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Time evolution of entangled Bell states in coupled quantum dots in the presence of fluctuations
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We analyze the dynamics of two-qubit entangled Bell states in coupled quantum dots (QDs) in the presence
of both fluctuations and coherent electron hopping between the dots. The explicit expression for time-dependent
probability to find the system in the different Bell states was obtained for various initial conditions by means
of Keldysh diagram technique. It was revealed that time evolution of one pair of Bell states and its decay
rate strongly differs from another one. It was demonstrated that one pair of Bell states is more robust against
fluctuations than another one. The stationary occupation of Bell states for different initial conditions was also
analyzed. Obtained results are important for the problems where long-living Bell states are needed such as the
security of quantum communication and quantum information processing.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) are promising objects
for the scalable quantum information processing using the lo-
calized electrons and spins as qubits [1,2]. So, among the most
important problems in the present-day solid-state physics is
the controllable formation, manipulation, and read out of
entangled states [3–7]. Entangled states open the possibility
to organize safe dense coding [8], secure quantum commu-
nication [9], quantum key distribution [10], and quantum
teleportation [11]. Coupled QDs seem to be very perspective
for single- and two-electronic states initialization, processing,
and read out with high accuracy [12–19]. Experimentally, en-
tangled states in correlated QDs can be controlled by external
gate voltage [20,21] or by external laser pulses [22,23]. Recent
experiments also demonstrate that spin system of a semicon-
ductor QD is a promising platform for long-distance quantum
communications [24–27]. However, kinetics of charge and
spin states in QDs is strongly affected by fluctuations caused
by electron-phonon interaction, fluctuation of external field,
and Coulomb correlations [28–41]. It should be noted that
interaction with environment is extremely important for quan-
tum computation as it strongly influences the dynamics and
stability of entangled states.

Single- and two-qubit states are affected by both envi-
ronmental fluctuations and fluctuations within the system
caused by the presence of interparticle interaction. As a
result, the presence of noise often reduces the probability
to find the system in its initial entangled state. Moreover,
noise usually reduces qubit’s readout [42–44]. Experimen-
tal investigations of QDs systems demonstrated rather strong
noise even at low cryogenic temperatures [45–48]. The fluc-
tuations can be caused by classical stochastic processes as
well as by quantum effects [49–52]. For example, in real
systems noise can be caused by electron-phonon interaction
or by the presence of the external field fluctuations. Noise
correlation functions can be quite different varying from

the white noise (δ correlated) to the power-law decreasing
correlations.

In the present paper the stability of single- and entangled
two-qubit states in the coupled QD is analyzed theoretically.
We consider the situation when QD’s energy levels fluctuate
due to the interaction with the environment. Direct calcula-
tions of time-dependent probability to find the system in its
initial state are presented. It was found that the decay law
considerably differs for various types of initial Bell states.

II. THEORETICAL MODEL AND MAIN RESULTS

A. Model of the system

We consider two coupled single-level QDs with inde-
pendently fluctuating energy levels and coherent hopping of
electrons between them. Spin-up σ and spin-down −σ elec-
trons could be localized in each QD. Such model describes
two-qubit system affected by noise. The Hamiltonian of the
system reads

Ĥ =
∑

σ

[T (ĉ†
1σ ĉ2σ + ĉ†

2σ ĉ1σ ) + ξ1(t )ĉ†
1σ ĉ1σ + ξ2(t )ĉ†

2σ ĉ2σ ],

(1)

where operator ĉ†
1(2)σ corresponds to the electron creation in

the first (second) QD. Coherent transitions are described by
amplitude T and ξi(t ) corresponds to the presence of white
noise caused by fluctuations of energy levels 1 and 2 in QDs
with correlation function 〈ξ1(2)(t )ξ1(2)(t ′)〉 = Qδ(t − t ′) and
〈ξ1(2)(t )ξ2(1)(t ′)〉 = 0.

At the initial time moment different types of Bell states can
be prepared in the QDs. Further we will analyze two types of
Bell states:

|�±(0)〉 = |1〉σ |2〉−σ ± |1〉−σ |2〉σ√
2

,

|�±(0)〉 = |1〉σ |1〉−σ ± |2〉σ |2〉−σ√
2

. (2)
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Modern technology allows to form electrically induced
coupled QDs by means of electrostatic gates, which pre-
cisely control energy levels, heights of tunnel barriers, and
the strength of exchange interaction [24–27]. Initial states
|�±(0)〉 can be prepared for deep energy levels by means
of adiabatic switching of exchange interaction, varying both
detuning between the QDs energy levels and tunnel-barriers
height. Such procedure allows to form singlet state |�−(0)〉.
Triplet state |�+(0)〉 can be obtained from the singlet state
|�−(0)〉 by a π/2 pulse of a gradient magnetic field Bz applied
between the dots.

Initial states |�±(0)〉 can be obtained from the state with
two electrons localized in one of the QDs in the absence
of coupling between them. Applying gate voltage the barrier
height between the dots could be decreased. So, one can get
the strong hopping regime, when coherent hopping ampli-
tude significantly exceeds the noise amplitude. Switching off
coherent electron transitions between QDs during the time
interval τ0 = π/4 · T with a particularly chosen phase results
in the formation of |�±(0)〉 states. Further, the barrier height
should be increased adiabatically, driving the system to the
state |�±(0)〉, corresponding to small coherent hopping and
strongly fluctuating energy levels.

B. Time evolution of a single-qubit state

Let us first consider time evolution of a single-qubit state.
Further, for simplicity we will omit index σ . If at the ini-
tial time moment the electron is localized in the QD 1, the
initial-state wave function reads |ψ (0)〉 = |1〉 (in the sec-
ond quantization representation the initial state reads |1〉 =
c†

1|vac〉). The probabilities P11 and P12 to find an electron
during time evolution in QD 1 or in QD 2 can be written in
the second quantization representation

P11(12) = 〈〈ĉ1σ (t )ĉ†
1(2)σ (0)〉〈ĉ1(2)σ (0)ĉ†

1σ (t )〉〉ξ . (3)

Using Green-functions formalism one can rewrite Eq. (3) in
the following form

P11 = 〈G>
11(t, 0)G>

11(0, t )〉ξ
=

∫
dω

∫
d�

2π

〈
GR

11(� + ω)GA
11�)

〉
ξ
e−iωt ,

P21 = 〈G>
21(t, 0)G>

12(0, t )〉ξ
=

∫
dω

∫
d�

2π

〈
GR

21(� + ω)GA
12�)

〉
ξ
e−iωt . (4)

The presence of white noise leads to the appearance of only
diagonal self-energy parts �

R(A)
ii in the averaged Green func-

tions in zero order in T . The diagrams contributing to the
self-energy parts are shown in Fig. 1.

�
R(A)
ii (t, t ′) = ∓iQδ(t − t ′),

�
R(A)
i j (t, t ′) = 0. (5)

Diagrams with crossing-noise correlation functions vanish for
the white noise. So, white noise results only in � renormal-
ization, i.e., � → � ± iQ.

〈
G0R(A)

ii (�)
〉
ξ

= 1

� ± iQ
. (6)

FIG. 1. Diagrams contributing to the zero order in T Green func-
tions 〈G0R(A)

ii (�)〉ξ .

Retarded and advanced Green functions were obtained
in a usual way from Dyson equations, considering the first
(hopping) term in the Hamiltonian Eq. (1) as a perturbation.
Zero-order Green functions are determined by Eq. (6). So,
one can get the following expressions for 〈GR(A)

11 (�)〉ξ and
〈GR(A)

12 (�)〉ξ :

〈
GR(A)

11 (�)
〉
ξ

= 〈
GR(A)

22 (�)
〉
ξ

= � ± iQ

(� ± iQ)2 − T 2
,

〈
GR(A)

12 (�)
〉
ξ

= 〈
GR(A)

21 (�)
〉
ξ

= T

(� ± iQ)2 − T 2
. (7)

Further we omit index ξ and averaging over ξ is included in
the angle-brackets symbol 〈〉ξ ≡ 〈〉. To get an expression for
P11 one should calculate∫

d�
〈
GR

11(22)(� + ω)GA
11(22)(�)

〉 = K1111 + K1221

= 1

2
(KX + K̄Y ), (8)

where K = K11 + K12, K̄ = K11 − K12 and X = 11 + 21,
Y = 11 − 21 with

K11(12) =
∫

d�

2π

〈
GR

11(12)(� + ω)
〉〈

GA
11(12)(�)

〉
. (9)

Exact expressions for K11 and K12 read

K11 = (ω + 2iQ)2 − 2T 2

(ω + 2iQ)[(ω + 2iQ)2 − 4T 2]
= K22,

K12 = −2T 2

(ω + 2iQ)[(ω + 2iQ)2 − 4T 2]
= K21. (10)

Polarization operators 11 and 21 for white noise are de-
termined by the ladder diagrams shown in Fig. 2. Thus,
polarization operators satisfy the following equations:

11 = 1 + 2iQK1111 + 2iQK1221,

21 = 1 + 2iQK2221 + 2iQK2111. (11)

These equations can be rewritten in X and Y terms in the
following way:

X = 1 + 2iQKX,

Y = 1 + 2iQK̄Y. (12)

Using equations for K11 and K12 one can get K and K̄ :

K = 1

ω + 2iQ
,

K̄ = (ω + 2iQ)

(ω + 2iQ)2 − 4T 2
. (13)
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FIG. 2. Ladder diagrams contributing to the polarization operators i j .

So, explicit expressions for X and Y read

X = ω + 2iQ

ω
,

Y = (ω + 2iQ)2 − 4T 2

ω(ω + 2iQ) − 4T 2
. (14)

Let us further consider the following notation∫
d�

〈
GR

i j (� + ω)GA
kl (�)

〉 ≡ 〈
GR

i jG
A
kl

〉
ω
. (15)

To get the probability time evolution to find an electron in the
QD 1, one should calculate an expression

P11(t ) =
∫

dω

2π

〈
GR

11GA
11

〉
ω

e−iωt . (16)

Using expressions for K , K̄ , X , and Y one can get a direct
expression for 〈GR

11GA
11〉ω:

〈
GR

11GA
11

〉
ω

= 1

2
(KX + K̄Y )

= 1

2

(
1

ω
+ ω + 2iQ

ω(ω + 2iQ) − 4T 2

)
. (17)

Analogously, the probability time evolution to find an electron
in the QD 2 can be written as

P21(t ) =
∫

dω

2π

〈
GR

12GA
21

〉
ω

e−iωt , (18)

with
〈
GR

12GA
21

〉
ω

= 1

2
(KX − K̄Y )

= 1

2

(
1

ω
− ω + 2iQ

ω(ω + 2iQ) − 4T 2

)
. (19)

From Eqs. (16)–(19) one can get the time-dependent proba-
bility to find the system in the same initial state P11 and the
probability to find the system in the state 2 (P21), if it was
initially in the state 1:

P11(t ) = 1

2
+ 1

2

[(
1 + T 2

Q2

)
e− 2T 2t

Q − T 2

Q2
e−2Qt

]
= 1 + x

2
,

P21(t ) = 1

2
− 1

2

[(
1 + T 2

Q2

)
e− 2T 2t

Q − T 2

Q2
e−2Qt

]
= 1 − x

2
.

(20)

Solid and dashed black curves in Fig. 3 demonstrate the
probability time evolution for a single qubit state to find the
system in the state 1 or 2 if it was initially in the state 1
in the presence of noise. For the initial state |s(a)〉 = |1〉±|2〉√

2
the probability to find the system in its initial state s(a) is
defined similar to Eq. (3) by substituting 1 ↔ s and 2 ↔ a.
Taking into account relation cs(a)σ = c1σ ±c2σ√

2
and using second

quantization representation one can find by means of Keldysh
diagram technique

Pss(t ) = 1

4
〈(G>

11(t, 0) + G>
22(t, 0) + G>

21(t, 0) + G>
12(t, 0))

× (G>
11(0, t ) + G>

22(0, t ) + G>
21(0, t ) + G>

12(0, t ))〉.
(21)

From expressions (7) one can directly get
∫

d�
[〈

GR
11(�)

〉〈
GA

12(� + ω)
〉

+〈
GR

12(�)
〉〈

GA
11(� + ω)

〉] = 0. (22)

FIG. 3. Probability to find the system in the state 1 (s) or 2 (a) if it
was initially in the state 1 (s) [P11(ss)(t ) and P21(as)(t ) correspondingly]
in the presence of noise. Solid and dashed black curves are obtained
over Eq. (20), solid and dashed red curves are obtained over Eq. (29).
Parameter T = 0.2Q is equal for all the curves.
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Thus the Fourier amplitude of Pss(t ) can be written as

Pss(ω) = 1
4

[〈
GR

11GA
11

〉
ω

+ 〈
GR

22GA
22

〉
ω

+ 〈
GR

12GA
21

〉
ω

+ 〈GR
21GA

21〉ω
]

+ 1
4

[〈
GR

11GA
22

〉
ω

+ 〈
GR

22GA
11

〉
ω

+ 〈
GR

12GA
12

〉
ω

+ 〈
GR

21GA
21

〉
ω

]
. (23)

From Eqs. (17)–(19) one can obtain

1

4

[〈
GR

11GA
11

〉
ω

+ 〈
GR

22GA
22

〉
ω

+ 〈
GR

12GA
21

〉
ω

+ 〈
GR

21GA
21

〉
ω

] = 1

2ω
.

(24)

Fourier transform of Eq. (24) has the form

1

4

∫ [〈
GR

11GA
11

〉
ω

+ 〈
GR

22GA
22

〉
ω

+〈
GR

12GA
21

〉
ω

+ 〈
GR

21GA
21

〉
ω

]
eiωt dt = 1

2
. (25)

As 〈ξ1(t )ξ2(t ′)〉 = 0 ladder diagrams do not appear for the
correlation function 〈GR

11GA
22〉ω, so

〈
GR

11GA
22

〉
ω

=
∫

d�
〈
GR

11(� + ω)
〉〈

GA
22(�)

〉

= (ω+2iQ)2 − 2T 2

(ω+2iQ)[(ω + 2iQ)2 − 4T 2]
. (26)

Analogously,

〈
GR

12GA
12

〉
ω

=
∫

d�
〈
GR

12(� + ω)
〉〈

GA
12(�)

〉

= −2T 2

(ω + 2iQ)[(ω + 2iQ)2 − 4T 2]
. (27)

From Eqs. (26)–(27) one can easily get

1

4

∫ [〈
GR

11GA
22

〉
ω

+ 〈
GR

22GA
11

〉
ω

+ 〈
GR

12GA
12

〉
ω

+〈
GR

21GA
21

〉
ω

]
e−iωt dω = 1

2
e−2Qt . (28)

Finally,

Pss(as)(t ) = 1 ± e−2Qt

2
. (29)

Solid and dashed red curves in Fig. 3 demonstrate the proba-
bility time evolution for a single qubit state to find the system
in the state s or a if it was initially in the state s in the presence
of noise.

C. Time evolution of a two-qubit state

Let us define two-qubit initial state |1〉σ |2〉−σ when elec-
tron with spin σ is localized in the first QD |1〉 and electron
with spin −σ is localized in the second QD |2〉. We consider
initial state as a superposition of state |1〉σ |2〉−σ and the “op-
posite” state when electron with spin −σ is localized in the
first QD |1〉 and electron with spin σ is localized in the second
QD |2〉: |1〉−σ |2〉σ . The corresponding wave function reads

|�±(0)〉 = |1〉σ |2〉−σ ± |1〉−σ |2〉σ√
2

. (30)

FIG. 4. Probability time evolution for a two-qubit state to find the
system in its initial state in the presence of noise. Solid and dashed
black curves are obtained over Eq. (32), solid and dashed red curves
are obtained over Eq. (36). The insert shows zoomed fidelity time
evolution at the initial stage. T = 0.2Q.

Further we will use the designation σ → + and −σ → −. In
the second quantization representation the probability to find
the system in the initial state |�±(0)〉 during time evolution
can be expressed as

F�± (t ) = 〈|〈�±(0)|�±(t )〉|2〉

= 1

4
〈(G>++

11 (t, 0)G>−−
22 (t, 0) + G>−−

11 (t, 0)G>++
22 (t, 0)

± G>++
12 (t, 0)G>−−

21 (t, 0) ± G>++
21 (t, 0)G>−−

12 (t, 0))

× (G>++
11 (0, t )G>−−

22 (0, t ) + G>−−
11 (0, t )G>++

22 (0, t )

± G>++
12 (0, t )G>−−

21 (0, t )

± G>++
21 (0, t )G>−−

12 (0, t ))〉. (31)

The details of function F�± (t ) calculation are presented in
Appendix A. An expression for F�± (t ) has a rather simple
form

F�± = 1 + x2(t )

2
∓ T 2

Q2
[e− 2T 2t

Q − e−2Qt ]2, (32)

where x(t ) = (1 + T 2

Q2 )e− 2T 2t
Q − T 2

Q2 e−2Qt (see Appendix A).
For T 
 Q expression (32) can be written up to the terms
proportional to T 2/Q2 as

F�± = 1 + e
−4T 2t

Q

2
. (33)

Solid and dashed black curves in Fig. 4 demonstrate the
probability time evolution for a two-qubit state to find the
system in its initial state F�± in the presence of noise. Another
possible two-qubit initial state deals with the situation when
two electrons with opposite spins are localized in the same
quantum dot—the first one |1〉 or the second one |2〉—so the
initial state is a quantum superposition of the states |1〉σ |1〉−σ
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and |2〉σ |2〉−σ . Corresponding wave function reads

|�±(0)〉 = |1〉σ |1〉−σ ± |2〉σ |2〉−σ√
2

. (34)

Following the logic of the previously analyzed case, one can
write down an expression for F�± :

F�± = 1
4 〈(G>++

11 (t, 0)G>−−
11 (t, 0) + G>++

22 (t, 0)G>−−
22 (t, 0)

± G>++
12 (t, 0)G>−−

12 (t, 0) ± G>++
21 (t, 0)G>−−

21 (t, 0))

× (G>++
11 (0, t )G>−−

11 (0, t ) + G>++
22 (0, t )G>−−

22 (0, t )

± G>++
12 (0, t )G>−−

12 (0, t ) ± G>++
21 (0, t )G>−−

21 (0, t ))〉.
(35)

The detailed calculations of function F�± are presented in
Appendix B. An expression for F�± (t ) reads

F�± = 1 + x2(t )

4
+ 1 + cos2(2T t )

4
e−4Qt

± T 2

Q2
[e− 2T 2t

Q − e−2Qt ]2. (36)

For T 
 Q oscillations are not present as the last term is of the
order of T 2/Q2 and considering terms up to T 2/Q2 expression
(36) can be rewritten in the form

F�± = 1 + e
−4T 2t

Q

4
+ 1

2
e−4Qt . (37)

Solid and dashed red curves in Fig. 4 demonstrate the proba-
bility time evolution for a two-qubit state to find the system in
its initial state F�± in the presence of noise.

D. Experimental initialization of qubit states

Finally, we should discuss the possibility of two-qubit
states preparation in a double QD available experimentally
nowadays. Experimental techniques are typically based on
rapid electrical control of the exchange interaction [53,54].
The qubits preparation usually starts from the states |1〉σ |1〉−σ

or |2〉σ |2〉−σ , which can be initialized by means of the tunnel-
barrier parameters tuning between the dot and the reservoir
(coupling between the dots is switched off), so QD becomes
sequentially occupied by a single electron and then by two
electrons with opposite spins due to the Pauli principle.
Switching on interaction between the dots allows to drive the
system from the state |1(2)〉σ |1(2)〉−σ to the state |1〉σ |2〉−σ .
Once initializing the system in the |1〉σ |2〉−σ state, the ap-
plication of a finite exchange J for a time τ rotates the spin
state about z axis of the Bloch sphere, in the plane containing
both |1〉σ |2〉−σ and |1〉−σ |2〉σ states, so one can perform a
SWAP operation, rotating the state |1〉σ |2〉−σ into the state
|1〉−σ |2〉σ [53]. In Ref. [54] the following transitions were ob-
served: |1〉−σ |2〉σ → |1〉σ |2〉σ and |1〉σ |2〉−σ → |1〉−σ |2〉−σ ,
using electrical pulses that control the exchange coupling
between the qubits. An alternative mechanism deals with the
use of nonuniform magnetic or oscillating magnetic fields
leading to the conditions when electron spin resonance arises
to manipulate spins [55]. In this case starting from the |1〉σ |2〉σ
state, the electron spin resonance with the left (right) electron

changes the initial state to the |1〉σ |2〉−σ or |1〉−σ |2〉σ configu-
ration [55]. In Ref. [56] authors demonstrated the initialization
of a long-lived single-electron spin qubit in a Si/SiGe QD
with all-electrical two-axis control. The spin was driven by
resonant microwave electric fields in a transverse magnetic-
field gradient from a local micromagnet. The step by step
description of double QDs system initialization in the single-
qubit state and in the two-qubit state |1〉−σ |2〉−σ by “shaking”
the electron spins in the transverse field gradient of the micro-
magnet is presented in Ref. [57]. The CNOT gate was used
to create the Bell state |ψ〉 = 1√

2
(|1〉−σ |2〉−σ − i|1〉σ |2〉σ ) af-

ter initialization of the state |1〉σ |2〉−σ and |1〉−σ |2〉σ and
performing transitions to the states |1〉σ |2〉σ and |1〉−σ |2〉−σ ,
correspondingly, using long direct-current exchange pulse and
varying the length of microwave pulse, which adiabatically
flips one of the spins. Finally, in Ref. [58] the initialization
and quantum-state tomography of Bell states |1〉σ |2〉σ ±|1〉−σ |2〉−σ√

2

and |1〉σ |2〉−σ ±|1〉−σ |2〉σ√
2

was performed. The measured fidelities
of each Bell state were found to be 87.1 ± 2.8%, 90.3 ± 3.0%,
90.3 ± 2.4%, and 90.2 ± 2.9%. So, states |�±〉 and states
|1(2)〉σ |1(2)〉−σ are well achievable experimentally. To get
the state |�±〉, one should initialize the states |1〉σ |2〉−σ and
|2〉σ |1〉−σ and then excite the system by means of microwave
pulses. For the wavelength exceeding the system size and
rather large energy relaxation times, the system will be in
excited |�±〉 state.

III. CONCLUSIONS

We performed detailed analysis of the two-qubit entan-
gled Bell-states stability in coupled QDs in the presence of
fluctuations. The presence of white noise allowed to solve
the problem exactly by means of Keldysh diagram technique.
The considered model revealed that various types of initial
entangled Bell states demonstrate different robustness against
noise. Moreover, time evolution of two pairs of Bell states
differs strongly. Obtained results are useful for the problems
where long-living Bell states could be applied, for example the
security of quantum communication and quantum information
processing.
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APPENDIX A: TIME EVOLUTION OF TWO-QUBIT
STATE F�±

Let us obtain an expression for probability F�± for the Bell
states

|�±(0)〉 = |1〉σ |2〉−σ ± |1〉−σ |2〉σ√
2

. (A1)

Let us calculate all the contributions to expression (31). Tak-
ing into account Eq. (17) one can get

1

4
〈G>++

11 (t, 0)G>−−
22 (t, 0) + G>−−

11 (t, 0)G>++
22 (t, 0)

× |G>++
11 (0, t )G>−−

22 (0, t ) + G>−−
11 (0, t )G>++

22 (0, t )〉
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FIG. 5. Ladder diagrams contributing to the polarization operators i j .

= 1

4
4

∫
dω1dω2

〈
GR

11GA
11

〉
ω1

〈
GR

22GA
22

〉
ω2

e−iω1t e−iω2t

= 1

4
(1 + x(t ))2, (A2)

where x(t ) = (1 + T 2

Q2 )e− 2T 2t
Q − T 2

Q2 e−2Qt . Analogously, con-
sidering Eq. (19) one can find

1

4
〈G>++

21 (t, 0)G>−−
12 (t, 0) + G>−−

21 (t, 0)G>++
12 (t, 0)

× |G>++
21 (0, t )G>−−

12 (0, t ) + G>−−
21 (0, t )G>++

12 (0, t )〉

= 1

4
4

∫
dω1dω2

〈
GR

12GA
21

〉
ω1

〈
GR

21GA
12

〉
ω2

e−iω1t e−iω2t

= 1

4
(1 − x(t ))2. (A3)

Let us analyze the remaining terms

R = 1
4 〈(G>++

22 (t, 0)G>−−
11 (t, 0) + G>−−

22 (t, 0)G>++
11 (t, 0))

× (G>++
12 (0, t )G>−−

21 (0, t ) + G>−−
12 (0, t )G>++

21 (0, t ))〉

+ 1

4
〈(G>++

12 (t, 0)G>−−
21 (t, 0) + G>−−

21 (t, 0)G>++
12 (t, 0))

× (G>++
22 (0, t )G>−−

11 (0, t ) + G>−−
11 (0, t )G>++

22 (0, t ))〉.
(A4)

Let us consider the following averaged combination of
Green’s functions denoted as H :

H = 〈G>++
11 (t, 0)G>++

21 (0, t )G>−−
22 (t, 0)G>−−

12 (0, t )

+ G>++
21 (t, 0)G>++

11 (0, t )G>−−
12 (t, 0)G>−−

22 (0, t )〉
= 1

2 [(〈G>++
11 (t, 0)G>++

21 (0, t )〉
+ 〈G>++

21 (t, 0)G>++
11 (0, t )〉)

× (〈G>−−
22 (t, 0)G>−−

12 (0, t )〉
+ 〈G>−−

12 (t, 0)G>−−
22 (0, t )〉)]

+ 1
2 [(〈G>++

11 (t, 0)G>++
21 (0, t )〉

− 〈G>++
21 (t, 0)G>++

11 (0, t )〉)

× (〈G>−−
22 (t, 0)G>−−

12 (0, t )〉
− 〈G>−−

12 (t, 0)G>−−
22 (0, t )〉)]. (A5)

Each multiplier in the first term is equal to zero due to
Eq. (22). From Eq. (7) one can get the following expression

∫
d�

[〈
GR

11(�)
〉〈

GA
12(� + ω)

〉 − 〈
GR

12(�)
〉〈

GA
11(� + ω)

〉]

= −2T

(ω + 2iQ)2 − 4T 2
= Z̃ω. (A6)

Taking into account ladder diagrams (see Fig. 5) one can
obtain a system of two linear equations

〈
GR

11GA
12

〉
ω

= 11M12
ω + 12M22

ω ,〈
GR

12GA
11

〉
ω

= 11M11
ω + 12M21

ω , (A7)

where

M12
ω =

∫
d�

〈
GR

11(�)
〉〈

GA
12(� + ω)

〉
,

M11
ω =

∫
d�

〈
GR

12(�)
〉〈

GA
11(� + ω)

〉
, (A8)

with the following relations being valid: M11
ω = M22

ω and
M12

ω = M21
ω . From Eqs. (A7)–(A8) follows

Zω =
∫

d�
[〈

GR
11(�)GA

12(� + ω)〉 − 〈GR
12(�)GA

11(� + ω)
〉]

= Z̃ωY, (A9)

where Y is given by Eq. (14). Thus considering Eq. (A5) one
can get

1

2

∫
dω1dω2Zω1 Zω2 e−ω1t e−iω2t = −T 2

Q2
(e− 2T 2t

Q − e−2Qt )2.

(A10)

Four similar terms in H and R [Eq. (A10)] reduce the multi-
plier 1/4. After performing all the calculations one can get a
simple expression for F�± (t ):

F�± = 1 + x2(t )

2
∓ T 2

Q2
[e− 2T 2t

Q − e−2Qt ]2, (A11)

where x(t ) = (1 + T 2

Q2 )e− 2T 2t
Q − T 2

Q2 e−2Qt .
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APPENDIX B: TIME EVOLUTION OF TWO-QUBIT
STATE F�±

Let us now analyze another pair of Bell states

|�±(0)〉 = |1〉σ |1〉−σ ± |2〉σ |2〉−σ√
2

, (B1)

and calculate the probability F�± .

F�± = 1
4 〈(G>++

11 (t, 0)G>−−
11 (t, 0) + G>++

22 (t, 0)G>−−
22 (t, 0)

± G>++
12 (t, 0)G>−−

12 (t, 0) ± G>++
21 (t, 0)G>−−

21 (t, 0))

× (G>++
11 (0, t )G>−−

11 (0, t ) + G>++
22 (0, t )G>−−

22 (0, t )

± G>++
12 (0, t )G>−−

12 (0, t ) ± G>++
21 (0, t )G>−−

21 (0, t ))〉,
(B2)

as 〈(G++
11 (t, 0)G++

11 (0, t )〉 = 〈(G++
11 (t, 0)G−−

11 (0, t )〉 〈ξ+
1 ξ−

1 〉 =
〈ξ+

1 ξ+
1 〉 = 〈ξ−

1 ξ−
1 〉. Using expressions (A2) and (A3) one can

get

1

4
[2〈G>++

11 (t, 0)G>++
11 (0, t )〉〈G>−−

11 (t, 0)G>−−
11 (0, t )〉

+ 2〈G>++
12 (t, 0)G>++

21 (0, t )〉〈G>−−
12 (t, 0)G>−−

21 (0, t )〉]

= 1 + x2(t )

4
, (B3)

where x(t ) = (1 + T 2

Q2 )e− 2T 2t
Q − T 2

Q2 e−2Qt . As 〈ξσ
1 ξσ ′

2 〉 = 0 for

any σ, σ ′, 〈GR
11(t, 0)GA

22(0, t )〉 = 〈GR
11(t, 0)〉〈GA

22(0, t )〉 and
〈GR

12(t, 0)GA
12(0, t )〉 = 〈GR

12(t, 0)〉〈GA
12(0, t )〉. Taking into

account Eqs. (7) and (26)∫
dω1dω2

〈
GR

11GA
22

〉
ω1

〈
GR

11GA
22

〉
ω2

e−iω1t e−iω2t

= e−4Qt (1 + cos2T t )2

4
. (B4)

Using Eq. (27) one can obtain∫
dω1dω2

〈
GR

12GA
12

〉
ω1

〈
GR

12GA
12

〉
ω2

e−iω1t e−iω2t

= e−4Qt (1 − cos2T t )2

4
. (B5)

The remaining terms have the same form as for the |�±〉 given
by Eq. (A5)

H = ±T 2

Q2
[e− 2T 2t

Q − e−2Qt ]2. (B6)

After performing all the calculations one can get a simple
expression for F�± (t ):

F�± = 1 + x2(t )

4
+ 1 + cos2(2T t )

4
e−4Qt

±T 2

Q2
[e− 2T 2t

Q − e−2Qt ]2. (B7)

For T 
 Q oscillations are not present as the last term is of
the order of T 2/Q2 and up to the terms proportional to T 2/Q2:

F�± = 1 + e
−4T 2t

Q

4
+ 1

2
e−4Qt . (B8)
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