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Entropy measures quantify the amount of information and correlation present in a quantum system. In practice,
when the quantum state is unknown and only copies thereof are available, one must resort to the estimation of
such entropy measures. Here we propose a variational quantum algorithm for estimating the von Neumann and
Rényi entropies, as well as the measured relative entropy and measured Rényi relative entropy. Our approach
first parametrizes a variational formula for the measure of interest by a quantum circuit and a classical neural
network and then optimizes the resulting objective over parameter space. Numerical simulations of our quantum
algorithm are provided, using a noiseless quantum simulator. The algorithm provides accurate estimates of the
various entropy measures for the examples tested, which renders it a promising approach for usage in downstream
tasks.

DOI: 10.1103/PhysRevA.109.032431

I. INTRODUCTION

Entropy plays a fundamental role in quantifying uncer-
tainty or the level of disorder in physical systems [1], with
its roots tracing back to thermodynamics and statistical me-
chanics [2]. Since its inception, it has been central to studying
various fields of physics and beyond, including cosmology,
meteorology, physical chemistry, thermodynamics, and infor-
mation science. One of its critical applications is in explaining
the inefficiency of heat-work dynamics and the irreversibility
of physical systems via the second law of thermodynam-
ics [3]. Moreover, the concept of entropy increasing over
time provides a basis for causality and the arrow of time
[4], which are fundamental to our understanding of the
universe.

From an information-theoretic perspective, Shannon de-
veloped the concept of entropy to measure the information
content of a source [5], and Rényi later extended it to a
single-parameter family of information measures [6]. Various
discrepancy measures that are intimately connected to entropy
were introduced throughout the years in the information the-
ory and mathematical statistics communities, encompassing
relative entropy [7] and f -divergences [8–10]. Quantum coun-
terparts of these measures include the von Neumann entropy
[2], quantum Rényi entropy, quantum relative entropy [11],
and various quantum f -divergences [12–16]. In particular, the
entropy of a quantum state quantifies how mixed it is, which
is an important concept in quantum mechanics; cf. [17] for a
detailed survey of the role of entropy in physics.

While the aforementioned measures are essential for deter-
mining the amount of information and correlation present in
classical and quantum systems, the state of the system is often
unknown in practice and is only accessible through sampling.
In such situations, one must resort to estimation of the entropy
or divergence terms, which is the task at the core of this work.

A. Contributions

Here we propose a variational quantum algorithm (VQA)
for estimating the von Neumann and Rényi entropies of an
unknown quantum state (see (4) and (9) for definitions). Our
approach also extends to the measured Rényi relative entropy
between two unknown quantum states, which in particular
captures the measured relative entropy and fidelity as spe-
cial cases [see (7), (1), and (13), respectively]. The proposed
VQA is developed based on variational formulas for these
entropy measures [18–20], which represent them as opti-
mizations of certain objectives over the space of Hermitian
operators. The key idea behind our approach is to parametrize
this optimization domain using two models: (i) a classical
neural network to parametrize the spectrum (eigenvalues) of
a Hermitian operator and (ii) a quantum circuit to parametrize
the eigenvectors. Having that, we present a sampling proce-
dure for execution on a quantum computer, using which the
parametrized objective is approximated by employing inde-
pendent copies of the unknown quantum states. This results
in an optimization problem over the parameter space, which
is solvable using classical tools and whose solution yields an
estimate of the entropy measure of interest.

Our VQA-based estimation technique, termed quantum
neural estimation, builds upon the possibility of VQAs real-
izing quantum speedup [21,22] and is fully trainable using
classical optimizers. Analogous variational methods based on
neural network parametrization have seen immense success in
recent years in estimating classical entropies and divergences
[23–25]. The appeal of such neural estimators stems from
their scalability to high-dimensional problems and large data
sets, as well as their compatibility with modern gradient-based
optimization techniques. We expect the proposed quantum
neural estimation framework to enjoy similar virtues. Nu-
merical simulations that demonstrate the performance of our
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method on small-scale examples are provided, revealing ac-
curate estimates and convergence of the training algorithm.
We also discuss extensions of our method to quantum relative
entropy [11] and sandwiched Rényi relative entropy [26,27],
surfacing key challenges and outlining potential avenues to
overcome them, which are left for future work.

B. Literature review

Estimation of the von Neumann and Rényi entropies has
attracted significant interest throughout the years. A naive
approach is to use quantum tomography to estimate the en-
tire density matrix and then evaluate the entropic quantities
based on the estimate. However, the time complexity of this
approach is linear in the dimension of the state (or, equiv-
alently, exponential in the number of qubits) [28–31] and
is thus untenable. To address this problem, many quantum
algorithms for estimating these quantities have been proposed,
and their computational complexities have been investigated
under different input models [32–43]. The authors of [34]
studied the problem of estimating the von Neumann and Rényi
entropies, given access to independent copies of the input
quantum state. They demonstrated that the sample complexity
(i.e., the number of independent copies of the quantum state)
of this task grows exponentially with the number of qubits. A
number of other papers have proposed methods for estimating
integer Rényi entropies [44–49], with limits on the sample
complexities also discussed in [34]. Entropy estimation under
the quantum query model, i.e., where one has access to an
oracle that prepares the input quantum state, was explored in
[35,37]. These works established that the query complexity
(i.e., the number of times the oracle is queried) for estimating
the von Neumann and Rényi entropies is also exponential in
the number of qubits.

Variational methods are often used in physics to find
approximate solutions to problems that are hard to solve ex-
actly [50], e.g., computing ground-state energies for quantum
systems [51]. As such, they underlie various computational
methods, including the Hartree-Fock method [52] and the
configuration-interaction method [53]. VQAs are an extension
of classical variational methods and have become a promi-
nent research area in quantum computing [21,54]. VQAs are
hybrid quantum-classical algorithms that are driven by classi-
cal optimizers and only call a quantum subroutine for tasks
that are (presumably) hard for a classical machine. These
algorithms apply the variational principle to find approximate
solutions, by first preparing a quantum trial state and then
optimizing its parameters using a classical computer. VQAs
have now been applied to a variety of problems, including
quantum simulation [55], optimization [56–58], and machine
learning [59]. A VQA is also at the heart of the quantum
neural estimation method developed herein.

Neural estimation techniques have been at the forefront
of research on classical entropy and divergence estimation.
The idea is to parametrize a variational form of the measure
of interest by a neural network, approximate expectations by
sample means, and optimize the resulting empirical objec-
tive over parameter space. The appeal of neural estimators
stems from excellent scalability and computational efficiency
observed in practice, which is in line with the success of neural

nets for language models [60,61], computer vision [62], and
generative modeling [63–66]. Various neural estimators of
Shannon’s mutual information [24,25], neural net distances
[23,67], and classical f -divergences [68,69] have been devel-
oped and analyzed for their performance. Neural estimators of
quantum entropy measures have not appeared in the literature
yet, and we make strides towards harnessing this promising
methodology in this work (see also the related work discussed
below).

Note on related work. Recently, an independent and related
work [70] introduced a method for estimating von Neumann
entropy reminiscent of ours but with a few key differences.
First, we treat several prominent quantum entropy measures—
von Neumann entropy, Rényi entropy, measured relative
(Rényi) entropy, and fidelity—while [70] only accounts for
the von Neumann entropy. Second, we parametrize the space
of all Hermitian operators using parametrized quantum cir-
cuits and classical neural networks, whereas [70] rewrites the
variational formula for von Neumann entropy in terms of an
optimization over parametrized quantum states and uses only
the quantum circuit component. We believe that the incor-
poration of classical neural networks is crucial for scalable
estimation of a broad class of quantum entropy and divergence
measures.

We also note another independent and related work [71],
employing quantum neural estimation as a combination of
classical neural networks and parametrized circuits to estimate
von Neumann and Rényi entropies. The applications consid-
ered in [71] are to classify phases of a Hamiltonian of physical
interest, the XXZ chain, and to compare the performance of
quantum neural estimation with a variational quantum state
eigensolver.

II. QUANTUM ENTROPIES AND DIVERGENCES

In this section, we define the quantum entropy and discrep-
ancy measures of interest and present their variational forms,
which are subsequently used for the proposed quantum neural
estimation method. Throughout, we fix d ∈ N and let ρ and
σ be d-dimensional quantum states.

A. Measured relative entropy and von Neumann entropy

The measured relative entropy between ρ and σ is defined
as [72,73]

DM (ρ‖σ ) := sup
X ,(�x )x∈X

∑
x∈X

Tr[�xρ] ln

(
Tr[�xρ]

Tr[�xσ ]

)
, (1)

where the supremum is over all finite sets X and positive-
operator-valued measures (POVMs) (�x )x∈X are indexed
by X .1 More specifically, it is equal to the largest clas-
sical relative entropy between the probability distributions
(Tr[�xρ])x∈X and (Tr[�xσ ])x∈X that result from performing

1Reference [72] defined the quantity with an optimization over just
projective measurements, but Ref. [73] generalized the definition to
include an optimization over all possible measurements.
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a measurement (�x )x∈X on the respective states ρ and σ .2

As a consequence of the data-processing inequality for the
classical relative entropy, it suffices to perform the optimiza-
tion in (1) over rank-one measurements [20] (i.e., where each
�x, for x ∈ X , is a rank-one operator). A variational form for
DM (ρ‖σ ) was derived in Eq. (11.69) in [18] (see also Lemma
1 and Theorem 2 in [20]), whereby

DM (ρ‖σ ) = sup
H

{Tr[Hρ] − ln Tr[eHσ ]} (2)

= sup
H

{Tr[Hρ] − Tr[eHσ ]} + 1, (3)

where the supremum in (2) and (3) is over all d × d Hermitian
operators, i.e., H such that H = H†. Equations (2) and (3) can
be understood as a quantum generalization of the Donsker-
Varadhan formula for classical relative entropy (Lemma 2.1
in [74]; see also Lemma 1 and Eq. (8) in [75]). Throughout
our paper and numerical simulations, we use the variational
formula in (3).

An important special case of the measured relative entropy
is the von Neumann entropy

H(ρ) := − Tr[ρ ln ρ]. (4)

It is obtained from DM (ρ‖σ ) by setting σ to be the maxi-
mally mixed state πd := I/d , where I is the identity operator,
namely, we have

H(ρ) = ln d − DM (ρ‖πd ), (5)

which follows from Sec. 16 in [76] (see also [77]). Inserting
the variational representation from (3) into (5), the von Neu-
mann entropy is expressed in the following variational form:

H(ρ) = ln d − 1 − sup
H

(Tr[Hρ] − Tr[eHπd ]). (6)

B. Measured Rényi relative entropy and Rényi entropy

The measured Rényi relative entropy of order α ∈ (0, 1) ∪
(1,∞) between ρ and σ is defined as [see Eqs. (3.116) and
(3.117) in [78]]

DM,α (ρ‖σ ) := sup
X ,(�x )x∈X

1

α − 1
ln

∑
x∈X

Tr[�xρ]α Tr[�xσ ]1−α,

(7)

where the supremum is over all finite sets X and POVMs
(�x )x∈X . Akin to the measured relative entropy case,
DM,α (ρ‖σ ) is equal to the largest classical Rényi rela-
tive entropy between probability distributions of the form
(Tr[�xρ])x∈X and (Tr[�xσ ])x∈X that result from performing
a measurement (�x )x∈X on ρ and σ . As before, it suffices
to perform the optimization in (1) over rank-one measure-
ments. The definition in (7) recovers the measured relative
entropy DM (ρ‖σ ) by taking the limit α → 1. The following
variational representation was established in Lemma 3 and
Theorem 4 in [20]:

DM,α (ρ‖σ ) = sup
H

(
α

α − 1
ln Tr[e(α−1)Hρ] − ln Tr[eαHσ ]

)
.

(8)

2Here we identify a probability distribution p on X with the |X |-
dimensional simplex vector (p(x))x∈X .

Equation (8) is a quantum generalization of the more recently
derived variational formula for classical Rényi relative en-
tropy (Theorem 3.1 in [79]), i.e., the classical case arises by
plugging in commuting density operators ρ and σ .

Instantiating σ in (7) as the maximally mixed state gives
rise to the quantum Rényi entropy

Hα (ρ) := 1

1 − α
ln Tr[ρα], (9)

which admits the form

Hα (ρ) = ln d − DM,α (ρ‖πd ). (10)

Leveraging the variational formula in (8), we obtain

Hα (ρ) = ln d − sup
H

(
α

α−1
ln Tr[e(α−1)Hρ] − ln Tr[eαHπd ]

)
.

(11)

Another interesting special case of the measured Rényi
relative entropy is obtained for α = 1/2,

DM,1/2(ρ‖σ ) = − ln inf
X ,(�x )x∈X

(∑
x∈X

√
Tr[�xρ] Tr[�xσ ]

)2

= − ln F(ρ, σ ), (12)

where the fidelity of ρ and σ is defined as [80]

F(ρ, σ ) := ∥∥√
ρ
√

σ
∥∥2

1. (13)

The equality in (12) was established in [81], which indicates
that the fidelity of quantum states ρ and σ is achieved by
a measurement, i.e., minimizing the classical fidelity of the
distributions {Tr[�xρ]}x∈X and {Tr[�xσ ]}x∈X over all possi-
ble measurements. It thus follows from (8) and (12) that the
negative logarithm of the fidelity has the following variational
form:

− ln F(ρ, σ ) = − inf
H

{ln Tr[e−Hρ] + ln Tr[eHσ ]}. (14)

Alternatively, by making use of the variational form in
Eq. (20) in [20], we find that the root fidelity has the form

√
F(ρ, σ ) = 1

2 inf
H

(Tr[e−Hρ] + Tr[eHσ ]), (15)

which coincides with the expression from Eq. (6) in [19].

III. QUANTUM NEURAL ESTIMATION OF ENTROPIES

We develop variational estimators for the entropy and mea-
sured relative entropy terms defined in the preceding section.
Our approach assumes access to a black-box procedure for
repeatedly preparing the quantum states ρ and σ . The key
idea is to parametrize the set of Hermitian operators in (11)
using a classical neural network and a quantum circuit. The
parametrization procedure, sampling step, and quantum algo-
rithm to optimize the resulting objective are described next.
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A. Measured relative entropy

Parametrization. The spectral theorem implies that any
Hermitian operator H can be decomposed as

H =
d∑

i=1

λi|λi〉〈λi|, (16)

where λ1, . . . , λd are the eigenvalues and |λ1〉, . . . , |λd〉 are
the corresponding (orthonormal) eigenvectors.

Our first step is to approximate the set of eigenvalues
using a classical neural network fw : {1, . . . , d} → R with a
parameter vector w ∈ Rp, where p ∈ N. The neural network
output fw(i), for i ∈ {1, . . . , d}, serves as a proxy for the
eigenvalue λi. We keep the architecture of the neural net (viz.,
nonlinearity, width, depth, etc.) implicit, in order to maintain
flexibility of the approach. Next we approximate the set of
eigenvectors using a parametrized quantum circuit U (θ) with
a parameter vector θ ∈ [0, 2π ]q, where q ∈ N. In practice,
the total number of neural network and quantum circuit pa-
rameters, i.e., p + q, should scale like O(poly(log d )) so that
the optimization of the ensuing VQA is efficient with respect
to the number of qubits specifying ρ and σ . See [82–84]
for a similar approach for parametrizing the set of mixed
quantum states and Eq. (3) in [82] for a similar approach to
parametrizing Hermitian operators.

The above procedure defines a set of parametrized Hermi-
tian operators, specified as

H (w, θ) =
d∑

i=1

fw(i)U (θ)|i〉〈i|U †(θ), (17)

where (w, θ) ∈ Rp × [0, 2π ]q and {|i〉}d
i=1 denotes the com-

putational basis. Using this parametrization, we approximate
the measured relative entropy from below as

DM (ρ‖σ ) � sup
w,θ

{Tr[H (w, θ)ρ] − Tr[eH (w,θ)σ ]} + 1, (18)

which follows from (3) and because {H (w, θ)}w,θ is a subset
of all d × d Hermitian operators.

To further simplify the parametrized objective and arrive
at a form that lands well for sampling on a quantum com-
puter, we define the following probability distributions on
{1, . . . , d}:

pρ

θ
(i) := Tr[|i〉〈i|U †(θ)ρU (θ)], (19)

qσ
θ (i) := Tr[|i〉〈i|U †(θ)σU (θ)]. (20)

Using (17), (19), and (20), we can write the trace terms from
the right-hand side of (18) as

Tr[H (w, θ)ρ] =
d∑

i=1

pρ

θ
(i) fw(i), (21)

Tr[eH (w,θ)σ ] =
d∑

i=1

qσ
θ (i)e fw (i), (22)

where (22) follows because

eβH (w,θ) =
d∑

i=1

eβ fw (i)U (θ)|i〉〈i|U †(θ) (23)

for all β ∈ R. Inserting (21) and (22) into the right-hand side
of (18) yields an objective function that is readily estimated
using a quantum computer, as described next.

Sampling. We use a quantum computer to sample from the
distributions pρ

θ
and qσ

θ . As the procedures are similar, we
only describe the steps for the former. We prepare the state
ρ, act on it with the parametrized unitary U †(θ), and then
measure in the computational basis to obtain a sample from
pρ

θ
. Repeating this process n times for each distribution, we

obtain the samples i1(θ), . . . , in(θ) and j1(θ), . . . , jn(θ) from
pρ

θ
and qσ

θ , respectively. With that, we approximate the trace
values in (21) and (22) by sample means, to arrive at the
objective

Ln(w, θ) := 1 + 1

n

n∑
	=1

fw(i	(θ)) − 1

n

n∑
	=1

e fw ( j	(θ)), (24)

and the resulting estimator is thus

D̂n
M : sup

w,θ

Ln(w, θ). (25)

Algorithm. We present a VQA for performing the opti-
mization in (25). The algorithm uses the parameter-shift rule
[85–87] to update the quantum circuit parameters and stan-
dard backpropagation [88] to update the weights of the neural
network. The pseudocode of our algorithm is as follows.

ALGORITHM 1. VQA for estimating measured relative
entropy.

1: Input: number of iterations K , learning rate η, number of
samples n, and quantum circuits that prepare ρ and σ .

2: w1 ← Random initialization in Rp.
3: θ1 ← Random initialization in [0, 2π ]q.
4: for k ∈ {1, 2, . . . , K} do
5: Evaluate ∇θLn(wk, θk ) using the parameter-shift rule.
6: θk+1 ← θk + η∇θLn(wk, θk ).
7: Evaluate ∇wLn(wk, θk ) using backpropagation.
8: wk+1 ← wk + η∇wLn(wk, θk ).
9: Output: Ln(wK+1, θK+1) as an estimate of DM (ρ‖σ ).

B. von Neumann entropy

The von Neumann entropy H (ρ) can be estimated via a
similar approach by appealing to (6) (in this context, see also
Eq. (21) in [82]). This leads to the upper bound

H(ρ) � ln d − 1 − sup
w,θ

{Tr[H (w, θ)ρ] − Tr(eH (w,θ)πd )},
(26)

and we thus take the estimator to be

Ĥn : ln d − 1 − sup
w,θ

(
1

n

n∑
	=1

fw(i	(θ)) − 1

n

n∑
	=1

e fw ( j̃	(θ))

)
,

(27)

where j̃	(θ), . . . , j̃	(θ) are samples from the distribution q̃θ ,
with

q̃θ (i) : q Tr[|i〉〈i|U †(θ)πdU (θ)] = 1

d
. (28)
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Given that the distribution q̃θ is simply the uniform distri-
bution, a quantum computer is not required to sample from
it, and so the term 1

n

∑n
	=1 e fw ( j̃	(θ)) in (27) can be evaluated

exclusively by a classical sampling approach.

C. Measured Rényi relative entropy

We estimate the measured Rényi relative entropy via a
similar approach using the variational representation in (8). A
few minor modifications to the steps in Sec. III A are required,
as delineated next. Using the parametrization of Hermitian
operators given in (17), we obtain the variational lower bound

DM,α (ρ‖σ )

� sup
w,θ

(
α

α − 1
ln Tr[e(α−1)H (w,θ)ρ] − ln Tr[eαH (w,θ)σ ]

)
.

(29)

With the same definitions of the distributions pρ

θ
and qσ

θ as
in (19) and (20) and using (23), we rewrite the trace terms in
(29) as

Tr[e(α−1)H (w,θ)ρ] =
d∑

i=1

pρ

θ
(i)e(α−1) fw (i), (30)

Tr[eαH (w,θ)σ ] =
d∑

i=1

qσ
θ (i)eα fw (i). (31)

Following the same sampling step as in Sec. III A, we approx-
imate the expected values in (31) and (32) by sample means
and arrive at the estimator

D̂n
M,α : sup

w,θ

Ln
α (w, θ), (32)

where

Ln
α (w, θ) := α

α − 1
ln

1

n

n∑
k=1

e(α−1) fw (ik (θ))

− ln
1

n

n∑
k=1

eα fw ( jk (θ)). (33)

D. Rényi entropy

We briefly state the variational estimator for the Rényi
entropy. From (11), along with our parametrization procedure,
we obtain

Hα (ρ) � ln d − sup
w,θ

(
α

α − 1
ln Tr[e(α−1)H (w,θ)ρ]

− ln Tr[eαH (w,θ)πd ]

)
. (34)

The estimator that results from replacing expectations with
sample means is thus

Ĥn
α : − ln d − sup

w,θ

(
α

α − 1
ln

1

n

n∑
k=1

e(α−1) fw (ik (θ))

− ln
1

n

n∑
k=1

eα fw ( j̃k (θ))

)
, (35)

where j̃	(θ), . . . , j̃	(θ) are samples from the uniform distribu-
tion. As in the case of estimating the von Neumann entropy, a
quantum computer is not required to sample from the uniform
distribution, and so the term 1

n

∑n
k=1 eα fw ( j̃k (θ)) above can be

evaluated using a classical sampling approach.

E. Root fidelity

Finally, we estimate the root fidelity
√

F(ρ, σ ) via a similar
approach using the variational representation in (15). Employ-
ing the same parametrization of Hermitian operators given in
(17), we obtain the variational upper bound√

F(ρ, σ ) � 1
2 inf

w,θ
{Tr[e−H (w,θ)ρ] + Tr[eH (w,θ)σ ]} (36)

and then rewrite the trace terms as

Tr[e−H (w,θ)ρ] =
d∑

i=1

pρ

θ
(i)e− fw (i), (37)

Tr[eH (w,θ)σ ] =
d∑

i=1

qσ
θ (i)e fw (i), (38)

where pρ

θ
and qσ

θ are given in (19) and (20). Following the
same sampling step as in Sec. III A, we approximate the
expected values in (36) and (37) by sample means and arrive
at the estimator for the root fidelity

F̂n : − inf
w,θ

Ln
F (w, θ), (39)

where

Ln
F (w, θ) := 1

2n

n∑
k=1

(e− fw (ik (θ)) + e fw ( jk (θ))). (40)

Remark. Let us compare out VQA to existing variational
estimators. Alternative variational methods for estimating fi-
delity have been proposed recently [89,90]. Some of the
methods rely on Uhlmann’s theorem [80], which involves a
maximization. However, those approaches require purifica-
tions of the states ρ and σ in order to estimate their fidelity.
Since state purifications are not easily attainable from sam-
ples, the fact that our algorithm avoids this need represents
an advantage. Another variational method was proposed in
Algorithm 7 in [90]. While this algorithm does not require
purifications, the estimator employed there for the objective
function is biased. Our approach, on the other hand, estimates
the objective function from the right-hand side of (35) in an
unbiased fashion, as given in (39).

IV. IMPLEMENTATION AND EXPERIMENTS

We numerically simulate our quantum neural estimation
algorithm and assess its accuracy for estimating the mea-
sured relative entropy, von Neumann entropy, measured Rényi
relative entropy, and Rényi entropy. For each quantity, we
benchmark the performance against an estimator that avoids
the use of a classical neural network and instead explicitly
stores the eigenvalues. The latter approach is more expressive
than the former; however, storing all eigenvalues is infeasible
for systems with a large number of qubits. The quantum neural
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estimation approach circumvents this overhead by parametriz-
ing the eigenvalues with a reasonably sized classical neural
network. The comparison between the two approaches aims
to surface the potential performance loss that results for the
neural net parametrization, but no noticeable drop in perfor-
mance is seen in our simulations. For our simulations, we use
PENNYLANE’s default qubit as our quantum circuit simulator
[91]. We next describe our methodology and then follow with
the results.

A. Methodology

All our simulations follow the approach described below.
Preparing input quantum states. We consider examples

for which the input states are either two-qubit or six-qubit
mixed states. This is to give a sense of how the algorithms
scale with the number of qubits. To prepare these input
mixed states, we first prepare purifications thereof and then
trace out the reference systems. Formally, let ρS be a mixed
state of a system S and let |ψ〉〈ψ |RS be a purification of ρS

such that TrR[|ψ〉〈ψ |RS] = ρS , where R is a reference system.
For our purposes, it is sufficient to consider the reference
system to have the same dimension as the system, that is,
in order to prepare a six-qubit mixed state, we prepare its
12-qubit purification. Overall, with this approach, we gen-
erate four input instances (a pair of two-qubit mixed states
and a pair of six-qubit mixed states) for each quantity of
interest.

Parametrized quantum circuits. Our algorithm samples
from certain distributions by applying a quantum circuit U †(θ)
to the input state [cf., e.g., (19)]. We use PENNYLANE’s
qml.RandomLayers subroutine to prepare a parametrized
quantum circuit with a random structure and then keep
this structure fixed throughout multiple runs of a specific
simulation. We only change the structure when it is not
sufficiently expressive, in the sense that the set of gener-
ated unitaries is not comparable to the set of all unitaries.
The qml.RandomLayers subroutine creates a parametrized
quantum circuit with multiple layers, each built by randomly
selecting a subset of qubits and applying single-qubit or
two-qubit parametrized quantum gates to them. For a two-
qubit example, we use three layers, each with three to four
parametrized quantum gates, for a total of 9 to 12 parameters.
For a six-qubit example, we use five layers, each with three
to four parametrized quantum gates, for a total of 15 to 20
parameters. To evaluate the gradient of a given cost function
with respect to these parameters, we use the parameter-shift
rule [85–87].

Classical neural network. The neural estimator uses a
classical neural network to parametrize eigenvalues of Hermi-
tian observables. For our simulations, we consider a 2-10-1
fully connected architecture with sigmoidal activations for
two-qubit examples and a 6-30-1 fully connected architec-
ture with sigmoidal activations for six-qubit examples. Here
2 and 1 are the input and output dimensions, respectively,
for the two-qubit examples, and similarly, 6 and 1 are the
input and output dimensions for the six-qubit examples. A
sigmoid is not applied at the output since it restricts the values
to [0,1], while the eigenvalues that the neural networks aim
to approximate may be outside this interval. Gradients are

evaluated using the PYTORCH automatic differentiation sub-
routine torch.autograd.

Number of runs. We estimate expectations of the form Tr[·],
which appear in the objective functions of our quantities,
using sample means (cf., e.g., (21) or (22)). We find that 100
samples suffice for our experiments, and so we use that sample
size throughout. We plot the mean (solid or dotted line) and
standard deviation (shaded area) of each experiment over ten
runs.

B. Results

The simulation results for two-qubit and six-qubit exam-
ples are shown in Figs. 1 and 2, respectively.

von Neumann entropy. Figures 1(a) and 2(a) show that our
estimator, both with and without the neural network, accu-
rately retrieves the von Neumann entropy with only a small
error. We note, however, that the convergence rate is quite
slow in this case, as it takes around 600 and 2000 epochs
to come within 1% error of the ground truth for two-qubit
and six-qubit examples, respectively. To evaluate the ground
truth, we use the closed-form expression of the von Neumann
entropy in (4).

Measured relative entropy. Figures 1(b) and 2(b) plot the
quantum neural estimation error curves for the case of mea-
sured relative entropy. To compute the ground truth, we use
the fact that the measured relative entropy is equal to the
quantum relative entropy when the quantum states are positive
definite and commute with each other (see Proposition 5 in
[20]). This perspective allows us to work around the issue that
there is no closed-form expression for the measured relative
entropy and use that for quantum relative entropy instead:

D(ρ‖σ ) := Tr[ρ(ln ρ − ln σ )]. (41)

Rényi entropy. Figures 1(c) and 2(c) present simulations for
the Rényi entropy of orders α = 2.5 and 1.05, respectively.
The closed-form expression from (9) is used to compute the
ground truth. Again, we observe that the neural estimator
converges fast and accurately recovers the true Rényi entropy
value.

Root fidelity. We simulate quantum neural estimation of
the root fidelity [see (15)] and show the results in Figs. 1(d)
and 2(d). The ground truth fidelity value is computed from
(13). We see that the model that employs the neural network
approaches the ground truth faster than the one that directly
optimizes the eigenvalues. For the second instance shown in
Fig. 1(d), the neural estimator fluctuates around the ground
truth from the onset, while the estimator without the neural
net approaches it from above. This effect persists in repeated
runs of the simulation.

Measured Rényi relative entropy. Figures 1(e) and 2(e)
plot the quantum neural estimation error curves for the case
of measured Rényi relative entropy with α = 2.5 and 1.05,
respectively. To compute the ground truth, we use the fact
that the measured Rényi relative entropy is equal to the sand-
wiched Rényi relative entropy when the quantum states are
positive definite and commute with each other (see Theorem
6 in [20]). This perspective allows us to get around the fact
that there is no closed-form expression for measured Rényi
relative entropy and instead use that of sandwiched Rényi
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FIG. 1. Two-qubit examples. Convergence of the quantum neural estimation algorithm is shown for the (a) von Neumann entropy,
(b) measured relative entropy, (c) Rényi entropy (α = 2.5), (d) root fidelity, and (e) measured Rényi relative entropy (α = 2.5). Two input
instances are generated at random for each of these quantities. For each instance, results are presented both with (blue) and without (purple)
the classical neural network approximation of eigenvalues. Each solid or dotted line shows the mean value of the estimate, the shaded region
represents the standard deviation, and the dashed line shows the ground truth. PYTHON source files for reproducing these plots are available in
the Supplemental Material [92].
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FIG. 2. Six-qubit examples. Convergence of the quantum neural estimation algorithm is shown for the (a) von Neumann entropy,
(b) measured relative entropy, (c) Rényi entropy (α = 1.05), (d) root fidelity, and (e) measured Rényi relative entropy (α = 1.05). Two input
instances are generated at random for each of these quantities. For each instance, results are presented both with (blue) and without (purple)
the classical neural network approximation of eigenvalues. Each solid or dotted line shows the mean value of the estimate, the shaded region
represents the standard deviation, and the dashed line shows the ground truth. PYTHON source files for reproducing these plots are available in
the Supplemental Material [92].
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relative entropy:

D̃α (ρ‖σ ) := 1

α − 1
ln Tr[(σ (1−α)/2αρσ (1−α)/2α )α]. (42)

V. CONCLUDING REMARKS AND FUTURE WORK

This work proposed a quantum neural estimation algorithm
for estimating quantum information measures, spanning vari-
ous entropies and measured relative entropies. Our estimator
utilizes parametrized quantum circuits and classical neural
networks to approximate a variational form of the measure
of interest, which enables efficient estimation by sampling
and optimization. Numerical experiments that validate the
accuracy of the proposed approach on two-qubit and six-qubit
settings were provided. Scalability of this approach to larger
instances and extensions to other quantum entropies and di-
vergences are important future avenues that we briefly discuss
below. It is also of interest to obtain formal performance
guarantees for our VQA in terms of its runtime and copy
complexity, i.e., the number of quantum states required for
the algorithm to achieve a given accuracy.

Scalability and the barren-plateau problem. To achieve the
desired scalability, one would have to overcome the barren-
plateau problem [93]. It refers to the phenomenon that the
gradients of a cost function with respect to the quantum circuit
parameters in VQAs tend to become exponentially small as
the circuit depth and the number of qubits grow. This can
have a significant impact on the performance and scalability
of VQAs, limiting their ability to find optimal solutions ef-
ficiently. Addressing the barren-plateau problem is an active
area of research, and various heuristic approaches towards
mitigating its impact have been proposed [94–98]. In particu-
lar, we think that the approach of [97] is quite promising for
overcoming the barren-plateau problem. The authors of [97]
considered the variational quantum eigensolver problem and
searched for an initial state by means of a classical tensor-
network approach. They then used this pretrained state as
an initialization for a variational quantum algorithm. These
authors gave numerical evidence that this approach avoids the
barren-plateau problem for examples consisting of up to 100
qubits. It is an important open question to determine how to
apply the method of [97] to quantum neural estimation of
entropies. The main difference between our setting and that
of [97] is that the states ρ and σ are provided in sample form
on a quantum computer, and so it is not clear how to simulate
the measurement of observable expectations classically and
efficiently via tensor networks.

In the present paper, we did not explicitly investigate
the presence of barren plateaus in the context of our quan-
tum neural estimation algorithm. Even though our numerical
simulations show good performance, they do not involve
sufficiently many qubits for observing barren plateaus. We
speculate that the presence of a classical neural network may
help to alleviate the barren-plateau problem. This is due to
the fact that the cost functions considered in this work are
dependent not only on the quantum circuit parameters but also
on the neural network parameters. As a result, while gradi-
ents with respect to quantum circuit parameters may vanish
exponentially with the number of qubits, this may not be the
case for gradients with respect to neural network parameters

(which are independent of the number of qubits and the type
of parametrized quantum circuit used). We leave for future
work an in-depth study of this possibility and generally of
the optimization landscapes. In addition, we plan to explore
potential restrictions and formal limitations that may result
from barren plateaus and design regularization methods to
mitigate them. A promising method towards that end is to
first use a tensor network to find a good initialization point
for the quantum circuit parameters and then run the VQA.
As mentioned above, this approach was recently shown to
provide an advantage for the variational quantum eigensolver
problem in terms of alleviating barren plateaus and improving
the algorithm runtime [97].

Full-state tomography and performance guarantees. An
appealing research avenue is to gauge how efficient quantum
neural estimation is in comparison to an algorithm that esti-
mates the state via tomography and then computes entropy
based on the estimate. When the dimension of the states is
small, as in the numerical examples presented herein, we
anticipate that full-state tomography is more efficient than
quantum neural estimation since the former does not require
an optimization over classical or quantum circuit parameters.
However, we expect that when the dimension is moderate to
large, quantum neural estimation will be more efficient than
tomography-based approaches. A formal comparison would
require establishing the copy complexity of quantum neu-
ral estimation along with its associated runtime. A plausible
approach for obtaining an upper bound on this quantity is
to first quantify the various components of the overall error,
such as approximation, estimation, and optimization errors,
in terms of the number of the copies of state used and the
circuit parameters. Then the parameters can be optimized to
minimize the error of the algorithm and its runtime. We leave
this aspect as an open question for future investigation.

Choice of Hamiltonian ansatz. The parametrization in (17)
accounts for a general Hamiltonian ansatz. More specifically,
the classical neural net and the quantum circuit parametrize
the eigenvalues and eigenvectors, respectively, of the class
of all Hermitian operators (Hamiltonians), without restrict-
ing the structure or complexity of these circuits. However,
provided additional knowledge on the underlying quantum
states, one may restrict the optimization to a smaller class
of Hamiltonians without sacrificing performance, while pos-
sibly reducing computational or statistical complexity. For
instance, if the eigenvalues or eigenvectors of considered
states are from a bounded set or a restricted class of uni-
taries, then one may consider an appropriate ansatz that
encodes this structure into the classical neural network and
parametrized quantum circuit. Constraints may also arise
organically from the considered quantum divergence. A
pertinent example is the normalized trace distance 1

2‖ρ −
σ‖1 = sup0�M�I Tr[M(ρ − σ )], in which case one may re-
strict the output of the classical neural net parametrizing
M to [0,1]. This could potentially lead to computational
and/or statistical gains, as is often observed in the classical
setting.

Other quantum relative entropies. Another important di-
rection is to extend the quantum neural estimation approach
to the relative entropy [11] and the sandwiched Rényi rela-
tive entropy [26,27], defined in (40) and (41), respectively.
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These quantities admit the following variational forms (see
[20,99,100] and [20,101], respectively):

D(ρ‖σ ) = sup
H

{Tr[Hρ] − ln Tr[exp(H + ln σ )]} (43)

= sup
H

{Tr[Hρ] − Tr[exp(H + ln σ )]} + 1, (44)

D̃α (ρ‖σ ) = sup
H

(
α

α−1
ln Tr[Hρ]

− ln Tr[(H1/2σ (α−1)/αH1/2)α/(α−1)]

)
. (45)

The difficulty in estimating these objective functions has to do
with the second terms in (42)–(44), due to noncommutativity.
A possible approach for evaluating the second term in (43) is
to employ the Lie-Trotter product formula, which implies

Tr[exp(H + ln σ )] = lim
	→∞

Tr[(eH/	σ 1/	)	]. (46)

To realize (a finite approximation of) the right-hand side of
(45), one could employ a variant of multivariate trace estima-
tion [102] along with quantum singular value transformation
[103] as a means to realize fractional powers of the density
operator σ from block encodings of it. This exploration as
well as the associated error analysis is left for future work.

An alternative approach could use the relations between the
measured and unmeasured quantities [104],

DM (ρ‖σ ) � D(ρ‖σ ) � DM (ρ‖σ ) + 2 ln |spec(σ )|, (47)

DM,α (ρ‖σ ) � D̃α (ρ‖σ ) � DM,α (ρ‖σ ) + 2 ln |spec(σ )|,
(48)

with the latter holding for all α ∈ (0, 1) ∪ (1,∞). In the
above, spec(σ ) denotes the set of distinct eigenvalues of σ .
Now, for n ∈ N, using the fact that |spec(σ⊗n)| � (n + 1)d−1,
as well as the additivity of the unmeasured relative entropies,
we obtain∣∣∣∣DM (ρ⊗n‖σ⊗n)

n
− D(ρ‖σ )

∣∣∣∣ � 2(d − 1)

n
ln(n + 1), (49)∣∣∣∣DM,α (ρ⊗n‖σ⊗n)

n
− D̃α (ρ‖σ )

∣∣∣∣ � 2(d − 1)

n
ln(n + 1).

(50)

We can then rewrite (3) and (8) as

DM (ρ⊗n‖σ⊗n)

= sup
ω(n)>0

{Tr[(ln ω(n) )ρ⊗n] − Tr[ω(n)σ⊗n]} + 1, (51)

DM,α (ρ⊗n‖σ⊗n)

= sup
ω(n)>0

(
α

α − 1
ln Tr[(ω(n) )(α−1)/αρ⊗n] − ln Tr[ω(n)σ⊗n]

)
.

(52)

It follows from operator concavity of x �→ ln x and x �→
x(α−1)/α for α > 1, the operator convexity of x �→ x(α−1)/α for
α ∈ (1/2, 1), and the permutation invariance of the tensor-
power states ρ⊗n and σ⊗n that in (50) and (51) it suffices
to optimize only over permutation invariant observables ω(n).

This significantly simplifies the optimization since the pa-
rameter space occupied by permutation invariant observables
grows only polynomially in the number of copies n (this is
related to some recent observations of geometric quantum
machine learning [105,106]). However, in spite of this reduc-
tion, the error bounds in (48) and (49) scale as d/n, and thus
the number of copies n must be larger than the dimension d
to obtain a good approximation. As d is exponential in the
number of qubits, this approach may not be feasible, and new
ideas are needed to address this problem.
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APPENDIX: CONNECTION TO THE
DONSKER-VARADHAN FORMULA FOR RELATIVE

ENTROPY AND NEURAL ESTIMATION
OF RELATIVE ENTROPY

It is worthwhile to note the connection between the varia-
tional formulas for measured relative entropy in (2) and (3)
and the Donsker-Varadhan (DV) formula for the classical
relative entropy of two probability distributions p and q on
{1, . . . , d}. For the latter, see Lemma 2.1 in [74] and Lemma
1 and Eq. (8) in [75]. Based on this connection, we also
note here an additional interpretation of our neural quantum
estimation approach for estimating measured relative entropy,
namely, our approach can be understood as the parametrized
quantum circuit searching for the optimal measurement to
perform and the classical neural network searching for the
optimal function in the DV formula.

To begin with, let us recall the definition of the classical
relative entropy

D(p‖q) :=
d∑

i=1

p(i) ln

(
p(i)

q(i)

)
. (A1)

The DV variational formula for D(p‖q) is

D(p‖q) = sup
f

(
d∑

i=1

p(i) f (i) − ln
d∑

i=1

q(i)e f (i)

)
(A2)

= sup
f

(
d∑

i=1

p(i) f (i) −
d∑

i=1

q(i)e f (i)

)
+ 1, (A3)

where the supremum is over all functions f : {1, . . . , d} →
R. By including an optimization over all rank-one projective
measurements, the measured relative entropy can thus be writ-
ten as

DM (ρ‖σ ) = sup
P

D(pP‖qP ), (A4)
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where P := {|φi〉〈φi|}d
i=1 denotes a rank-one projective mea-

surement, i.e., such that 〈φi|φ j〉 = δi j and
∑d

i=1 |φi〉〈φi| = I ,
and

pP := Tr[|φi〉〈φi|ρ], qP := Tr[|φi〉〈φi|σ ]. (A5)

Theorem 2 of [20] established the fact that it suffices to restrict
the optimization in (A4) to rank-one projective measurements.
For every orthonormal basis {|φi〉}d

i=1, there is a unitary U
that relates it to the computational basis, i.e., |φi〉 = U |i〉
for all i ∈ {1, . . . , d}. As such, the optimization in (A4) is
equivalent to

DM (ρ‖σ ) = sup
U

D(pU ‖qU ), (A6)

where

pU := Tr[|i〉〈i|U †ρU ], qU := Tr[|i〉〈i|U †σU ]. (A7)

Then plugging into (A2) and (A3), we find that

DM (ρ‖σ ) = sup
U

sup
f

(
d∑

i=1

pU (i) f (i) − ln
d∑

i=1

qU (i)e f (i)

)

= sup
U

sup
f

(
d∑

i=1

pU (i) f (i) −
d∑

i=1

qU (i)e f (i)

)
+ 1.

(A8)

Let us define

H =
d∑

i=1

f (i)U |i〉〈i|U † (A9)

and observe that
d∑

i=1

pU (i) f (i) =
d∑

i=1

f (i) Tr[|i〉〈i|U †ρU ] (A10)

= Tr

[
d∑

i=1

f (i)U |i〉〈i|U †ρ

]
(A11)

= Tr[Hρ], (A12)
d∑

i=1

qU (i)e f (i) =
d∑

i=1

e f (i) Tr[|i〉〈i|U †σU ] (A13)

= Tr

[
d∑

i=1

e f (i)U |i〉〈i|U †σ

]
(A14)

= Tr[eHσ ]. (A15)

Then by inspecting (A8)–(A15) and using the fact that every
Hermitian operator can be written as in (A9), we note that
the above is an alternate derivation of the formulas in (2) and
(3). This alternate derivation instead uses the DV formula as a
starting point. Indeed, one can also make this observation and
connection by inspecting the proof of Lemma 1 in [20].

Now comparing (A8) and (18)–(22), we see that the
parametrized optimization in (18) is equivalent to optimiz-
ing over parametrized unitaries in order to find the optimal
measurement and optimizing over parametrized functions ac-
cording to the DV formula. Thus, our development here
shows that our approach for quantum neural estimation of the
measured relative entropy is equivalent to using classical
neural estimation according to the DV formula combined
with a parametrized quantum circuit to find the optimal
measurement.
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