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Quantum digital signature (QDS) is the quantum version of its classical counterpart and can offer security
against attacks of repudiation, signature forging, and external eavesdropping on the basis of quantum-mechanical
no-go principles. Here we propose a QDS scheme based on quantum counterfactuality, which leverages the
concept of interaction-free measurement. Employing the idea behind twin-field cryptography, we show how
this two-way protocol can be turned into an equivalent noncounterfactual, one-way protocol that is both more
practical and also theoretically helpful in assessing the experimental feasibility of the first protocol. The proposed
QDS protocol can be experimentally implemented with current quantum technology.
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I. INTRODUCTION

In contrast with classical cryptography, where the se-
curity is due to complexity of the computational problem,
the quantum counterpart offers information-theoretic security
based on the quantum-mechanical principles [1,2]. The role of
quantum cryptography for varied purposes of communication
tasks has been explored extensively in the last four decades.
Among them, quantum key distribution (QKD) is the fore-
most cryptographic task. Several protocols for QKD [1,3–9]
have been proposed and realized in this period (for a review,
see Ref. [10]). For the present work, a particularly relevant
protocol for QKD (among the above-mentioned protocols) is
counterfactual QKD proposed by Noh [7].

The concept of interaction-free measurement (IFM), which
is the principle behind counterfactuality in certain QKD
schemes, involves the counterintuitive idea that quantum su-
perposition can be used to enable the detection of a particle
far from a place where it is blocked [11]. The idea of IFM
has been exploited for various cryptographic protocols such
as key distribution [5,12,13], direct communication [14,15],
counterfactual universal computation [16], and others.

In the prototypical counterfactual QKD protocol
(“Noh09”) [7], Alice prepares single-photon states in the
{H,V } basis and sends them sequentially through an unbiased
beam splitter (BS) of a Michelson interferometer. One arm
of the interferometer is retained in Alice’s station, while the
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other arm reaches Bob. He may either reflect H polarization
while blocking V , or vice versa. Alice and Bob generate a
secure key using only those bits when Bob blocks the input
polarization and the detections happen at Alice’s detector
D1 counterfactually. In Noh09, the efficiency is given by∑

j=RH ,RV
PD1| jPj = RT /2, where R and T are reflectivity

and transmittivity with R + T = 1. When Alice’s and
Bob’s choices are of equal probability, including reflectivity
and transmittivity, then one attains the efficiency of 1/8.
However, it was recently shown [13] that, by making use
of noncounterfactual bits and a simple modification to the
original protocol, one may triple the efficiency, i.e., up to 3/8.

The concept of digital signature (DS) was first introduced
by Diffie and Hellman [17], and could potentially play a
crucial role for various cryptographic protocols [18–22]. A
DS protocol involves a sender (Alice) who transmits a dig-
itally signed message M to the forwarder (Bob), who may
forward it to the receiver (Charlie). Even though the message
itself is not secret, it should be authenticated, and it needs
to be secure against forgery and repudiation. In other words,
neither can the sender repudiate her signed message, nor can
the forwarder forge or modify the sender’s signature if he
chooses to forward the message. The main advantage of a
DS scheme is that the signed message can be transferred but
cannot be tampered with so that a third party could also verify
the sender’s signature and authenticate the message.

However, since the security of the classical DS schemes
is proven by the computational hardness of a mathematical
assumption, they cannot offer unconditional security. There
lies the advantage of a quantum digital signature (QDS)
scheme [18], which utilizes the quantum-secure public keys
to validate the message and thus presents an information-
theoretic security. Some of the recent works in the area of
QDS that exploit various quantum features for security are
the QDS protocol with QKD components [23], QDS with-
out the need for quantum memory [24], QDS accounting the
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difficulties in its practical application [21], QDS without per-
fect keys [25], an MDI version of the QDS protocol [26], QDS
in a secure network [27], and others.

The primary security concerns of a (Q)DS protocol are (a)
repudiation by the sender; (b) forgery by the forwarder; and
(c) transferability. Repudiation is the act of the sender suc-
cessfully denying to have sent the message. Forgery refers to
the act by an intermediate recipient to forge the signature (i.e.,
alter the message) of the sender. Another important feature
of a QDS protocol is its transferability, which indicates that if
one trusted recipient accepts the message, then another trusted
recipient will also accept it if forwarded. Interestingly, in a
tripartite scheme, nonrepudiation of the message is correlated
to its transferability, and can be verified by the mechanism
for dispute resolution [28]. In the majority voting for dis-
pute resolution, these two are identical, as a sender who is
dishonest will necessarily make the message nontransferable
if repudiation happens. If the sender makes the forwarder
accept the message while receiver reject it, it signifies both
nontransferability and repudiation. Hence, given a message
is rejected by Charlie, it is associated with repudiation by
Alice [21,22,29]. Thus, similar to various other existing QDS
schemes, we assume that the receiver is trusted.

The present work is inspired by the idea of utilizing the
principle of IFM for a tripartite QDS scheme and involves
effective realization using the setup of the counterfactual
QKD protocol. Use of quantum counterfactuality for a QDS
scheme provides certain advantages because the protocol in-
volves only orthogonal states and the experimental setup is
simpler [10]. Quantum counterfactuality-based QKD proto-
cols have already been experimentally implemented using
coherent states [30], thereby making our modified protocol
feasible. Finally, the aspect of nonlocality in the context of
quantum counterfactuality is interesting [31], and our work
may potentially lead to studies on tripartite and multipartite
scenarios. Note that our work is distinct from various other
quantum counterfactual-based three-party protocols, such as
certification authorization [32], generation of cat states [33],
quantum key distribution protocol [34], and others. In addi-
tion, our work also contrasts with other QDS schemes, since
we do not require nonorthogonal states [23,28], the modified
protocol inherently has MDI-like setup [26,29], the protocol
does not require symmetrization [35] and is different from
other twin-field based protocols in that we do not have the step
of key generation protocol [36]. Furthermore, the requirement
of two-way channel is also relaxed in the modified protocol in
Sec. V.

The nature of counterfactuality in the direct commu-
nication schemes [14,15,37] is highly debated [38–41].
Specifically, the issue of weak trace left by the particle is the
underlying focus of the debate and thus the need for a more
stringent definition of counterfactuality. These schemes are
based on the quantum Zeno effect, and they include detections
from both the detectors for key generation. However, in the
present context, the QDS scheme needs sifting and hence only
a subset of detections are used as key bits (D1 detections).
Thus the relevance of the argument is limited to only certain
counterfactuality-based schemes.

The rest of the paper is structured as follows: In Sec. II,
we present a novel quantum digital signature protocol based

on the counterfactual QKD setup. In Sec. III, we prove the
security of the protocol against sender’s repudiation and for-
warder’s forgery. Additionally, we prove the security of the
protocol against an eavesdropper’s forgery at the level of
entanglement in Sec. IV. In practice, the above three-party,
two-way, counterfactual QDS scheme is faced with two chal-
lenges: the generation of redundant bits lowering efficiency;
and, furthermore restricted range due to the requirement of
two-way quantum communication. In Sec. V, we show that
this scheme is equivalent to a twin-field setup based one-way
QDS protocol which addresses both problems, with certain
advantages in deriving secure bounds. Finally, we present our
conclusions in Sec. VI.

II. THE PROTOCOL

As noted before, a quantum digital signature protocol
would have three stages: distribution, messaging, and for-
warding. Let Alice, Bob, and Charlie be the involved parties,
who agree on an assigned task: sender Alice transmits the
signed message, forwarder Bob verifies the signature and
authenticates the message. He may choose to forward the
message to Charlie, the receiver, who in turn verifies Alice’s
signature and authenticates the message. The following as-
sumptions are made in the proposed three-party QDS scheme:
(a) The receiver is always trusted, and (b) all three parties
share an authenticated classical communication channel. Note
that these two assumptions suffice for the existence of a QDS
protocol with a given number of pre-authenticated parties.
However, given that the communication lines are insecure and
possibly noisy, the protocol must be made secure against an
external eavesdropper. The authenticated internal parties can
detect Eve by measuring the error in the channel. We revisit
this aspect in Sec. IV. The simultaneity in Bob’s and Char-
lie’s operations is also assumed to be perfectly timed, along
with negligible imperfections in the experimental apparatus.
However, since no party colludes with any other, Bob’s and
Charlie’s operations are independent. In some QDS protocols,
the message and signature may be made publicly available,
but neither can the message be tampered nor can the signature
be forged. In our work, we adopt this relaxation and show that
the protocol is secure against certain eavesdropping attacks.

Now, we describe a counterfactual QDS scheme as follows.

A. Distribution stage

(D1) For a future one-bit message M = {m} where “m =
0, 1,” Alice prepares a string of N photons in the {H,V } polar-
ization basis. Each photon is sequentially incident on a beam
splitter (BS) of a Michelson interferometer, with reflectivity
and transmissivity being R and T , respectively. The end-arms
of the interferometer are at Bob’s and Charlie’s laboratory,
Fig. 1. Let the composite state of N photons be represented by
|ϕ〉m.

(D2) Bob and Charlie randomly apply operations RH or
RV , where RH (RV ) represents “reflect” H (V ) and “block” V
(H). A detection could happen at DB or DC if their applied
operation commutes with the input state. Conditioned on a
detection at Bob’s or Charlie’s station, the respective party
may inject a photon of identical polarization towards the BS.
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FIG. 1. Experimental setup for the counterfactual QDS scheme.
Alice prepares single-photon orthogonal states and sends it to a
beam-splitter (BS) of a Michelson interferometer. At the ends of
two arms are Bob and Charlie, who may choose to either block or
reflect a polarization. The switch (SW) would have a polarization-BS
followed by a circulator (C), for the polarization dependent measure-
ment. The subset of polarization of the photons detected at detector
D1 forms Alice’s potential signature.

This ensures that a given photon detected at D1 is indifferent to
the one prepared by Alice. Let r be the fraction of the injection
by Bob and Charlie. And independently, on a fraction f for N
photons, Bob or Charlie may apply the operation σx that tog-
gles between the states H ↔ V for the reflected polarization,
where σx is Pauli-X gate.

The POVMs at the respective detector of Bob’s and Char-
lie’s station are MH = diag(0, 1, 0) and MV = diag(0, 0, 1).
Similar to Noh09, the respective detection probabilities are,
P(DB) = R/2, P(DC ) = T/2, P(D1) = RT/2, and P(D2) =
(1 + 2RT )/4.

(D3) The string � of bits corresponding to Alice’s D1

detections forms the sifted key.1 Here, Alice’s D1 detections
are comprised of (i) counterfactual events; (ii) ones due to
noninterference of photon amplitudes (due to both parties
reflecting, but only one applying the operation σx); and (iii)
Bob’s or Charlie’s injected photons. Note that (i), (ii), and (iii)
are mutually exclusive, and a sifted key bit can be generated
if and only if any one of them happens.

(D4) After Bob and Charlie announce their coordinates of
application of σx to Alice, all the involved parties collabora-
tively estimate the error in the channel, and if found to exceed
an agreed limit, they abort the protocol. Here it is assumed
that the BS is unbiased and the fractions (r, f ) � 1.

(D5) The sifted key � is of length (�N
8 � + �), where �·� is

the floor function and � corresponds to the contributions from

1Note that in a QDS protocol, the raw key itself can function as
the sifted key, since assuming Eve’s presence is not a necessary
condition. However, in our protocol, we indeed prove security under
eavesdropping as well, in which case some bits in � (check bits) will
have to be sacrificed.

noncounterfactual events. Hence no less than (�N
8 �) of these

could be used as Alice’s private key. Here, the state |ϕ〉m repre-
sents Alice’s signature Countsig, and � = {k1, k2, . . . , kN/8}
her private key Countkey.

B. Messaging stage

(M1) Alice informs Bob the message m, along with her
private key Countkey and the corresponding D1 detection co-
ordinates, in a public channel.

(M2) For each kbth bit in Alice’s private key Countkey,
with kb denoting bits in � which Bob knows, he verifies the
bit value against his injected bit that led to a D1 detection. He
accepts the message if the mismatches are below a threshold.

C. Forwarding stage

(F1) Should Bob choose to forward the message m, we
assume that he forwards it to Charlie. If Bob does so, then he
also forwards Alice’s private key Countkey to Charlie.

(F2) Charlie too verifies the Alice’s key Countkey by
performing the same procedure described in Step (M2), but
against the set {kc}, where kc ∈ {k} denotes the bits in �

that Charlie knows. This verifies the message, given the mis-
matches are below the threshold.

Until the messaging stage, the protocol is symmetric with
respect to Bob and Charlie. That is, Alice can choose to send
(m, Countkey) to either Bob or Charlie and he becomes the
forwarder. Below we address the issue of security due to the
involved, untrusted parties. The involved parties also estimate
error in the channel [in Step (D4)], wherein they may also
verify the security of the channel. This is addressed in the
Sec. IV.

III. SECURITY AGAINST ALICE’S REPUDIATION
AND BOB’S FORGERY

QDS is a cryptographic protocol, wherein the primary se-
curity concern is the mistrustful parties and a subset of them
could potentially cheat. In the present case of a tripartite
scheme, no more than one party is assumed to be dishon-
est. Message authentication is established by verifying the
sender’s signature, along with the assumption of an authen-
ticated classical channel shared between parties. Below we
address the security of the scheme against Alice’s repudiation
and Bob’s forgery. The transferability of the message can be
shown from security against repudiation.

A. Security against Alice’s repudiation

After Alice sends (m, Countkey), she commits to the
message and the private key. Both Bob and Charlie could
independently verify her commitment, and we note that the
necessity of classical and quantum communication for the
same is relaxed here.

Now, Alice’s cheat strategies include: (C.i) Announcing
one or more of the D1 detections as D2 detections—she would
necessarily reduce her private key, while not able to change
the elements of private key or the signature. (C.i) Announcing
one or more of the D2 detections as D1 detections—she would
be potentially caught as Bob and Charlie can test for such
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cases against both applying (Rj, Rj). (C.iii) Changing H ↔ V
in D1—she would be potentially caught when Bob or Charlie
verify against their injected bits.

The optimal cheat strategy for Alice would be to flip the
bits from the latter two cases. If successful, this would make
Bob accept the given signature bit while making Charlie reject
it. Consider the case in which Bob injects only one bit after a
detection at DB, which in turn ends up in detector D1. There
are ≈2 × 2(N/8) possible sequences of � for this single injec-
tion case. Similarly, for a higher injected fraction r, we notice
that the possible sequences for � is of the order ≈2(N/4) × 22r ,
accounting for 2r injections by Bob and Charlie.

Suppose she flips a fraction τA in �. Then, from the Cher-
noff bound [42], the success probability of her repudiation is

p(rep) = p[|X − 〈X 〉A| � τA〈X 〉A] � 2 exp

{−τ 2
A〈X 〉A

3

}
,

(1)

where 〈X 〉A = N (rb + rc)/8 is the expectation value of the
variable X representing the number of D1 detections from
injected photons and rb (rc) is the Bob’s (Charlie’s) injected
fraction. Thus, the probability with which she can escape
reduces exponentially if (a) Alice flips more bits; (b) the total
number of bits N increases; or, (c) the ratio of injected photons
increases. Below we show why the third case may lead to
greater probability of successful forgery by Bob and hence
keep it very low.

B. Security against Bob’s forgery

Bob’s forging action here corresponds to him sending
(m′, Count′

key) to Charlie, in a way that Charlie accepts the
new message m′. Suppose Bob flips a fraction τB in �. Then,
similar to Eq. (1), we get the success probability of forgery to
be

p(forge) = p[|Y − 〈Y 〉B| � τB〈Y 〉B] � 2 exp

{−τ 2
B〈Y 〉B

3

}
,

(2)

where 〈Y 〉B = �(rc) − Nrb/8, and �(rc) signifies � being a
function of rc.

However, in the present context, it can be shown that Bob’s
best strategy is to flip the bits corresponding to his injected
photons in � because he knows that Charlie is definitely
unaware of those injected bits. Then, with unit probability, he
succeeds in forging Alice’s signature and change the message
to m′. However, we employ classical error correcting scheme
to make the protocol robust against Bob’s forgery. An alterna-
tive solution, but requiring more resource is briefly addressed
in Sec. VI.

Bob can potentially flip all of his (Nrb/8) injected bits
during forwarding stage. We include all the injected bits for
error correction. We have classical error correction code here
of [n, k, d], where n = �N/8� + � is the total number of
D1 detections, k is the rate of error correction, and d is the
distance of error in the code.

We have the following bounds arising from the required
error correcting properties: Here we use the notation n ≈
N
4 ( 1

2 + r), where rb = rc = r (rc is the Charlie’s injected frac-
tion) and n � |M| = 1. The singleton bound [43] requires

FIG. 2. Plot of the Hamming and singleton bounds, Eqs. (3)
and (4) for the CQDS scheme.

k + d � n + 1, which in our case is

N � 4|M|
(1 − r)

≡ NSing, (3)

∀ k = |M| and d � Nr/2 + 1.
From Hamming bound [44], k � 1 − h(r) and thus

N � 4|M|
[(1 + r)(1 − h(r))]

≡ NHamm, (4)

∀ k = |M|
n (rate of error correcting code) and provided r � 1

2 .
The bounds in Eq. (3) and Eq. (4) are plotted in Fig. 2.

We can replace r′ with r (where r′ < r) in both the bounds,
as doing so does not change the nature of the value of Nmin.
Also as observed in the above graph, the Hamming bound
implies a higher Nmin/bit value at all stages than the singleton
bound, and thus places the actual bound for the protocol. The
above passive attack [24] involves Bob being honest during
distribution stage, and later trying to forge Alice’s signature.
However, we may consider the active attack, wherein Bob is
malicious in the distribution itself. But the underlying security
remains same, wherein Alice and Charlie can test for Bob be-
ing malicious using the statistics of counterfactual detections.

IV. SECURITY AGAINST EAVESDROPPING

The discussions so far have assumed that there is no eaves-
dropper’s interference. This is reasonable in a mistrustful
protocol, where the players themselves pose the main security
threat to each other. However, in a practical situation, an
eavesdropper Eve may be present, whose objectives are given
later. As noted in Sec. II, the internal members of protocol are
oblivious to the presence of Eve, it is natural to assume that no
party colludes with Eve. In the case of collusion, there is no
specific advantage they get in terms of cheating, assuming that
they cheat out of their own self-interest. Therefore, it suffices
to prove security against an external, unauthenticated Eve.

Given that the protocol is asymptotically secure against
Alice’s repudiation and Bob’s forgery, in this section, we
show that it is asymptotically secure against eavesdropping.
Since we prove security at the entanglement level, it may be
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presumed that the protocol is secure against more general
attacks. Note that the message itself is not the secret, but
Alice’s signature is. So Eve would try to get information of
Countsig so that she can tamper with Alice’s message later.

The basic yet powerful attack Eve could do is the intercept-
resend attack, where she would block or resend a photon
during the quantum communication stage. The best possible
attack strategy for Eve would be to use the same reflect or
absorb operator at both arms (i.e., EB—Eve’s ancilla at arm b
and EC—Eve’s ancilla at arm c). Whenever there is a detection
at Eve’s detector, she would either choose to send the identical
photon towards Bob or Charlie or towards Alice. Even when
there is no detection, she would get the bit’s info, but not
induce any error. Thus she can get the complete information
of all the bits from this attack with only 50% detections (50%
error).

As a countermeasure for this, we propose an extra stage.
As mentioned after the protocol stages, before announcing
her mask μ, Alice could potentially check for Eve’s presence.
Alice, Bob and Charlie may test for coherence between the
two arms by verifying the condition {RH , RH } (for H photons)
or {RV , RV } (for V photons), that must deterministically give
rise to a D2 detection.

A. On the unconditional security of the scheme

Now we sketch an unconditional proof of security, where
the idea is to consider all choices of Alice and Bob at a
quantum level. This leads to a master entanglement in a larger
Hilbert space, which makes it easier to analyze the security
against Eve. For simplicity, the Bob-injected and Charlie-
injected qubits are not taken into account, but this extension
can be made in an analogous way. By the method of the
larger Hilbert space, Alice’s random states are replaced by
the quantum superposition |φ〉A = |V 〉A+|H〉A√

2
, and Bob’s and

Charlie’s random operations for measurement are given by
a coherent superposition of their actions |R+〉B = |RV 〉B+|RH 〉B√

2

and |R+〉C = |RV 〉C+|RH 〉C√
2

, respectively. In the same vein, the
initial joint state between Alice, Bob, Charlie and the BS arms
is given by |�0〉 = |φ〉A (|0〉DB

|0〉DC
|φ〉B |φ〉C ) |�〉bc, where

|�〉bc = |0〉b |0〉c is the initial vacuum state of the BS, whose
action is given by |X 〉A → |X 〉b|0〉c+|0〉b|X 〉c√

2
, with X ∈ {H,V }

and correspondingly, when light from the arms re-enters the
BS, its operation is

|X 〉b |0〉c →
∣∣DX

2

〉 + ∣∣DX
1

〉
√

2
, |0〉b |X 〉c →

∣∣DX
2

〉 − ∣∣DX
1

〉
√

2
.

(5)

Then the final state, conditioned on Alice’s D2 detections,
is

|�1〉D2
= 1

2

[ ∣∣DH
2 , RH , RH

〉 + ∣∣DV
2 , RV , RV

〉

+
(∣∣DH

2

〉 + ∣∣DV
2

〉
4
√

2

)
(|RH , RV 〉 + |RV , RH 〉)

]
, (6)

showing the entanglement of the photon between actions by
Alice, Bob, and Charlie. In the kets, the first, second and

third registers represents actions by Alice, Bob, and Charlie.
Therefore, the state in Eq. (6), restricted to Alice and Bob,
reduces to the pure, entangled state:

|�2〉D2
= 1

2

[ ∣∣DH
2 , RH

〉 + ∣∣DV
2 , RV

〉 + √
2

∣∣D+
2 , R+

〉 ]
, (7)

where |D+
2 〉 ≡ |DH

2 〉+|DV
2 〉√

2
. The key idea behind invoking the

larger Hilbert space is the monogamy of entanglement. This
implies that if Alice and Bob can perform Bell state analysis
to certify that they possess the entangled state Eq. (7) to suf-
ficient degree of certainty, then even without any knowledge
of the details if Eve’s attack, they can be sure that her state is
sufficiently uncorrelated with their private information.

With this, they verify that the statistics of their state verifies
Eq. (7) and not a mixed state, such as that obtained by tracing
out Eve’s particle in Eq. (6). It suffices for us to note here
that for the above reason, a security analysis on the level of
entanglement enables Alice and Bob to obtain unconditional
security. Furthermore, composability of the scheme could be
an interesting future work. For the remaining section, re-
stricting to a trivial practical scenario, we return to a more
conventional method of error analysis. Here, the protocol is
considered with the security against certain individual attacks.

B. Security against individual attacks

The error induced by Eve can be quantified as follows:
Assuming Eve does not collude with involved parties and they
remain trusted for the protocol against an information leakage
to an eavesdropper, the error here would be the non-D1 detec-
tions with respect to Bob’s and Charlie’s operations, that gives
rise to D1 detections. Given that Alice has sent an arbitrary
state, we estimate the QBER as

e ≡ P(RV RV |D1) + P(RH RH |D1), (8)

where

P(RV RV |D1) = P(D1|RV RV )P(RV RV )

P(D1)
,

P(RH RH |D1) = P(D1|RH RH )P(RH RH )

P(D1)
.

We know that P(D1|RV RV ) and P(D1|RH RH ) have two
contributions, namely, counterfactual error—p1/p2 (where a
D1 detection happens for a D2, ideally should be zero) and
incoherent error— r

2 (error produced due to Bob or Charlie
injected bits). Thus let

P(D1|RV RV ) = p1 + r

2
and P(D1|RH RH ) = p2 + r

2
.

The total number of D1 detections are

P(D1) = P(D1|RH RV ) + P(D1|RV RH ),

� 1
4 (1 + r) + p3, (9)

with p3 being the detector error (such as dark count) (note that
p3 is not a factor of p1/p2, and solely depends on D1 alone).
If Bob’s and Charlie’s choice of basis for measurement is
unbiased, then P(RH RH ) = P(RV RV ) = 1/4. Thus using this
in Eq. (8), we get

e = p1 + p2 + r

1 + 4p3 + r
. (10)
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FIG. 3. Graph of difference in mutual information vs error rate
in the channel, from Eq. (11). The proposed protocol is thus secure
only when emax � 15.3% under the considered attack scheme.

If p1 = p2 = p3 = p, then

e = 2p + r

1 + 4p + r
.

This shows the increase of error rate with increase in p.
If Eve does IRUD attack, then p1, p2, and p3 gets the

value, proportional to the rate of eavesdropping. We find that
if Eve’s attack rate is w to get polarization information of the
Alice sent bits, then the error rate parameters are given by
p1 = p2 = w

4 (1 + r), and p3 = w
2 (1 + r), respectively. Thus

error rate e becomes [see Fig. 3]

e = 1

2

[
w(1 + r) + r

1 + 2w(1 + r) + r

]
. (11)

Alice’s information and Eve’s information after eavesdrop-
ping are IA = 1 − h(e) and IE = w/2, respectively where h(·)
is the Shannon entropy. We know that the parties can have a
secure communication if IA > IE . Thus the secure QDS can
happen only when emax � 15.3%, when r = 0.01.

We have not considered the injected photons by Bob and
Charlie in the above security analysis. However, since this is
a two-way protocol, Eve may attack the arms twice—before
and after Bob’sor Charlie’s operation, like Wòjcik’s attack on
ping-pong protocol [45].

A similar attack strategy has already been analyzed for
Noh09 by two of us [13], where it is shown that Eve gets
complete information of DB detections, but not of counterfac-
tual ones. Here, if she were to employ such an attack-unattack
strategy, she would get information of all the Bob-injected and
Charlie-injected bits that lead to D1 detections. A simpler fix
for this issue would be to enable Bob and Charlie to flip the
reflected polarizations, as in the original work. Then check
for coherence between the arms on those instances where
they both applied reflect operation and flipped the reflected
polarization (a detailed analysis has already been presented
in Ref. [13]). This would restrict Eve to perfectly remove
footprint and introduce error. To make the protocol simpler,
Alice may throw away all inconsistent polarization detections
of both D1 and D2. Thus, the injected bits are present from

TABLE I. Conditioned on a D1 detection, two secret bits are cre-
ated that are shared between different pairs of parties. Here “Yes(i)”
indicates the knowledge of the polarization j due to injection.

Secret bit Alice Bob Charlie

j - polarization Yes Yes(i)/No No/Yes(i)
bitbc - {Rj, Rj} No Yes Yes

which security against Alice’s repudiation is proven (asymp-
totically), while also giving security against an eavesdropper.

V. MODIFIED PROTOCOL

A practical implementation of the above protocol requires
the use of single photons, a somewhat expensive resource
when required in sufficiently high rate. Furthermore, it is
faced with two further challenges: (a) the generation of re-
dundant bits, i.e., secret, shared bits that the protocol fails to
exploit to improve key rate; and (b) a restriction on the secure
range owing to the protocol being two-way in nature.

The protocol proposed in Sec. II does not exploit all the
secret bits generated between Bob and Charlie. In particular,
for a given D1 detection, either one of the parties injected a
bit or it was counterfactual in nature. Both could potentially
lead to an element of Countkey, and form Alice’s signature
Countsig. Table I lists the secret key bit and the information
shared between the respective parties.

It turns out that one can address all these problems by re-
sorting to an analogous twin-field-setup-based one-way QDS
protocol that largely retains the logical structure of the above
protocol while eliminating the redundancies. Moreover, a
twin-field scheme requires only weak coherent pulses, rather
than single photons. Here we note that this modified protocol
still has certain fraction of bits that are wasted, but they are not
the secret bits. Conversely, no potential secret bits are thrown
away in the sifting.

Now imagine a modified protocol, which, as will be clari-
fied, may be considered as the twin-field, one-way analog of
the above counterfactual, two-way protocol. In the modified
scheme, Bob and Charlie prepare and send particles to Alice
in the configuration as in Fig. 1. If they are single-photons
(as in the primary scheme), then we are led to a two-particle
interference. Thus, we employ phase-modulated weak coher-
ent pulses, prepared in H or V polarization. In this case,
conditioned on single-photon detections by Alice at detector
D1 or D2, we reproduce the same scenario as in the primary
scheme.

Hence if the two incoming pulses are prepared in iden-
tical polarization with same phase modulations, then a D2

detection happens. However, D1 detection could happen in
the rest of the cases. Interestingly, this can be reduced to the
primary scheme, by enabling an announcement by parties if
they choose the π phase. Thus, given no announcement of
π -phase modulation, a detection at detector D1 indicates Alice
of different polarization setting, but not the encoding (as in
the case of bitbc of Table I). This modified protocol poten-
tially eliminates the issue of redundancy and it is one-way in
nature. Additionally, the requirement of single-photon states
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is relaxed as well. Therefore, this protocol could be viewed
as the complementary of the primary scheme that is two-way
and counterfactual in nature.

But Alice can have the knowledge of bitbc by placing a
polarization filter before the beam splitter. Specifically, Alice
could place polarization filters (through which pulse of polar-
ization j passes, and pulse of polarization j is blocked) in both
the arms. Then a D1 detection, along with a detection at one
of the filters, would necessarily reveal bitbc to Alice. Never-
theless, the security against repudiation due to injection in the
primary scheme can be achieved by enabling only one party to
send the pulse. Thus, Bob and Charlie can utilize bitbc of these
cases to check against Alice’s repudiation. Specifically, Bob
and Charlie could exchange information of sent or not-sent
pulses, thereby performing symmetrization.

By way of making explicit the parallelism and contrast
between the primary scheme and the modified protocol, we
number the steps of the latter in a way that corresponds
sequentially to that of the former scheme. The distribution
scheme in the original protocol becomes as follows:

(D1) Alice sets an identical polarization filter for H or V
in her end of the communication paths to Bob and Charlie.

(D2) Bob and Charlie either send weak coherent signal
pulses (signal window) or strong decoy pulses (decoy win-
dow), prepared in the basis H or V . Each signal pulse is
randomly phase-modulated with probability p0 for 0 phase
and (1 − p0) for π phase, given p0 � (1 − p0). On fraction r
of their detections, they send no pulse toward Alice’s station.

(D3) The string � of bits corresponding to Alice’s D1

detections and no π -phase announcement by either of the
parties, solely from the signal window, forms the sifted key.
Here, Alice’s D1 detections are comprised of the cases where
Bob and Charlie sending weak pulses of different polarization.
The decoy pulses are sent by choosing a specific phase and
intensity from a pre-agreed set of values.

(D4) Bob and Charlie announce part of the data where
they sent either the decoy pulses or weak pulses with π -phase,
and together with Alice, they collaboratively estimate the error
in the channel using decoy pulses. If it is found to exceed an
agreed limit, they abort the protocol.

(D5) The sifted key � = ⊗L
1 |k〉 〈k| is obtained from sig-

nal pulses and is approximately of length L ≈ Ne−|α|2α2. �

represents Alice’s signature Countsig and {k1, k2, . . . , kL} her
private key Countkey. To transmit a one-bit message m ∈
{0, 1}, Alice publicly announces the corresponding D1 detec-
tion coordinates of Countsig.

The security can be proven from the fact that, conditioned
on a single-photon detection at one of the detectors in Al-
ice’s station, the states are nonorthogonal because 〈α|β〉 =
e−|α2−β2|. Specifically, given the lower-bounded single-photon
detection count n1 and upper-bounded error rate of single-
photon states e1, the key length that can be used for Alice’s
signature is found to be

R � n1[1 − h(e1)], (12)

where k corresponds to the input data used by Bob or Charlie
to estimate error and E represents the presence of Eve. The
two bounds corresponding to signal window in Eq. (12) can
be estimated, as below.

The values of n1 and e1 in Eq. (12) correspond to signal
states in the scheme. However, we employ standard method
of using decoy pulses to estimate them [46,47], as follows.
This is possible due to the fact that the respective yield (or
gain), and error rate of n-photon state remains to be same for
both signal and decoy pulses [48].

When decoy mode is chosen, Bob and Charlie choose their
polarization setting to be either j (with mean-photon number
|α|2) or j (with mean-photon number |α′|2 and α > α′). If n1

is the single-photon detection count of decoy states, we obtain

n1 � n1 = χ1

2αα′(α − α′)

[
e−|α′||α|2(n0α + nα0)

P0α

− e−|α||α′|2(n0α′ + nα′0)

P0α′
− 2(|α|2 − |α′|2)n00

P00

]
,

(13)

where the first two terms on the right-hand side (RHS) corre-
spond to the detection at D1 for either polarization setting j
or j by Alice, respectively, the third term for the setting that
blocks both the pulses (detections from dark counts alone),
and χ1 = ∑

y=α,α′ (yP0ye−y) is the probability of single-photon
events, with P0y indicating the probability with which Bob’s
sent pulse was blocked and Charlie’s sent pulse y was detected
at Alice’s station. Similarly, if e1 indicates the error rate of
single-photon states of the decoy states,

e1 � e1 = χ1

n1(α − α′)
[
e(1)

1 + e(2)
1

]
. (14)

Here the first term on the RHS corresponds to the case
wherein a D1 detection happens when the identical pulses are
sent and the second term indicates the detections at both the
filter and one of the detectors. This can be estimated using

e(1)
1 = e−|α||α|2(nα(00) + nα(ππ ) )

Pα(xx)

− e−|α′||α′|2(nα′(00) + nα′(ππ ) )

Pα′(xx)
,

e(2)
1 = e−| j| j2(n f j + n j f )

Pf j
. (15)

Here e(2)
1 is the total number of detections summed over

both the polarizations j ∈ {α, α′}, Py(xx) denotes both sending
pulse y with phase x, n f j and n j f indicate the detection at a
filter and a detector, and

nab := n ±
√

n ln
(
ε−1

F

)
2

is the observed value due to statistical fluctuations by the
Hoeffding inequality [49], with εF denoting the failure prob-
ability. Note that these estimations are for decoy states, and
to estimate n1 and e1 (of signal states) we use the Serfling
inequality as

n1 � n1 = n1
L

2nz
− �

(
nz,

L

2
, εF

)
,

e1 � e1 = e1
1

n1
+ �(n1, n1, εF ), (16)
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FIG. 4. Graph of signature length vs distance. Here the values
for numerical analysis are as follows: N = 1010, misalignment error
em = 0.03, dark count detection probability pd = 10−7, statistical
fluctuations εF = 10−12, transmittivity η = 0.5 × 10− λ

200 (with λ =
0.3 dB/km), and the two amplitudes of H and V polarization pulses
are α = 0.15 and α′ = 0.1, respectively.

where �(a, b, c) = [(a − b + 1)b ln(c−1)/(2a)]1/2 is the fac-
tor of sampling without replacement in Serfling’s inequality.

In addition to the error rate of single-photon states e1 es-
timated using the decoy states as in Eq. (16), one can also
estimate the overall quantum bit error rate Etot as

Etot = nss + n00

ntot
,

where nss (n00) corresponds to the number of events of Bob
and Charlie both (neither) sending pulses in signal window,
and Alice announcing a D1 detection, and ntot being the
number of successful detections in signal window. This can
effectively be used for classical postprocessing of error cor-
rection in Eq. (12) as

R � n1[1 − h(e1)] − ntot f h(Etot ), (17)

with f representing the error correction efficiency factor. The
various quantities of the above equations are suitably esti-
mated as in Refs. [36,47] and the protocol is numerically
simulated, as given in Fig. 4.

VI. DISCUSSION AND CONCLUSION

We have presented a quantum digital signature scheme
whose security is guaranteed by quantum counterfactuality.
The proposed scheme is different from other QDS protocols in
that we only make use of orthogonal states and require neither
the quantum memory nor the multiport [18,50].

In the proposed QDS scheme, Alice sends the quantum
states to Bob and Charlie, along with the detection coordinates
corresponding to her signature Countsig in the distribution
stage. The sending of the message, with her private key
Countkey, happens only in the messaging stage. However, the
security against Alice’s repudiation comes from state com-
parison as well as injected bits. This is different from the

other QDS schemes, the security against repudiation is either
through state comparison by Bob and Charlie [18] or by
their symmetrization of states [35]. It is easily implementable
with the presently available technology. The bounds presented
give evidence for security concerns against repudiation and
signature forging. We have also considered an eavesdropper’s
attack and security regarding that has been addressed in detail.
We point out that the injection of photons is equivalent to the
principle of symmetrization employed in various other QDS
protocols. Hence, the protocol can be thought of belonging
to the same class of such QDS protocols. In particular, the
asymptotic security of the present scheme is in line with con-
ventional security addressed in QDS schemes. However, an
unconditional security is yet to be established for the present
scheme.

Incidentally, although a beam-splitter of a Michelson in-
terferometer is present in the protocol, and thereby involves a
multiport for the scheme, the important distinction from other
multiport-based schemes is that we need only one BS and it is
associated with the sender alone. The QKD component itself
involves a BS, and no further extension is required for the
QDS scheme. Hence the assertion that the protocol requires
neither the quantum memory nor the multiport to prove the
security.

We note here that the essentiality of the error correction in
the primary scheme is not discussed in various other QDS pro-
tocols [23,24,28]. Specifically, the impossibility of Bob using
information due to symmetrization, to forge Alice’s signa-
ture during forwarding, is paramount in proving the security.
Therefore, we employ the error correction in our scheme.
However, another slight modification, at the cost of greater
quantum resources, could potentially detect Bob’s forgery.

In particular, we propose a variant of the primary QDS
scheme, wherein Alice prepares the N-qubit composite state
|ϕi〉 for γ > 1 rounds and i ∈ {γ }. The corresponding set of
D1 detections of the ith round be �i, given that Bob and
Charlie could change their operations at each round. After γ

rounds, Alice chooses her signature � and announces the cor-
responding D1 detections. Therefore, at the end of distribution
stage, Bob’s and Charlie’s knowledge of |ϕ〉 would be close to
each other.

Suppose the jth bit ( j ∈ {1, 2, . . . , N}) resulted in a D1

detection due to Bob’s injection in the ith round. He would
flip the bit when forwarding the message to Charlie. However,
Charlie too could know the polarization of the jth bit from
(k �= i)th round. Thus, the probability for Bob to successfully
forge decreases as γ increases. Thus, the error correction
is not required in this modified protocol. Additionally, the
injection too could in principle be relinquished because the
security against repudiation might be proven from an identical
argument as above.

It is important to note that Eve could get information
from an optimal quantum cloning machine, as the state |ϕ〉
is identical in each round [51,52]. The guessing probability
of state discrimination could be potentially improved [53,54],
estimated using Helstrom bound [55]. In various other QDS
schemes too, multiple copies of identical states are sent by
the sender to two or more parties. This issue of multiple
copies being used could further impact on multiparty QDS
schemes [56,57] as well. However, in the context of present
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work, this can be thwarted by varying the composite state |ϕi〉
in each round such that the fidelity between the two composite
states (of any two rounds) is close (but not equal) to unity.

The phenomenon of counterfactual security [13] in QKD
is inconsequential here, as only the D1 detections are used for
generation of Alice’s signature. If one uses all of DB and DC

detections, then the QDS protocol becomes insecure as one
party (forwarder) can cheat by flipping those bits. Also from
the noiseless attack, Eve can potentially get full information of
DB and DC detections. But if she eavesdrops for counterfactual
detections, she must produce error as she selectively cannot
attack on those instances.

We have also proposed a modified QDS protocol based on
the idea of twin-field cryptography. Specifically, another set of
secret bits shared between Bob and Charlie in the primary pro-
tocol were unused in the primary protocol, and therein lies the
possibility of utilizing that using TF-QKD setup. The primary
advantage of this would be the nature of protocol being one-
way, and using coherent states for the key generation. We note
that the framework of the protocol remains to be same. It is
worth pointing out here that the idea used above, of converting
a two-way scheme to its one-way equivalent by replacing the
single-photon qubits in the original scheme by weak coherent
pulses in the latter, can also be applied in a QKD situation,
e.g., to the Noh09 protocol [7] for counterfactual QKD.

The proposed scheme can be potentially generalized to a
multiparty scenario with multiple forwarders. The quantum
part of the protocol would be similar, with Alice sending states
through an n-input n-output beam splitter. The potential key
length of Alice’s signature would increase for such a setup, as
the probability for a counterfactual detection increases. How-
ever, the underlying security would be from the injected bits,
as in the proposed scheme. The limitation of these protocols
is that, similar to other QDS protocols, this is one-time secure
protocol. In other words, for every new message, the parties
must perform a run of the protocol. Eavesdropper can launch
more powerful incoherent attacks, but the nature of security
remains same—she cannot remove her footprint if she extracts
information.

Finally, note that in any QDS protocol, the assumption
that the receiver or verifier is trusted follows the tradition
in the classical DS literature. It is interesting to ask what
modifications are to be made to a given (counterfactual) QDS
protocol to ensure security against Charlie’s dishonesty. We
leave this as an open question.
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APPENDIX: DECOY STATE

Consider the case wherein Alice sends quantum states with
probability distribution Pi, with i being the photon number.
Then the total gain is given by

Q =
∞∑

i=0

YiPi, (A1)

where Yi are the yield (detection counts) of respective photon
number states. Here, the yield Yi for a given photon number
state remains identical for any quantum state (for a given
setup), as they depend only on the transmittivity and detection
efficiency of the detectors. Therefore, this property is em-
ployed for QKD, where weak coherent states are sent in place
of single-photon states, and, consequently, coherent states of
other amplitudes can act as decoy states. Since the yields are
independent of signal or decoy states, we estimate the gain of
signal pulses using decoy states, as in the former of Eq. (16).

Similarly, if the total error in the channel can be estimated
as

EtotQ =
∞∑

i=0

eiYiPi, (A2)

where Etot is the weighted average of the QBERs ei, corre-
sponding to the photon number states i. Additionally, e1 is
the QBER corresponding to single-photon states, as in the
Eq. (14). Hence the error rate of single-photon states e1 is
estimated using decoys, which in turn is used to find the same
of signal pulses e1, as in the latter of Eq. (16). Therefore,
comparing the BB84 protocol and the present case, Etot would
be estimated using test bits of the Z basis (a part of sifted bits)
in the former.
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