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We investigate the topological edge transmission of excitation based on the one-dimensional Su-Schrieffer-
Heeger lattice with purely imaginary on-site potential and nonreciprocal nearest-neighbor hopping. We find
that, when the system has only the nonreciprocal intracell hopping, the topological excitation transmission can
be implemented only when the localization direction of the non-Hermitian skin effect matches the localization
direction of edge state. When the lattice has the purely imaginary on-site potential and nonreciprocal intracell
hopping, we demonstrate that the positive purely imaginary potential is the dominant effect of implementing
the topological excitation transmission compared with the non-Hermitian skin effect. Furthermore, we also
investigate the joint effect between the purely imaginary on-site potential and nonreciprocal intercell hopping,
which reveals that the non-Hermitian skin effect induced via the large nonreciprocal parameter determines the
successful topological excitation transmission. Our investigations show the different influences of two kinds of
non-Hermitian effects on the topological excitation transmission, which may promote the implementation of

topological transmission in the practical open quantum system.
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I. INTRODUCTION

Quantum information processing, with information encod-
ing on the quantum states, has attracted increasing attention
in recent years [1-6]. Benefitting from the superposition and
entanglement properties of quantum states, quantum infor-
mation processing presents a unique advantage in terms of
efficiency and security compared with classical information
processing [2,3,6—15]. One fundamental and critical step in
quantum information processing is how to implement the
efficient transmission of a quantum state between remote
nodes without the influence of channel noise [16-25]. To
this end, various kinds of schemes have been developed to
realize robust quantum state transfer, including photon pulse
shaping [26-28], adiabatic state transfer [20,23,24,29,30],
Hamiltonian engineering [31-33], quantum error correction
[34-36], and even topological quantum state transfer [37-42].

Topological quantum state transfer, implementing the
quantum transmission via the boundary state of the topologi-
cal insulator, can effectively resist the effects of local disorder
in the channel [43-47]. The robustness of topological state
transfer against disorder essentially originates from the topo-
logical protection of the band gap; i.e., the gap state remains
unchanged until the gap is closed [44—47]. For example, in
Ref. [48], a scheme of robust quantum state transfer was
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proposed in a dipolar array, in which quantum state transfer
thorough the chiral edge states is robust against dispersive
and disorder effects. Subsequently, the efficient exchange of
quantum information over large distances in a linear network
of coupled bosonic degrees of freedom was implemented
[49]. In addition, robust quantum state transfer schemes were
also proposed in the superconducting circuit [50], waveguide
array [51], optomechanical array [52], elastic lattices [53],
and acoustic system [54]. Topological quantum state transfer
schemes usually focus on the transmission of the quantum
state from one node to another node and are time-consuming
due to the adiabatic evolution, which has prompted inves-
tigations of scalable topological distributions [55-59] and
accelerated topological transmissions [60—63].

Note that the above works on topological quantum state
transfer mainly considered the Hermitian assumption in which
non-Hermitian effects are rarely involved. Recently, the topo-
logical band theory was extended to the non-Hermitian
versions of the topological insulator, revealing abundant topo-
logical phenomena, e.g., the typical spontaneous breaking
of parity-time symmetry induced by the opposite purely
imaginary on-site potential [64—70]. For the negative purely
imaginary on-site potential, it can be regarded as dissipation
in the quantum system, which usually has adverse effects
on quantum state transfer. And the breaking of parity-time
symmetry, leading to the appearance of the imaginary part of
the eigenvalues, also may affect the dynamical evolution of
the quantum state [71,72]. In addition to the non-Hermitian
topological system induced by the imaginary potential, the
non-Hermitian skin effect and non-Bloch theory in the
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topological system with nonreciprocal hopping have also at-
tracted a great deal of attention in recent years [73-78].
Different from the traditional Bloch bulk states with extended
distributions, the non-Hermitian skin effect causes all of the
bulk states to be localized around one boundary [78]. The
localized bulk states usually correspond to the directional
transmission [79,80], which may have a great influence on
the topological edge transmission of quantum state. Thus, it
is interesting to investigate the effects of these non-Hermitian
topological phenomena on the topological edge transmission,
especially the simultaneous impacts of the breaking of parity-
time symmetry and the non-Hermitian skin effect on the
topological edge transmission.

In this paper, we investigate the topological edge transmis-
sion of excitation in a non-Hermitian Su-Schrieffer-Heeger
(SSH) lattice with purely imaginary on-site potential and
nonreciprocal nearest-neighbor (NN) hopping. We find that,
when the system has only nonreciprocal intracell hopping,
the localized directions of the gap state and skin effect deter-
mine the opening of the topological excitation transmission.
Namely, only when the localized direction of the gap state
remains consistent with the non-Hermitian skin effect of bulk
states can the excitation initially prepared at the left edge
be transmitted to the right edge. When the system has non-
reciprocal intracell hopping and a purely imaginary on-site
potential simultaneously, we find that the purely imaginary
on-site potential is the key factor to determine the opening
of the topological excitation transmission, in which the ex-
citation can be transmitted to the right edge successfully as
long as the amplitude of the purely imaginary on-site potential
keeps positive. Furthermore, we also discuss the effects of
nonreciprocal intercell hopping and purely imaginary on-site
potential on the topological excitation transmission. We find
that the large nonreciprocal parameter of intercell hopping can
promote the topological excitation transmission in the case
of both vanishing and nonvanishing purely imaginary on-site
potential. Our investigations further reveal the effects of non-
Hermitian terms on the topological excitation transmission
and show the interplay between the purely imaginary on-site
potential and nonreciprocal hopping.

This paper is organized as follows: In Sec. II, we show the
different effects of the purely imaginary on-site potential and
nonreciprocal hopping and their joint effect on the topological
excitation transmission. A conclusion is given in Sec. III.

II. NON-HERMITIAN TOPOLOGICAL EXCITATION
TRANSMISSIONS IN THE LATTICE
WITH AN IMAGINARY POTENTIAL
AND NONRECIPROCAL HOPPING

A. Model and Hamiltonian

We consider the SSH chain containing the purely imagi-
nary on-site potential and nonreciprocal coupling simultane-
ously, as shown in Fig. 1. We show two different kinds of
configurations of nonreciprocal hopping, i.e., the nonrecipro-
cal intracell hopping shown in Fig. 1(a) and the nonreciprocal
intercell hopping shown in Fig. 1(b). Note that the SSH chain
has an odd-size lattice L =2N + 1 (N € even), in which
the green (red) sites denote the negative (positive) purely
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FIG. 1. The diagrammatic sketch of the non-Hermitian SSH
model. (a) The non-Hermitian SSH model has nonreciprocal in-
tracell hopping and purely imaginary on-site potential. (b) The
non-Hermitian SSH model has nonreciprocal intercell hopping and
purely imaginary on-site potential. (c) The implementation of the
nonreciprocal hopping in a three-mode system.

imaginary potentials and the central black site represents the
vanishing imaginary potential. For convenience, we consider
the SSH chain with the nonreciprocal intracell hopping (which
we denote model 1) first [see Fig. 1(a)]; it can be described by
the following Hamiltonian:

N/2

H = Z(—iyazan + iyb!b,)

n=1

N
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n=N/2+1

N
+ ) -
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Here, a, (a') and b, (b}) denote the annihilation (creation)
operators of the lattice chain, —iy and iy represent the purely
imaginary on-site potentials, J; 4 is the amplitude of the non-
reciprocal intracell hopping, and J, is the amplitude of the
reciprocal intercell hopping. To implement the topological
excitation transmission, we set the intracell (intercell) hopping
amplitudes as J; L =J £ 8cosf (J =J +cosh) and set
J =1 as the energy unit. Note that the parameter § in the
hopping amplitude is the nonreciprocal coefficient and 6 €
[0, 27r] is the periodic parameter. The quantum optical imple-
mentation of the nonreciprocal hopping is shown in Fig. 1(c),
in which two modes, a and b, are coupled directly via J,
and indirectly via the assisted mode c. Under the dissipative
regime, the assisted mode ¢ can be effectively eliminated,
causing the effective coupling between modes a and b to
be asymmetric (see Appendix A). When y =0 and § =0,
the present model becomes a standard odd-sized SSH chain,
which has a topologically nontrivial zero-energy gap state
implementing the topological excitation transfer [50]. Then,
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FIG. 2. Energy spectra, distributions of states, and fidelity for
model 1 when § = 0. (a) The real and (b) imaginary parts of the
energy spectra when y = 0.2 and § = 0. The colored lines represent
the dIPR of states. (c) The distributions of gap and bulk states. The
inset shows the distributions of bulk states when 6 = 0.1x. (d) The
fidelity of the topological excitation transmission versus varying
speed €2 and amplitude of the imaginary potential y.

how do the imaginary potential and the nonreciprocal hopping
affect the topological excitation transmission?

B. Topological excitation transmission enhanced
via the imaginary potential

We first recall the case of § =0 and y # 0 [72]. The
real and imaginary parts of the energy spectrum are shown
in Figs. 2(a) and 2(b), in which the colored levels repre-
sent the corresponding directional inverse participation ratio
(dIPR) of the eigenstates. The dIPR of one (kth) eigenstate
can be defined as Rap(Wi) = P(¥) Y, [ 14/ (W W),
which reveals the localization and localization direction of one
eigenstate [81]. Here, P(¥;) = sgn[}_;(j — L/2 — )W %]
(0 < & < 0.5) means taking the sign of the argument. In this
way, when the eigenstate is mainly localized at the left edge,
we have Rgp < 0, while we have Rgp > 0 for the right-
localized eigenstate. Especially, if one eigenstate is extended,
the dIPR satisfies Rgp ~ 0. Obviously, when y = 0.2 and
8 = 0, the bulk states of the system are extended, and the
gap state is localized around the left (right) edge when 6 €
[0,0.57]U[1.57,2x] [0 € (0.5, 1.57)]. To further verify
this, we can plot the probability distribution ||W,)|* of the gap
state |W,) versus the parameter 6 and lattice site by solving
the eigenenergy equation H|W,(0)) = E,|W,(0)), where E,
is the corresponding eigenenergy with a purely imaginary
value (e.g., E; = —0.2i within 6 € [0, 0.5 ] in Fig. 2(b)). The
distribution of the gap state |W,) versus the parameter 6 is
plotted in Fig. 2(c). The results clearly reveal that the gap state
is mainly localized at different edges within different ranges
of the parameter 6. Furthermore, we also plot the distributions
of all bulk states when 6 = 0.1 in the inset of Fig. 2(c), and
we find that all of the bulk states are, indeed, the extended
states.

The gap state in the Hermitian SSH model can be used
to implement the topological excitation transmission between
two edge nodes. To implement the topological excitation
transmission, the initial state needs to be evolved under the
Schrodinger equation i%|\l’) = H(6,)|¥) after rewriting the
parameter 6 as the time-dependent version 6 = Qf (2 is a
varying rate and ¢ is time). If the excitation is prepared at
the left edge initially, it will be evolved along the gap state
and finally transmitted to the right edge. The transmission
efficiency of the excitation can be estimated via the fidelity
F = |(R|Yy)| defined by the ideal right edge state |R) =
[0,0,...,0,1) and evolved final state |¥r). Following this
concept, the fidelity versus the varying rate 2 and amplitude
of the pure potential y is plotted in Fig. 2(d). The results re-
veal that the excitation transmission can be implemented only
when y > 0, which is consistent with the results in Ref. [72].
Note that the difference is that the gap state in this paper
cannot be localized at the left edge completely, e.g., when
6 = 0. This means that the excitation initially prepared at the
left edge actually cannot match the gap state (when 6 = 0)
precisely. We stress that the excitation can still be transmitted
to the right edge even though the initial state cannot match
the gap state, which is rarely mentioned in previous works.
Furthermore, different from the topological excitation trans-
mission in the standard SSH lattice, the present non-Hermitian
topological excitation transmission may not evolve along the
gap state, implying a possible nonadiabatic transmission (see
Appendix B).

C. Non-Hermitian skin effect and topological
excitation transmission

We now focus on the case of y =0 and § # 0. Dif-
ferent from the case of y # 0 and § = 0, the asymmetric
intracell hopping can induce the non-Hermitian skin effect;
i.e., all of the bulk states are mainly localized around one
edge of the system. The energy spectrum and dIPR are
plotted in Figs. 3(a) and 3(b). We find that the present non-
Hermitian system corresponds to a purely real spectrum (see
Appendix C). Especially, the bulk states of the present system
exhibit the non-Hermitian skin effect; i.e., the bulk states are
localized around the right (left) edge when 6 € [0, 0.57] U
[1.57,27] [0 € (0.5, 1.57)]. Note that the direction of the
localization of the bulk states is just the opposite of that of
the gap state. The distributions of the gap state and bulk states
are shown in Fig. 3(c), which shows results consistent with
the above analysis. The non-Hermitian skin effect can usually
affect the transmission properties, e.g., the directional trans-
mission. To further estimate the effects of the non-Hermitian
skin effect on the topological excitation transmission, the
transmission fidelity versus the varying rate and the nonre-
ciprocal parameter § is plotted in Fig. 3(d).

The results indicate that only when § < O can the topo-
logical excitation transmission be implemented successfully.
Detailed evolutions of the topological excitation transmis-
sion when § = 0.5 and 6 = —0.5 are shown in Figs. 3(e)
and 3(f). Obviously, the excitation initially prepared at the
left edge can be transmitted to the right edge only when
8 < 0. This phenomenon is quite counterintuitive since the
right non-Hermitian skin effect (§ > 0) usually leads to the
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FIG. 3. Energy spectra, distributions of states, and fidelity for model 1 when y = 0. (a) The real and (b) imaginary parts of the energy
spectra when y = 0 and § = 0.2. (c) The distributions of gap and bulk states. (d) The fidelity of topological excitation transmission versus
varying speed €2 and amplitude of the imaginary potential y. When © = 1073, the evolutions of the excitation (e) with § = 0.5 and (f) with
8 = —0.5. The dIPRs versus parameters § and 0 for (g) edge state and (h) bulk states.

directional transmission toward the right edge. The reason can
be attributed to the inconsistent localization directions of the
gap state and bulk states caused by the parameters § and 0. As
shown in Fig. 3(a), when § > 0, the localization directions of
the gap and bulk states are just opposite within 6 € [0, 27 ];
e.g., the gap state is localized around the left (right) edge
when 6 € [0, 0.57] (6 € [0.57, 7]), while the bulk states are
mainly localized around the right (left) edge within the same
range of the parameter 6.

To further clarify the different localization directions, the
dIPR of the gap state versus the nonreciprocal parameter §
and periodic parameter 6 is shown in Fig. 3(g). The results
indicate that the nonreciprocal parameter § cannot change the
localization direction of the gap state within 6 € [0, 7 ]; i.e.,
the gap state is always localized at the left (right) edge when
0 €10,0.57] (0 € [0.57, ]). To estimate the effects of the
parameter § on the localization direction of the bulk states,
we now define the directional mean inverse participation ratio
(dMIPR) of all bulk states, i.e., Raqmip = ﬁ Zk Rarp (Wy).
Here, L — 1 denotes the number of bulk states. The dMIPR
versus the parameters § and 6 is shown in Fig. 3(h). Ob-
viously, the localization direction of the bulk states will be
reversed for the cases with § > 0 and 6 < 0. More specifi-
cally, the bulk states are localized around the right (left) edge
within 6 € [0, 0.57] (@ € [0.57, 7w]) when § > 0, while they
are localized around the left (right) edge within 6 € [0, 0.57]
(6 € [0.57, 7]) when § < 0. Thus, compared with the local-
ization direction of the gap state, the bulk states have the
same localization direction only when § < 0, implying that
the topological excitation transmission can be implemented
only for negative §.

Now we consider the joint effect of the purely imaginary
potential and nonreciprocal intracell hopping, i.e., the case
of ¥y # 0 and § # 0. The transmission efficiency versus the
imaginary potential y and nonreciprocal parameter § is plotted
in Fig. 4(a). The pattern of the fidelity is divided into two parts
about the line y = 0, in which the fidelity satisfies F ~ 1
when y > 0 and changes as F ~ 0 when y < 0. Note that

the results within the parameter regions of y > 0 and § < 0
are intuitive since the conditions of y > 0 [see Fig. 2(d)]
and 6§ < 0 [see Fig. 3(d)] can both ensure the topological
excitation transmission. Differently, we find that the topolog-
ical excitation transmission can also be implemented within
the parameter region of ¥ > 0 and § > 0 now. The different
transmission behaviors corresponding to different y and § are
shown in Figs. 4(b)—4(d), which show results consistent with
the above analysis.

This phenomenon means that the positive purely imaginary
potential can offset the adverse effect of the non-Hermitian
skin effect when § > 0 [compared with Fig. 3(d)]. In other
words, the effects of the imaginary potential on the topologi-
cal excitation transmission are the dominant factor. Actually,
this phenomenon can be comprehended via an effective

Model 1
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FIG. 4. Fidelity and evolutions of the excitation for model 1.
(a) The fidelity of the topological excitation transmission versus the
parameters § and y. (b)-(d) When € = 10727, the evolutions of the
excitation of different § and y.
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FIG. 5. Energy spectra and distributions of states for model 2.
(a)—(c) Energy spectra and distributions of states when y = (0.2 and
8 = 0. (d)—(f) Energy spectra and distributions of states when y = 0
and § = 0.2.

lattice model by implementing the similarity transformation
of the original model (see Appendix C). After the similarity
transformation, the nonreciprocal intracell hopping can be
replaced by an effective intracell hopping J, = \/J1 +J1— =

1 — (8§cosf)2. Note that, for the parameters within § €
[—1,1]and 8 € [0, 2], we have 1 — (§ cos6)? > 0, meaning
that the amplitude of the effective intracell hopping corre-
sponds to a real number. In this way, the present lattice model
is equivalent to the lattice model mentioned in Ref. [72];
i.e., the SSH chain has only the purely imaginary on-site
potential. Thus, the purely imaginary on-site potential deter-
mines the opening and closing of the topological excitation
transmission.

D. Topological excitation transmission affected
by nonreciprocal intercell hopping

We have investigated the effects of the imaginary on-site
potential and nonreciprocal intracell hopping on the topologi-
cal excitation transmission, i.e., the model shown in Fig. 1(a).
Note that the right edge site in model 1 is coupled with the
penultimate site via the reciprocal intercell hopping. Thus,
it is an interesting question whether the different coupling
configurations can affect the results mentioned above, e.g.,
the topological excitation transmission in the model shown
in Fig. 1(b) (which we denote model 2). The energy spectra
and distributions of states when § = 0 or y = 0 for model 2
are plotted in Fig. 5. Figures 5(a) and 5(b) depict the real and
imaginary parts of model 2 when § = 0. The results reveal
the localized gap state and extended bulk states, which can

1 182 1
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FIG. 6. Fidelity and evolutions of the excitation for model 2. The
fidelity of the excitation transmission when (a) § = 0 and (b) y = 0.
When y = 0 and Q = 1073, the evolutions of the excitation (c) with
6 = 0.5 and (d) with 6 = —0.5. The dIPRs versus parameters é and
6 for (g) the edge state and (h) bulk states.

be further verified via the distributions of states shown in
Fig. 5(c). Note that, different from the case in Fig. 2(c), the
present gap state cannot be localized at the last site com-
pletely. This means that the excitation initially prepared at the
left edge may not be transmitted to the right edge completely.
The energy spectra and distributions of states for model 2
when y = 0 are shown in Figs. 5(d)-5(f). The results are
similar to those in the case shown in Figs. 3(a)-3(c). Here,
the main difference from the case in Fig 3(c) is the exchange
localization locations of the gap state within 6 € [0, ].

The fidelities of the topological excitation transmission for
model 2 when § =0 or y = 0 are shown in Figs. 6(a) and
6(b). We find that, when § = 0, the main parameter region
for the topological excitation transmission with high fidelity
is the same as in the case of model 1 [compare with Fig. 2(d)].
The difference is that the fidelity of the topological excitation
transmission in model 2 cannot reach F' ~ 1. The reason
is that the gap state cannot be localized at the right edge
completely when 6 = 7, which means the excitation initially
prepared at the left edge cannot be transmitted to the right
edge completely. Meanwhile, when y = 0, the main param-
eter region for the topological excitation transmission with
fidelity F ~ 1 now becomes smaller than in the case shown
in Fig. 3(d), meaning that the excitation initially prepared at
the left edge can be transmitted to the right edge successfully
only for the nonreciprocal parameter § ~ —1. The detailed
processes of excitation transmission when § = £0.5 are plot-
ted in Figs. 6(c) and 6(d), which match the above analysis
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FIG. 7. Fidelity and evolutions of the excitation for model 2.
(a) The fidelity of the topological excitation transmission versus the
parameters 8 and y. (b)—(d) When © = 1072, the evolutions of
excitation for different § and y.

well. The localization properties of the gap and bulk states
for model 2 when y = 0 are shown in Figs. 6(e) and 6(f).
The results reveal physics similar to that in the cases shown
in Figs. 3(g) and 3(h).

The joint effect of the non-Hermitian parameters y and
8 on the topological excitation transmission in model 2 is
plotted in Fig. 7(a). The results indicate that the excitation
can be transmitted to the right edge successfully only when
y > 0 and § ~ —1, which is different from the case shown in
Fig. 4(a). The reason can be explained as the dominant effect
of the non-Hermitian skin effect in model 2 when § ~ —1. The
evolutions of the excitation for different cases of parameters &
and y are shown in Figs. 7(b)-7(d). We find that the excitation
initially prepared at the left edge can be transmitted to the right
edge successfully only when 6 ~ —1 and y > 0 [Fig. 7(c)].

III. CONCLUSIONS

In conclusion, we have investigated the edge transmission
behaviors of excitation in the SSH model with purely imag-
inary on-site potential and nonreciprocal NN hopping. We
found that the purely imaginary on-site potential and non-
reciprocal hopping can both affect the edge transmission of
excitation. We demonstrated that, different from the effects of
the purely imaginary on-site potential on the topological edge
transmission, the localization direction of the non-Hermitian
skin effect induced by nonreciprocal intracell hopping deter-
mines the opening or closing of the edge transmission; e.g.,
the edge transmission can be implemented only when the
non-Hermitian skin effect has a localization direction con-
sistent with the zero-energy gap state. We also investigated
the joint effect of the purely imaginary on-site potential and
nonreciprocal hopping on edge transmission, in which the dif-
ferent dominant roles of the purely imaginary on-site potential
and nonreciprocal hopping were revealed. More specifically,
the purely imaginary on-site potential determines the suc-
cessful edge transmission when the nonreciprocal hopping

is added to intracell hopping, while the nonreciprocal hop-
ping added to intercell hopping is the dominant factor. Our
investigations further supply the relevant contents of topolog-
ical edge transmission in the non-Hermitian lattice system,
which may promote applications of topological quantum in-
formation processing in open quantum system.
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APPENDIX A: THE QUANTUM MAPPING
OF NONRECIPROCAL HOPPING

Nonreciprocal hopping between two adjacent sites can be
effectively implemented in a quantum system consisting of
three modes [76,80,82]. As shown in Fig. 1(c), mode a and
mode b can couple with each other directly with the coupling
amplitude J,;,. Especially, mode a can also couple with mode
b indirectly via an auxiliary mode ¢, in which the coupling
amplitude between modes a (b) and c is J,.e’® (Jy.). In this
way, the three-mode system can be described by the following
Hamiltonian:

H = Z ®,0' 0+ (Jabcfb + e ®ac + JbTe + H.c.).

o=a,b,c
(AD)

Here, w, denotes the free frequency of the three modes. If we
set the three modes so that they have the same frequencies, i.e.,
w, = w, the effective Hamiltonian under the rotating frame of
free frequency w can be written as

H = (Upd' b+ Jee ®d’c + Jpeb'c +He).  (A2)

This can be understood as the fact that we reset the point of
zero energy by removing the equal free energy of the three
modes.

Under the regime of dissipation, the motion equations of
operators for the three modes can be written as

a= —%a —iJ,e®c —ilb,

b= —%b —iJa— ilpec.

¢ = —%c — idyeb — iJ e, (A3)

where y, represents the dissipation rate of the three modes.
When the dissipation of mode c is large enough, mode ¢ can
be removed adiabatically by taking ¢ = 0, i.e.,

2 2 .
c=—i=Jpb—i=J,e ?a. (A4)
Ve Ye

In this way, the motion equations of operators a and b now
become

1 472 2Uedpe
a= ——(ya+ “C)a—i<J—i—be’¢)b,
2 Ve Ye

. 1 2J? 2J 4] :
b= ——(yb+ b“)b—i(f—i“—’”e“”)a. (AS)
2 Ye Ye
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If we further use the Heisenberg equation inversely, the effec-
tive Hamiltonian between modes a and b reads

H = —iJ'e®pa+ (J —ile®)a’b.  (A6)

Here, we set J' = for convenience. Obviously, when
¢ = 0.57, the nonreciprocal hopping between modes a and
b can be implemented, i.e., (J — J)b'a + (J +J)a'b.

2JacIbe

APPENDIX B: THE ADIABATIC THEORY AND SIZE
EFFECT IN NON-HERMITIAN TOPOLOGICAL
EXCITATION TRANSMISSIONS

The usual topological excitation transmission in the
Hermitian system needs to satisfy the adiabatic condition to
avoid the evolution evolving into the bulk around the gap
closing point. Thus, the evolution speed 2 and minimal en-
ergy gap A usually need to satisfy v/ < Ag to ensure that
the excitation is transmitted along the gap state [50]. Usu-
ally, the minimal energy gap Ap is exponentially decreased
with increasing lattice size, causing the adiabatic condition
to be tightened for a lattice with a large size. Different from
the Hermitian lattice, the existence of imaginary energy in
the non-Hermitian lattice may change the band structure and
generate the effects on the dynamics of topological excitation
transmission. Thus, the adiabatic condition and size effect in
non-Hermitian topological excitation transmissions need to be
considered.

Different from the Hermitian system, the significant dif-
ference in the non-Hermitian system is the existence of
biorthonormal eigenstates

H|Y,) = EJvn), H'lga) = EIgn), (BI)

and (¢x|¥,,) = &, For the dynamical evolution of one state,
|®(2)), we can expand it in terms of the right eigenstate |,)
with [83]

|®()) = ZCn(t)eXp[—i/O En(t’)dt’]llﬁn(t))- (B2)

Note that the non-Hermitian system may cause the eigenvalue
E,(t) to be complex, e.g., E,(t) = a,(t) + ib,(t). Thus, the
relative probability amplitude in each eigenstate |,,) satisfies
C,(t)expl[ fé b, (t")dt'], which can be changed by varying the
time. In this way, the evolution of state |®(¢)) cannot maintain
itself, which may lead to the nonadiabatic effect.

Substituting Eq. (B2) into the Schrodinger equation
i g—t|<b(t)) = H(t)|®(r)) and multiplying the left eigenstate
(¢r ()] [83], we have

Cult) = —Ce){ge (O (0)) — cha)exp{—i /O [E,(t")
k#n

—Ek(t/)]dt/}<¢k(t)|¢n(t))~ (B3)

Obviously, if the eigenvalues are complex, e.g., E,(t) =
an(t) +ib,(t) and Ey(t) = ai (1) + iby(t), the amplitude in the
term Y, Co()exp{—i [y[Ea(t") — Ex(t)]dt'} ()] (0))
becomes G, (t )eolba)=b:t0d’ \hich can grow exponentially
and cannot be neglected. Thus, if the non-Hermitian system

corresponds to an imaginary spectrum, the adiabatic theorem
cannot hold.

Differently, if the non-Hermitian system corresponds to a
real spectrum, e.g., the case in Sec. II C, the second term on
the right-hand side of Eq. (B3) can be safely removed by
setting [83]

’ ()Y (1))

1. B4
E _E '<< (B4)

After that, the probability amplitude satisfies C(t) ~
—Cr(t){¢r ()| (2)), which has a form similar to the adiabatic
parameter in the Hermitian system. In this way, the adiabatic
theory is valid when the non-Hermitian system has the real
spectrum. Interestingly, the non-Hermitian case of y # 0 and
8 = 0 corresponds to an imaginary spectrum, while the case of
y = 0 and § # O just corresponds to a purely real spectrum.
Thus, in the following, we will numerically show the nona-
diabatic (adiabatic) evolution and size effect under these two
non-Hermitian cases.

1. The non-Hermitian case with y # 0 and § = 0

When y #0 and 6 =0, the purely imaginary on-site
potential leads to the appearance of an imaginary energy spec-
trum. The modulus of the energy spectrum when y = 0.2 and
8 = 01is shown in Fig. 8(a), and we define the minimal energy
space as A|E|yin- The minimal energy space A|E |y, versus
the lattice size and the non-Hermitian parameter y is shown
in Fig. 8(b). We find that the minimal energy space approxi-
mately exhibits behavior similar to that in the Hermitian case;
i.e., the minimal energy space decreases with increasing lat-
tice size in a global view [see the inset in Fig. 8(b)]. However,
the detailed behavior of the minimal energy space has a certain
difference from the Hermitian case; i.e., the minimal energy
space exhibits an oscillating behavior for a large lattice size.
The oscillating behavior originates from the case in which
the gap state enters into the bulk, as shown in Fig. 8(c). As
we discussed above, the adiabatic theory is invalid when the
non-Hermitian system has an imaginary energy spectrum.

To illustrate this clearly, we take lattice sizes L =5 and
L = 61 as examples. As shown in the inset of Fig. 8(b), when
L =5, the system has a large A|E |y, While the energy space
A|E|min is close to zero when L = 61.. According to the
adiabatic theory in the Hermitian system, the narrowed en-
ergy space A|E|min leads the evolution speed 2 to be slower,
meaning that the transmission can be easily implemented in a
lattice that is small in size. However, as shown in Fig. 8(d), we
find that the evolution speed €2 has the same range with fidelity
F ~ 1, indicating that the adiabatic theory in the present non-
Hermitian system is invalid now. Especially for the case of
A|E|min ~ 0 [e.g., L = 61 in Fig. 8(d)], if the adiabatic theory
is valid, we need the evolution speed to be 2 ~ 0. However,
the results in Fig. 8(d) clearly show a successful transmis-
sion even when the evolution speed 2 is relatively large,
which further reveals the invalid adiabatic theory in a non-
Hermitian system with an imaginary spectrum. We stress that
the above phenomenon is induced by the positive purely imag-
inary potential added to the right edge site, which enhances
the probability distribution of the evolved state at the right
edge site. Actually, the definition of fidelity F' = [(R|W)| can
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FIG. 8. Energy spectra, energy space, fidelity, average fidelity,
and evolution in the non-Hermitian topological excitation transmis-
sions. (a) Modulus of the energy spectrum when y = 0.2, § = 0, and
L =17. (b) The minimal energy space versus the lattice size and
y when § = 0. (¢) Modulus of the energy spectrum when y = 0.2,
8 =0, and L =45. (d) The fidelity F' versus the evolution speed
for different lattice sizes when y = 0.2 and 6§ = 0. (e) The average
fidelity F' versus the evolution speed and non-Hermitian parameter
y when § =0 and L = 17. (f) The evolution process of the non-
Hermitian topological excitation transmission when y = 0.2, § =0,
and Q = 1073,

estimate only the final efficiency of the excitation at the right
edge site, which cannot hold the process information of the
evolution for the whole transmission process.

To evaluate the process information and show the nonadia-
batic evolution visually, we now define the average fidelity of
the non-Hermitian topological excitation transmission as

T/

F=1T) F,
=0

where ¢ is the discrete time originating from the numeri-
cal process, T is the total dimension of time ¢, and F; =
[(We(6)|W,(2))| is the fidelity between the evolved state
and the boundary state solved by the energy eigenequation
H|W,(6,)) = Eg|W,(6;)) (6, = S2t) at each time ¢. In this way,
the average fidelity can be used to evaluate whether the
excitation is transmitted along the boundary state. In other
words, the average fidelity contains the complete information
of the evolution process, while the fidelity F can estimate
only whether the excitation is transmitted to the right edge
at the final time. The average fidelity versus the evolution
speed and non-Hermitian parameter y is shown in Fig. 8(e).
Obviously, the average fidelity F is large enough only when

(BS)

1.5
o 1
=
0.5
0
5 132 261
Lattice size
1 ) 1
[}
=
wn
8 05 = 0 0.5
et
<
—
1 0
302 -1 0 1 3002 - 0 1
log10(2) log10(Q2)

FIG. 9. Energy spectra, energy space, fidelity, and average fi-
delity in the non-Hermitian topological excitation transmissions.
(a) Modulus of the energy spectrum when y =0, § = —0.5, and
L =17. (b) The minimal energy space versus the lattice size
and 6 when y = 0. (c) The fidelity F' versus the evolution speed and
different lattice sizes when y = 0 and § = —0.5. (d) The average
fidelity F versus the evolution speed and nonreciprocal parameter 8
when L = 17.

y ~ 0, which means that this non-Hermitian topological ex-
citation transmission indeed does not go along the boundary
state. The nonadiabatic evolution can also be found from the
process of excitation transmission, as shown in Fig. 8(f). The
results clearly show that the evolution cannot match the dis-
tribution of the boundary state, implying that the transmission
is, indeed, the nonadiabatic evolution (the evolution process
generates the bulk diffusion).

2. The non-Hermitian case with y =0 and § # 0

Different from the case of y #0 and § =0, the non-
Hermitian case of y =0 and § # 0 corresponds to a real
spectrum. As mentioned above, the appearance of the real
spectrum ensures that the adiabatic theory is valid in such a
non-Hermitian system. The modulus of the energy spectrum
when y =0 and § = —0.5 is shown in Fig. 9(a), in which
the spectrum exhibits consistency with the Hermitian lattice.
Especially, we find the nonreciprocal parameter § cannot af-
fect the size effect of the minimal energy space; i.e., the
minimal energy space A|E |y, always decays exponentially
with increasing lattice size for any nonreciprocal parameter
8 [Fig. 9(b)]. To further estimate the adiabatic condition and
the size effect when y = 0 and § # 0, the fidelity F' versus
the evolution speed and lattice size is shown in Fig. 9(c).
The results indicate that the fidelity exhibits the same size
effect as the Hermitian case when § < O [see the inset of
Fig. 9(c)]. The average fidelity F versus the evolution speed
and the nonreciprocal parameter § is shown in Fig. 9(d). The
results clearly reveal that the region of F' ~ 1 is consistent
with the fidelity F' [compared with Fig. 3(d)], indicating that
this topological excitation transmission indeed goes along the
boundary state.
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APPENDIX C: THE EFFECTIVE MODEL UNDER THE
SIMILARITY TRANSFORMATION

The lattice model shown in Fig. 1(a), when y = 0, can be
written as

N
Hy =Y [Ji_aiby +J1 +bay

n=1

+Ja(a) by + Hee)l, (C1)
which corresponds to a SSH model having the nonreciprocal
intracell hopping and reciprocal intercell hopping. For the

Hamiltonian in Eq. (C1), we can perform a similarity trans-
formation defined in real space, i.e.,

Hy = SHyS™', (C2)

with
S=diag[l, r, r, P, 72, NN AN (©3)
Here, r = m denotes the transformation factor, and

N is the size of the unit cell. The Hamiltonian in Eq. (C1),
under the similarity transformation, now becomes

N
Hy =Y [Je(@}by + blay) + Jo(a) by + bian)],  (C4)

n=1

where J, = \/J 11— =+/1— 82 cos? 6 represents the effec-

tive intracell hopping after the similarity transformation. In

this way, the original SSH model with nonreciprocal intra-
cell hopping now becomes the SSH model with reciprocal
intracell hopping J,. Obviously, we have J, € Re if the nonre-
ciprocal parameter satisfies |§| < 1. In this way, the original
lattice model becomes a Hermitian SSH model when y =
0. Due to the fact that the similarity transformation cannot
change the eigenvalues, the effective lattice model described
in Eq. (C1) naturally has the same purely real spectrum [see
Figs. 3(a) and 3(b)] as the Hermitian SSH model described in
Eq. (C4).

Now, we consider the effects of purely imaginary on-site
potential. Note that the above similarity transformation cannot
change the diagonal terms of the matrix, leading the original
Hamiltonian in Eq. (1) to become

N/2
H =) (=iyaa, + iyb}b,)
n=1
N
+ Z (_”/b:lbn + il/ajl+161n+1)
n=N/2+1

N
+ ) e(@by + biay) + J(a) by + He)l.  (C5)

n=1

The above Hamiltonian obviously has the same form as the
model in Ref. [72], which describes an odd-sized SSH chain
with a purely imaginary potential. Thus, the positive purely
imaginary on-site potential determines the opening of the
topological excitation transmission [see Fig. 4(a)].

[1] M. Saffman, T. G. Walker, and K. Mglmer, Quantum informa-
tion with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010).

[2] D. Suter and G. A. Alvarez, Colloquium: Protecting quantum
information against environmental noise, Rev. Mod. Phys. 88,
041001 (2016).

[3] A. Galindo and M. A. Martin-Delgado, Information and com-
putation: Classical and quantum aspects, Rev. Mod. Phys. 74,
347 (2002).

[4] L.-M. Duan and C. Monroe, Colloquium: Quantum networks
with trapped ions, Rev. Mod. Phys. 82, 1209 (2010).

[5] C. Monroe, Quantum information processing with atoms and
photons, Nature (London) 416, 238 (2002).

[6] C. H. Bennett and D. P. DiVincenzo, Quantum information and
computation, Nature (London) 404, 247 (2000).

[7] H. Jeong, M. S. Kim, and J. Lee, Quantum-information pro-
cessing for a coherent superposition state via a mixedentangled
coherent channel, Phys. Rev. A 64, 052308 (2001).

[8] J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mglmer,
and E. S. Polzik, Generation of a superposition of odd photon
number states for quantum information networks, Phys. Rev.
Lett. 97, 083604 (2006).

[9] A. Feix, M. Araiijo, and C. Brukner, Quantum superposition of
the order of parties as a communication resource, Phys. Rev. A
92, 052326 (2015).

[10] M. C. de Oliveira and W. J. Munro, Quantum computation
with mesoscopic superposition states, Phys. Rev. A 61, 042309
(2000).

[11] S. B. Zheng, Quantum-information processing and multiatom-
entanglement engineering with a thermal cavity, Phys. Rev. A
66, 060303(R) (2002).

[12] S. B. Zheng and G.-C. Guo, Efficient scheme for two-atom
entanglement and quantum information processing in cavity
QED, Phys. Rev. Lett. 85, 2392 (2000).

[13] D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and
P. G. Kwiat, Entangled state quantum cryptography: Eaves-
dropping on the Ekert protocol, Phys. Rev. Lett. 84, 4733
(2000).

[14] T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A.
Zeilinger, Quantum cryptography with entangled photons,
Phys. Rev. Lett. 84, 4729 (2000).

[15] J. Yin et al., Entanglement-based secure quantum cryptography
over 1,120 kilometres, Nature (London) 582, 501 (2020).

[16] J. 1. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Quan-
tum state transfer and entanglement distribution among distant
nodes in a quantum network, Phys. Rev. Lett. 78, 3221
(1997).

[17] S. Bose, Quantum communication through an unmodulated spin
chain, Phys. Rev. Lett. 91, 207901 (2003).

[18] M. Christandl, N. Datta, A. Ekert, and A. J. Landahl, Perfect
state transfer in quantum spin networks, Phys. Rev. Lett. 92,
187902 (2004).

[19] G. M. Nikolopoulos and I. Jex, Quantum State Transfer and Net-
work Engineering, Quantum Science and Technology (Springer,
Heidelberg, 2013).

032428-9


https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.88.041001
https://doi.org/10.1103/RevModPhys.74.347
https://doi.org/10.1103/RevModPhys.82.1209
https://doi.org/10.1038/416238a
https://doi.org/10.1038/35005001
https://doi.org/10.1103/PhysRevA.64.052308
https://doi.org/10.1103/PhysRevLett.97.083604
https://doi.org/10.1103/PhysRevA.92.052326
https://doi.org/10.1103/PhysRevA.61.042309
https://doi.org/10.1103/PhysRevA.66.060303
https://doi.org/10.1103/PhysRevLett.85.2392
https://doi.org/10.1103/PhysRevLett.84.4733
https://doi.org/10.1103/PhysRevLett.84.4729
https://doi.org/10.1038/s41586-020-2401-y
https://doi.org/10.1103/PhysRevLett.78.3221
https://doi.org/10.1103/PhysRevLett.91.207901
https://doi.org/10.1103/PhysRevLett.92.187902

QL LI, HAN, LI, ZHANG, AND HE

PHYSICAL REVIEW A 109, 032428 (2024)

[20] K. Eckert, O. Romero-Isart, and A. Sanpera, Efficient quantum
state transfer in spin chains via adiabatic passage, New J. Phys.
9, 155 (2007).

[21] M. Christandl, N. Datta, T. C. Dorlas, A. Ekert, A. Kay, and
A. J. Landahl, Perfect transfer of arbitrary states in quantum
spin networks, Phys. Rev. A 71, 032312 (2005).

[22] Y. L. Zhou, Y. M. Wang, L. M. Liang, and C. Z. Li, Quantum
state transfer between distant nodes of a quantum network via
adiabatic passage, Phys. Rev. A 79, 044304 (2009).

[23] M. Lubasch, V. Murg, U. Schneider, J. I. Cirac, and M. C.
Baiiuls, Adiabatic preparation of a Heisenberg antiferromag-
net using an optical superlattice, Phys. Rev. Lett. 107, 165301
(2011).

[24] U. Farooq, A. Bayat, S. Mancini, and S. Bose, Adiabatic many-
body state preparation and information transfer in quantum dot
arrays, Phys. Rev. B 91, 134303 (2015).

[25] M. Rontgen, C. V. Morfonios, I. Brouzos, F. K. Diakonos,
and P. Schmelcher, Quantum network transfer and storage with
compact localized states induced by local symmetries, Phys.
Rev. Lett. 123, 080504 (2019).

[26] D. Matsukevich and A. Kuzmich, Quantum state transfer be-
tween matter and light, Science 306, 663 (2004).

[27] Y. Guo, D. Dong, and C. C. Shu, Optimal and robust control of
quantum state transfer by shaping the spectral phase of ultrafast
laser pulses, Phys. Chem. Chem. Phys. 20, 9498 (2018).

[28] Y. Qi, C. C. Shu, D. Dong, I. R. Petersen, K. Jacobs, and S.
Gong, Fast quantum state transfer in hybrid quantum dot-metal
nanoparticle systems by shaping ultrafast laser pulses, J. Phys.
D 52, 425101 (2019).

[29] Y. H. Chen, Q. C. Wu, B.-H. Huang, J. Song, and Y. Xia,
Arbitrary quantum state engineering in three-state systems via
counterdiabatic driving, Sci. Rep. 6, 38484 (2016).

[30] S. Longhi, Adiabatic quantum state transfer in tight-binding
chains using periodic driving fields, Europhys. Lett. 107, 50003
(2014).

[31] F. Beaudoin, A. Blais, and W. Coish, Hamiltonian engineering
for robust quantum state transfer and qubit readout in cavity
QED, New J. Phys. 19, 023041 (2017).

[32] Y. H. Kang, Y. H. Chen, Q. C. Wu, B. H. Huang, Y. Xia, and
J. Song, Reverse engineering of a Hamiltonian by designing the
evolution operators, Sci. Rep. 6, 30151 (2016).

[33] M. H. Yung and S. Bose, Perfect state transfer, effective
gates, and entanglement generation in engineered bosonic and
fermionic networks, Phys. Rev. A 71, 032310 (2005).

[34] A. Jayashankar and P. Mandayam, Pretty good state transfer via
adaptive quantum error correction, Phys. Rev. A 98, 052309
(2018).

[35] A. Kay, Quantum error correction for state transfer in noisy spin
chains, Phys. Rev. A 93, 042320 (2016).

[36] G. Tajimi and N. Yamamoto, Dynamical Gaussian state transfer
with quantum-error-correcting architecture, Phys. Rev. A 85,
022303 (2012).

[37] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg,
Topological states and adiabatic pumping in quasicrystals,
Phys. Rev. Lett. 109, 106402 (2012).

[38] M. Verbin, O. Zilberberg, Y. Lahini, Y. E. Kraus, and Y.
Silberberg, Topological pumping over a photonic Fibonacci
quasicrystal, Phys. Rev. B 91, 064201 (2015).

[39] N. Y. Yao, C. R. Laumann, A. V. Gorshkov, H. Weimer, L.
Jiang, J. 1. Cirac, P. Zoller, and M. D. Lukin, Topologically

protected quantum state transfer in a chiral spin liquid, Nat.
Commun. 4, 1585 (2013).

[40] M. Bello, C. E. Creffield, and G. Platero, Long-range doublon
transfer in a dimer chain induced by topology and ac fields,
Sci. Rep. 6, 22562 (2016).

[41] P. Gao and J. Christensen, Topological sound pumping of zero-
dimensional bound states, Adv. Quantum Technol. 3, 2000065
(2020).

[42] L. Qi, N. Han, S. Hu, and A. L. He, Engineering the unidirec-
tional topological excitation transmission and topological diode
in the Rice-Mele model, Phys. Rev. A 108, 032402 (2023).

[43] J. Alicea, Y. Oreg, G. Refael, F. Von Oppen, and M. Fisher,
Non-Abelian statistics and topological quantum information
processing in 1D wire networks, Nat. Phys. 7, 412 (2011).

[44] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[45] X. L. Qi and S. C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[46] C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classifica-
tion of topological quantum matter with symmetries, Rev. Mod.
Phys. 88, 035005 (2016).

[47] A. Bansil, H. Lin, and T. Das, Colloquium: Topological band
theory, Rev. Mod. Phys. 88, 021004 (2016).

[48] C. Dlaska, B. Vermersch, and P. Zoller, Robust quantum state
transfer via topologically protected edge channels in dipolar
arrays, Quantum Sci. Technol. 2, 015001 (2017).

[49] N. Lang and H. P. Biichler, Topological networks for quantum
communication between distant qubits, npj Quantum Inf. 3, 47
(2017).

[50] F. Mei, G. Chen, L. Tian, S. L. Zhu, and S. Jia, Robust quantum
state transfer via topological edge states in superconducting
qubit chains, Phys. Rev. A 98, 012331 (2018).

[51] J. L. Tambasco, G. Corrielli, R. J. Chapman, A. Crespi, O.
Zilberberg, R. Osellame, and A. Peruzzo, Quantum interference
of topological states of light, Sci. Adv. 4, eaat3187 (2018).

[52] L. Qi, G. L. Wang, S. Liu, S. Zhang, and H.-F. Wang, Con-
trollable photonic and phononic topological state transfers in a
small optomechanical lattice, Opt. Lett. 45, 2018 (2020).

[53] M. I. N. Rosa, R. K. Pal, J. R. F. Arruda, and M. Ruzzene, Edge
states and topological pumping in spatially modulated elastic
lattices, Phys. Rev. Lett. 123, 034301 (2019).

[54] Y. X. Shen, L. S. Zeng, Z. G. Geng, D. G. Zhao, Y. G. Peng, and
X. F. Zhu, Acoustic adiabatic propagation based on topological
pumping in a coupled multicavity chain lattice, Phys. Rev. Appl.
14, 014043 (2020).

[55] L. Qi, G. L. Wang, S. Liu, S. Zhang, and H. F. Wang, Engineer-
ing the topological state transfer and topological beam splitter
in an even-sized Su-Schrieffer-Heeger chain, Phys. Rev. A 102,
022404 (2020).

[56] M. Makwana, R. Craster, and S. Guenneau, Topological beam-
splitting in photonic crystals, Opt. Express 27, 16088 (2019).

[57] X. S. Wang, Y. Su, and X. R. Wang, Topologically protected
unidirectional edge spin waves and beam splitter, Phys. Rev. B
95, 014435 (2017).

[58] L. Qi, Y. Yan, Y. Xing, X. D. Zhao, S. Liu, W. X. Cui, X. Han,
S. Zhang, and H. F. Wang, Topological router induced via long-
range hopping in a Su-Schrieffer-Heeger chain, Phys. Rev. Res.
3, 023037 (2021).

[59] L. N. Zheng, X. Yi, and H. F. Wang, Engineering a phase-robust
topological router in a dimerized superconducting-circuit lattice

032428-10


https://doi.org/10.1088/1367-2630/9/5/155
https://doi.org/10.1103/PhysRevA.71.032312
https://doi.org/10.1103/PhysRevA.79.044304
https://doi.org/10.1103/PhysRevLett.107.165301
https://doi.org/10.1103/PhysRevB.91.134303
https://doi.org/10.1103/PhysRevLett.123.080504
https://doi.org/10.1126/science.1103346
https://doi.org/10.1039/C8CP00512E
https://doi.org/10.1088/1361-6463/ab33eb
https://doi.org/10.1038/srep38484
https://doi.org/10.1209/0295-5075/107/50003
https://doi.org/10.1088/1367-2630/aa5d33
https://doi.org/10.1038/srep30151
https://doi.org/10.1103/PhysRevA.71.032310
https://doi.org/10.1103/PhysRevA.98.052309
https://doi.org/10.1103/PhysRevA.93.042320
https://doi.org/10.1103/PhysRevA.85.022303
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevB.91.064201
https://doi.org/10.1038/ncomms2531
https://doi.org/10.1038/srep22562
https://doi.org/10.1002/qute.202000065
https://doi.org/10.1103/PhysRevA.108.032402
https://doi.org/10.1038/nphys1915
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1088/2058-9565/2/1/015001
https://doi.org/10.1038/s41534-017-0047-x
https://doi.org/10.1103/PhysRevA.98.012331
https://doi.org/10.1126/sciadv.aat3187
https://doi.org/10.1364/OL.388835
https://doi.org/10.1103/PhysRevLett.123.034301
https://doi.org/10.1103/PhysRevApplied.14.014043
https://doi.org/10.1103/PhysRevA.102.022404
https://doi.org/10.1364/OE.27.016088
https://doi.org/10.1103/PhysRevB.95.014435
https://doi.org/10.1103/PhysRevResearch.3.023037

NON-HERMITIAN TOPOLOGICAL EXCITATION ...

PHYSICAL REVIEW A 109, 032428 (2024)

with long-range hopping and chiral symmetry, Phys. Rev. Appl.
18, 054037 (2022).

[60] S. Longhi, G. L. Giorgi, and R. Zambrini, Landau—Zener
topological quantum state transfer, Adv. Quantum Technol. 2,
1800090 (2019).

[61] S. Longhi, Topological pumping of edge states via adiabatic
passage, Phys. Rev. B 99, 155150 (2019).

[62] F. M. D’ Angelis, F. A. Pinheiro, D. Guéry-Odelin, S. Longhi,
and F. Impens, Fast and robust quantum state transfer in a
topological Su-Schrieffer-Heeger chain with next-to-nearest-
neighbor interactions, Phys. Rev. Res. 2, 033475 (2020).

[63] N. E. Palaiodimopoulos, 1. Brouzos, F. K. Diakonos, and G.
Theocharis, Fast and robust quantum state transfer via a topo-
logical chain, Phys. Rev. A 103, 052409 (2021).

[64] S. Malzard, C. Poli, and H. Schomerus, Topologically protected
defect states in open photonic systems with non-Hermitian
charge-conjugation and parity-time symmetry, Phys. Rev. Lett.
115, 200402 (2015).

[65] H. C. Wu, L. Jin, and Z. Song, Topology of an anti-parity-time
symmetric non-Hermitian Su-Schrieffer-Heeger model, Phys.
Rev. B 103, 235110 (2021).

[66] R. Okugawa and T. Yokoyama, Topological exceptional sur-
faces in non-Hermitian systems with parity-time and parity-
particle-hole symmetries, Phys. Rev. B 99, 041202(R) (2019).

[67] K. Kawabata, Y. Ashida, H. Katsura, and M. Ueda, Parity-
time-symmetric topological superconductor, Phys. Rev. B 98,
085116 (2018).

[68] L. Xiao et al., Observation of topological edge states in parity—
time-symmetric quantum walks, Nat. Phys. 13, 1117 (2017).

[69] H. Shackleton and M. S. Scheurer, Protection of parity-time
symmetry in topological many-body systems: Non-Hermitian
toric code and fracton models, Phys. Rev. Res. 2, 033022
(2020).

[70] T. Chen, B. Wang, and X. Zhang, Characterization of topolog-
ical phases and selection of topological interface modes in the
parity-time-symmetric quantum walk, Phys. Rev. A 97, 052117
(2018).

[71] N. Okuma and Y. O. Nakagawa, Nonnormal Hamiltonian dy-
namics in quantum systems and its realization on quantum
computers, Phys. Rev. B 105, 054304 (2022).

[72] L. Qi, N. Han, S. Liu, H. F. Wang, and A. L. He, Con-
trollable excitation transmission and topological switch based
on an imaginary topological channel in a non-Hermitian Su-
Schrieffer-Heeger chain, Phys. Rev. A 107, 062214 (2023).

[73] S. Yao and Z. Wang, Edge states and topological invari-
ants of non-Hermitian systems, Phys. Rev. Lett. 121, 086803
(2018).

[74] E. Song, S. Yao, and Z. Wang, Non-Hermitian skin effect and
chiral damping in open quantum systems, Phys. Rev. Lett. 123,
170401 (2019).

[75] S. Longhi, Probing non-Hermitian skin effect and non-Bloch
phase transitions, Phys. Rev. Res. 1, 023013 (2019).

[76] Q. Liang, D. Xie, Z. Dong, H. Li, H. Li, B. Gadway, W. Yi,
and B. Yan, Dynamic signatures of non-Hermitian skin effect
and topology in ultracold atoms, Phys. Rev. Lett. 129, 070401
(2022).

[77] K. Kawabata, M. Sato, and K. Shiozaki, Higher-order non-
Hermitian skin effect, Phys. Rev. B 102, 205118 (2020).

[78] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, Topologi-
cal origin of non-Hermitian skin effects, Phys. Rev. Lett. 124,
086801 (2020).

[79] S. Longhi, D. Gatti, and G. D. Valle, Robust light transport in
non-Hermitian photonic lattices, Sci. Rep. 5, 13376 (2015).

[80] L. Du, Y. Zhang, and J. H. Wu, Controllable unidirectional
transport and light trapping using a one-dimensional lattice with
non-Hermitian coupling, Sci. Rep. 10, 1113 (2020).

[81] Q. B. Zeng and R. Lii, Real spectra and phase transition of
skin effect in nonreciprocal systems, Phys. Rev. B 105, 245407
(2022).

[82] X. W. Xu, Y. Li, B. Li, H. Jing, and A. X. Chen, Nonreciprocity
via nonlinearity and synthetic magnetism, Phys. Rev. Appl. 13,
044070 (2020).

[83] Q. Zhang and B. Wu, Non-Hermitian quantum systems and
their geometric phases, Phys. Rev. A 99, 032121 (2019).

032428-11


https://doi.org/10.1103/PhysRevApplied.18.054037
https://doi.org/10.1002/qute.201800090
https://doi.org/10.1103/PhysRevB.99.155150
https://doi.org/10.1103/PhysRevResearch.2.033475
https://doi.org/10.1103/PhysRevA.103.052409
https://doi.org/10.1103/PhysRevLett.115.200402
https://doi.org/10.1103/PhysRevB.103.235110
https://doi.org/10.1103/PhysRevB.99.041202
https://doi.org/10.1103/PhysRevB.98.085116
https://doi.org/10.1038/nphys4204
https://doi.org/10.1103/PhysRevResearch.2.033022
https://doi.org/10.1103/PhysRevA.97.052117
https://doi.org/10.1103/PhysRevB.105.054304
https://doi.org/10.1103/PhysRevA.107.062214
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.123.170401
https://doi.org/10.1103/PhysRevResearch.1.023013
https://doi.org/10.1103/PhysRevLett.129.070401
https://doi.org/10.1103/PhysRevB.102.205118
https://doi.org/10.1103/PhysRevLett.124.086801
https://doi.org/10.1038/srep13376
https://doi.org/10.1038/s41598-020-58018-2
https://doi.org/10.1103/PhysRevB.105.245407
https://doi.org/10.1103/PhysRevApplied.13.044070
https://doi.org/10.1103/PhysRevA.99.032121

