σ ∈ {↑,↓} is specified
with respect to the FI magnetization direction, ϕσ (ε) ≡
ϑσ (ε) − ϑ−σ (−ε), with ϑσ (ε) being the spin-dependent phase
acquired by the electron upon reflection from the FIN in-
terface, ϑσ (ε) = ϑ (0)

σ (ε) + 2 arg(1 − iZ − iZe−iϑ (0)
σ (ε) ), where

ϑ (0)
σ (ε) ≡ ϑσ (ε, Z = 0) [16]. θN = dNε/h̄vF, where dN is the

normal region thickness. Since for subgap energies the S
supports only Cooper pair tunneling into the S, the incident
electrons from the N region on the clean N-S interface reflect
back as a hole [17] (experiencing an Andreev reflection),
where the phase change associated with the Andreev reflection
is given by θA = − arccos (ε/�S).

When dN is smaller than the superconducting coher-
ence length ξ and �xc = 0, Eq. (2) can admit a single
spin-degenerate positive-energy solution whose degeneracy
is removed by increasing �xc [see Fig. 1(b)]. We point out
that an oxide layer formed at the FIN interface or a tun-
able mismatch between the electronic properties across the
interface create an effective ultrathin insulating layer that can
greatly affect the probability of electron and hole evanescent
penetration into the FI region. To capture the essential effect
of this insulating layer, we use an interface barrier potential
with strength Z , which can be utilized to tune the effective
exchange interaction experienced by electrons and holes [see
Fig. 1(c)]. Moreover, the number of ABS found in a clean N
region depends on its thickness, that is, by increasing dN the
ABS levels are pushed toward the middle of the gap at μ, so
that more energy levels begin to appear [see Fig. 1(d)].

III. THE ANDREEV SPIN QUBIT

Let us consider a hybrid structure with only two positive-
energy spin-resolved ABS (ε1, ε2), and ignore the continuum

of positive energy levels above the S gap. We define the
ground state of the system when these ABS are unoccupied
and measure energies with respect to (ε1 + ε2)/2. The ener-
gies then are −(ε1 + ε2)/2 for the ground, (ε1 − ε2)/2 and
(ε2 − ε1)/2 for the two spin- 1

2 , and (ε1 + ε2)/2 for the ex-
cited state. The ground and excited states have even (electron
number) parity. The odd parity states, on the other hand,
correspond to a single electron in the system realizing an
ASQ. ABS wave functions with energies (ε1, ε2) may have
different spatial components. However, due to the tunneling
treatment of the magnetic insulator, we assume that the ABS
wave functions differ mainly in their spin character, with the
orbital components being essentially identical. The effective
ASQ Hamiltonian written in terms of the instantaneous quan-
tization axis m(t ) reads

HA(t ) = − 1
2� m(t ) · σ, (3)

where � ≡ ε2 − ε1 > 0. It is clear that the timescale for the
coherent manipulation of the qubit t is set by the lifetime of
the odd-parity sector τe. In the temperature regime considered
in this paper, kBT � �S, the odd-parity sector can be pre-
pared, for example, by microwave irradiation [7,18], electron
injection by means of voltage gates [19], or spontaneously
when an electron is stochastically trapped in the bound state.
The latter mechanism, employed in the recent experiment [4],
is due to ubiquitous nonequilibrium quasiparticles and likely
originated from background stray photons with energy ex-
ceeding the threshold for breaking a Cooper pair [20]. There
are more deterministic approaches to preparing the ASQ in
odd parity state [21,22]. For example, if the junction is ir-
radiated with the microwave of frequency ω = (ε1 + ε2)/h̄
the microwave drive can break a Cooper pair, placing elec-
trons on the Andreev levels (ε1, ε2). Moreover, imposing the
condition �S − ε2 < h̄ω < �S − ε1 would guarantee that the
microwave drive can only excite the electron from Andreev
level ε2 into the continuum, which results in the odd parity
state [21].

Once an electron is trapped, the probability of thermally ac-
tivated parity-switching processes contains an exponentially
small factor exp(−�S/kBT ) for tunneling, leading to the long
lifetime of the trapped electron in the ABS, which is observed
to exceed τe = 100 μs [23]. In general, when there are avail-
able subgap states caused by, e.g., spatial variations of the
order parameter or impurities [24], τe will be finite provided
the trapped electron can tunnel through the gap. We note that
the microscopic details of the hybrid structure can greatly
modify the residence time for the trapped electron, which can
be determined from the “lifetime matrix” [25]. As a result, the
timescale for the coherent manipulation of the qubit reads

h̄/�S < t < τe, (4)

where the lower bound is imposed to avoid dynamical mixing
with the continuum states when the qubit state is evolving.

IV. THE QUBIT MANIPULATION

Isolated single spins can be coherently manipulated using
both electrical and optical techniques [1,26]. In our hybrid
structure, however, we accomplish the qubit manipulation
by the coherent control of the magnetization dynamics. We
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study the qubit dynamics when the magnetization precession
is both resonant and nonresonant. When resonant, our hybrid
structure enhances the Rabi oscillation frequency of the qubit
dynamics. When nonresonant, as we discuss, our hybrid struc-
ture has the benefit of implementing nonadiabatic single-qubit
gates via spintronic techniques. Because of the experimentally
achievable high-speed control of the magnetization dynam-
ics [27], the nonadiabatic spintronic manipulation of the qubit
state renders a shorter qubit evolution time, which is an impor-
tant advantage in realizing high-fidelity quantum gates [28].

Consider first an FI dynamics at resonance, where
the magnetization parametrized as m(t ) = [sin θ cos(ωt +
φ0), sin θ sin(ωt + φ0), cos θ ] exhibits precessional motion
around the z axis with ferromagnetic resonance (FMR) fre-
quency ω = γ h0 ≡ ωFMR, where γ is the gyromagnetic ratio
and h0 is an effective magnetic field in the z direction. Note
that h0 may contain a static external field, demagnetization
field, and other crystalline anisotropy fields [29], where the
effect of the external magnetic field on the qubit, if nonzero,
can easily be incorporated into Eq. (2) as a spin-dependent
phase shift in the normal part. The cone angle for the magne-
tization is determined by a transverse rf (microwave) field hrf

as θ ∼ hrf/αh0, where α is the dimensionless Gilbert damping
constant that parametrizes the inherent spin angular momen-
tum losses of the magnetization dynamics.

The qubit spin, on the other hand, exhibits Rabi oscillations
with frequency � ≡ � sin θ/h̄ when ω = � cos θ/h̄, which is
the electron-spin-resonance (ESR) frequency. Now, matching
the ESR and FMR frequencies and assuming θ � 1, we get

� ≈ γ hrf

α
. (5)

For small damping α � 1, � 
 γ hrf. This shows that, for
a given microwave stimulus hrf, the magnetization acts as a
mediator with the bonus of spatially focusing and intensifying
the external field that enhances the qubit Rabi oscillations
frequency.

In contrast, when the FI dynamics are nonresonant, ω �
ωFMR, one can control phase φ0 to implement arbitrary single-
qubit operations. In this regime, a natural spintronic way
to maintain a magnetization precession at ω = ωESR in the
“conical” state is simply by maintaining an out-of-plane spin
accumulation μ in an attached normal metal [see Fig. 2(a)].
The normal metal with spin accumulation can exert torque
τ ∼ m × (μ × m/h̄ − ∂t m) [30] on the magnet at the inter-
face. Note that when μ = 0 the resultant torque is the ordinary
Gilbert damping endowed by the normal metal [31]. The
presence of the spin accumulation can balance the damp-
ing torque, leading to coherent precession of magnetization
at ω = ωESR with τ = 0. In this case, the magnitude of
spin accumulation controls the frequency ω = |μ|/h̄, like in
a Josephson relation. As a result, phase changes could be
accomplished simply by short pulses of large spin accumu-
lations, which can be within the reach of current spintronic
experimental techniques [27]. To realize the conical state, one
could take simply an easy-plane magnet. In a uniaxial crystal,
the anisotropy energy contributes to the magnetic free energy
with a term ∼m2

z , which is minimized when the spontaneous
magnetization direction lies in the xy plane [32]. As a result,

FIG. 2. (a) Schematic of the FI in contact with two normal met-
als on the left and right. The spin-resolved ABS are localized in
the right normal metal. The magnetization dynamics are coherently
manipulated by torque τ engendered from the out-of-plane spin
accumulation μ in the left normal metal. The spin accumulation
μ, on the other hand, can be controlled by spin Hall effect [33].
(b) Bloch-sphere representation of 〈g+(t )|σ|g+(t )〉, purple-color vec-
tor, undergoing a closed path. The spin evolves through paths 1
(yellow), 2 (red), and 3 (blue) rotating about orientations �1, �2,
and �3, respectively. The solid angle associated with the enclosed
(shaded) area is twice the accumulated Berry phase γ . The inset in
(c) shows a schematic of the S-N-FI-S setup, where the supercurrent
through the junction can be used to probe the spin state of the An-
dreev levels. (c–e) Spin-split ABS as a function of phase difference χ

for dN/ξ = 0.1, 0.4, and 0.8, respectively. Here, we have set Z↑ = 1
and Z↓ = 1.5.

the out-of-plane angle can be controlled by a normal magnetic
field.

V. NONADIABATIC GEOMETRIC GATE

As an illustrative application, one can adopt a protocol
through which the qubit state accumulates only a geomet-
ric phase, i.e., the dynamic phase is zero during the whole
evolution. To that end, we follow the protocol presented in
Ref. [14] and show that our ASQ serves as a natural platform
to implement a nonadiabatic geometric gate. In the rotating
frame, when ω = ωESR, the ASQ Hamiltonian can be written
as H (r) = − h̄

2 � · σ, where � = � (cos φ0, sin φ0, 0). Con-
sider now � to undergo a cycle described by the following
three fixed orientations of � connected by fast quenches:

φ1 = φ0 − π

2
t0 < t � t1,

φ2 = φ0 + γ + π

2
t1 < t � t2,

φ3 = φ0 − π

2
t2 < t � t3, (6)

where t0 ≡ 0. As a result, the full qubit evolution operator (or
the quantum gate) reads

Ug(t3) = e− i
h̄

∫ t3
t2

H (r)
3 dt e− i

h̄

∫ t2
t1

H (r)
2 dt e− i

h̄

∫ t1
0 H (r)

1 dt , (7)

where H (r)
i = − h̄

2 �i · σ with �i = �(cos φi, sin φi, 0). Now, if
we impose �t1 ≡ β, �(t2 − t1) = π , and �(t3 − t2) = π− β,
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the two orthogonal states |g±〉,
n · σ|g±〉 = ±|g±〉,

n = (− sin β cos φ0,− sin β sin φ0, cos β ), (8)

undergo a particular cyclic evolution where the initial and
final states are related by a purely geometric phase factor.
To see this, one can check that 〈g±(t )|H (r)

i |g±(t )〉 = 0 for
i = 1, 2, and 3, where |g±(t )〉 = Ug(t )|g±〉. This implies that
the dynamic phase at each stage of the evolution is zero. As a
result, the geometric gate is obtained as

Ug(t3) = eiγ n·σ = eiγ |g+〉〈g+| + e−iγ |g−〉〈g−|. (9)

In order to elucidate the geometric nature of the angle γ ,
we note that the expectation values of spin 〈g+(t )|σ|g+(t )〉
at times 0, t1, t2, and t3 are n, ẑ,−ẑ, and n, respectively, un-
dergoing a cyclic evolution on the Bloch sphere where the
subtended solid angle associated with the enclosed path is
given by 2γ [see Fig. 2(b)]. Notice that the case of γ = 0
and β = π/2 is equivalent to Hahn spin echo [34] with a
π pulse (in the second step). Thus, the protocol given in
Eq. (6) can be considered as a generalized spin echo with
a (π + γ ) pulse. Since the geometric phase depends on the
evolution paths, quantum gates based on the geometric phases
are resilient against errors in the evolution details, i.e., control
errors [14,35,36].

VI. THE QUBIT READOUT

To detect or read out the qubit state one can probe a
small bias supercurrent, which requires the usage of another
weakly coupled superconducting lead to the FI [see the inset
in Fig. 2(c)]. Josephson junctions consisting of an FI [37] are
believed to have interesting properties, such as Josephson π

state [38]. Here, to study the ABS in an S-N-FI-S Josephson
junction, we model the FI layer as a thin insulating barrier
with spin-dependent parameter Zσ [39]. As a result, right-
and left-moving electrons (and holes) get a spin-dependent
coupling, leading to spin-polarized ABS εσ . The discrete
spectrum of these bound states can be related to the scattering
matrix of the normal region [40] as

Det
[
I − ei2θA r∗

Ase,σ rAsh,−σ

] = 0, (10)

where I is a two-by-two identity matrix, rA =
diag(e−iχ/2, eiχ/2), the scattering matrix for electrons (holes)
with spin σ , se(h),σ , is given by

se,σ = tN

(
rσ t−1

N tσ
tσ rσ tN

)
(11)

with tN = ei(θN+kF dN ), rσ = −iZσ /(1 + iZσ ), tσ = 1/(1 +
iZσ ), and sh,σ (θN) = s∗

e,σ (−θN). One can check that these
Andreev levels satisfy

cos(2θA + 2θN + θ ) = λ(χ, θN ), (12)

where λ(χ, θN ) ≡ √
R↑R↓ cos (2θN) + sign(Z↑Z↓)

√
T↑T↓

cos χ with Rσ = r∗
σ rσ and Tσ = t∗

σ tσ are spin-dependent
reflection and transmission probabilities due to the FI layer,

θ = θ↓ − θ↑, with θσ = arctan(1/Zσ ) being the phase shift of
the reflected electron from the N-FI interface, and χ is the
phase difference between the superconducting leads. Note that
for Zσ 
 1 Eq. (10) produces a similar constraint to that given
in Eq. (2). Figures 2(c)–2(e) show the spectrum of ABS for
different normal layer thicknesses. As a consequence of the
broken spin degeneracy, the supercurrent can depend on the
spin state of the occupied Andreev levels [7]. For simplicity,
we consider the limit of dN → 0, where spin-dependent
supercurrent Iσ ∼ dεσ /dχ can be written as

Iσ ∼ sign(Z↑Z↓)

√
T↑T↓

1 − λ2
sin

(
σθ + arccos λ

2

)
sin χ. (13)

Here, λ ≡ λ(χ, 0) and we introduce the sign convention σ =
+(−) for spin ↑ (↓). Measurement of the spin-dependent
supercurrent, e.g., by coupling the supercurrent to a supercon-
ducting microwave resonator [5,41,42], can provide a qubit
state readout.

VII. DISCUSSION AND CONCLUSION

By fabricating an array of Josephson junctions, our hybrid
structure may be generalized to a multi-ASQ system, where
the FI magnetizations provide a single-qubit control knob. In a
layout with two qubits whose spatial separation is comparable
to ξ , the two ABS wave functions with close energies may hy-
bridize and induce an effective exchange interaction between
qubits. One way to control this interaction could be to consider
a single-channel semiconducting nanowire as the weak links
so that a gate voltage might be used to tune the ABS wave
functions (via affecting the transmission of the wires) and
therefore manipulate the ABS hybridization [43,44]. More-
over, in SQUID loops containing these qubits, the interaction
between two or multiple qubits can be realized by means of
tunable inductive coupling between these SQUID loops [45].
This tunable interaction allows single- or two-qubit operations
by preventing unwanted qubit crosstalk. As an immediate
application of a tunable exchange interaction, the single-
qubit protocol discussed in Eq. (6) can be generalized to
a two-qubit geometric gate by periodic manipulation of the
exchange interaction [15]. In a multi-ASQ system, it would
be an interesting future study to explore other spin-qubit en-
codings [1,46] that further reduce coupling of the qubit to the
environment by storing information in the shared spin space
of many qubits.

In this article, we propose a spin qubit in an S-N-FI hybrid
structure based on the spin-resolved Andreev bound states
localized in the N region. The qubit state can be coherently
controlled by manipulating the FI magnetization dynamics.
Our hybrid structure demonstrates the potential for spintronic
methods to control the spin qubits. We show that a simple pro-
tocol for the magnetization dynamics leads to the realization
of a nonadiabatic geometric gate.
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