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Spin qubits in semiconductor structures bring the promise of large-scale two-dimensional integration, with the
possibility to incorporate the control electronics on the same chip. In order to perform error correction on this
platform, the characteristic features of spin qubits need to be accounted for. For example, qubit readout involves
an additional qubit which necessitates careful reconsideration of the qubit layout. The noise affecting spin qubits
has further peculiarities such as the strong bias towards dephasing. In this work we consider state-of-the-art
error correction codes that require only nearest-neighbor connectivity and are amenable to fast decoding via
minimum-weight perfect matching. Compared to the surface code, the XZZX code, the reduced-connectivity
surface code, the XYZ2 matching code, and the Floquet code all bring different advantages in terms of error
threshold, connectivity, or logical qubit encoding. We present the spin-qubit layout required for each of these
error correction codes, accounting for reference qubits required for spin readout. The performance of these codes
is studied under circuit-level noise accounting for distinct error rates for gates, readout, and qubit decoherence
during idling stages.
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I. INTRODUCTION

Fault-tolerant quantum computation requires large-scale
quantum processors, where quantum states can be encoded
in a noise-free subspace of a myriad of noisy qubits. Spin
qubits in semiconductor quantum dots offer critical fea-
tures compatible with having millions of qubits locally
connected in a two-dimensional (2D) lattice, making them
auspicious candidates for fault-tolerant quantum computing
[1–3]. Additionally, the half-century-long experience of the
semiconductor industry is believed to provide a key advan-
tage over other quantum computing platforms [2]. Spin-qubit
platforms to date have demonstrated single- and two-qubit op-
erations and spin readout above 99% fidelity [4–6] in devices
with up to six qubits [7].

Provided that the error rates of the physical qubits are be-
low a certain threshold value, quantum error correction (QEC)
codes can suppress errors exponentially with the number of
qubits [8–10]. One of the most famous QEC codes is the
surface code, which requires only nearest-neighbor interaction
between qubits on a square grid [11,12]. Alongside the modest
connectivity requirements, the popularity of the surface code
lies on the high threshold error rate and the availability of
fast and high-performance classical decoding schemes such
as minimum-weight perfect matching (MWPM) [13]. Further-
more, numerous schemes have been developed for the surface
code that enable universal quantum computation in a fault-
tolerant way [14]. In recent years, several QEC codes have
been proposed that fulfill the above-listed criteria [15–20].
Some of them even overtake the surface code in terms of error
threshold [17] and connectivity requirements [18–20].
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The threshold error rate is an important target for qubit
platforms, however, its value depends strongly on the noise
model assumed to calculate it. In circuit-level error mod-
els, individual physical gate errors, qubit readout errors and
decoherence during idling are all taken into account [21].
To simplify the model, these errors are assumed to happen
with the same probability which makes the resulting numbers
hard to compare with physical scenarios where some error
mechanisms are more pronounced than others. Moreover,
hardware-specific constraints, like noise biases, can signif-
icantly change the quantum circuit introducing additional
noise channels in the model [22].

Here we provide a detailed quantitative analysis for a wide
range of gate and readout fidelities, decoherence, and mea-
surement times. Simple formulas are derived to help future
experiments estimating their device-specific thresholds and
the qubit overhead required for fault tolerance. Our work
serves to determine important experimental details required to
perform quantum memory experiments. In particular we find
fault-tolerant circuits for syndrome measurements and logical
state preparation and readout, adapted to each QEC code
considered and tailored to the needs of spin-qubit readout.

Moreover, in present readout schemes for spin qubits, de-
fined in single quantum dots, two qubits are required for
the readout, one of which acts as a reference spin [23]. In
such a setting only one qubit of the readout system may be
used to encode information. Considering multiple QEC codes,
qubit layouts are proposed in this work that acknowledge
this constraint. Some codes can even benefit from this pecu-
liar feature, by reaching a higher effective connectivity, or a
sparser grid of qubits that relaxes some requirements for the
large-scale fabrication techniques.

This paper is organized as follows in Sec. II the basic
concepts of QEC are introduced followed by the derivation
of the noise model for spin qubits and some simple formulas
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TABLE I. Spin-qubit connectivity (i.e., average number of two-qubit connections in a 2D lattice) and the parameters of the linearized
threshold surface appearing in Eq. (13). The total number of qubits and ancillas are given by Nq,a = νq,ad2 for a code distance d . The overall
performance of the fitting is further characterized by the maximum and the mean deviation from the numerical value, i.e., δpth = pth − pnum,th.
Thresholds are given at ηT = 20 and ηG = 1. Asterisk denotes syndrome measurement via Bell-state preparation.

Connectivity νq/νa pth
G (%) pth

T (%) pth
R (%)

√〈(
δpth

pth

)2〉
Surface code 3 1

3 1/2 0.82 3.94 14.5 0.08

code 3 1
3 1/2 0.37 15.1 12.9 0.11

3-CX surface code 2 2
3 1/2 0.65 4.1 8.7 0.1

XYZ2 code 4 2/2 0.465 4.2 16.5 0.12

Floquet color code* 2 1
4 1.5/4.5 0.48 0.7 1.41 0.005

Honeycomb Floquet code* 2 1
4 1.5/4.5 0.43 1.16 0.99 0.015

are presented relating the parameters of our error model to the
experimental figures of merit. In the last subsection we derive
the optimal measurement time for QEC applications account-
ing for qubit decoherence during midcircuit measurements.
These concepts are applied to the surface code in Sec. III
revealing some of the hitherto unexplored parts of the noise-
parameter space. Different QEC codes and the corresponding
spin-qubit layouts are presented in Sec. IV, comparing the per-
formance of different codes supplying valuable information
about the connectivity qubit-overhead tradeoff for future ex-
periments. The main results from which the error threshold for
a device-specific noise model can be deduced are summarized
in Table I. An outlook for future work and concluding remarks
are contained in Secs. V and VI.

II. ERROR CORRECTION WITH SPIN QUBITS

A. A brief introduction to quantum error correction

In this section we introduce only the basic concepts and
methods in QEC to motivate our choice of the error correction
codes and to familiarize the reader with the terminology used
in our work. Rather than providing precise mathematical def-
initions, we instead focus on qualitative explanations for the
sake of conciseness. The interested reader may consult a more
exhaustive review in the topic such as Refs. [24,25].

Our goal with quantum error correction is to encode logical
qubits, i.e., qubits with arbitrarily suppressed error rates, in
a low-dimensional subspace of several physical qubits, such
that single- and two-qubit gates can be applied between the
encoded logical qubits which are read out at the end of the
fault-tolerant quantum circuit. One of the prime candidates for
such an encoding is the surface code, where it has been shown
that all the necessary ingredients can be implemented assum-
ing entangling gates only between nearest-neighbor physical
qubits. The rigorous description of some of these methods is
beyond the scope of this paper, therefore, we resort to quan-
tum memory experiments. In a quantum memory experiment a
single logical qubit is encoded in the logical X or Z , left idling,
while mutually commuting observables are repeatedly being
measured, and then read out. Logical errors can be revealed
indirectly from the collected observables without having mea-
sured the logical qubit.

Since only one qubit of information is needed to
be preserved, taking a connected lattice of N physical

qubits, N − 1 independent multiqubit measurements can be
performed, provided that the measurement statistics of the
logical subspace remains unaffected. In stabilizer codes, a set
of mutually commuting operators, called stabilizer operators,
define these measurements. Logical operators commute with
all stabilizers and anticommute with each other. Stabilizer
operators are defined as Pauli strings acting on �2 physical
qubits. Logical operators act on � d qubits, where d is called
the code distance. The code distance defines the smallest
number of independent errors that cannot be detected by
stabilizer operators since it is the smallest number of Pauli
operators required to perform a logical gate.

Stabilizer measurements ensure that in every cycle the sys-
tem is projected back into the logical subspace. After several
rounds of syndrome measurements, the logical qubit may be
read out by measuring every qubit on which the logical opera-
tor has a support in the appropriate basis. Since physical errors
may or may not have changed the logical information a de-
coder is employed, a decoder is a classical algorithm that uses
all the stabilizer measurement outcomes (called syndromes) to
guess whether the physical errors have changed the outcome
of the logical qubit measurement compared to the encoded
information.

Fault tolerance can be achieved if the decoder has better
and better success rate as the number of qubits used for the
encoding is increased. The conditions under which this is
possible are formulated in the threshold theorem. The the-
orem can be formulated in multiple ways, using different
assumptions on the noise processes [8–10]. Let us phrase the
statement in the following way: there exists a finite physical
error probability pth of local errors, below which a certain
accuracy ε of the quantum computation of depth D can be
ensured by encoding logical qubits in polylog(D/ε) physical
qubits. Summarizing the arguments above, the threshold error
rate pth of the physical qubits depends on three factors: (i) the
error correction code itself, (ii) the decoding algorithm, (iii)
and the error model.

Here we focus on a special class of stabilizer codes which
is defined by the topological properties of the error syndromes
which is easiest to understand in the Hamiltonian formalism.
A Hamiltonian can be defined from the negative sum of all
stabilizer operators. The ground state of this Hamiltonian (i.e.,
the mutual +1 eigenstate of all stabilizers) is twofold degener-
ate. Logical operators act on this subspace as gauge operators.
Single-qubit errors change some of the syndromes, creating
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pointlike excitations above the ground state. If the possible
excitations in the model are composed of two bosonic paticles
which are their own antiparticle and have nontrivial braiding
statistics, the model is called a D(Z2) anyon model [26].
Throughout this work we will refer to this set of codes as the
surface code family after its most prominent representative,
the surface code.

The choice of the decoder has a large impact on the er-
ror threshold. The maximum-likelihood decoder is shown to
result in an optimal decoding, but has an exponential com-
putational complexity which makes it unfeasible for system
sizes large enough for fault-tolerant quantum computations
especially if the syndrome information needs to be pro-
cessed in real time [27]. For members of the surface code
family, error syndromes always appear pairwise due to the
general properties of the underlying anyon model. This cru-
cial property makes these codes amenable for decoding by
minimum-weight perfect matching (MWPM) which is almost
linear computational complexity [13]. Together with the qual-
itative similarities to the well-established surface code, this
motivated our choice to focus on the surface code family and
use the same MWPM decoding scheme throughout our work.

The error model incorporates probability of different type
of errors, as well as spatial and temporal correlations between
error events. In the next subsections we will consider the
physical origin of noise in spin-qubit devices and derive an
error model that acknowledges the special properties of this
platform. The error model needs to be efficiently simulable,
such that one can make predictions about the resources re-
quired for fault-tolerant quantum computing.

B. Noise model of spin qubits

In this section we consider some common features and
constraints of spin-qubit devices and use them to establish
the error model to be used for the calculation of the thresh-
old surface of the surface code and its comparison to other
QEC codes of the same family. There are multiple ways to
encode qubits in the spin and orbital degrees of freedom of
semiconductor quantum dots [3]. Here we focus on the type
of spin qubits, where the qubit states correspond to the spin
projections of a single electron or hole in a quantum dot that
is split by a magnetic field according to the original proposal
of Loss and DiVincenzo [1].

Arbitrary single-qubit rotations as well as the two-qubit
CX gate can be implemented natively in with spin qubits [7].
Gate errors are often characterized with a single number, the
gate fidelity FG. As opposed to gate tomography, the fidelity
does not give detailed information about the noise channels.
Since different spin-qubit platforms can have very different
noise channels, we will focus on the gate fidelity and assume
that single- and two-qubit gates are followed by single- and
two-qubit depolarizing noise, i.e., the m-qubit density matrix
becomes ρm → (1 − pGm)ρm + 2−m pGm12m , where the prob-
abilities are determined by the fidelity as

pG1 = 1 − FG1 ≡ pG
2

1 + ηG
, (1a)

pG2 = 1 − FG2 ≡ pG
2ηG

1 + ηG
, (1b)

with pG being the average gate fidelity and the error bias
between single- and two-qubit gates reads as

ηG = pG2

pG1
. (2)

An idling spin qubit loses its phase coherence at a higher
rate than the change in population of its basis states. Dephas-
ing can come from the low-frequency fluctuations of the qubit
splitting that changes the precession frequency of the spin
around the axis of the magnetic field. Such low-frequency
noise often originates from the slow dynamics of nuclear
spins, or 1/ f charge noise coupling to the spin splitting via
spin-orbit interaction [28,29]. Relaxation, on the other hand, is
dominated by phonon emission which is typically suppressed
by the low phonon density of states at the energy of the qubit
splitting [30].

Relaxation can be treated in the Bloch-Redfield approx-
imation [31], which yields an exponential decay of the
diagonal elements of the density matrix. This is equivalent
to Pauli X and Y errors [i.e., ρ → (1 − pT 1)ρ + pT 1

2 (XρX +
Y ρY )] with probability [32]

pT1 = 1 − e−τi/T1

4
≈ τi

4T1
(3)

with T1 being the relaxation time and τi is the idling time.
On the other hand, dephasing due to low-frequency noise is
better described in the filter function formalism [3], leading to
a Gaussian decay of the off-diagonal element of the density
matrix with a timescale T2. This process corresponds to Pauli-
Z errors [i.e., ρ → (1 − pT 2)ρ + pT 2ZρZ] with probability

pT2 = 1 − e−τ 2
i /T 2

2

2
− 1 − e−τi/T1

4
≈ τ 2

i

2T 2
2

− τi

4T1
. (4)

The difference in decoherence rates can be quantified with the
noise bias

ηT = pT2

pT1

≈ 2τiT1

T 2
2

− 1, (5)

while the total idling error rate reads as pT = pT1 + pT2 . How-
ever, we note that ηT � T2/T1 (since τi � T1, T2), meaning
that the noise bias can be substantially lower than the naive
expectation of ηT ∼ T2/T1. Furthermore, one might apply an
arbitrary dynamical decoupling pulse sequence during idling
further improving the T2 dephasing time that enters the above
equations. Using these considerations we expect ηT ∼ O(10)
[5].

Readout of spin qubits is typically carried out via spin-to-
charge conversion and charge sensing. Here we only consider
those conversion schemes which do not require a reservoir
connected to the quantum dot accommodating the qubit. The
conversion of spin to charge involves two spin qubits in
close proximity, one in a known state and another one to
be measured. Reducing the tunnel barrier between the two
quantum dots gives rise to a spin-selective tunneling, i.e.,
Pauli-spin blockade, after which the (change in) charge state
of the quantum dot can be detected. Alternatively, one can
exploit the strong spin-photon coupling in a setup where a
single particle with strong spin-orbit interaction is situated in
a double quantum dot that is coupled to a resonator. From an
architecture point of view, both of these approaches require
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twice the space of a single qubit. Therefore, in the following
we assume that readout involves pair of qubits in the qubit
layouts to be presented.

The equipment for charge sensing imposes further re-
strictions on the qubit architecture. Charge sensing can be
carried out using single-electron transistors (SET) in a radio-
frequency reflectometry setup, which is a popular method
for small-scale devices. However, this requires an SET in
the proximity of the spin qubits which has a substantial
footprint compared to the quantum dot dimensions. Scalable
architectures can potentially employ gate-dispersive sensing
techniques with signal multiplexing, similar to that of super-
conducting qubits, relaxing the spatial requirements of the
sensor near the qubits [33].

An important aspect of the readout is the compromise to be
made between measurement time τR and fidelity. The fidelity
of charge sensing is exponentially improved by increasing
the measurement time [33]. That does not mean that the
longer one measures, the better it gets. Measurement time is
limited by relaxation processes (deep in the Pauli blockade
for charge sensing) or Landau-Zener tunneling (in the case
of a dispersive readout). The readout error can be described
(qualitatively) as

pR(τR) = 1 − FR(τR) = 1 − (1 − e−τR/τmin )e−τR/T1R , (6)

where T1R is the decoherence time of the qubit being read out
and τmin is the minimum integration time, i.e., time needed
to achieve a signal-to-noise ratio of 2 [33]. The maximum
readout fidelity is then achieved at the measurement time

τ ∗
R = τmin ln

(
1 + T1R

τmin

)
. (7)

In our error model readout errors are two-qubit depolarizing
errors followed by a classical bit flip on the measurement
outcome (e.g., infidelity of the charge detector). Both of these
lead to a faulty syndrome bit with a joint probability pR.

Finally, we note that within the Pauli noise model, reset
errors during the stabilizer measurements generate the same
syndrome as readout errors. Therefore, we merge these error
rates into a single error parameter, the reset-readout error rate

pRR = pres[1 − pR(τR)] + pR(τR)(1 − pres), (8)

where pres is the probability that a faulty initialization flips
the measurement outcome [e.g., for depolarizing noise pres =
8

15 (1 − Finit )].

C. Error-threshold surface and resource estimation

If the ratio of different probabilities is kept constant, one
obtains a single-parameter error model where p = 0 corre-
sponds to no errors. Therefore, according to the threshold
theorem a finite error threshold pth can be found, the value
of which will depend on the ratio of error probabilities.
Asymptotically, for p � pth the logical failure rate can be
approximated as

PL ∼ w

(
p

pth

)d/2

, (9)

where w is a prefactor that depends on how many length-d/2
paths can lead to logical failure. Considering different ratios

of the error parameters, i.e., different directions in the error-
parameter space, and calculating the corresponding threshold
values maps out a threshold surface in the parameter space p
that encloses the origin (p = 0). Inside the threshold surface
the logical error rate can be decreased arbitrarily by increasing
the number of qubits.

Fixing the two error bias parameters ηG and ηT , we are
left with a three-dimensional space of (pG, pT , pRR). In the
simplest case, when the threshold surface is a plane and deter-
mined by three points (pth

G, 0, 0), (0, pth
T , 0), and (0, 0, pth

RR), it
is straightforward to show that

p

pth
= pG

pth
G

+ pT

pth
T

+ pRR

pth
RR

, (10)

where pth
G = pth

G(ηG) and pth
T = pth

T (ηT ). This formula is in
correspondence with Ref. [34], where p/pth ∝ �−1, and the
observed nonlinearities of the threshold surface corroborate
with the effects observed in the experiment (see Supplemen-
tary Information of [34]). In that case Eq. (13) implies that
the isotropic circuit level noise (pG = pT = pRR = p) thresh-
old can be recovered as p−1

ic = (pth
G )−1 + (pth

T )−1 + (pth
RR)−1,

whereas the threshold for the phenomenological noise model
(pT = pRR = p) is p−1

ph = (pth
T )−1 + (pth

RR)−1. In Table I we
summarize the parameters of the linearized threshold surface
introduced in Eq. (13) for the six QEC codes studied in the
upcoming sections.

Assuming that a given error configuration is below the
error threshold according to Eq. (13) one can estimate the
number of qubits required for a single logical qubit with
practical logical error rate. Let us fix a target logical error rate,
i.e., PL/w = 10−12. The required code distance then becomes

d =
⌈
− 24

ln(p/pth )

⌉
, (11)

implying a total qubit count of Ntot = (νq + νa)d2 for a single
logical qubit, where νq(a) is the number of qubits (ancillas)
in a unit cell of the QEC code. For example, for p/pth = 0.5
one needs Ntot = 6400(νq + νa) ∼ O(104) qubits. Less qubits
are required as noise decreases. For example, Ntot = 576(νq +
νa) ∼ O(103) qubits suffice for p/pth = 0.1.

D. Tradeoff between measurement time and fidelity

The maximal-fidelity readout time τ ∗
R in Eq. (7) gives the

optimal readout error rate if every qubit is measured simulta-
neously, e.g., at the end of the circuit. However, in quantum
error correction data qubits are idling during the measurement
of the ancillas, therefore, one could expect that it is worth-
while to move away from the maximal readout fidelity point
(by reducing the measurement time) in order to improve the
idling error rates.

We have seen in Eq. (6) how the readout error rate depends
on the integration time τR. Furthermore, neglecting relaxation
for simplicity, the idling error rate during readout and reset
reads as

pT2 (τR) ≈ 1 − e−(τR+τres )2/T 2
2

2
, (12)
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where τres is the reset timescale. Using pRR(τR) and pT2 (τR)
one can derive the readout time that takes the readout-reset
and idling error rates furthest away from the threshold surface.

Sticking to our example of a linear threshold surface char-
acterized by pth

G, pth
T , and pth

R , the distance from the threshold
surface is given by

p

pth
= pG

pth
G

+ pT (τR)

pth
T

+ pRR(τR)

pth
RR

. (13)

In order to reduce the qubit overhead, we need to minimize
this ratio with respect to τR. Assuming that τR � T2, T1RO the
readout time that is optimal for QEC applications becomes

τ ∗
QEC = τ ∗

R − τmin ln

(
1 + pth

R

pth
T

(τ ∗
QEC + τres)T1R

(1 − 2pres )T 2
2

)
. (14)

This equation can easily be solved recursively, starting from
τ ∗

QEC = τ ∗
R on the right-hand side. As we will see later on the

example of the surface code, it is even possible that the max-
imal fidelity readout time falls outside the threshold surface,
while τ ∗

QEC is deep inside it.

E. Surface code with circuit-level noise

Let us consider Kitaev’s surface code with rotated bound-
aries [12]. In this QEC code, d2 data qubits are arranged in a
square grid and the group of stabilizer operators contain (d −
1)2 plaquettes with products of Pauli-X and Pauli-Z operators
acting on four nearest-neighbor qubits. At the boundaries of
the lattice one needs 2d − 2 stabilizers with support on only
two qubits each yielding d2 − 1 constraints for the d2 degrees
of freedom. Measuring all the stabilizers is then equivalent
to completing four- and two-body parity measurements on
neighboring qubits. In what follows, we consider the standard
circuit representation of the surface code and consider individ-
ual errors during a quantum memory experiment that can lead
to nonlocal error chains and show a way to neutralize them.
Afterwards, a possible experimental protocol of initializing
and reading out a logical qubit is discussed, assuming noisy
ingredients throughout the entire process.

Provided that every qubit can be read out individually, the
four-body stabilizer measurements of the surface code can
be achieved by adding ancilla qubits at the center of every
plaquette, leading to denser square grid of qubits [11]. An-
cillas are reset to the state |0〉 before every stabilizer round
and therefore do not add degrees of freedom to the system.
The Z-plaquette measurements are then implemented via four
controlled-not (CX) gates controlled on corresponding data
qubits and targeted on the ancilla. The controlled gates will
flip the state of the ancilla an even or an odd number of times
depending on the parity of the four data qubits. Measuring the
ancilla then yields the eigenvalue of the Z stabilizer.

Assuming any gate in the stabilizer measurement circuit
can induce an error in the corresponding part of the circuit,
errors can propagate from the ancilla qubit to the data qubits
via the CX gates (e.g., X errors spread from the control to
the target, and Z errors from the target to the control). The
worst-case-scenario errors, called hook errors in the literature,
are the X (Z) errors in the X -stabilizer (Z-stabilizer) circuits
that occur before the third CX gate because this error will
spread to two of the data qubits [11]. Four (three) data qubit

errors make up a full stabilizer (a full stabilizer and a single
error), that is less harmful than two data-qubit errors. In the
rotated surface code, the X (Z) logical operator is a Pauli
string that acts on a column (row) of qubits. Depending on
the schedule of CX gates, hook errors can be a distance-2
substring of a logical operator, meaning that half as many of
them are required to induce an undetectable logical error, i.e.,
reducing the effective code distance to 
d/2�. With careful
scheduling, however, it can be ensured that no single error
event in the circuit can induce errors that reduce the code
distance in the surface code [11].

Noisy logical initialization and readout

A quantum memory experiment consists of the initializa-
tion of the logical qubit in the Z (X ) basis followed by several
rounds of stabilizer measurements and the final readout of
the logical qubit on the same basis. Afterwards a decoder is
used to infer from the syndrome data if a logical X (Z) error
happened. Comparing the initialized logical eigenvalue to the
final corrected logical readout of the simulation allows one to
calculate logical error rates for different physical error rates
and code distances to determine the error threshold.

The initialization of the logical qubit is often carried out
assuming noise-free initial and final stabilizer measurements
as well as perfect initialization and measurement of the data
qubits. Here we briefly review this protocol to show that it
leads to an unphysical solution for the threshold surface, and
compare this result with a fault-tolerant protocol we used in
our work, where every qubit and quantum gate is subject to
the noise model introduced in Sec. II B.

In the case of the ideal logical initialization and readout
protocols one prepares every qubit in the |0〉 (|+〉) state which
is an eigenstate of the logical Z (X ) operator. Performing the
first round of stabilizer measurements, the X (Z) stabilizer
outcomes will be random even in the absence of errors since
the physical qubit resets did not prepare a surface code state.
Since stabilizers commute with the logical operator, the logi-
cal eigenvalue is still intact after the first round of stabilizers,
but the system is projected into a subspace of some given X
(Z) stabilizer eigenvalues. From the second round, every sta-
bilizer measurement would return the same syndrome as in the
first one, so one can start inserting errors and the decoder will
have enough information to deal with the logical correction.
The final measurement of the logical follows a similar logic:
performing a noise-free round of stabilizer measurements be-
fore reading out the physical qubits that reveal the encoded
logical eigenvalue. It is easy to see that the logical eigenvalue
cannot be corrupted in this protocol if only readout or reset
errors happen during the noisy stabilizer rounds.

In a real experiment, however, the initialization and final
readout are noisy processes as well. If the errors are strongly
polarized towards readout errors, the logical readout will be
heavily affected by errors, implying a finite threshold error
value against readout errors. The preparation of the initial state
can be performed fault tolerantly with noisy operations only
as well. If a code contains pure Pauli-X and pure Pauli-Z
stabilizers and logical operators, only the Z-stabilizer (X -
stabilizer) outcomes are needed to determine whether a logical
Z (X ) error happened since X (Z) errors do not affect the
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FIG. 1. (a) Qubit layout and connectivity of a bulk section of the surface code. Gray filled nodes represent qubits that are connected to
ancillas (empty nodes) via single links representing connections via two-qubit gates. Ancillas can be read out pairwise or swapped with each
other (double link). X and Z stabilizer plaquettes are shown in red and blue, respectively. (b) Circuit representation of qubits q1 and q2 taking
part in an X and a Z stabilizer measurement. The qubits shown are also part of two additional stabilizer measurements each (implied by
faint gates). The CX schedule and the connectivity necessitate three (one) SWAP gates for the X (Z) stabilizer measurements. Red, cyan, and
blue colored elements in the circuit represent single- and two-qubit depolarizing noise (or bit flip on classical lines) for readout, single-, and
two-qubit gates, respectively. During the measurement qubits experience X−Y (dark green) and Z errors (light green) with different rate.

X stabilizers (Z stabilizers). We can, therefore, prepare every
qubit in the |0〉 (|+〉) state initially and read out every qubit on
the Z (X ) basis in the end. The initial data qubit resets ensure
that all Z- (X -) stabilizer eigenvalues are known before the
first round, and final measurements can be used to infer the
relevant syndromes after the last round of stabilizer measure-
ments, thereby allowing for errors to be injected at any point
in the process [35].

III. SURFACE CODE WITH SPIN QUBITS

In the previous section we have seen that the surface code
can be conveniently embedded in a square lattice of qubits.
However, since spin-qubit readout requires two qubits, the
square-grid qubit layout needs to be modified. An example for
such a modified lattice was provided by Ref. [2] and shown
in Fig. 1(a). Data qubits are connected to four neighboring
ancillas via two-qubit gates but do not participate in a readout
pair. Ancillas, on the other hand, always come in pairs where
they can be swapped, reset, or read out in a single step.

A pair of ancillas can be initialized directly in the |00〉
state with a fidelity Finit and their Z parity can be read out
in a partially destructive process [36,37] we denote as a ZZ∗
measurement box. Keeping one of the ancillas in the |0〉 state
as a reference, the Z-stabilizer measurement circuits can be
realized using a single SWAP gate as shown for the upper an-
cilla pair on Fig. 1(b). The X -stabilizer measurements, on the
other hand, require in total three SWAPs [see the lower ancilla
pair of Fig. 1(b)]. Without the additional SWAP gates, both X
and Z plaquettes are bound to have the same (or equivalent)
CX schedules. Consequently, X -error pairs and Z-error pairs
are injected in the same direction, reducing the code distance
for either of the logical operators regardless of the choice
of boundary conditions. Alternative stabilizer measurement
schemes, trying to leverage the second ancilla qubit, can be
found in Appendix A.

If we restrict our attention to memory experiments, it is
tempting to propose a qubit connectivity where the ancilla
pairs are placed such that the the number of SWAP gates

enforced by the layout is minimized. At the same time, mov-
ing towards fault-tolerant quantum computing with multiple
logical qubits, such a hard-wiring of the CX schedule in
the physical qubit layout is not possible. For example, twist
defects require an on-demand change in the checkerboard
pattern of plaquette operators [14].

Fault-tolerant logical-state preparation and readout re-
quires data qubits to be initialized and read out. This can
be done by adding a single pair of ancillas to the surface
code lattice, allowing one to assign one ancilla pair to every
code qubit. Initialization is done by resetting the ancillas,
swapping the data qubit with the ancilla it is connected to,
and performing a second reset on the ancillas. Similarly the
final measurement can be carried out using a single layer
of SWAP gates. Consequently, data qubit measurement does
not require additional hardware. Further details about the CX
schedule, logical initialization, and measurement can be found
in Appendix B.

Calculating the logical failure rate as a function of p =
(p2

T +p2
RR)1/2 for different code distances, the intersection of

failure rates yields the threshold for a given pRR/pT . Re-
peating this for several distinct ratios one obtains a threshold
curve in the parameter space of (0, pT , pR). In addition, it is
important to consider the logical qubit initialized both along
the X and Z axes (taking the smaller threshold) since the
biased idling noise can strongly favor one type of logical
operator. On Fig. 2(a) we compare the threshold curves with
the logical initialization and readout performed using ideal
stabilizer circuits and the fault-tolerant protocol for pG = 0.
As expected, only the fault-tolerant protocol leads to finite
threshold for readout errors only showcasing the importance
of the logical initialization protocol in memory-experiment
simulations.

Using the linear approximation of the threshold curve,
we show that in certain cases the maximal readout fidelity
is far from the optimal choice for error correction. For
the parameter values on Fig. 2(b) the maximum fidelity
(FR ≈ 99%) is achieved at τ ∗

R = 9.8 µs, whereas the optimal
choice is τ ∗

QEC = 5.8 µs for T2 = 50 µs. Using the optimal
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FIG. 2. (a) Threshold curves for ideal logical state preparation (magenta) and noisy logical state preparation in a quantum memory
simulation. At low idling error rates the ideal logical preparation and measurement significantly overestimates the threshold. Threshold values
are obtained from code distances d ∈ {11, 13, 15, 17} and T = d stabilizer cycles. (b) Readout error rate (6) for varying integration (solid
black) time, threshold curve (solid blue) for pG = 0.1%, and the linearized threshold curve (dashed blue). The integration time corresponding
to the maximum fidelity (τ ∗

R ) falls outside the threshold, while setting the integration time for the QEC optimum (τ ∗
QEC) remains deep inside

the threshold. Numbers used in this exemplary plot are τmin = 1.5 µs, T1R = 1 ms, τres = 3 µs, pres = 0.5%, and T2 = 50 µs.

readout time, we are deep inside the fault-tolerant regime,
while the integration time for the maximal readout fidelity
leaves so much time for decoherence on the data qubits that
the rate of success decreases with increasing system size.

The analysis so far considered an optimistic fixed value
for the gate errors. Although gate errors make substantial
contribution to the overall performance of error correction. In
order to gain a more complete picture of the threshold surface
we calculated the threshold surface in the three-dimensional
parameter space of (pG, pT , pR) for error biases ηG = 1 and
ηT = 20. The results are presented on Fig. 3(b). The er-
ror threshold for a gate-error-dominated scenario [i.e., p ≈
(pG, 0, 0)] is substantially lower than the threshold values of
the opposite limit. Even though the threshold surface does not
have the shape of a plane, we may fit a plane to the data

points using the three threshold parameters from Eq. (13),
to allow for a simple quantitative comparison between QEC
codes as well as a useful proxy for resource estimation. The
quality of the fit can be described by the mean distance be-
tween the surface and the fitted plane, which can be used to
estimate the error of the linear approximation (see Table I).
Due to the monotonicity of the threshold surface, one ex-
pects the strongest bias dependencies in the corners, i.e., for
(0, pth

T (ηT ), 0) and (pth
G(ηG), 0, 0). Therefore, we focused our

error-bias analysis on these two points.
From Fig. 3(c) it is apparent that the idling threshold pth

T
is peaked at ηT = 1

2 , that corresponds to depolarizing noise.
This can be understood from the fact that for ηT � 1, X and
Y errors occur with a probability pX−Y = p, both contributing
to logical X errors. Similarly, for the Z-biased case (ηT  1)

(a) (b) (c)

FIG. 3. (a) Qubit layout and connectivity map for a bulk section of the rotated surface code (b) error-threshold surface in the parameter
space of gate (pG), idling (pT ), and readout error rates (pR) with biases set to ηT = 20 and ηG = 1. Each point is calculated from code distances
d ∈ {11, 13, 15, 17} and T = d stabilizer cycles. Green and blue arrows indicate the change of (pG, 0, 0) and (0, pT , 0) corner points of the
surface for a wide range of noise biases. (c) Dependence of pth

G on the gate error bias ηG and pth
T on the idling error bias ηT .
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the probability-p errors contribute to logical-Z errors. On
the other hand, for depolarizing noise, only two of the three
Paulis affect a logical with a joint probability 2p/3. Indeed
we observe a roughly 1.5× increase in the error threshold. We
note that noise-bias-tailored decoders could take advantage
of the peculiar syndrome pattern of biased noise, leading to
potentially higher thresholds [22], but such an advantage has
not been demonstrated yet for circuit-level error models.

Furthermore, there is a significant increase in gate thresh-
old pth

G for errors biased towards single-qubit gate errors on
Fig. 3(c). This can be understood from the stabilizer measure-
ment circuit in Fig. 1(b). Only X -stabilizer circuits include
single-qubit gates which only contribute to faulty syndromes.
Faulty syndromes being equivalent to readout errors have a
high threshold.

IV. ERROR CORRECTION BEYOND
KITAEV’S SURFACE CODE

Now we turn our discussion towards other members of the
surface-code family. In recent years several new candidates
appeared that challenge the surface code in terms of error
threshold [17], required connectivity [18–20], and prospects
for fault-tolerant logical gates [15,16].

Among the codes considered here, there are codes that
can be obtained from the Calderbank-Shor-Steane (CSS) con-
struction [38] using only pure X and Z type of Pauli operators,
while some other codes include mixed stabilizers and logi-
cals. As we will show, candidates from the latter class tend
to perform better against biased idling errors than the CSS
counterparts.

Furthermore, we analyzed two Floquet codes, where the
stabilizer operators change periodically from one stabililzer
round to the next [18,19]. Such a scheme facilitates the
measurement of six-body stabilizer operators with very low
connectivity (i.e., 2 1

4 two-qubit links per qubit on average).

A. The closest relatives: The XZZX and the 3-CX surface codes

The XZZX code can be simply derived from the rotated
surface code, by exchanging X and Z Pauli operators along
one of the diagonals for every plaquette such that every pla-
quette operator, from left to right and top to bottom consist of
Pauli operators X , Z , Z , and X [17]. Logical operators need
analogous adjustments to maintain the necessary commuta-
tion relations. See Appendix B for a more detailed example.
The XZZX code requires the same connectivity as the rotated
surface code [see Fig. 4(a)], but the local basis transformations
necessitate extra single-qubit gates on the data qubits which
increase the circuit depth and the error budget of gates. On the
other hand, the XZZX code brings significant improvement in
terms of idling threshold compared to the surface code as can
be seen on the scale of the pT axis on Fig. 4(b).

From the gate-bias dependence of the respective corner
point [shown on Fig. 4(c)] it is clear that the XZZX code
can present a real advantage over the surface code only if
two-qubit gate errors are more likely. The most remarkable
property of the threshold surface is the dependence of the
idling threshold on ηT . Since the logicals are not pure Pauli
X and Z operators as for the surface code, the maximum is
not achieved for depolarizing noise ηT = 1

2 but in the limit

where ηT  1, which we believe to be the relevant limit for
spin qubits (i.e., T2 � T1).

The second candidate, the 3-CX surface code, presented
recently by Ref. [20] measures surface-code stabilizers in a
two-round stabilizer measurement cycle such that stabilizers
are measured once per round, but the state of the data qubits
only returns to the original state in every second round. In
this peculiar measurement sequence, only three of the four
connections are used for every data qubit [see Fig. 4(d)],
reducing the required connectivity to an effective hexagonal
grid. In Appendix C we briefly review the detecting region
picture developed by Ref. [20] and provide the stabilizer mea-
surement circuit for the d = 2 instance of the code.

The measurement sequence of the 3-CX surface code re-
quires a modified spatial boundary compared to the rotated
surface code [20] that we discuss in Appendix C. More-
over, the fault-tolerant logical readout suggested in Ref. [20]
involves simultaneous measurement of all data and ancilla
qubits. Although, we only have the hardware to read out half
of the qubits in our spin-qubit lattice. In order to overcome
this issue, we developed an improved final readout for which
the ancilla-only readout pairs of Fig. 1(b) are sufficient.

In QEC codes, reduced connectivity often comes at the
expense of a significantly reduced threshold [39], however,
Figs. 4(e) and 4(f) show, in correspondence with the findings
of Ref. [20], that no significant compromise was made by
adapting the stabilizer measurement sequence of the surface
code to a lower-connectivity qubit lattice.

B. XYZ2 matching code

Hexagonal matching codes are special class of D(Z2)
anyon models where hexagonal plaquette stabilizers are bi-
colorable and host different anyon species with the required
braiding statistics. Fermionic quasiparticles, combined from
two anyons of different species, are confined to string stabi-
lizers that connect the same colored plaquettes [15]. In larger-
scale lattices the confined-fermion property of matching codes
allows for twist-defect-based logical operators without intro-
ducing five-body stabilizers as for the surface code.

The XYZ2 code is a variant of the hexagonal matching
codes where the string stabilizers are parallel links on the
hexagonal lattice [16]. Suitable boundary conditions of the
code can be found from the concatenation of a two-qubit
repetition code (stabilized by ZZ) and the XZZX. In total we
get six-body stabilizer operators with X , Y , Z , X , Y , and Z
Paulis in clockwise direction around the hexagonal plaquettes,
and ZZ link along the XY edges of the hexagonal plaquettes.

Stabilizer measurements in a spin-qubit architecture can be
achieved in two rounds such that there is a pair of qubits in the
face of each hexagon as shown in Fig. 5(a). The scheduling
of CX gates needs to follow similar considerations to the
surface-code case in order to prevent the injection of hook
errors. In Appendix D we show that there is such a choice
of CX schedule for the XYZ2 code.

The price to be paid for the dense encoding is that there are
less ancilla pairs than stabilizers. Meaning that for the final
readout of the logical and inference of relevant stabilizers, the
code qubits also need to be part of readout pairs. However,
in terms of connectivity the layout still remains a regular grid
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(a) (b) (c)

(d) (e) (f)

FIG. 4. (a) Qubit layout and connectivity map for a bulk section of the XZZX code (b) threshold surface for ηT = 20 and ηG = 1.
(c) Dependence of pth

G on the gate error bias ηG and pth
T on the idling error bias ηT for XZZX code. Each point is calculated from code

distances d ∈ {11, 13, 15, 17} and T = d stabilizer cycles. [(d)–(f)] Similarly, qubit layout, threshold surface, and bias dependencies of the
3-CX surface code.

(a) (b) (c)

FIG. 5. (a) Qubit layout and connectivity map for a bulk section of the XYZ2 matching code. Plaquette stabilizers are XY ZXY Z Pauli
products acting on the the six data qubits around each ancilla pair and ZZ link stabilizers are shown with thick blue lines. Data-qubit readout
system is required for the final logical readout (see Appendix D for further details). (b), (c) Threshold surface and bias dependencies of the
XYZ2 matching code for ηT = 20 and ηG = 1. Each point is calculated from code distances d ∈ {11, 13, 15, 17} and T = d stabilizer cycles.

032433-9



BENCE HETÉNYI AND JAMES R. WOOTTON PHYSICAL REVIEW A 109, 032433 (2024)

(a) (b) (c)

FIG. 6. Qubit layout and connectivity map for a bulk section of the Floquet color code. After measuring the red-highlighted XX links,
additional plaquette stabilizers are six-qubit Pauli-X stabilizers on R-labeled plaquettes, Pauli-Z stabilizers on G-labeled plaquettes, and both
X and Z stabilizers on B-labeled plaquettes (notation is coming from the parent color code). In each time step a set of links is measured
such that the six-qubit stabilizer types are exchanges between two plaquette types, indicated by yellow arrows. (b), (c) Threshold surface and
bias dependencies of the Floquet color code for ηT = 20 and ηG = 1. Each point is calculated from code distances d ∈ {10, 12, 14, 16} and
T = d/2 stabilizer cycles (six rounds per cycle).

of qubits (as discussed in detail in Appendix D) realizable,
e.g., with 2 × N arrays and long-range links. Since only the
spin blockade requires immediate proximity, parallel rows of
readout pairs can be accommodated by bilinear arrays and
connected via long-range couplers.

The threshold surface of the XYZ2 code is closer to a plane
than that of the previous surface-code variants [see Fig. 5(b)].
Interestingly, the readout threshold remains comparable to
that of the surface code even though the stabilizers are read out
in separate measurement rounds. Not being a CSS code, the
idling threshold is not peaked around the depolarizing limit
and due to different X and Y basis conversions in the plaquette
measurements single-qubit gate errors contribute significantly
to the error budget, i.e., error threshold biased towards single-
qubit errors is not significantly higher than the ones biased
towards two-qubit gate errors. These results are presented in
Fig. 5(c).

C. Floquet codes

A new type of stabilizer codes has been proposed recently
by Hastings and Haah [18], which do not have a static stabi-
lizer group and logical operators, but they change periodically
over six rounds. Their proposal was based on Kitaev’s honey-
comb model (which as a static stabilizer code has no logical
qubits). An even more recent example is the Floquet color
code. This is a CSS code that can be obtained from a color
code using the anyon condensation picture of Ref. [19]. Since
the results for both codes are quantitatively very similar, we
will present only those for the latter in the main text. We defer
a full comparison of the two to Appendix E (see Fig. 18).

A brief summary of the anyon condensation picture can
be found in Appendix E, here we only consider the stabilizer
group after different measurement rounds. The code can be
realized on a hexagonal lattice of data qubits placing an an-
cilla pair to every edge of the lattice. From an architecture
standpoint Floquet codes require a very sparse connectivity,

only 2 1
4 links per data qubit leaving valuable space for wire

routing and other elements of the control circuitry.
The hexagonal lattice is tricolorable such that every

hexagon has neighbors with a different color. We label them
as R, G, and B. In every round one measures a set of links
that are matching same-labeled hexagons on some basis. For
example, starting from the stabilizer group depicted in Fig. 6,
where R plaquettes are hosting only a pure Pauli-X operator,
G plaquettes only Pauli-Z , and B plaquettes both types: one
measures green links (matching G plaquettes) on the Z basis
to effectively exchange the roles of R and B while leaving G
intact. Such exchange of roles can be performed in a cyclic
manner using differently colored X and Z links only to arrive
in the same state after six rounds. We point out that leaving
one species of plaquettes with the same stabilizers in each
round is crucial for the preservation of the logical information.

In the SWAP-based syndrome measurement scheme we
have used so far, one would need two CX gates and a SWAP

in-between to read out the link stabilizers. However, another
stabilizer measurement protocol can also be employed that
avoids using SWAP gates, thereby reducing the gate-error bud-
get of the noise model (see also Appendix A). If the ancilla
state is prepared in the (|00〉 + |11〉)/

√
2 Bell state, CXs can

target the two ancillas independently, such that the measure-
ment of the ancilla pair remains deterministic. For the results
presented in Figs. 6(b) and 6(c) we employed this Bell-state
protocol.

The threshold surface of the Floquet color code is very well
approximated by a plane [see Fig. 6(b)]. This property could
be attributed to (i) the fact that during a link measurement
only a single-data-qubit error can be injected, (ii) the lack
of fault-tolerant logical initialization and readout. The bias
dependencies on Fig. 6(c) of the gate and idling thresholds
show the expected behavior for CSS codes.

Even though proposals exist for the spatial boundaries of
both types of Floquet codes [19,40], here we only studied
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these codes with toric spatial boundary conditions for sim-
plicity. Likewise, we omitted the problem of fault-tolerant
initialization and readout of the logical qubit since the mul-
tiround stabilizer measurement protocol gives a finite (and
relatively low) readout-reset threshold.

D. Comparison of QEC codes

As discussed previously, a linearized threshold surface
could, through simple formulas, yield valuable insight about
the device-specific threshold and the optimal measurement
time for midcircuit measurements. Here we focus on the
corner points of the linearized threshold surface obtained by
fitting a plane to the simulated data. The characterization of
the surface with only three numbers aids simple estimates
for present and future experiments determining optimal read-
out parameters for error correction as well as estimating the
device-specific error threshold and qubit overhead for differ-
ent spin-qubit architectures from high to low connectivity.

Our results are summarized in Table I. The three threshold
parameters allow us to quantify some trends for spin-qubit
devices expected from the QEC literature. For example, error
thresholds rapidly decrease by reducing the connectivity, the
limiting case being linear qubit chains (connectivity = 2) that
are shown to have thresholds pth = 10−5–10−4 for multiple
linear QEC codes [39]. Further, we see that gate thresholds are
up to an order of magnitude smaller than the other two thresh-
old parameters in agreement with the results on the surface
code where thresholds for circuit-level noise are significantly
lower than that of simplified noise models.

An example how our results may be utilized is by consider-
ing a hypothetical scenario, when good single- and two-qubit
gates are available (pG ∼ 0.1%), but the readout is very lim-
ited, e.g., during the minimum integration time of the ancilla
readout, idling errors on data qubits reach up to a few percent
probability. This would exclude the surface code and many
more from our comparison in Table I but the XZZX code,
featuring high idling threshold parameter, can still be utilized.
Having identified the qubit layout to be built, the integration
time can be set according to Eq. (14) in order to reach the best
error correcting performance.

The QEC codes studied are all defined in a two-
dimensional qubit layout with local two-qubit connections.
This implies that the number of data qubits n scales with
the square of the code distance, i.e., n = νqd2 [41]. The total
number of qubits required including both data and ancilla
qubits Ntot = (νq+νa)d2 can also be accessed from Table I.
The lowest qubit overhead corresponds to the closest relatives
of the rotated surface code coming at Ntot = 3d2. Exploiting
the double ancillas required by the spin-blockade readout,
the XYZ2 code uses only 4d2 qubits to measure six-body
stabilizer operators as opposed to 6d2 of the Floquet codes.

Finally, we make some quantitative comparisons to values
found in the literature for the different QEC codes. disregard-
ing the finite idling bias, for the rotated surface code in the
presence of isotropic circuit level noise we get pic = 0.65%
and for the phenomenological noise model pph = 3.1% is
obtained, which are in line with the expectations [21,22].
For the XZZX code we obtain pic = 0.35% and pph = 6.9%,
where the latter is in good agreement with Ref. [17]. Some

deviations are to be expected for these threshold values due
to the differences in the stabilizer measurement protocol, e.g.,
the use of pair-wise ancilla readout and the additional SWAP

gates.

V. DISCUSSION

Some important characteristic properties of spin-qubit ar-
chitectures are taken into account in our model and the
threshold surface analysis allows one to tailor the results
to system-specific features. However, some assumptions on
the noise model need further improvement for more accurate
device-level threshold estimates. In particular, gate errors as
well as readout errors were modeled here as depolarizing
noise, which may have tendencies to be more like either bit-
flip or phase errors in a specific hardware. Also, correlated
noise due to crosstalk can be taken into account within the
Pauli-error model, but it requires a high-level characterization
of the envisioned quantum processor. Finally, some types of
errors like coherent errors (systematic rotation of every qubit
with the same angle) are not captured in our model and need
to be analyzed with separate methods [42].

Restricting the focus regarding the qubit layout and the
expected noise model would help to develop noise-tailored
decoders [22] with improved performance compared to the
one utilized in our work. Fault-tolerant quantum computation
in scalable architectures will also require real-time decoding,
the performance of which is likely to be compromised by the
available time budget. A detailed study is required to iden-
tify the optimal decoding strategy which provides the highest
thresholds for the given noise model and available decoding
time.

Since the Bell-state protocol introduced for the link
measurements of Floquet codes leads to a reduced number of
SWAP gates, it is tempting to try a similar strategy for all other
codes considered. However, note that some of the SWAP gates
on the ancillas are necessitated by the specific CX schedule to
avoid errors that would reduce the code distance. These SWAP

gates are still required in the latter protocol. Furthermore, in
the Bell-state protocol, it is the reset errors of the ancillas
that would propagate to the data qubits as opposed to gate
errors in the SWAP-based method, reducing the readout-reset
threshold in the former case.

Our findings can support the development of new QEC
codes tailored to spin-qubit architectures. One possibility is to
combine XZZX stabilizers with the measurement sequence of
the 3-CX surface code to obtain a lower connectivity error cor-
rection code with high idling threshold error rate at strongly
biased noise. Floquet codes also provide promising prospects
for future codes with low connectivity.

Finally, the best error correction code will be the one that
provides the lowest qubit overhead en route to fault-tolerant
quantum computing. Beyond the quantum memory exper-
iments considered here, fault-tolerant logical gate schemes
using twist defects or lattice surgery [14] also need to be revis-
ited under concrete noise models to find the lowest space-time
overhead for a given device design.

For the Clifford-circuit simulations we used STIM [43]. For
each code distance and physical error rate we took up to
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300 000 shots unless 30 000 logical failures are encountered
before that. For the decoding we used PYMATCHING [13].

VI. CONCLUSION

Taking into account the common features of spin-qubit
platforms we have derived an error model accounting for
different error rates for gate and readout errors as well as
decoherence during midcircuit measurements. This helped
us to quantify the tradeoff between fast and accurate qubit
measurements for error correction applications. We derived
a formula for the optimal integration time that can be used for
the calibration of the qubit readout given the noise parameters
of the device and QEC code of interest.

Considering state-of-the-art error correction codes that
are compatible with locally connected 2D architectures, we
proposed four different qubit layouts required for quantum
memory experiments which offer the spin-qubit community
different options to find balance between experimental fea-
sibility and low-overhead execution of QEC codes. Further-
more, we analyzed the threshold surface in a multidimensional
parameter space facilitating back-of-the-envelope estimates
for the error threshold and qubit overhead involving on the
gate and readout fidelities as well as the decoherence rates for
a given experimental setup.

All the scripts used for the threshold calculations as well as
the plotted data are available at [44].
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APPENDIX A: SPIN-QUBIT READOUT
AND STABILIZER MEASUREMENTS

In order to discuss the prospects of stabilizer measurements
with spin qubits we turn to the example of the Z plaquettes
of the surface code and present three options for performing
stabilizer measurements using an ancilla pair instead of the
conventional single ancilla that can be read out directly. Ex-
cluding readout protocols that require a lead coupled to the
quantum dot hosting the qubit, we focus on readout via Pauli
spin blockade.

In the Pauli spin blockade, the two-qubit subspace corre-
sponds to the four low-energy two-particle eigenstates of a
symmetric double quantum dot with one particle residing in
each dot. When the energy of one of the dots is increased, a
particle tunneling from the higher-energy dot into the lower-
energy one is only allowed into the spin-singlet state (triplets
involve a higher-energy orbital due to the exclusion principle).
This protocol converts one of the states into a doubly occupied
charge state that is measurable via a charge sensor. The rest of
the states can only end up in the measurable charge configu-
ration by relaxation [33].

The above-described effect can be utilized for readout in
two different regimes: (i) destructive parity measurement, or
(ii) single-state discrimination [36,37]. In the destructive par-
ity measurement protocol, one exploits the fact that one of the
three blocked states relaxes much faster than the others, and
thereby the charge measurement distinguishes two of the basis
states from the rest of the states. By destructive measurement
we mean that the entanglement is lost within a subspace, e.g.,
a |00〉 +b |11〉 → |00〉 after observing an even outcome. We
model this measurement protocol as a ZZ parity measure-
ment followed by an initialization of the qubits. Single-state
discrimination refers to the case when the three blocked states
remain in the original charge configuration and distinguished
from the fourth state. For simplicity we take the discriminated
state to be the |11〉 state and thereby the readout is effectively
performed on the eigenbasis of the CZ operator.

The main limitation of pairwise readout is that only one bit
of information can be obtained from the two-qubit subspace.
In the following we present three options to overcome this
limitation and leverage the presence of the additional ancilla
qubit.

The most straightforward way to overcome the limitations
of the pairwise readout mechanisms of spin qubits is to utilize
one of the two qubits as an ancilla in the usual sense and
preserve the other one in the |0〉 state as a reference qubit for
the readout as shown in Fig. 7 (top) [2]. For most qubit lay-
outs with low connectivity (g � 4) this necessitates additional
SWAP gates between the ancillas, which in turn increases the
susceptibility of the syndrome measurement to gate errors.
However, we note that this protocol can be performed using
CZ measurements and is also straightforwardly extendable to
the case when a single particle is occupying the two dots and
read out in the circuit QED protocol [3].

In order to reduce the number of additional SWAP gates in
the measurement protocol, one could prepare the ancilla pair
in the Bell state

|ψ〉 = (|00〉 + |11〉)/
√

2, (A1)

and map the two halves of the plaquette operator to the two
ancillas separately. As shown in Fig. 7 (middle) this protocol
allows for stabilizer measurements without SWAP gates on
the ancillas. One might expect that the same protocol would
work with the preparation of the ancilla pair in the |00〉 state,
but such a protocol is not fault tolerant as we will see later
when discussing the measurements in the detecting region
picture. The main limitation of the Bell-state approach is the
fact that ancilla-initialization errors create two-qubit errors
which typically significantly reduce the readout threshold.
Furthermore, SWAP gates are still necessary in either X - or
Z-type stabilizer measurements to avoid hook-error injection
(discussed in Appendix B).

Our third option of measuring stabilizers is relying on the
concept of flag qubits [45]. Using an additional qubit as a flag
qubit one can acquire additional information from the success
of the stabilizer measurement process by monitoring Z errors
in the part of the circuit where they can lead to hook errors.
This flagging procedure needs to happen in the middle of the
circuit by inserting CNOT gates between the flag and the ancilla
qubits. Since we need to extract two bits of information from
the ancilla pair, we need three subsequent (nondestructive) CZ
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FIG. 7. Alternative stabilizer measurement protocols with two
ancilla qubits and pairwise readout. Top: SWAP-based protocol with
destructive parity measurement (ZZ) which is replaceable by single-
state discrimination (CZ). Middle: Bell-state measurement protocol
reducing the SWAP gate count. Bottom: second ancilla is utilized
as a flag qubit requiring subsequent measurements with single-state
discrimination. Overlay: detecting regions expanding from the reset-
measurement pair, blue and green denote Z-type regions, red denotes
an X -type region.

measurements to distinguish the stabilizer and flag outcomes
[see Fig. 7 (bottom)]. Additionally, the flagged region cannot
include SWAP gates because two-qubit error on the ancillas can
induce a hook error and mute the flag at the same time. Due
to these limitations and the increased circuit depth, we did not
include the flag-qubit approach in our numerical analysis.

The syndrome measurement protocols can also be viewed
in the detecting region picture (see Appendix C or Ref. [20]
for further information). If we start from the |00〉 state, two
detecting regions must appear, one corresponding to Za0 and
one to Za1 (or any combination of these two). Let us consider
a circuit without SWAPgates. Working with Za0 and Za0Za1

regions, the Za0Za1 region can be used to extend a four-body
stabilizer as the blue region in the top right of Fig. 7, but the
region Za0 will expand only to the qubits on the upper end
leading to a semiplaquette stabilizer which does not commute
with some other bulk stabilizers. On the other hand, working
with a Bell pair implies the two ancilla stabilizers Xa0Xa1

and Za0Za1, where the X region will not be able to expand
and therefore leads to the desired expansion of a plaquette
stabilizer without any side effects.

Similarly the SWAP syndrome measurement can be under-
stood as a way of trying to avoid the expansion of the second
stabilizer Za1, by swapping it with the other ancilla and not
letting it participate in a two-qubit operation with the code

FIG. 8. Connectivity and schedule required for the simultane-
ous plaquette stabilizer measurements for a distance-3 surface code.
Light (dark) gray nodes represent the code qubits (ancillas). Red
(blue) circles denote qubits that participate in the X (Z) logical op-
erator with the corresponding single-qubit gate. X (Z) plaquettes are
shown in red (blue). For the final readout of the logical observable,
an additional ancilla pair is required which can be placed next to
qubit 0 or 8.

qubits. The flag qubit approach extends the former concept by
utilizing the second region to gather some error information
from the syndrome ancilla during the circuit. This is achieved
by expanding an X region to the syndrome ancilla which
cannot expand to the code qubits but is sensitive to those Z
errors that would create a hook error by spreading to two of
the code qubits.

APPENDIX B: SURFACE CODE AND THE XZZX CODE

Here we describe the properties of the surface code and
the XZZX code and discuss some details of the numerical
calculation. The surface code with the boundary conditions
used in this work [12] is often referred to as the rotated rotated
surface code which is a [[d2, 1, d]] CSS stabilizer code [38].
The XZZX code, on the other hand, is a variant of the surface
code with locally rotated stabilizers featuring exceptionally
high threshold against biased noise [17].

Improvements can be made in both cases, such as using a
tailored decoder for biased noise for the surface code improv-
ing idling thresholds for high-ηT bias [22], or choosing the
boundary conditions of the XZZX code such that the high-rate
errors have a longer path to logical failure [17]. In this work,
however, we did not explore such possibilities as they would
have made the fair comparison of different codes difficult.

1. Stabilizers and logical operators

For both the surface code and the XZZX code the stabi-
lizers are four- and two-body operators that can be divided
into two groups as shown in red and blue on Fig. 8. For the
regular surface code red (blue) plaquettes consist of only Pauli
X (Pauli Z) while for the XZZX code each type of plaquette
contains two X and two Z Paulis in the same orientation, e.g.,
X1Z4Z0X3 in the notation of Fig. 8.

Logical operators are shown in Fig. 8 for the d = 3 surface
code. Note that the X (Z) logical share a single qubit with only
one two-body X (Z) plaquette on the boundary and two qubits
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with (d − 1)/2 boundary plaquettes of the Z (X ) type. Analo-
gously, the logical X and Z operators in the XZZX code would
be X (3) = X0Z1X2 and Z (3) = Z0X3Z6 in the d = 3 case.

2. Stabilizer measurements and CNOT scheduling

The order in which we apply the CNOT gates is important
for two reasons: (i) plaquette measurements have to commute
and therefore if two plaquettes share two qubits, the schedule
has to be such that the first plaquette gathers the parity infor-
mation of the two qubits before a CNOT gate of the second
plaquette would act on either of the qubits; (ii) the CNOT

schedule of differently colored plaquettes must take the effect
of hook errors into account [11].

In the surface code a hook error is a pair of Pauli-X (Z)
errors propagating from a faulty ancilla to the code qubits. In
the case of X (Z) plaquettes this can reduce the code distance
of the logical X (Z) operator depending on which qubits are
affected [11]. In order to avoid injection of hook errors, the
schedule of the CNOT gates is chosen according to Fig. 8.
Even though pairs of Pauli errors can still be injected by faulty
ancillas, it still takes (d+1)/2 error events, to cause a logical
error, as opposed to 
(d+1)/4� for the schedule that induces
hook errors.

The schedule displayed in Fig. 8 satisfies both the com-
mutation and the hook-error criteria. Note, however, that the
layout does not favor the schedule for the red plaquettes. SWAP

gates need to be applied on the respective ancilla pairs after
round 0 and round 2 (which was not taken into account in
Ref. [2]). Since SWAP gates on the ancillas are inevitable due
to the connectivity and the CNOT schedule, we used the SWAP-
based protocol presented in Appendix A. The Z-plaquette
measurement is shown in the top left of Fig. 7. This only
merely reduced the gate-error threshold, but allowed for a
significant improvement for the readout threshold compared
to the Bell-state approach.

3. Fault-tolerant logical initialization and readout

Here we briefly discuss the protocol for the fault-tolerant
initialization and readout of an eigenstate of the logical Z
operator of the surface code. The X observable of the surface
code can be obtained by applying Hadamard gates on every
code qubit in the beginning and before the final measurement,
whereas the same protocol applies for the observables of the
XZZX code with appropriate local basis transformations.

The key observation is that only X and Y errors can flip
the eigenvalue of the logical Z operator, that are both de-
tected by Z plaquettes. Therefore, it suffices to know the
eigenvalue of every Z plaquette in the first (last) round to
ensure fault tolerance during the initialization (readout) of
the logical observable. If every qubit is initialized in the |0〉
state in the beginning, the eigenvalue of the Z logical is +1
and every Z plaquette has eigenvalue +1. This means that
one can already detect X and Y errors in the first round of
stabilizer measurements by considering the Z plaquettes only.
X plaquettes, on the other hand, will have nondeterministic
outcome in the first round, so they can only be compared
with the previous round starting from the second measurement
round.

FIG. 9. Connectivity and schedule required for the simultaneous
plaquette stabilizer measurements for the 3-CX surface code (dis-
tance 3). Light (dark) gray nodes represent the code qubits (ancillas).
Red (blue) circles denote qubits that participate in the X (Z) logical
operator with the corresponding single-qubit gate. Red lines, repre-
senting CNOT gates in round 0, are covered by the purple lines in most
cases.

The final measurement in the Z basis can be performed on
a similar footing. After the last round of stabilizer measure-
ments, every qubit needs to be measured on the Z basis, from
which one can infer the logical eigenvalue as well as every
stabilizer eigenvalue to see if an error had happened right
after the last round of stabilizer measurements that flipped
the logical observable. For our spin-qubit lattice only ancillas
can be read out directly, therefore, we need to swap every
qubit with one of the nearby ancillas and measure the ancilla
pairs afterwards. Note that in the case of the surface code,
the final measurement requires only one extra pair of ancillas
regardless of code distance.

The fault-tolerant initialization and readout of the logical
observable is crucial not only for fault-tolerant computation
on multiple logical qubits, but also in quantum memory exper-
iments with a single logical qubit. If initialization and the final
readout are assumed to be perfect, no logical error can appear
on the logical observable in the presence of measurement er-
rors only. This limit is clearly nonphysical and has significant
impact on the overall error threshold if the errors are biased
towards readout errors as shown in Fig. 2(a) for the case of
the surface code.

APPENDIX C: THE 3-CX SURFACE CODE

The 3-CX surface code is a recently proposed variant of the
surface code that relies on the concept of detecting regions in
order to alleviate the connectivity requirements of the surface
code [20]. The spin-qubit connectivity graph is shown in
Fig. 9, where the hexagons and the squares of the surface-
code case are merged by removing one link per data qubit in
the bulk.

1. Stabilizers and logical operators

The stabilizer measurements are done in two half-cycles,
where the CNOT schedule of the first half-cycle is shown on
Fig. 9. The second half-cycle uses the reversed schedule of the
first one. Each of the half-cycles measure d2 − 1 stabilizers.
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These are indeed the stabilizers of the surface code, but the
X and Z type of bulk stabilizers are exchanged between the
two half-cycles and the boundary stabilizers are adapting cor-
respondingly (see Figs. 8.1 and 8.7 in Ref. [20]). This choice
also allows one to define the logical operators in the same way
as for the rotated surface code.

Another important difference is the boundary of the phys-
ical qubit lattice, which is different from that of the rotated
surface code, in order to preserve the code distance [20]. A
simple way to see this is trying to extend the structure in Fig. 9
downwards or to the left while preserving the connectivity
pattern. This would mean adding ancilla pairs that are only
connected to a single data qubit, preventing them from mea-
suring multibody stabilizers that are essential to protect the
logical qubit.

2. Stabilizer measurements in the detecting region picture

A detecting region is a closed region of the circuit diagram
originating from a reset (or set of resets) and terminating
on a measurement (or set of measurements). A pure X (Z)
detecting region, one that only contains CNOT gates, can be
defined by the property that a single Pauli Y or Z (X or Y )
error changes the total parity of the involved measurements.

Detecting regions can be terminated in multiple ways on
later measurements. This arbitrariness is the consequence of
the fact that detecting regions at a given time are related to
the generators of the space-time stabilizer group at the cor-
responding time. As a simple example consider three qubits,
where the parity of qubits q1 and q2 is measured via the
ancilla a. The two data qubits are initially in the eigenstate
of the Z1Z2 parity operator, which is the only stabilizer in
the space-time stabilizer group at t = 0. Resetting the ancilla
creates a single Z stabilizer Za that commutes with the parity
operator and therefore gets admitted in the stabilizer group at
t = 1 [46]. The choice of stabilizer generators is ambiguous,
we can use, e.g., {Za, Z1Z2} or {Za, ZaZ1Z2}. We then apply a
CNOT, controlled on q1 and targeted on a, which extends the
ancilla stabilizer as Za → ZaZ1. For the two, mathematically
equivalent, sets of stabilizer generators we get {Za, Z1Z2} →
{ZaZ1, Z1Z2} and {Za, ZaZ1Z2} → {ZaZ1, ZaZ2}. One can re-
gard a specific choice of generators as detecting regions. In
the latter case the second detecting region is said to have
contracted since its weight is reduced by one. Sticking to
this example, after yet another CNOT between q2 and a we
get {ZaZ1Z2, Za}. Finally, measuring the ancilla removes Za

from the group as an element as well as from every element
that contains it. Note that starting from a certain stabilizer
Z1Z2 we contracted the corresponding detecting region and
measured the parity. At the same time we expanded another
region which took over the place of the original parity op-
erator. Having a large number of qubits and stabilizers, the
ambiguity of assigning resets to detecting regions creates sev-
eral options for the tiling of detecting regions. One general
design principle can be to maintain the Z2 anyon character of
regions by ensuring that every qubit (in the bulk of the lattice)
at every time is covered by a pair of X and a pair of Z detecting
regions [20].

We have collected some effective rules for the construction
of detecting regions in the case of the 3-CX surface code:

(i) Z- (X -) type regions can only originate (terminate) on
Z-basis (X -basis) resets and measurements.

(ii) If a Z- (X -) type region is incident only on the target
(control) qubit of a CNOT gate, it expands to the control (target)
qubit.

(iii) If the same Z- (X -) type region is incident on both the
control and the target qubit of a CNOT gate the region contracts
to the target (control) qubit.

For further information and rigor about detecting regions
we refer the reader to Refs. [20,46].

Between every measurement and reset the detecting re-
gions represent the stabilizers of the surface code. The type
of the boundary stabilizers does not change so the logical op-
erators remain the same throughout the circuit. In the example
of Fig. 10 the circuit of the d = 2 version is shown at full
width, using single (individually measurable) ancillas. We can
see this as having a four-body X plaquette and two two-body
Z plaquettes after the first measurement, but after the second
measurement we see a four-body Z plaquette expanding that
will be the subject of our final measurement. The two-body X
plaquettes are not shown, but using the rules above they can
be straightforwardly identified as being located on in q0q1 and
q2q3 edges, respectively.

3. Fault-tolerant initialization and readout of the logical qubit

For the initialization we can follow directly Ref. [47], but
we need to modify the final measurement part since the solu-
tion provided by McEwen et al. measures every qubit (both
data and ancilla) in the half-cycle state. This is not possible
in spin-qubit architectures since qubits can only be measured
pairwise, and only ancilla types have reference qubits for the
measurements. In the following we present a scheme for the
final measurement round in which only the data qubits need to
be measured. For spin qubits this can be done in the same way
as for the rotated surface code, by swapping one of the ancillas
from each pair with a neighboring data qubit and measuring
the ancilla-data pair.

As described in Ref. [20] each detecting region has to be
terminated on an appropriate measurement. However, as for
the conventional rotated surface code, only those stabilizers
play a role in the decoding which are sensitive to errors that
affect the outcome of the logical measurement. Consequently,
one can measure every data qubit in the Z basis right after the
last round of syndrome measurements as in the upper part of
Fig. 10. From this the Z eigenvalue of the logical qubit can be
inferred and every Z-type detecting region is terminated. The
syndromes obtained for each detecting region can be com-
pared to the appropriate values of the last syndrome detection
round the same way as if the final measurement would have
been round (T +1).

For comparison the final measurement scheme of Ref. [47]
is shown in the lower part of Fig. 10. After the last two
CNOT layers, the stabilizer group is extended with a trivial
element Za1 and a nontrivial element Za0Zq0 Zq3 necessitating
the measurement of ancillas a0 and a1. In this scheme in total
2d2 − 1 − 
(d − 1)/2� measurements are required [of which
only O(d ) are trivial], but in the protocol we used in this work
only d2 simultaneous measurements are needed in the final
round.
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FIG. 10. Measurement circuit of the detecting regions and final measurement of the 3-CX surface code for d = 2 with the required
connectivity (top right). The two distinct detection rounds ending with ancilla measurements are alternating in the detection cycles. Top
figure: an X -type detecting region in a regular detection round (red), and the final measurement of the last Z-type detecting region (blue) with
d2 measurements that is compatible with spin qubits. Bottom figure: two Z-type regions in a regular detection round (green and purple), and
final detection round with three regions (blue and green) terminated on ∼2d2 measurements as in Ref. [47]. Dashed lines separate different
layers of CNOT gates, simplifying the comparison with the time-slice picture of Ref. [20].

APPENDIX D: THE XYZ2 MATCHING CODE

The XYZ2 code is a [[2d2, 1, d]] stabilizer code [16] de-
fined on a hexagonal lattice. This code is a special case of
the hexagonal matching code family [15], with two-body link
operators and appropriate boundary conditions. The connec-
tivity required for this code can be embedded in a square grid
of spin qubits, where ancilla pairs are located in the middle of
each hexagon, giving the highest encoding density ∼1 qubit
or ancilla among the considered error correction codes.

1. Stabilizers and logical operators

In the hexagonal matching code there are two types of
stabilizers, plaquettes, and links. There are d2 link operators
which are products of Pauli-Z operators for two neighboring
qubits, where the neighbors are to be taken in the same di-
rection for every pair (see dashed green lines on Fig. 11).
Plaquettes in the bulk are six-body Pauli operators of alter-
nating type, i.e., starting with a Pauli Z on a qubit of the
hexagon where a link is incident, followed by X , Y , Z , X ,
and Y operators in a clockwise direction along the hexagon. In
total there are (d − 1)2 bulk plaquettes (blue and red hexagons
on Fig. 11). At the boundary of the lattice one finds 2d − 2
semiplaquettes which are three-body Pauli operators defined
by the same rule as their bulk counterparts [16].

As in the case of the surface code, plaquette operators
can be divided into two groups as shown in Fig. 11. Such a
division will be useful for the CNOT scheduling of plaquette
measurements as well as for the matching decoder developed
for this code.

Logical operators are defined on the edges of the diamond-
shaped boundary and contain both X , Y , and Z Paulis as
shown on Fig. 11. This choice differs from that of Ref. [16]
only by stabilizer operators. The motivation behind defining

them on the boundary comes from the similarity to the sur-
face code which allows one to perform the decoding in an
analogous way.

2. Stabilizer measurements and CNOT scheduling

Measurements of plaquette stabilizers can be performed
via a pair of ancillas sitting in the middle of each plaquette
as in Fig. 11, resulting in a connectivity requirement of a
simple square lattice. Link measurements reuse the ancilla
pairs of the plaquettes and therefore performed in separate
measurement rounds, after the plaquette measurements.

The specific choice for the layout in Fig. 11 ensures that
link stabilizers can be measured without using any SWAP gates.
On the other hand, plaquette measurements do require SWAP

FIG. 11. Connectivity and schedule required for the simulta-
neous plaquette stabilizer measurements for a distance-3 XYZ2

matching code. Light (dark) gray nodes represent the code qubits
(ancillas). Green dashed line shows the qubit pairs along which
the link stabilizers are measured. Red (blue) circles denote qubits
that participate in the Y (Z) logical operator with the corresponding
single-qubit gate.
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FIG. 12. Top (bottom) figure presents the stabilizer circuit of the
blue (red) plaquettes of Fig. 11 requiring one (three) SWAP gates on
the ancilla pairs. The labeling of the data and ancilla qubits starts
with the qubit that is acted on in round 0 for both types of plaquettes,
and continues clockwise.

gates (one for blue plaquettes three for reds) as shown on
Fig. 12 and a CNOT schedule that allows for neighboring
plaquette measurements to commute and avoids injecting
hook errors. In this work the schedule was chosen according
to Fig. 11. Further details on the error chains created by
single error events and the corresponding syndromes will be
discussed in the next section.

3. Decoding

Even with the careful scheduling of the CNOT gates, single
errors on the ancillas can lead to syndromes with up to five
detection events. For example, a Y error on the ancilla (not the
reference qubit) flips the measurement outcome, which flips
back again in the next round (2-detection events). If such an
error happens after round 1 or round 3 it induces Pauli errors

on two data qubits which change the eigenvalue of one link
and two plaquette stabilizers (see examples in Fig. 13).

However, same-colored plaquettes, combined with every
link stabilizer, can be gathered into subgraphs and decoded
separately. For a given subgraph, the single-error syndromes
become analogous to the case of the surface code, with
each syndrome containing at most four detection events.
This is the direct consequence of the matching code family
being a D(Z2) anyon model [15], where the plaquette oper-
ators host anyons of the corresponding color and links host
fermions, i.e., a pair of red and blue anyons. When we separate
the two subgraphs, the link fermions are divided into two
anyons.

Four-body detection events can be decomposed into a time-
like pair, i.e., measurement error, and a spacelike pair, i.e.,
data qubit error or error chain. Note that spacelike pairs do
not necessarily appear at the same time, due to the scheduling
of plaquette measurements and the separately measured links.
Nevertheless, timelike pairs can be separated easily since they
are always local in space.

In the decoding graph nodes correspond to possible
detection events (i.e., comparison of subsequent stabilizer
measurements) and edges connect two events that can appear
simultaneously as a result of a single error. We can take
advantage of the decomposition of timelike and spacelike
syndrome pairs by assigning a weight to every edge based
on the joint probability p of all the single-qubit errors that
result in the corresponding pair of syndromes. The weights are
calculated from the probabilities as w = ln[p/(1 − p)]. Given
a weighted decoding graph, a perfect matching decoder can be
used to find an error configuration that is consistent with the
syndromes.

In this work we assigned the error probabilities in the
following way:
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is the probability of a Z error on a single qubit since every qubit is subject to two idling phase during measurements, four
single-qubit gates (from two plaquettes), and four two-qubit gates (three from plaquettes, one from a link), and finally a two-qubit
gate error inducing a Y or Z ancilla error that propagates to the qubit as a Z error (can happen via one of the plaquettes for every
qubit or via the link for every second qubit). In the second row N2 denotes the total number of two-qubit gates in round 0 and
round 4 of the plaquette measurement, i.e., N2 = 2 for red plaquettes N2 = 4 for blues (see also in Fig. 12). A Pauli-Z error on a
data qubit creates a pair of detection events on two neighboring plaquettes of the same type.

Similarly the probability of an X or Y error is
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Such an error induces detection events on a link and on two plaquettes of different types.
Furthermore, the probability of a timelike error, i.e., measurement error, is
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FIG. 13. Schematic figure of a d = 5 matching code with the
scheduling chosen according to Fig. 11. Y and Z errors on the
ancilla qubit lead to one-, two-, and three-qubit errors. These error
chains correspond to pairs of detection events in the two sublattices.
Two- and three-qubit errors propagate parallel to the respective edge,
therefore cannot induce logical errors. Green X , Y , and Z denote the
type of error occurring on the data qubits. Plaquette detection events
on the two different types of plaquettes are shown as blue and red
nodes, while link detection events are shown as a pair of blue and red
nodes, referring to their role in both decoding problems. Gray nodes
show stabilizers where no error was detected.

where the first term is the readout assignment error and the
second corresponds to an error in the measurement or the
initialization of the qubit. This time N2 is the number of
all two-qubit gates (N2 = 7 for red plaquettes and N2 = 9
for blue plaquettes and N2 = 2 for links). The set of errors
that occur with this probability create two detection events
at the same plaquette or link in two subsequent measurement
cycles.

Finally, the probability of a faulty ancilla injecting two or
three Pauli errors is more straightforward to calculate as there
are only two possibilities for an ancilla to pick up a Y or Z
error (after round 1 or round 3 for the two-qubit case and
during or after round 2 for the three-qubit case). Therefore,
we get

p2q = p3q = 2(8pG2/15)(1 − 8pG2/15) (D4)

for the two- and three-qubit error-chain probabilities. The syn-
dromes induced by such error chains are less straightforward,
therefore, we summarize them in Fig. 13. Importantly none of
these reduce the code distance and both of them create a pair
of (relevant) detection events.

Close to the boundaries, single detection events can appear
that must be connected to a boundary node. There are in
total four boundary nodes, two for each type of plaquette.
If the single detection event is associated to that boundary
where one of the logical operators is defined, the graph edge
connecting the single node to the boundary node will also
imply a logical error.

4. Fault-tolerant initialization and readout of the logical qubit

The hexagonal matching code is the only candidate in our
work that utilizes one qubit per ancilla for the encoding. Due
to the additional constraint on the readout (pairwise, destruc-
tive), it is a nontrivial task to initialize and read out the logical
qubit while inferring sufficiently many stabilizer eigenval-

FIG. 14. Full connectivity map, extended with d ancillas (labeled
37 and 38) for the logical initialization and readout. Qubits are
divided into overlapping groups of five, of which two pairs of qubits
can be read out simultaneously (denoted by thick light and dark gray
links).

ues to maintain fault tolerance. Here we describe in detail
the scheme for the logical initialization and readout used in
this work.

Since every qubit is participating in one link only, one shall
consider all the links and distribute them into two groups
such that red (blue) links are the ones matching two non-
neighboring blue (red) plaquettes on their corners. Regarding
the red (blue) logical, i.e., logical Y (Z), the relevant stabilizer
eigenvalues for decoding are the plaquettes colored red (blue)
on Fig. 11 as well as every link. To initialize or measure all
these stabilizer eigenvalues and the logical qubit on the Y (Z)
basis, we initialize or measure red (blue) links on the XY −Y X
basis and blue (red) links on the ZI−IZ basis. Knowing both
mXY and mY X eigenvalues at a given step (initial or final),
the eigenvalue of the corresponding Z link is just the prod-
uct of the two, i.e., mZZ = mXY mY X (similarly for the ZI-IZ
case) providing every link stabilizer eigenvalue. Furthermore,
the relevant plaquette eigenvalues can be constructed from
products of four known eigenvalues (mXY and mY X on the
neighboring links as well as mZI and mIZ on the incident
links). Finally, one can easily check that the logical eigenvalue
is also determined by the appropriate product of the aforemen-
tioned link eigenvalues (see Fig. 14).

In order to perform the required XY -Y X and ZI-IZ link
measurements, we append d additional ancillas and regroup
the data and ancilla qubits as shown in Fig. 14. Despite the
different shapes (triangle or tetragon) and types (red or blue),
every group has at least the following connectivity: two qubits,
q0 and q1, are connected to the same ancilla a0 which can
be read out or initialized together with another ancilla a1; a
third qubit q′

0 (that is in state |0〉 or acts as q0 in a neigh-
boring group) can be read out or initialized together with q1.
Figures 15 and 16 show the circuits for the initialization and
readout of such link operators.

APPENDIX E: FLOQUET CODES

Floquet codes on a honeycomb lattice can be derived from
the color code in the anyon condensation picture [19]. The
color code is defined on the honeycomb lattice, where the
vertices correspond to the data qubits, and the stabilizers are
six-body X and Z plaquette operators on the hexagons that
are divided into three color groups such that each hexagon is
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FIG. 15. Initialization of the XY −Y X link operator in the mutual
+1 eigenstate. Initialization of the ZI−IZ link is trivial after initial-
ization of every qubit pair in the |00〉 state.

surrounded by contrasting colors. In this model nine bosonic
excitations can be defined labeled as red, green, blue and x, y,
z. These bosons have nontrivial braiding statistics with each
other if they have different color and Pauli labels, thus, we
refer to them as anyons.

In the Floquet codes under consideration, the nine bosons
of the color code are condensed into two sets of bosons that
braid nontrivially with one another [19]. The resulting code is
therefore part of the surface code family, i.e., a D(Z2) anyon
model. By periodically changing which anyon is condensed,
an arbitrary single-qubit error can be detected on the honey-
comb lattice while the logical qubit remains well defined. The
change in the anyon condensation should always be done in a
way that one of the e (m) anyons from the old code remains
an e (m) anyon in the new condensed code.

The main difference between the two Floquet codes con-
sidered in this work, the Floquet color code [19] and the
honeycomb Floquet code [18], is which of the condensed
phases are used and how they are transformed to one another
in subsequent measurement rounds. A noteworthy difference
is that the Floquet color code has been constructed such that
it is a CSS code.

FIG. 16. Top: final readout circuit for the XY −ZZ (or equiva-
lently XY −Y X ) link measurement. Bottom: ZI−IZ link measure-
ment. The SWAP gate between q0 and a0 in both circuits ensures that
q′

0 (i.e., q0 of the neighboring group) is in the |0〉 state before the
pairwise readout.

FIG. 17. Connectivity required by the Floquet codes (d = 2),
with tricoloring of the hexagons and the links according to the color
code. Convention X : red, Y : green, Z: blue.

1. Stabilizers and logical operators

As discussed above, on the abstract level a condensed color
code at a given time is equivalent to a surface code. However,
on the microscopic level the relation between detection cells
(detection cells in the terminology of Ref. [19] are detecting
regions where the stabilizer measurements are considered as a
single step) and anyons is different. This is due to the fact that
the condensed color code has two different Pauli stabilizers on
a given plaquette, as opposed to the D(Z2) anyon models we
studied before. Stabilizer measurements in the Floquet code
are performed by measuring a set of XX , YY , or ZZ links (in
the Floquet color code only XX and ZZ) that are connecting
same colored plaquettes in subsequent measurement rounds.
The links can be colored as well according to the plaquettes
they connect.

Let us consider the point in time when X links are
measured on the red edges (see Fig. 17). Each link will anti-
commute with the red Z plaquettes, which we therefore must
have measured in the previous round to ensure fault toler-
ance (every region lives for four rounds in the six-round-long
measurement cycle). The link measurements allow us to infer
the green and blue X plaquettes, which marks the end of the
green X detection cells and the beginning of a blue X cells.
In total we have four detecting regions after the red X link
measurements: blue X , blue Z , red X , and green Z . If a Z error
happens somewhere a red and a green X region will report it.
Similarly, an X error shows up on green and blue Z regions.
Therefore, we can identify red and a blue X plaquettes with
nontrivial outcome in this round with e anyons, while red and
green Z plaquettes will host m anyons.

Logical operators also transform together with the stabi-
lizer group. The transformation of the logicals can be viewed
as follows: having a logical operator defined in a given phase,
e.g., a string of Pauli operators, one can define an equivalent
logical operator by multiplying it with all the link stabilizers
that have support on the logical, thereby shifting the logical or
changing its Pauli type. One can choose the next phase such
that it is compatible with the one of the equivalent versions of
the logical operators ensuring the conservation of the logical
subspace [19].
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(a) (b)

(c) (d)

FIG. 18. (a) Threshold surface of the Floquet color code for ηT = 20 and ηG = 1. (b) Dependence of pth
G on the gate error bias ηG and pth

T

on the idling error bias ηT for Floquet color code. Each point is calculated from code distances d ∈ {10, 12, 14, 16} and T = d/2 stabilizer
cycles (three rounds per cycle). (c), (d) Similarly, threshold surface and bias dependencies of the honeycomb Floquet code.

2. Details for the spin-qubit version

For both of the Floquet codes we considered periodic
spatial and open temporal boundary conditions. Since the
plaquette stabilizers are not measured in a single round, the
effectively perfect logical initialization and measurement does
not lead to such a side effect as for the static stabilizer codes.
For both versions given a code distance d we performed d/2
measurement cycles, that is, 3d measurement rounds.

Furthermore, we used the Bell-state protocol of Ap-
pendix A for the link measurements. Since the link measure-
ments use two CNOT gates, removing the SWAP gate from the
ancillas considerably increases the gate error threshold (from
about 0.35% to ∼0.45%). On the other hand, the multiround
measurement cycle results in a low readout threshold (pth

R ∼
1%) for any of the stabilizer measurement protocols, there-
fore, the link-error injection due to faulty ancilla initialization
does not lead to such a significant compromise as for the static
stabilizer codes.

Finally, we note that only one logical observable was used
for the threshold calculations, but we tested two different
axes for the idling bias to avoid getting an overly optimistic
threshold for a given logical, as typical for CSS codes.

3. Comparison of the Floquet color code
and the honeycomb Floquet code

A side-by-side comparison of the threshold parameters
for the Floquet color code and the honeycomb Floquet code
is shown in Fig. 18. Both threshold surfaces are very well
approximated by a plane and have similar threshold param-
eters. The honeycomb code, as opposed to the Floquet color
code, has a remarkably small sensitivity to noise biases both
for gate errors and idling errors.

APPENDIX F: DETAILS OF THE NUMERICS

For the Clifford-circuit simulations we used STIM [43]. For
each code distance and physical error rate we took up to
300 000 shots unless 30 000 logical failures are encountered
before that. Decoding graphs are built based on the respective
STIM detector error models, except for the XYZ2 code which
is detailed in Appendix D. The reason for the latter was that
stim was unable to decompose some of the hyperedges in the
decoding graph. The decoding was performed with PYMATCH-
ING in each case [13].
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