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Explicit error-correction scheme and code distance for bosonic codes with rotational symmetry
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Bosonic codes with rotational symmetry are currently one of the best-performing quantum error-correcting
codes. Little is known about error propagation and code distance for these rotation codes in contrast with qubit
codes and bosonic codes with translation symmetry. We use a general purpose error basis that is naturally suited
to codes with rotation symmetry to compute how errors propagate through gates. This error basis allows us
to give an explicit error detection, decoding, and correction scheme for any code with rotation symmetry. We
also prove that codes with an N-fold rotation symmetry have a distance of (dn, dθ ) = (N, π/N ) with respect to
number and rotation errors.
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I. INTRODUCTION

Experimentally, codes with rotation symmetry [1,2] have
come close to the breakeven point [3,4] where logical error
rates are no worse than the physical error rates on the same
hardware when manipulating unencoded information. Recent
evidence shows that codes with translation symmetry [5,6]
have also achieved [7] and surpassed [8] this important mile-
stone on the path towards quantum fault tolerance.

Codes with translation symmetry have many nice proper-
ties that make them convenient to work with. In particular,
many logical operations and stabilizers can be understood
through the lens of displacement operators [5]. Moreover,
these displacement operators form a basis for the Hilbert space
of a quantum harmonic oscillator [9], so any arbitrary error
can be decomposed into a linear combination of such displace-
ments. This gives an intuitive picture of error detection and
then correction based on displacement operators.

The goal of this work is to develop a similarly simple
description for rotation codes. Specifically, we define code
distance and develop an intuitive error detection and cor-
rection scheme for rotation codes, utilizing an appropriately
chosen error basis. We begin by summarizing the mathematics
of bosonic codes with rotation symmetry in Section II by
defining the code space, logical gates, stabilizers, and an error
basis. The error basis, which contains products of phase-space
rotations and numerical shifts in photon number, is well suited
for rotation codes just as displacements are well suited for
translation codes. Many of the new bosonic gates introduced
in this section may be implemented via a SNAP gate [10,11].
In Section III we examine how errors propagate through var-
ious logical gates, rederiving the results from Grimsmo et al.
[1] in the new error basis and extending them to a larger
collection of gates. We consider an error that has occurred
before the gate is applied and construct an equivalent circuit
where the gate is applied to an uncorrupted state and then
a different error occurs afterwards, as if the original error
was “commuted through” the gate. In doing so, we can see
if the gates compound errors in a way that prevents error

correction. These calculations help inform which gate sets
are nice for fault-tolerant schemes, e.g., which gates preserve
noise bias. Next, in Section IV we use the above results
to develop an explicit error-correction scheme for rotational
codes, including a naive decoder, which is as intuitive as that
of translation codes. Finally, in Section V we use the new
error basis to explicitly compute the distance of rotation codes
and explore the trade-off between resilience to shift errors and
phase errors. This builds on the prior work of several authors
[12–14]. The important caveat for Secs. IV and V is these
results strictly hold only in the limit of infinite energy codes
(which is analogous to the situation with translation codes). A
brief conclusion follows in Section VI.

II. REVIEW OF ROTATION CODES

In this section we summarize the fundamentals of codes
with rotation symmetry. Readers looking for more details
should consult Ref. [1].

A code has discrete N-fold rotation symmetry if any state
|ψ〉 in the code subspace (codespace) is an eigenstate of the
discrete rotation operator

R̂N = exp

[
i
2π

N
n̂

]
, (1)

where n̂ = â†â is the Fock-space number operator and
[â, â†] = 1. The square root of R̂N is a Hermitian operator that
squares to the identity on the codespace, which is invariant
under R̂N . Thus the operator

ẐN ≡
√

R̂N = R̂2N = exp
[
i
π

N
n̂
]

(2)

preserves the rotation symmetry of |ψ〉. We define an order-
N bosonic rotation code (henceforth called simply a rotation
code), to be a code where the operator ẐN acts as logical Z̄
(and the choice to define this operator as Z̄ rather than X̄ is
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FIG. 1. Action of gates on rotation codes in Fock space and phase
space. (a) A truncated Fock grid is depicted for an N = 3 code. The
amplitudes of the code words |0N 〉 and |1N 〉 are depicted as green and
red ellipses. A possible implementation of a logical X̄ gate depicted
by the black arrows. (b) We use a ball-and-stick-like diagram to
simplify the phase space (Wigner function) description of the states.
The orange radial spikes correspond to the |+N 〉 state while |−N 〉 is
in blue. The action of a ẐN gate is a rotation by π/N .

just a convention). In this convention the Z̄ basis code words
are of the form

|0N 〉 =
∞∑

k=0

f2kN |2kN〉 , (3a)

|1N 〉 =
∞∑

k=0

f(2k+1)N |(2k + 1)N〉 , (3b)

where the kets |2kN〉 and |(2k + 1)N〉 are eigenstates of the
number operator n̂, see Fig. 1(a). The amplitudes f2kN and
f(2k+1)N are the only thing that distinguish rotation codes from
one another [1] and differ between cat codes [15–19] and e.g.,
binomial codes [12]. The dual-basis codewords |±N 〉 are con-
structed as usual via superpositions of the computational basis
codewords, |±N 〉 = 1√

2
(|0N 〉 ± |1N 〉), yielding the Fock-space

representations

|+N 〉 = 1√
2

∞∑
k=0

fkN |kN〉 , (4a)

|−N 〉 = 1√
2

∞∑
k=0

(−1)k fkN |kN〉 . (4b)

Both |±N 〉 have support on the full set of |kN〉 Fock states. It
is evident that ẐN acts as logical Z̄ on these states:

ẐN |±N 〉 = |∓N 〉 . (5)

This action is depicted in Fig. 1(b).
To find an approximate logical X̄ gate we note that number

and phase operators form an approximate conjugate pair, and
since ẐN is a complex exponential of n̂, the complex exponen-
tial of a phase operator is likely a good candidate for X̄ . Such
a phase operator has presented many historic obstacles which
will not be detailed here; the curious reader is pointed towards
Ref. [20].

In this paper we use the Susskind and Glogower [21] phase
operator. The Susskind and Glogower phase operator is easily
expressed in the number basis as

�̂−
1 = êxp(iφ) =

∞∑
n=0

|n〉〈n + 1| , (6a)

�̂+
1 = êxp(−iφ) = (

�̂−
1

)†
. (6b)

The hat over the exponential rather than the argument of
the exponential is a standard notation used to remind the
reader that these operators are not exponentials of a Hermitian
phase operator [20]. These operators act like the raising and
lowering operators without the numeric

√
n coefficients, i.e.,

�̂−
1 |n〉 = |n − 1〉 and �̂+

1 |n〉 = |n + 1〉, making them much
easier to work with algebraically. Moreover, if we examine the
action of these operators on the (non-normalizable) London
phase state [20]

|ϕ〉 =
∞∑

n=0

eiϕn |n〉 , (7)

we find that

�̂−
1 |ϕ〉 = êxp(iφ) |ϕ〉 = eiϕ |ϕ〉 . (8)

Because our codes have an N-fold rotational symmetry,
the relevant phase variable can be defined on the interval
φ ∈ [−π/N, π/N ) [22]. We call this variable the modular
phase, and the associated modular phase operators are

�̂−
N = (

�̂−
1

)N = êxp(iNφ) =
∞∑

n=0

|n〉〈n + N | , (9a)

�̂+
N = (

�̂−
N

)† = êxp(−iNφ) =
∞∑

n=0

|n + N〉〈n| , (9b)

as described in detail in Ref. [22]. Following [1] we define
the dual basis codewords of ideal phase codes to be rotated
superpositions of London phase states

|±N 〉ideal =
N−1∑
m=0

(±1)m

∣∣∣∣ϕ = 2mπ

N

〉
. (10)

It turns out that the dual basis codewords are best under-
stood in phase space. In Fig. 1(b) we depict finite-energy
versions of these states in phase space. The non-normalizable
states in Eq. (10) are eigenstates of the modular phase
operators in Eq. (9). Since the underlying unnormalized
states |ϕ〉 in Eq. (7) have the property |〈m|ϕ〉|2 = 1, we see
that 〈mN |±N 〉ideal = fmN = const for all m. For such codes,
�̂−

N |±N 〉ideal = ± |±N 〉ideal, thus we can define

X̂N = �̂−
N =

∞∑
n=0

|n〉〈n + N | , (11)

which acts as a logical X̄ operator on the codespace as desired,
and it can be seen that ẐN and X̂N anticommute.

The commuting stabilizers on this codespace are

ŜZ̄ = R̂N = ei(2π/N )n̂ (number), (12a)

ŜX̄ = �̂−
2N =

∞∑
n=0

|n〉〈n + 2N | (phase), (12b)
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which are called the number and phase stabilizers because of
the errors their syndrome measurements diagnose, as seen in
Section IV.

Finally, we define an approximate phase code to be a code
whose variance in the operators in Eq. (9) goes to zero in the
limit of some parameter, thus the code reduces to an ideal
phase code in that limit.

As an illustrative example, consider the family of cat codes
[15–18] parametrized by coherent state |α〉, defined by the
codewords

|0N,α〉 = 1√
N0

2N−1∑
m=0

ei(mπ/N )n̂ |α〉 ,

|1N,α〉 = 1√
N1

2N−1∑
m=0

(−1)mei(mπ/N )n̂ |α〉 .

The cat codes are approximate phase codes because, in the
limit |α| → ∞, the variance in the modular phase operators
goes to zero, as shown in Ref. [1]. Thus in this limit the
amplitudes 〈mN |±N,α〉 become constant and the code is an
ideal phase code. Similarly, binomial codes also limit to ideal
phase codes.

A. Computation and gate definitions

We now define a number of gates which are more than
sufficient to enact a universal quantum computation scheme.
For example a subset of the gates we examine were shown to
be universal in Ref. [1], specifically the gates {S̄, CZ}, prepa-
rations of two states {|+N 〉 , |TN 〉}, and a measurement in the
logical |±N 〉 basis.

In addition to ẐN and X̂N (repeated here for convenience),
we may define several other single-qubit gates:

ẐN = R̂2N = exp
[
i
π

N
n̂
]
, (13a)

X̂N = ˆ̂�−
N =

∞∑
n=0

|n〉〈n + N | , (13b)

X̂ ′
N =

∞∑
n=0

N−1∑
	=0

|2nN + 	〉〈(2n + 1)N + 	| + H.c., (13c)

ŜN = exp
[
i

π

2N2
n̂2

]
, (13d)

T̂N = exp
[
i

π

4N4
n̂4

]
, (13e)

T̂ ′
N = exp

{
i
π

4

[
2

(
n̂

N

)3

+
(

n̂

N

)2

− 2
n̂

N

]}
, (13f)

where H.c. means Hermitian conjugate. As discussed above,
X̂N acts as an approximate X̄ gate for approximate phase
codes by shifting the number states down by N . To
make this an exact X̄ gate, however, would require reweight-
ing the amplitudes after the shift. This reweighting is specific
to the kind of rotation code used and can be quite complicated.
An alternate implementation, X̂ ′

N , is proposed that shuffles
the states reversibly rather than shifting them all down by
N . This acts as an exact X̄ gate on the codespace. We call
this gate Baragiola’s “bin swap gate” [23]. ŜN and T̂N are

simple realizations of the π/4 and π/8 gates, respectively.
T̂ ′

N is an alternate realization of the π/8 gate (introduced in
Ref. [24]) that looks more complicated but introduces smaller
errors after propagation because it is lower order in n̂.

We also consider the following multiqubit gates:

CROTNM = exp
[
i

π

NM
n̂ ⊗ n̂

]
, (14a)

CCROTNMO = exp
[
i

π

NMO
n̂ ⊗ n̂ ⊗ n̂

]
, (14b)

where for full generality we allow the different logical
qubits to have distinct rotational symmetries N , M, O. The
CROT gate acts as a logical CZ and CCROT acts as a logical
CCZ on the code space. In some sense these operators can
be thought of as conditional rotations by π , but an arbitrary
conditional rotation of angle φ cannot be naively constructed
by replacing π with φ. Constructions of gates that rotate about
Z̄ by an amount φ where φ �= π are discussed in Section III C.

B. Error basis

An operator basis for qubit quantum computation is
given by the n-fold tensor product of the Pauli operators
{I, X,Y, Z}⊗n. For a bosonic Hilbert space it is known that
the displacement operators form an operator basis [9]. Here
we use a newly introduced operator basis [22] that is naturally
suited to bosonic codes with a rotation symmetry.

Previously Grimsmo et al. [1] introduced the operator basis{
eiθ n̂âk, (â†)ke−iθ n̂

}
, (15)

where k � 0 is an integer and θ ∈ [−π, π ), which can be
written as

Êk (θ ) ≡
{

eiθ n̂â|k| for k < 0
(â†)|k|eiθ n̂ for k � 0,

(16)

where θ ∈ [−π, π ). A negative k thus denotes a downwards
shift in boson number and a positive k an upwards shift. This
error basis Êk (θ ) is composed of rotations (parametrized by θ

and generated by n̂) and shifts (parametrized by k generated
by âk/â†k).

The most physically relevant noise channel for bosonic
hardware is the loss channel. The Kraus operators for the
loss channel naturally described by powers of the annihila-
tion operator â and thus these Kraus operators can be easily
expressed in the basis (16). Unfortunately, that basis is not
ideally suited to rotation codes, as they are designed to correct
shifts in photon number without the (

√
n)k factors that come

from powers of the lowering operator.
Inspired by the basis above, the authors of Ref. [22] define

a new one that is more naturally suited to the errors corrected
by rotation codes. As the rotation codes we consider are inti-
mately related to the Susskind-Glogower phase operators, this
new basis replaces the annihilation operator in Eqs. (15) and
(16) with powers of �̂−

1 . Specifically, the new error basis is{
eiθ n̂�̂−

k , �̂+
k e−iθ n̂

}
, (17)
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TABLE I. Comparison of error propagation in gate implementa-
tions as first derived by Grimsmo, Combes, and Baragiola (GCB) [1]
and as presented in this paper. A “�” indicates the formula originated
in the respective paper, “×” denotes it was not considered, and “r”
signifies it was rederived in a new basis. Two gates in this table
have not been introduced yet. The R̂N gates are rotations about Z̄
by a discrete angle φ	 = π/2	. The gate P̂N is an arbitrary rotation
about Z̄ .

Gate GCB This work

ẐN � r
X̂N × �
X̂ ′

N × �
ŜN � r
T̂N � r
T̂ ′

N × �
R̂N (φ	) × �
R̂′

N (φ	) × �
P̂N (φ) × �
CROT � r
CCROT × �

where �̂−
k = (�̂−

1 )k as in Eq. (9). For convenience we denote
the elements of this basis with a single symbol

Êk(θ ) ≡
{

eiθ n̂�̂−
k for k < 0

�̂+
k eiθ n̂ for k � 0,

(18)

where k ∈ Z is the number of shift down (loss like) or shift
up (gain like) events and θ ∈ [−π, π ) is a rotation. These
operators form an (overcomplete) basis for the bosonic Hilbert
space, as proved in Ref. [22], and thus one can decompose any
quantum operation into this basis.

III. ERROR PROPAGATION

In this section we see how errors at the input of a gate
propagate (or commute) through the gate using the error basis
introduced in Eq. (18). We are primarily interested in whether
the operation of a gate produces additional errors when an
error is present at its input. If additional errors are introduced
by such error propagation we say that the error has been
“amplified.” Provided the errors are not amplified too much it
should still be possible to build fault-tolerant error-correcting
schemes. For multiqubit gates an error may spread to other
qubits in addition to the error amplification on the original
qubit. Several of the results in this section were first derived
in Ref. [1] in the error basis (16). We repeat those calculations
in the new error basis (18) and derive new results as well.
Table I summarizes the relationship between the prior work
and our results. All error propagation formulas have been
derived analytically and verified numerically.

A. General error propagation

Consider the circuit ĜÊk(θ ), which represents the occur-
rence of an arbitrary error Êk(θ ) prior to the action of a
unitary gate Ĝ. Our goal is to find an equivalent circuit that
appears as if an error (not necessarily the same one) occurred
after the gate was applied: ĜÊk(θ ) = Ê ′Ĝ. We call this error

propagation. The propagation of an arbitrary error can be
determined through conjugation

ĜÊk(θ ) = ĜÊk(θ )Ĝ†Ĝ = Ê ′Ĝ, (19)

where Ê ′ ≡ ĜÊk(θ )Ĝ†. We see that, in many cases, we can
decompose Ê ′ = F̂ Êk′(θ ′), i.e., there will be an error Êk′(θ ′)
that is similar in form to the original error, and there could
be additional errors denoted here by F̂ . The corresponding
quantum circuit representation of this process is

Êk(θ) Ĝ = Ĝ Êk (θ ) F̂ .

The above process is the simplest description of the kinds of
manipulations we encounter below.

Recall, the error basis Êk(θ ) is composed of rota-
tions (parametrized by θ and generated by n̂) and shifts
(parametrized by k generated by �̂±

k ). In the context of our
bosonic codes, most of the gates we consider are exponential
functions of polynomials in n̂, which are easily seen to com-
mute with the rotation errors. To work out how the shift errors
propagate through such gates, we see that for a well-behaved
function f of only the operator n̂,

ei f (n̂)Êk(θ ) = ei[ f (n̂)− f (n̂−kÎ)]Êk(θ )ei f (n̂). (20)

Furthermore, we note

eiφn̂Êk(θ ) = eiφk
(k)Êk(θ + φ), (21)

where 
(x) is the Heaviside step function. We use these
relations, derived in Appendix A, liberally in the following
sections.

B. Single-qubit gates

In this section we examine the propagation of an arbitrary
single qubit error through the gates in Eq. (13). Starting with
ẐN , we find

ẐN Êk(θ ) = ei kπ
N Êk(θ )ẐN , (22)

which holds for all k ∈ Z. Error propagation through ẐN only
introduces a global phase—the error is not amplified. As the
ẐN gate commutes with rotation errors since they are both
functions of n̂, the global phase in Eq. (22) is a function of
k alone.

When the physical gate is not unitary, as is the case
for X̂N , then the error propagation formula in Eq. (19) re-
quires a little more thought. We need to be mindful of the
fact that X̂N (X̂N )† = Î but (X̂N )†X̂N = Î − P̂N , where P̂N =∑N−1

n=0 |n〉〈n| is the projector onto the first N Fock states. The
propagation is still straightforward:

X̂N Êk(θ ) = eiθN Êk(θ )X̂N + eiθ (N−k)
(N−k)P̂kÊk−N(θ ). (23)

For k < 0 the global phase is only a function of θ since
the shifting action of X̂N commutes with any shift errors.
Interestingly, for k � 0, the first term on the right-hand side
(RHS) does not have support on the first k Fock states while
the left-hand side (LHS) does. This means that errors through
the X̂N gate are not recoverable unless the code begins without
support on the first k Fock states. This feature will be impor-
tant when we introduce our explicit error-correction scheme
in Section IV.
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Error propagation for the X̂ ′
N gate is more complicated and

can be written as follows:

X̂ ′
N Êk(θ ) =

[
N−1∑
	=0

eiθ p+
Ẽ(θ )	k−x	

+ eiθ p−
Ẽ(θ )	+N

k+x	

]
X̂ ′

N . (24)

Here we define

x	 ≡
{

2N if max (k%2N − N, 0) � 	 < min (k%2N, N )
0 otherwise,

where % represents the modulo operator, and

p± ≡ ±N − k
(k) + (k ∓ x	)
(k ∓ x	).

Additionally, Ẽ(θ )m
k is the error Êk(θ ) projected onto the Fock

states that are equivalent to m mod 2N ,

Ẽ(θ )m
k ≡

∞∑
n=0

|2nN + m〉〈2nN + m| Êk(θ )

= 1

2N

2N−1∑
j=0

e−i π j
N (m−k
(k))Êk

(
θ + π j

N

)
. (25)

The algebraic equivalence in the second line resembles a
Fourier transform and makes it clear that the bracketed term in
(24) can be decomposed as a linear combination of errors from
our error basis. Alternate representations of X̄ as a permuta-
tion of Fock states (e.g., we could permute the |kN〉 states as
in (13c), leaving all other Fock states undisturbed) will likely
have similar error expressions.

For error propagation through the ŜN gate, we find

ŜN Êk(θ ) = eiφS Êk

(
θ + πk

N2

)
ŜN , (26)

where φS ≡ πk2

N2 [
(k) − 1
2 ]. Again we see the introduction of

a global phase, but now the rotation error parameter θ ′ = θ +
πk/N2 is a linear function of the shift k. This becomes an
issue if the original angular error θ was correctable but θ ′ is
not, which happens when k and θ are sufficiently large.

To conclude this section we look at error propagation
through two implementations of the T gate, so that we cover
a gate set sufficient for universal computation. Looking at the
ẐN and ŜN gate implementations, we expect that implementa-
tions of T , which is an even smaller Z̄ rotation, will require
a higher-order polynomial in n̂ in its exponential form, which
will give rise to more significant error amplification. For the
T̂N gate, error propagation yields

T̂N Êk(θ ) = eiφT F̂N (k)Êk

(
θ + πk3

N4

)
T̂N , (27)

where φT ≡ πk4

N4 [
(k) − 1
4 ] and F̂N (k) ≡ exp[i π

4N4 (4kn̂3 −
6k2n̂2)] is a nonlinear rotation error. As with the ŜN gate,
error propagation introduces a global phase and modifies the
linear rotation error parameter θ , but the additional error F̂N (k)
makes the propagated error much more complicated.

The T̂ ′
N gate error propagation is a bit tamer because the

order of n̂ in its implementation is lower than that of T̂N :

T̂ ′
N Êk(θ ) = eiφ′

T F̂ ′
N (k)Êk

(
θ +

(
πk

2N2
− 3πk2

2N3

))
T̂ ′

N , (28)

where φ′
T ≡ π

4 [ 2k3

N3 − k2

N2 − 2k
N + ( 2k2

N2 − 6k3

N3 )
(k)] and the

nonlinear error F̂ ′
N (k) ≡ ei 3πk

2N3 n̂2

.1 While seemingly more com-
plicated, this implementation of the gate yields an error that
is only quadratic in n̂ compared with Eq. (27) which has a
cubic error in n̂. This suggests that it may be a more useful
implementation that allows more errors to be correctable.

C. Discrete and continuous rotation gates

Now we construct gates that perform arbitrary discrete and
continuous Z̄ rotations, which could be implemented using
a SNAP gate [10,11]. The intuition for the constructions is
essentially extending the pattern seen in the implementations
of ẐN , ŜN , and T̂N where smaller rotation angles required
larger powers of n̂. Unfortunately these smaller angle gates
had errors that amplified in proportion to powers of n̂ used to
implement the gate. We show that this is a generic feature.

We first note that a rotation of φ	 = π/2	 can be achieved
for 	 � 0 using

R̂N (φ	) = exp[iφ	(n̂/N )2	

], (29)

which is consistent with the ẐN , ŜN , and T̂N gates (13a), (13d),
and (13e) for 	 = 0, 1, 2, respectively. The error propagation
for this set of gates can easily be determined using Eqs. (20)
and (21):

R̂N (φ	)Êk(θ )

= exp

[
iπ

2	N2	

(
n̂2	 − (n̂ − k)2	

)]
Êk(θ )R̂N (φ	)

= exp
[
iO

(
n̂2	−1

)]
Ek

(
θ + π

k

(
k

N

)2	
)

R̂N (φ	). (30)

The induced nonlinear error is of order n̂2	−1 and the modifi-
cation to the linear rotation error is of order k2	−1, which in
general is quite bad. We can see that this error propagation
formula has powers of k that are consistent with those found
in Eqs. (22), (26), and (27).

Motivated by the T̂ ′
N gate [24], which provided an al-

ternative implementation to T̂N with less significant error
amplification, we propose an alternative set of discrete Z-
rotation gates that lessens the propagated error. As seen in
Appendix B, the optimal such implementation is of the form

R̂′
N (φ	) = exp[iO(n̂	+1)], (31)

which is consistent with the T̂ ′
N gate (13f). Errors propagate

through these gates like

R̂′
N (φ	)Êk(θ ) = eiO(n̂	 )Êk(θ + O(k	))R̂′

N (φ	), (32)

where now the induced nonlinear error is of order n̂	 and the
modification to the linear rotation error is πk	/N	+1. This
is a significant improvement over the initial implementation,
although the errors are still quite bad in general. Again the
power of k in the expression above is consistent with Eq. (28).

1Note that the nonlinear term F̂ ′
N (k) is equivalent to (ŜN )3k/N , but it

is not particularly illuminating to write it this way since in general it
is not a logical operation on the codespace.
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A method to construct a gate set that performs arbitrary
continuous Z rotations is to find a function f (n) such that
f (kN ) = 0 for k even and 1 for k odd. Then the gate eiφ f (n̂)

will implement a Z rotation by angle φ as desired. One sim-
ple function that satisfies this criteria is f (n) = (1 − ẐN )/2,
where we recall that ẐN is itself a function of n̂. Thus a general
rotation gate is realized as

P̂N (φ) = exp

[
i
φ

2

(
1 − ẐN

)]
. (33)

We then find by the usual technique that

P̂N (φ)Êk(θ ) = exp

[
i
φ

2

(
e−i πk

N − 1
)

ẐN

]
Êk(θ )P̂N (φ), (34)

which induces a worse nonlinear error than the discrete ro-
tation, as we would naively expect. Based on this gate we
conjecture that a logical CPHASE(φ) gate for arbitrary φ would
involve a generator proportional to iφ(1 − ẐN ) ⊗ (1 − ẐN ).

D. Multiqubit gates

Multiqubit gates may allow errors on one qubit to spread to
other qubits. In the case of the CROT gate, an arbitrary error on
the first qubit propagates through that mode unchanged while
also introducing a pure rotation error on the second qubit.
Specifically we find

CROTNMÊk(θ ) ⊗ Î = Êk(θ ) ⊗ Ê0

(
πk

NM

)
CROTNM, (35)

which is analogous to the result in Ref. [1]. By symme-
try, we can see than when the input error is on the second
qubit instead, error propagation yields an identical expression
for the output error, acting on the opposite qubits. Further-
more, these two amplified errors must commute, so if both
input qubits are corrupted we may simply concatenate prop-
agated errors of the form in Eq. (35) acting on the two qubit
orderings:

CROTNM
(
Êk1(θ1) ⊗ Êk2(θ2)

) =
[
Êk1(θ1)Ê0

(
πk2

NM

)
⊗ Ê0

(
πk1

NM

)
Êk2(θ2)

]
CROTNM

= exp

[
−i

πk1k2

NM
[
(−k1) + 
(k2)]

](
Êk1

(
θ1 + πk2

NM

)
⊗ Êk2

(
θ2 + πk1

NM

))
CROTNM . (36)

A similar analysis follows for the CCROT gate, which acts
as a logical CCZ. In that case, the error propagation expression
for an input error on a single qubit is

CCROTNMOÊk(θ ) ⊗ Î⊗2 = Êk(θ ) ⊗ V̂kCCROTNMO, (37)

where

V̂k = exp

[
i

πk

NMO
n̂ ⊗ n̂

]
. (38)

Again the input error propagates through unchanged on the
affected qubit, while a new error V̂k

2 is introduced that acts on
the other two qubits, shown in the following circuit diagram:

Êk(θ) C
C

R
O

T

=

C
C

R
O

T

Êk(θ)

V̂k

.

As in the CROT case, an input error on either of the other
two qubits will behave symmetrically, and again the output
error will commute with that of expression above. Thus if any
subset of the input qubits are corrupted, the propagated error
is given by concatenation of output errors of the form Eq. (37)
acting on the relevant qubit permutations.

2We can see that V̂k = (CROTMO )k/N , but, as in the previous foot-
note, this is not a particularly illuminating representation.

E. Comparison with qubit error propagation

To build intuition for the above expressions we derive
analogous expressions for qubits. One motivation for this is
that it is tempting to analyze errors on continuous variable
codes in a logical qubit representation. This would pro-
vide a two-dimensional description of continuous variable
codes living in an infinite-dimensional Hilbert space. It is
an open question if such a representation can faithfully cap-
ture continuous variable errors after repeated rounds of error
correction.

To make a fair comparison between the two situations we
must introduce a new error basis for qubits that is analogous
to the bosonic error basis defined in Eq. (18). We define the
qubit error basis as

Q̂k (θ ) ≡

⎧⎪⎨⎪⎩
eiθN̂σ− = σ− for k = −1
eiθN̂ for k = 0
σ+eiθN̂ = σ+ for k = +1,

(39)

where the qubit raising and lowering operators

σ± = (X ∓ iY )/2 (40)

are labeled oppositely from the usual qubit convention so
that they raise and lower the numeric label of the state,
analogous to the bosonic operators. Here we have σ− =
|0〉〈1|, σ+ = |1〉〈0|, and N̂ = σ+σ− = |1〉〈1|. These three
operators have the same matrix elements as the bosonic
�̂−

1 , �̂+
1 , n̂, respectively, restricted to the subspace spanned

by the vacuum and a single boson. It is simple to show
that the operators Q̂k (θ ) are a valid qubit basis by forming
the Pauli matrices from linear combinations of the set of
operators.
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It is straightforward to commute the error basis through the
single-qubit gates analogous to those examined in Section III.
Doing so gives

ẐQ̂k (θ ) = eikπ Q̂k (θ )Ẑ, (41a)

X̂ Q̂k (θ ) = eiθδk,0 Q̂−k (−θ )X̂ , (41b)

ŜQ̂k (θ ) = eikπ/2Q̂k (θ )Ŝ, (41c)

T̂ Q̂k (θ ) = eikπ/4Q̂k (θ )T̂ . (41d)

If we compare these expressions to the bosonic ones derived
above by taking N = 1 and restricting to the vacuum and
single boson subspace, all error propagation formulas match.
Note that the qubit gate X̂ corresponds to the bosonic X̂ ′

N
rather than X̂N (the qubit analog of X̂N is simply X̃ = σ−,
and error propagation through this gate matches the bosonic
formula for X̂N ).

Similarly, for the multiqubit gates we find

CZ(Q̂k (θ ) ⊗ Î ) = (Q̂k (θ ) ⊗ Q̂0(kπ ))CZ, (42a)

CCZ(Q̂k (θ ) ⊗ Î⊗2) = (Q̂k (θ ) ⊗ e−ikπN̂⊗N̂ )CCZ. (42b)

The form of the qubit error propagation looks identical to
that of the bosonic errors for the Ẑ , CZ, and CCZ gates if we
take N = 1 (and M = O = 1 as well). We note that while the
expressions for the qubit error propagation are equivalent to
the full bosonic expressions on the restricted subspace (the 0
and 1 Fock states), this does not imply that a general bosonic
error projected into the logical subspace will be anything like
the original error.

IV. EXPLICIT ERROR CORRECTION

In this section we consider two explicit error-correction
schemes. In both cases we apply the Z̄ and X̄ stabilizers to
diagnose an arbitrary error, followed by an error recovery
operator. The first scheme applies the stabilizers directly to a
corrupted state, while the second uses a teleportation scheme.
The advantage of the latter scheme is that we do not lose
any information when applying the X̄ stabilizer, as explained
below.

In the formulation of rotation codes we gave in Section II,
codewords may have support on the vacuum state. Thus if a
single loss event occurs, the amplitude of vacuum is lost irre-
vocably. In general this is not an issue for recovering rotation
codes after such an error. Indeed, a single loss error can be
recovered even in small binomial codes [[12], see Sec. II].
However, the recovery scheme we propose below is naive,
limited to shifting amplitudes in Fock space and rotating the
code in phase space. Therefore, to accommodate shift down
errors of up to N , the code must start at the state |N〉 and
not |0〉. Furthermore, the X̄ stabilizer induces an additional
shift downwards by 2N . Thus in general to avoid any loss of
information from the error recovery procedure we must start
the code at 3N , i.e., codewords must not have support on states
|m〉 for m < 3N . This is the case in Section IV A.

When the X̄ stabilizer is not applied directly to the state we
wish to recover, we may instead start the code at N as we do
in Section IV B. However, it should be noted that if the code
is an approximate phase code, as it must be if Eq. (11) is to

approximate an X gate, this caveat becomes irrelevant and we
need not amend our codewords in either case.

As a general description of our potentially modified code-
words, we shift the starting point of the Fock grid in Eqs. (3)
and (4) to the state |k0N〉:

|0′
N 〉 =

∞∑
k=k0

f2kN |2kN〉 , (43a)

|1′
N 〉 =

∞∑
k=k0

f(2k+1)N |(2k + 1)N〉 , (43b)

|+′
N 〉 = 1√

2

∞∑
k=k0

fkN |kN〉 , (43c)

|−′
N 〉 = 1√

2

∞∑
k=k0

(−1)k fkN |kN〉 . (43d)

When k0 = 0 we have the original codeword definitions [see
Eqs. (3) and (4)], while k0 = 3 and k0 = 1 refer to the code-
words necessary for general error recovery under the two
correction schemes. Note that |0′

N 〉 = �̂+
k0N |0N 〉 and similarly

for the other codewords.

A. Direct stabilizer measurement

In this scheme we assume it is possible to directly, and non-
destructively, measure stabilizers. Here we take k0 = 3. The
error-correction scheme depicted below has an error Êk(θ )
followed by the two stabilizer measurements from Eq. (12). To
show that this works as an error-correction scheme we apply
all of the circuit elements to an encoded quantum state and
see that the circuit output is the same as the input |ψ〉 for a
suitable error recovery operator R̂:

ŜZ̄ ŜX̄|ψ Êk(θ) R̂
. (44)

Of course the error element Êk(θ ) is not a quantum channel.
However we can decompose the Kraus operators of the quan-
tum channel into our error basis, this motivates considering an
error from the basis directly.

For the manipulations below it is convenient express the
encoded state in the dual basis. An arbitrary initial state is
then given by

|ψ〉 = α |+′
N 〉 + β |−′

N 〉 . (45)

An arbitrary element of our error basis Eq. (18) acting on the
encoded state is then

|ψE 〉 = Êm(θ ) |ψ〉

= eiθm
(−m)

√
2

∞∑
k=k0

(α + (−1)kβ )eiθkN fkN |kN + m〉 ,

(46)

and where 
(x) is the Heaviside step function.
Next we examine the action of the stabilizers on the state

|ψE 〉. The ŜZ̄ stabilizer will allow us to determine the error
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parameter m while ŜX̄ will determine the error parameter θ ,
and since the stabilizers commute the order of application
does not matter. Looking at the action of the stabilizers on
an error state one at a time, we see

ŜZ̄ |ψE 〉 = exp

(
2π i

N
m

)
|ψE 〉 ≡ λZ (m) |ψE 〉 . (47)

Evidently the number stabilizer ŜZ̄ produces an error signal
that is a function m, without introducing additional errors to
the state |ψE 〉. Similarly,

ŜX̄ |ψE 〉 = ei2Nθ eiθm
(−m)

√
2

×
∞∑

k=k0−2

(
α + (−1)kβ

)
eiθkN f(k+2)N |kN + m〉

≡ ei2Nθ |ψ ′
E 〉 , (48)

which we can write more compactly as

ŜX̄ |ψE 〉 = ei2Nθ |ψ ′
E 〉 ≡ λX (θ ) |ψ ′

E 〉 , (49)

where |ψ ′
E 〉 only differs from |ψE 〉 in the summation index

and the f amplitudes. The error signal λX of this stabilizer
can be extracted from a nondestructive measurement of mod-
ular phase, see e.g., Ref. [1], from which we can extract the
parameter θ .

Applying both stabilizers, we see

ŜZ̄ ŜX̄ |ψE 〉 = ŜX̄ ŜZ̄ |ψE 〉 = exp

[
2π i

N
m + i2Nθ

]
|ψ ′

E 〉 (50)

for any error state. Having determined m and θ from the
stabilizer measurements, our task is to restore |ψ ′

E 〉 to the
original state |ψ〉 with a recovery operator R̂m,θ .

We note several important facts. First, the syndrome
λZ (m) = e

2π i
N m from the ŜZ̄ stabilizer suggests a naive estima-

tor m̄ = N
2π

Arg(λZ (m)) which is only accurate up to integer
multiples of N , see Fig. 2. A better estimator may be con-
structed as mest = m̄ + lN where the integer l is chosen based
on the nature of the error channel. If, for example, a channel
only admits gain errors and larger gains occur with decreasing
probability, we can choose l that minimizes mest � 0. Simi-
larly, for a channel that only admits losses with a decreasing
probability of more losses, we can choose l that maximizes
mest � 0. For a channel that admits both gain and loss errors
with decreasing probability in the total number of gains or
losses, we choose l that minimizes |mest|. For an approximate
phase code, any choice of l that gives mest � −k0N works
equally well.

The θ estimator has a similar ambiguity. The naive estima-
tor θ̄ = 1

2N Arg(λX (θ )) is only accurate up to integer multiples
of π/N , see Fig. 2. On the other hand, the phase parameter θ

itself has modularity 2π/N so we must pick a θest ∈ {θ̄ , θ̄ −
π
N }. If larger phase errors occur with decreasing probability in
our error channel, we can choose the option that minimizes
the |θest| as the most likely.

Finally, we see that the stabilizer ŜX introduces an addi-
tional loss of 2N which we must undo as well in the recovery
operation (and for approximate phase codes the condition on l
is in fact mest − 2N � −k0N). Putting all the pieces together,

FIG. 2. Error detection and recovery scheme. (a) A truncated
Fock grid is depicted for an N = 3 code, where the codespace
support states are on the “Fock grid” |Nk〉. A shift error Êm(0) has
occurred on |+N 〉 (where we take k0 = 0 for diagrammatic conve-
nience), and the resulting state has support depicted by the dotted
ovals. The error could have either been a shift down by one or a
shift up by two; both yield the same stabilizer syndrome. Thus the
choice of the estimator mest and hence the recovery operation should
be chosen based on the corresponding error probabilities for a given
noise model. (b) We depict the N = 3 code in phase space, with |+N 〉
in orange and |−N 〉 in blue. The top illustration shows a logical ẐN

gate is a rotation by π/N . The bottom illustration shows a phase
error Ê0(θ ) has occurred with resulting code space rotation shown by
the purple dots. The error could have been a rotation by angle ϕ or
ϕ − π/N ; again, both will yield the same syndrome and the recovery
operation. Thus the estimator θest should be chosen according to the
noise model. Note that unlike the discrete shift error, phase errors
are continuous and can only be corrected up to the resolution of the
phase stabilizer measurement.

we define the recovery operation as

R̂m,θ = Ê2N−mest (−θest ). (51)

One might be tempted to think the shift of photon number
in this recovery is physically unreasonable; however, Gertler
et al. [25] have experimentally implemented such recovery
operations. In summary, we have defined a recovery operation
R̂ such that

R̂m,θ ŜZ̄ ŜX̄ Êm(θ ) |ψ〉 = |ψ〉 (52)

up to a known overall phase, so long as m and θ satisfy the
error-correction criteria detailed in Section V.

B. Teleportation-based error correction

A teleportation-based error-correction scheme for rotation
codes, along the lines suggested by Knill [26], was proposed
by Grimsmo et al. [1]. It is easy enough to extend our ex-
plicit scheme to deal with teleportation based correction of
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Grimsmo et al. using the circuit

ŜX̄

ŜX̄

|ψ Êk(θ) C
R

O
T

|+N C
R

O
T

|+N R̂

.

(53)

In this scheme two encoded plus states are consumed during
a teleportation through two CROT gates. The analysis assumes
no errors happen in state preparation or during the teleporta-
tion scheme.

The two ŜX̄ measurements in Eq. (53) end up giving the λX

and λZ syndromes, as the teleportation through a CROT gate
effectively performs a logical Hadamard on the output state,
so the second ŜX̄ measurement is actually a modular number
measurement.

As we are teleporting onto a clean auxiliary system there is
no additional error induced by measuring the stabilizers. This
means that if the code starts at k0 = 1 it should work with
our naive correction. This suggests that with an appropriate
auxiliary coupled measurement of the stabilizers the code
could also start at k0 = 1.

V. CODE DISTANCE AND NUMBER-PHASE
ERROR TRADE-OFF

In this section we establish limits on correctable errors for
single mode bosonic codes with rotation symmetry. In gen-
eral, errors on bosonic codes are not exactly correctable by the
Knill-Laflame conditions stated below; rather, they are only
approximately correctable [27]. Approximate error correction
for bosonic rotation codes has been previously examined by
several authors [12–14]; we complement and extend those
results in a new error basis.

Exact error-correction criteria require that the Knill-
Laflame conditions

P̂LÊ†
a ÊbP̂L = αabP̂L (54)

are satisfied [28]. Here P̂L = |0L〉〈0L| + |1L〉〈1L| =
|+L〉〈+L| + |−L〉〈−L| is the projector onto the logical
codespace, Êa and Êb are generic errors from the set of
correctable errors, and αab is a Hermitian matrix in the error
space. When these conditions are satisfied, the two errors are
mutually distinguishable and correctable by some recovery
procedure (e.g., the one outlined in Sec. IV).

The codespace projector for rotation codes is

P̂L = 1

2

∞∑
r,s=0

frN f ∗
sN

[
1 + (−1)r+s

] |rN〉〈sN | , (55)

and for an ideal phase code the f amplitudes are constant and
can be ignored. Using these conditions, we can evaluate which
errors from the error basis (18) are mutually correctable. A bit

of algebra shows that, with ϕ ≡ φ − θ ,

P̂L
(
Ê j(θ )

)†
Êk(φ)P̂L

= 1

4

∑
r,s,m′

frN f ∗
sN f ∗

m′− j fm′−keiϕm′[
1 + (−1)r+ m′− j

N

+ (−1)s+ m′−k
N + (−1)r+s+ m′− j

N + m′−k
N

] |rN〉〈sN | , (56)

where {m′} is the subset of integers such that both m′− j
N and

m′−k
N are also integers. We see immediately that if j �= k

mod N , {m′} = ∅; the sum evaluates to zero and the Knill-
Laflamme conditions are satisfied trivially.

In the case j = k + N , the above expression (56) reduces
to

eiϕ j
∑

r,s′,m′
frN f ∗

s′N f ∗
m′N f(m′+1)N eiϕNm′ |rN〉〈s′N | , (57)

where the sum is over the subset of Z3 such that s′ �= r mod 2
and m′ = r mod 2. Due to the restricted sum, this will never
be proportional to P̂L unless the sum over m′ evaluates to
zero. In a contrived code it may be possible for this to be the
case,3 but for the examples found in the literature it will not.
Specifically, for an ideal phase code where we can neglect the
constant f amplitudes, more algebra simplifies the expression
to

eiϕ( j+N/2)[cos (ϕN/2)X̂L − sin (ϕN/2)ŶL], (58)

where X̂L = |0N 〉〈1N | + |1N 〉〈0N | and ŶL = −i |0N 〉〈1N | +
i |1N 〉〈0N | are logical X and Y operators. We see that this
will never vanish (or be proportional to P̂L) for any value
ϕ. We therefore conclude the intuitive result that Ê j(θ ) and
Ê j+N(φ) are not mutually correctable. In other words, a shift
error of N photons, which is a logical operation (X̂N ), is not
detectable as an error. Combined with the previous result we
may choose any set of N integers none of which are equivalent
mod N , as mutually correctable shift errors. Depending on
the noise model of an error channel, the most convenient
such sets would be {0, . . . , N} if only photon gain errors are
likely, {−N, . . . , 0} if only photon loss errors are likely, or
{�−N/2�, . . . , �N/2�} if both gains and losses are possible
and errors with a smaller change in photon number are more
likely (see the discussion in Sec. IV).

Turning our attention to the case j = k, Eq. (56) reduces to

1

2
eiϕ j

∞∑
m=0

| fmN |2[(eiϕN )mP̂L + (−eiϕN )mẐL], (59)

where ẐL = |0N 〉〈0N | − |1N 〉〈1N | is a logical Z operator. Note
that

∑∞
m=0 | fmN |2(·) is the expectation of (·) over the support

3For example, consider the code with unnormalized amplitudes
fmN = 1, i, i, 1, −1, i, i, −1, 1, . . . . When ϕ = 0, the sum over m′

in (57) vanishes both when m′ is even and odd. For this code, the
errors Êk(θ ) and Êk+N(θ ) are mutually detectable so the gate X̂N

cannot be a logical operation on the codespace and is not a suitable
representation of X̄ . In fact, the condition that the sum over m′

vanishes for ϕ = 0 is equivalent to 〈0N | X̂N |1N 〉 = 0, whereas for a
logical X gate we would have 〈0N | X̄ |1N 〉 = 1. Ref. [29] has made
similar observations.

032436-9



MARINOFF, BUSH, AND COMBES PHYSICAL REVIEW A 109, 032436 (2024)

of the codespace, so we can write the above expression as

1
2 eiϕ j[〈eiϕNn̂〉P̂L + 〈ei(ϕN+π )n̂〉ẐL]. (60)

This will only be proportional to the codespace projector
if 〈ei(ϕN+π )n̂〉 = 0. For an ideal phase code, the expectation
of this phase operator vanishes unless ϕ = (2k + 1)π/N for
integer k; this tells us that we may choose any set of phase
errors that are not equivalent mod π/N . This again matches
intuition, since a phase error of π/N is a logical operation
ẐN and should not be detectable as an error. As above, the
convenient choice for a set of mutually correctable phase
errors is generally (−π/2N, π/2N ). It should be noted how-
ever that this discussion only applies to an ideal phase code.
For any other code, it is not immediately obvious whether
〈ei(ϕN+π )n̂〉 = 0 for any value ϕ, and for most values it will
not vanish. Thus for these codes, phase errors are not perfectly
detectable and any error-correction scheme must be approxi-
mate. Finally, we recall that the Knill-Laflamme conditions
require that the proportionality factor α( j,θ ),(k,φ) be Hermitian
in the error space. Since ϕ = φ − θ appears only in complex
exponentials and we are considering the case where j = k,
we see that α( j,θ ),( j,φ) = α∗

( j,φ),( j,θ ) as desired, and the errors
are indeed correctable.

In summary, the set of errors {Ên(θ )} are mutually de-
tectable for an order-N ideal phase code when, e.g.,

n ∈ {0, . . . , N − 1} (number errors), (61a)

θ ∈
(
− π

2N
,

π

2N

)
(phase errors). (61b)

As N increases we are able to correct more number errors but
fewer phase errors and we have a trade-off that suggests N
should be selected specifically to construct the most robust
error-correcting code for a given noise model. This validates
the conjectured [1] number (shift) and rotation error distance
of an ideal phase code to be

dn = N (number distance), (62a)

dθ = π/N (phase distance), (62b)

such that the number-phase error trade-off is

dndθ = π, (63)

which was also shown in Ref. [14]. We can see that the
recovery scheme detailed in Section IV achieves this bound by
noting that, in Eq. (50), syndrome measurements are distinct
for distinct errors in the ranges of Eq. (61).

VI. CONCLUSIONS

The tool that enabled most of the results in this article
was an error basis suited to codes with rotation symmetry.
Using this basis we derived the error propagation formula for
several gates, presented an explicit error-correction scheme,
and showed how to compute the code distance for rotation
codes.

Regarding the code distance for rotation codes, it is useful
reflect upon the corresponding scenario within qubit codes.
Qubit stabilizer codes natively correct Pauli errors. Thus the
distance of qubit codes is naturally described in the error basis
{I, X,Y, Z} and the distance is the number of those errors a

code can correct. Despite the importance of amplitude damp-
ing errors in physical qubits, discussing the code distance of
a stabilizer code in terms of its ability to correct amplitude
damping errors is not standard practice.

Similarly, in Section V we have used the natural error
basis of a rotation code to determine the code distance for
rotation codes with respect to photon number shift errors and
phase errors. Although the loss and dephasing channels are of
importance for bosonic systems the loss and dephasing rates
(κl , κφ ) are not natural for defining code distance in rotation
codes.

We see several areas that would be fruitful to explore in
future work. One area for future work would be to extend error
propagation to unitary gates like the “eSWAP” gate [30] and
dissipative gates such as those in Refs. [18,31,32]. Another
area would be to determine the distance for arbitrary finite-
energy rotation codes, either numerically or analytically.
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APPENDIX A: DERIVATION OF EQS. (20) AND (21)

Beginning with Eq. (19), we take Ĝ = ei f (n̂) and insert the
identity Ĝ†Ĝ, on the RHS:

ei f (n̂)Êk(θ ) = ei f (n̂)Êk(θ )e−i f (n̂)ei f (n̂). (A1)

For k < 0 this gives

ei f (n̂)Êk(θ ) =
(

ei f (n̂)eiθ n̂
∞∑

n=0

|n〉〈n + |k|| e−i f (n̂)

)
ei f (n̂)

=
( ∞∑

n=0

ei f (n)e−i f (n+|k|)eiθn |n〉〈n + |k||
)

ei f (n̂)

= exp[i f (n̂) − i f (n̂ + |k|Î )]Êk(θ )ei f (n̂). (A2)

Similarly for k � 0, we get

ei f (n̂)Êk(θ ) =
(

ei f (n̂)
∞∑

n=0

|n + k〉〈n| eiθ n̂e−i f (n̂)

)
ei f (n̂)

=
( ∞∑

n=0

ei f (n+k)e−i f (n) |n + k〉〈n| eiθn

)
ei f (n̂)

= exp[i f (n̂) − i f (n̂ − kÎ )]Êk(θ )ei f (n̂). (A3)

These are both of the desired form, thus Eq. (20) holds for all
k.

To derive Eq. (21), we again treat the k < 0 and k � 0
cases separately. For k < 0,

eiφn̂Êk(θ ) = eiφn̂eiθ n̂
∞∑

n=0

|n〉〈n + |k|| = Êk(θ + φ) (A4)
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trivially. For k � 0,

eiφn̂Êk(θ ) = eiφn̂
∞∑

n=0

|n + k〉〈n| eiθ n̂

= eiφk
∞∑

n=0

|n + k〉〈n| eiφn̂eiθ n̂

= eiφkÊk(θ + φ). (A5)

These two expression can be combined concisely in the form
eiφn̂Êk(θ ) = eiφk
(k)Êk(θ + φ), which is the desired result.

APPENDIX B: OPTIMAL IMPLEMENTATION
OF A DISCRETE ROTATION GATE

In this section we detail how to construct a gate that acts
as a Z rotation of the angle φ	 = π/2	 in our codespace. Note
that such a gate acting on a qubit has the matrix form

R̂Z (φ	) =
(

1 0
0 eiφ	

)
, (B1)

so for our codespace we need a gate that does nothing to the
bosonic Hilbert states |2kN〉 and applies a phase of eiφ	 to
the states |(2k + 1)N〉. This may be accomplished by letting
R̂′

N (φ	) = exp[i f	(n̂)], and our task is to find a suitable family
of functions f	(n).

Explicitly, for a given 	 we seek a function f	 such that
f	(kN ) = 2πmk for k even, and f	(kN ) = 2πmk + π/2	 for
k odd, where mk can be any integer. It is easily checked
that this will satisfy the conditions stated above. Rearranging
arithmetically, we arrive at the following criteria for f	:

f ′
	(k) =

{
0 k even
1 k odd

}
mod 2	+1, (B2)

where f ′
	(k) ≡ 1

φ	
f	(kN ) and φ	 = π/2	.

Modulo 2	+1, f ′
	(k) produces the sequence S(0)

k = f ′
	(k) =

0, 1, 0, 1, . . . . Taking the difference of terms in this se-
quence produces the new sequence S(1)

k = S(0)
k+1 − S(0)

k =
(−1)k . Doing so again produces the sequence S(2)

k = S(1)
k+1 −

S(1)
k = −2(−1)k . We may continue this process all the way

down to S(	+1)
k = (−1)k (−2)	. Now we note that 2	 = −(2	)

mod 2	+1, so S(	+1)
k = const mod 2	+1, and knowing that the

nth consecutive difference of a polynomial of degree n is
constant, we conclude that the criteria in Eq. (B2) are sat-
isfied by a polynomial of degree 	 + 1. Since S(n)

k �= const
mod 2	+1 for n � 	, this must be the lowest-order polynomial
that satisfies the criteria.

Reversing the process above, we see that

S(	)
k = S(	)

0 +
k−1∑
k′=0

S(	+1)
k′ mod 2	+1

= S(	)
0 + kS(	+1)

0

=
(

k

0

)
S(	)

0 +
(

k

1

)
S0 mod 2	+1. (B3)

Similarly,

S(	−1)
k = S(	−1)

0 +
k−1∑
k′=0

S(	)
k′ mod 2	+1

= S(	−1)
0 +

k−1∑
k′=0

[(
k′

0

)
S(	)

0 +
(

k′

1

)
S(	+1)

0

]
mod 2	+1

=
(

k

0

)
S(	−1)

0 +
(

k

1

)
S(	)

0 +
(

k

2

)
S(	+1)

0 mod 2	+1.

(B4)

Iterating this all the way back into the top yields

S(0)
k =

	+1∑
i=0

(
k

i

)
S(i)

0 =
	+1∑
i=1

(−2)i−1

(
k

i

)
mod 2	+1, (B5)

where the right-hand side is a polynomial in k of degree 	 + 1
which is a satisfying assignment to the function f ′

	(k).
To convert this back to the function f	(n) = π

2	 f ′
	(n/N ), we

decompose (
k

i

)
= k!

i!(k − i)!

and use � as the analytic continuation of the factorial function
so that we may write (B5) as a general function of the non-
integer n/N . Returning to the original problem, we conclude
that by choosing

f	(n) = π

2	
f ′
	(n/N ) = π

	+1∑
i=1

(−2)i−	−1 �
(

n
N + 1

)
(i!)�

(
n
N − i + 1

) ,

(B6)
the gate

R̂′
N (φ	) = exp [i f	(n̂)] (B7)

implements a logical Z rotation of angle φ	 = π/2	 with the
lowest-order dependence on the operator n̂. It should be noted
that while we have found a polynomial of lowest degree that
satisfies the criteria, the solution is not unique. In particular,
the polynomial in the implementation of T̂ ′

N ( 1
2 n3 + 1

4 n2 − 1
2 n)

is not identical to f2(n) = 1
6 n3 − 3

4 n2 + 5
6 n but its degree is

the same.
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