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We consider quantum systems with a Hamiltonian containing a weak perturbation, i.e., H = H0 + λ · H̃ ,
λ = {λ1, λ2, . . . , }, H̃ = {H1, H2, . . . , }, |λ| � 1, and address situations where H̃ is known but the values of the
couplings λ are unknown and should be determined by performing measurements on the system. We consider two
scenarios: in the first one we assume that measurements are performed on a given stationary state of the system,
e.g., the ground state, whereas in the second one an initial state is prepared and then measured after evolution. In
both cases, we look for the optimal measurements to estimate the couplings and evaluate the ultimate limits to
precision. In particular, we derive general results for one and two couplings and analyze in detail some specific
qubit models. Our results indicate that dynamical estimation schemes may provide enhanced precision upon a
suitable choice of the initial preparation and the interaction time.
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I. INTRODUCTION

It is often the case that relevant physical phenomena corre-
spond to weak perturbations to a stable unperturbed situation.
This happens in a wide range of disciplines, ranging from
applied mathematics [1] to biology [2] to chemistry [3] and
physics [4], where the perturbation can represent a weak
electric field interacting with an atom, causing a shift in its
energy levels (Stark effect), or similarly a weak magnetic field
(Zeeman effect). The same occurs in the presence of a weak
energy modification to the Hamiltonian (Fermi’s golden rule),
or a weak gravitational force acting on two other physical
bodies (tidal forces). In these situations, the nature of the
perturbations is usually known, whereas the strengths of the
perturbations are the quantities of interest. The Hamiltonian
of those systems may be generally written as

H = H0 + λ · H̃, (1)

where H0 and H̃ = {H1, H2, . . . , } are known Hamiltonian
operators and λ = {λ1, λ2, . . . , } with |λ| � 1 is a vector
of small unknown coupling parameters whose values are
unknown and should be determined by performing measure-
ments on the system. To achieve this goal, there are two
paradigmatic approaches, which will be referred to as static
and dynamical estimation schemes throughout the paper. In
the first one, the system may be prepared in a given stationary
state, usually the ground state, which is measured to gain
information about the value of the parameters. In a dynamical

scenario, the system is instead prepared in a certain state, left
to evolve for a given interaction time, and finally measured.
In a dynamical estimation scheme, the initial state, as well
as interaction time, may be optimized and thus the overall
precision may be enhanced compared to a static scheme,
though the practical implementation may be more challeng-
ing. In addition, the case of small perturbations to a given
Hamiltonian H0, the Hamiltonian in Eq. (1) may also describe
systems where the couplings have some target values λ0 and
the scope of the measurement is to monitor the system [5–7],
i.e., to estimate possible deviations λ = λ0 − λ0 from those
values.

A convenient framework to investigate the precision
achievable by static and dynamical estimation schemes is
that of quantum estimation theory [8–13], which provides
a set of tools to determine the measurement that has to
be performed on the system, i.e., to find the observable
that is most sensitive to tiny variations of the parame-
ters [14–25], and to optimize the initial preparation of the
probe [26–35].

In particular, if the value of a single parameter is encoded in
the family of quantum states {|ψλ〉} (usually referred to as the
quantum statistical model), one may prove that the ultimate
precision achievable in estimating λ is obtained by measuring
the observable Lλ, known as symmetric logarithmic derivative
(SLD), which is the self-adjoint operator given by

Lλ = 2[|∂λψλ〉〈ψλ| + |ψλ〉〈∂λψλ|]. (2)
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Upon collecting the result of M repeated measurements on
identical preparations of the system and suitably processing
data (e.g., by MAXLIK [36–39] or Bayesian analysis [40,41])
the uncertainty in the determination of λ, i.e., the precision of
the estimation scheme, is given by

Varλ � 1

M Q(λ)
, (3)

where Q(λ) is the so-called quantum Fisher information of the
quantum statistical model {|ψλ〉}, i.e.,

Qλ = 4[〈∂λψλ||∂λψλ〉 − |〈∂λψλ||ψλ〉|2] (4)

(notice that 〈ψλ||∂λψλ〉 is a purely imaginary c-number, i.e.,
〈ψλ||∂λψλ〉∗ = 〈∂λψλ||ψλ〉 = −〈ψλ||∂λψλ〉).

The generalization to the estimation of more than one pa-
rameter can be obtained by introducing the so-called quantum
Fisher information matrix (QFIM) Q, which is a real symmet-
ric n × n matrix with entries

Qμν = 4[Re〈∂μψ ||∂νψ〉 + 〈∂μψ ||ψ〉〈∂νψ ||ψ〉]. (5)

The QFIM provides a bound on the covariance matrix (CM)
of the estimates

Cov(λ) � 1

M
Q−1. (6)

This is a matrix inequality, and in general, it cannot be satu-
rated. Physically, this corresponds to the unavoidable quantum
noise that originate when the SLDs corresponding to different
parameters do not commute [42]. In those cases, the total
variance

∑
μ V (λμ) (or a weighted combination of the CM

elements) is a more interesting quantity to study, and since
the μth diagonal entry of the covariance matrix is just the
variance of the parameter λμ, the bound on the total variance is
given as ∑

μ

V (λμ) � B

M
, B = Tr

[
Q−1

]
. (7)

The incompatibility between the parameters can be quantified
by the so-called asymptotic incompatibility [43–46], also re-
ferred to as the quantumness of the quantum statistical model.
This is defined as

R := ‖i Q−1D‖∞, (8)

where ‖A‖∞ is the largest eigenvalue of the matrix A and

Dμν = − i

2
〈ψλ|[Lμ, Lν]|ψλ〉 = 4Im〈∂μψ ||∂νψ〉 (9)

is the Uhlmann curvature of the statistical model. The quan-
tity R is a real number in the range 0 � R � 1 with the
equality R = 0 satisfied for compatible parameters, i.e., when
〈ψλ|[Lμ, Lν]|ψλ〉 = 0. For just two parameters, one may write

R =
√

det D
det Q

. (10)

A tighter scalar bound, known as the Holevo-Cramer-
Rao bound

∑
μ V (λμ) � CH/M, with CH � B, may also be

derived (see [47] for details), and the quantumness R pro-
vides a bound to the normalized difference between CH and

B as follows:

CH − B

B
� R. (11)

In the following sections, we aim at finding general formu-
las of Q for estimation problems involving the parameters of
weakly perturbed systems in both the static and the dynamical
estimation scenarios. In the case of two parameters both B and
R will be investigated, and then we will analyze some specific
models involving qubits, qutrits and harmonic oscillators, and
where the Holevo-Cramer-Rao bound is known analytically,
we check whether the inequality in Eq. (11) is tight. More
precisely, Sec. II is devoted to static estimation schemes,
with Sec. II A reporting general results and Secs. II B, II C,
and II D devoted to specific models involving qubit, qutrit,
and oscillatory systems, respectively. Section III is devoted
to dynamical estimation schemes, with Sec. III A reporting
general results and Secs. III B, III C, and III D discussing
specific results for qubit, qutrit, and oscillatory systems, also
comparing the performance of dynamical schemes to that of
the corresponding static ones. Section IV closes the paper with
some concluding remarks.

II. STATIC ESTIMATION OF WEAK PERTURBATIONS

In this section, we address estimation of weak pertur-
bations in systems descibed by one- and two-parameter
(time-independent) Hamiltonians of the form H = H0 + λH1

and H = H0 + λ1H1 + λ2H2. In particular, we assume that the
system may be prepared in a given state (e.g., the ground state)
and that repeated measurements may be performed on the
system. We derive general expressions for the QFI Q and the
quantumness R and discuss specific models involving qubit,
qutrit, and oscillator systems.

A. General results for one and two parameters

Let us consider a system with Hamiltonian H = H0 + λH1

where λ � 1. The nth eigenstate |ψn〉 of H may be obtained
perturbatively to first-order in λ as follows:

|ψn〉 = ∣∣ψ0
n

〉 + λ
∣∣ψ1

n

〉 + O(λ2), (12)

where |ψ0
n 〉 are eigenstates of H0 and

∣∣ψ1
n

〉 =
∑
m 	=n

〈
ψ0

m

∣∣H1

∣∣ψ0
n

〉
E0

n − E0
m

∣∣ψ0
m

〉
is the first-order correction to the nth eigenstate. In general,
〈ψ1|ψ1〉 = N 	= 1, and it is thus convenient to introduce the
state |ψ1〉 = √

N |φ1〉 and write the first-order corrected eigen-
state |ψ〉 as a combination of two orthonormal states |ψ0〉
and |φ1〉. The subscript n is omitted to simplify notation. The
perturbed state and its derivative are thus given by

|ψ〉 = |ψ0〉 + λ
√

N |φ1〉, (13a)

|∂λψ〉 =
√

N |φ1〉. (13b)

According to Eq. (2), the SLD of this general model may
be written, up to first order in λ as

Lλ = 2
√

N[|ψ0〉〈φ1| + |φ1〉〈ψ0| + 2λ
√

N |φ1〉〈φ1|], (14)
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and the corresponding QFI as

Q(λ) = 4N + O(λ2). (15)

The QFI is independent on the perturbation (up to second or-
der) and proportional to the norm of the first-order correction
|ψ1〉. This is a remarkably intuitive results, linking the estima-
bility of a perturbation to its physical effect on the system. The
same result may be also obtained expressing the QFI in terms
of fidelity [48,49]. Notice also that the λ-dependent term in
the SLD leads to negligible (second-order) contributions to
the QFI and may be dropped. The optimal measurement is
thus given by

L = 2
√

N

(
0 1
1 0

)
. (16)

This expression makes it clear that the optimal measure-
ments set coincides with the Pauli matrix σx over the basis
{|ψ0〉, |φ1〉}, i.e., a detection scheme that senses the coherence
of the perturbed state in that basis.

Let us now address the case of systems with Hamiltonian
of the form H = H0 + λ1H1 + λ2H2 where H1 and H2 are in
general noncommuting operators, [H1, H2] 	= 0. In this case
the pertubations depend in a nontrivial way on two different
parameters λ1 and λ2, which should be jointly estimated. For
weak perturbations, the the nth eigenstate of H |ψn〉 may be
written, in terms of the eigenbasis of H0, as follows:

|ψn〉 = ∣∣ψ0
n

〉 + λ1

∑
m 	=n

〈
ψ0

m

∣∣H1

∣∣ψ0
n

〉
E0

n − E0
m

∣∣ψ0
m

〉

+ λ2

∑
l 	=n

〈
ψ0

l

∣∣H2

∣∣ψ0
n

〉
E0

n − E0
l

∣∣ψ0
l

〉

= ∣∣ψ0
n

〉 + λ1
√

N1

∣∣φ1
n,1

〉 + λ2
√

N2

∣∣φ1
n,2

〉
, (17)

where |φ1
n,μ〉 are states, i.e., the normalized version of the first-

order corrections |ψ1
n,μ〉 = √

Nμ|φ1
n,μ〉 having squared norms

Nj (with μ = 1, 2 the index of the parameter λμ). As we have
done before, we drop the index n to simplify the notation.
These states are not orthogonal one to each other but both are
orthogonal to the unperturbed eigenspace of H0, hence, we
can express the perturbed state |ψ〉 in an orthonormal basis
spanned by the triplet {|ψ0〉, | j〉, |k〉}, with 〈 j|k〉 = δ jk . Upon
writing the states |φl〉} as

|φ1〉 = cos
θ1

2
| j〉 + sin

θ1

2
|k〉,

|φ2〉 = eiγ cos
θ2

2
| j〉 + ei(γ+ϕ) sin

θ2

2
|k〉,

the perturbed state and its derivatives |∂λμ
ψ〉 = |ψ1

μ〉 may be
written as

|ψ〉 = |ψ0〉 +
(

λ1
√

N1 cos
θ1

2
+ λ2

√
N2eiγ cos

θ2

2

)
| j〉

+
(

λ1
√

N1 sin
θ1

2
+ λ2

√
N2ei(γ+ϕ) sin

θ2

2

)
|k〉, (18)

|∂λ1ψ〉 = √
N1

(
cos

θ1

2
| j〉 + sin

θ1

2
|k〉

)
, (19)

|∂λ2ψ〉 = √
N2 eiγ

(
cos

θ2

2
| j〉 + eiϕ sin

θ2

2
|k〉

)
. (20)

To quantify the orthogonality between the two perturbations,
we consider the overlap ω = 〈φ1

1 ||φ1
2〉 between the two first-

order corrections, i.e.,

ω = cos
θ1

2
cos

θ2

2
eiγ + sin

θ1

2
sin

θ2

2
ei(γ+ϕ). (21)

The SLD operators L1 and L2 for the two parameters λ1

and λ2 may be calculated according to Eq. (2). The explicit
expressions are reported in Appendix A. The corresponding
QFIM Q and Uhlmann curvature D are given by

Q =
(

4N1 4
√

N1N2 Reω

4
√

N1N2 Reω 4N2

)
, (22)

D =
(

0 4
√

N1N2 Imω

−4
√

N1N2 Imω 0

)
. (23)

The ultimate bound B and the quantumness R thus read as
follows:

B = N1 + N2

4N1N2[1 − Re2ω]
, (24)

R =
√

Im2ω

1 − Re2ω
. (25)

As expected, the overlap between the perturbations is involved
in all the quantities of interest. In particular, a real overlap
(Imω = 0) always provides maximum compatibility (R = 0)
between the parameters to estimate. Moreover, if the overlap
is zero (both Reω = 0 and Imω = 0), i.e., perturbations are
orthogonal, the QFI matrix is diagonal, meaning that parame-
ters are uncorrelated. On the other hand, if the overlap is a just
a phase factor, we have Re2ω + Im2ω = 1, and thus R = 1,
i.e., maximal incompatibility between the parameters. This
may happen also when the dimension of the probing system
is insufficient to estimate a certain number of parameters, as
it will be illustrated in the next section by means of a qubit
statistical model.

B. Qubit models

Let us consider a qubit system described by the orthonor-
mal basis states {|0〉, |1〉} of the unperturbed Hamiltonian
H0 = σz with eigenenergies E0 = 1 and E1 = −1. The per-
turbed Hamiltonian is given by H = σz + λσx, where σz and
σx are standard Pauli matrices and λ is the small perturbation
parameter that we want to estimate. The first-order perturbed
ground state is given by

|ψ〉 = |0〉 + λ

2
|1〉, (26)

and the first-order corrected state is |ψ1〉 = 1
2 |1〉 with

(squared) norm N = 1/4. The corresponding SLD is Lλ = σx

and the QFI is given by

Q = 1 + O(λ2), (27)

confirming the general results in Eqs. (15) and (2).
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Let us now consider the more interesting case of a two-
parameter perturbation, which highlights the issues arising
from using an under-dimensioned (compared to the number
of parameters) probe system. The perturbed Hamiltonian is

H = σz + λ1σx + λ2(cos α σx + sin α σy),

where λi (with i = 1, 2) are the perturbation parameters and
α denotes a mixing angle which governs the orthogonality of
the two perturbations. The first-order perturbed ground state
of the system is given by

|ψ〉 = |0〉 + 1
2 (λ1 + λ2 eiα )|1〉. (28)

Looking at the above equation, it is clear that the two per-
turbations cannot, in general, generate two orthogonal states
where information about the two parameters is encoded [44].
In fact, the first-order corrected states corresponding to λ1

and λ2 are the same state except for a phase factor. In other
words, the two perturbations leads to two degenerate states
proportional to |1〉. Referring to the Bloch sphere represen-
tation introduced above, we have θ1 = θ2 = 0 and γ = α.
The overlap in Eq. (21) is given by ω = eiα and the QFIM
displays off-diagonal elements. To make the two parameter
compatible, a probe system with larger dimension should be
necessarily employed (see also the next section).

C. Qutrit models

Let us consider a three-dimensional spin-1 system
with a perturbed Hamiltonian given by H = Sz + λ1Sx +
λ2(cos α Sx + sin α Sy), where {Sz, Sx, Sy} denotes the irre-
ducible representation of spin-1 operators in the z basis

Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, Sx = 1√

2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠,

Sy = 1√
2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠, (29)

with |ms〉, m1 = {1, 0,−1} being the standard eigenvectors
and eigenvalues of Sz. This Hamiltonian is the direct gen-
eralization of that considered in the previous section, and a
comparison will reveal the role of system dimension.

For the eigenstate |ψ0〉 = |1, 0〉, the first-order corrections
are given by∣∣ψ1

1

〉 = |1,−1〉 − |1, 1〉√
2

= ∣∣φ1
1

〉
, (30a)

∣∣ψ1
2

〉 = eiα|1,−1〉 − e−iα|1, 1〉√
2

= ∣∣φ1
2

〉
, (30b)

with squared norms given by N1 = N2 = 1. It is easy to
see that these perturbation states live in two-level subsystem
spanned by | j〉 = |1, 1〉 and |k〉 = |1,−1〉, and that they may
be expressed as in Eq. (18) by setting θ1 = θ2 = 3π/2, γ =
−α, and ϕ = 2α. The resulting overlap is real and given by
ω = cos α. In this case, the resulting QFIM Q and the ultimate
bound B are

Q = 4

(
1 cos α

cos α 1

)
, B = csc2 α

2
, (31a)

whereas the mean Uhlmann curvature is vanishing and the
quantumness is zero R = 0. Moreover, the two perturbed
states become orthogonal for α = π/2, which corresponds
to apply nonoverlapping perturbations. The QFIM becomes
diagonal, meaning that the two parameters to be estimated are
uncorrelated and the ultimate bound B = 1/2 is minimal and
coincides with the Holevo bound CH . Notice that perturbing a
different eigenvector, say |1, 1〉, the situation is dramatically
different since the two perturbations Sx and Sy generate the
same first-order perturbed state |1, 0〉 and the resulting overlap
is ω = eiα .

Summarizing, a two-parameter perturbation cannot be
suitably characterized (with maximum precision and compati-
bility) using a qubit system, whereas the use of a qutrit system
allows one to achieve the ultimate limits to precision via a
proper choice of the encoding Hamiltonian terms and of the
initial unperturbed state.

D. Quantum anharmonic oscillator model

An interesting example of models which may be treated in
our formalism that of a quantum oscillator weakly perturbed
by anharmonic terms whose amplitudes are to be determined,
e.g., because it may represent a resource [50]. The Hilbert
space of the system is infinite dimensional and may offer an
ideal playground to encode as much information as needed.

For the sake of simplicity we choose natural units (h̄ = 1)
and set the frequency and the mass of the oscillator to one m =
ω = 1. We consider anharmonic perturbations to the harmonic
potential such that the perturbed Hamiltonian reads

H = 1
2 (p2 + x2) + ε1x3 + ε2x4, (32)

where we introduce the two anhamonicity parameters ε1 and
ε2 as the unknown parameters to be estimated. Recalling that
the number states |n〉 are eigenstates of the number operator
N , i.e., N |n〉 = a†a|n〉 = n|n〉, with the ground state of the
harmonic oscillator |0〉, satisfying a|0〉 = 0, and the generic
number state satisfying |n〉 = (a† )n√

n!
|0〉. The perturbed ground

state of the system may be obtained as in Eq. (17), where the
two first-order corrections are given by∣∣ψ1

1

〉 = −1

2

(
3√
2
|1〉 + 1√

3
|3〉

)
, (33a)

∣∣ψ1
2

〉 = −1

2

(
3√
2
|2〉 + 1

2

√
3

2
|4〉

)
, (33b)

with squared norms N1 = 29
24 and N2 = 39

32 . The two perturbed
states (33) are orthogonal and the same happens for any eigen-
state |n〉 of the perturbed Hamiltonian. The QFIM (22) reads

Q = 4

(
N1 0
0 N2

)
, (34)

leading to B = 466/1131 � 0.41. The Uhlmann curva-
ture (23) vanishes, corresponding to a zero quantumness (25).
By using a higher-order perturbation term in the Hamiltonian,
say H2 = x5, perturbed states are no longer orthogonal,
resulting in a real nonzero overlap ω (21). This leads to a
QFIM with nonzero off-diagonal terms, meaning that the two
parameters are no longer independent, but still compatible
since the D matrix is null and the quantumness parameter
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R = 0. In conclusion, preparing a quantum oscillator in its
vacuum state is an efficient strategy to precisely sense the
amplitude of anharmonic perturbations.

III. SENSING PERTURBATIONS BY DYNAMICAL PROBES

In this section, we address detection of weak perturbations
by performing measurements on an evolved state |ψ (t )〉 =
e−iHt |ψ0〉 where |ψ0〉 is a (nonstationary) given initial state
and H is the perturbed Hamiltonian under investigation.

A. General results for one and two parameters

Let us start with a perturbation described by a single-
parameter Hamiltonian. To obtain the QFI it is convenient
to move into the interaction picture (with respect to the un-
perturbed Hamiltonian H0), where the state vector is given
by the unitary transformation |ψI (t )〉 = U †

0 (t )|ψ (t )〉, being
U0(t ) = e−iH0t . The whole time evolution is expressed by

|ψI (t )〉 = UI (t )|ψ0〉, (35a)

UI (t ) = T [exp −iλK (t )], (35b)

K (t ) =
∫ t

0
dsU †

0 (s)H1U0(s), (35c)

where T [. . .] denotes time-ordering and the operator K (t ) =
K†(t ) is hermitian. Up to first order in λ we have

UI (t ) � I − iλK (t ), (36)

Going back to the Schrödinger picture the evolved state and
its derivative with respect to the unknown parameter may be
written as

|ψλ(t )〉 = U0(t )[I − iλK (t )]|ψ0〉, (37a)

|∂λψλ(t )〉 = −iU0(t )K (t )|ψ0〉. (37b)

The leading-order behavior corresponds to a λ-independent
(zeroth-order) expression of the QFI

Q(t ) = 4[〈ψ0|K2(t )|ψ0〉 − 〈ψ0|K (t )|ψ0〉2]. (38)

Despite the fact that it may appear as a rough approximation,
this expression of the QFI allows us to grab the main features
of the dynamical case and to compare results with those
obtained in the static one. The QFI in Eq. (38) depends on
time and is independent of λ. In other words, the evolution
introduces a time dependence, whereas it does not affect the
covariant nature of the estimation problem.

Analogously, in the case of a two-parameter Hamilto-
nian H = H0 + λ1H1 + λ2H2, the time evolution operator in
the interaction picture can be approximated at first order as
UI (t ) � I − i

∫ t
0 dsU †

0 (s)(λ1H1 + λ2H2)U0. Upon introducing
the operators

K1(t ) =
∫ t

0
dsU †

0 (s)H1U0(s), (39a)

K2(t ) =
∫ t

0
dsU †

0 (s)H2U0(s), (39b)

the leading order of the elements of the QFI matrix may be
evaluated as follows:

Q11 = 4[〈ψ0|K2
1 |ψ0〉 − 〈ψ0|K1|ψ0〉2],

Q12 = 4[Re(〈ψ0|K1K2|ψ0〉) − 〈ψ0|K1|ψ0〉〈ψ0|K2|ψ0〉],
Q21 = 4[Re(〈ψ0|K2K1|ψ0〉) − 〈ψ0|K2|ψ0〉〈ψ0|K1|ψ0〉],
Q22 = 4[〈ψ0|K2

2 |ψ0〉 − 〈ψ0|K2|ψ0〉2], (40)

where we omit the time dependence. The matrix elements of
the Uhlmann curvature are given by

D12 = 4Im(〈ψ0|K1K2|ψ0〉) = −D21, (41)

and the quantumness parameter R reads as follows:

R = 4|Im〈ψ0|K1K2|ψ0〉|√
det Q

. (42)

Now that the general framework has been set, in the fol-
lowing we reexamine some of the examples of the previous
sections to compare the performance of static and dynamical
estimation schemes.

B. Qubit models

Let us consider a single qubit, initially prepared in the
generic state |ψ0〉 = cos( θ

2 )|0〉 + eiφsin( θ
2 )|1〉. We first con-

sider a single-parameter perturbation. The system evolves
according to the unitary U = exp(−itH ) where t is the time
parameter and H = σz + λσx is the perturbed Hamiltonian
with λ small. Using Eqs. (35c) and (38) we have

K (t ) = eit sin t |0〉〈1| + e−it sin t |1〉〈0|, (43a)

Q(t ) = 4 sin2 t[1 − cos2(t + φ) sin2(θ )]. (43b)

To compare this result with the QFI obtained in the static
case, we set |0〉 as the initial (unperturbed) state at t = 0, i.e.,
θ = 0. The dynamical QFI is given by Q(t ) = 4 sin2 t and
achieves a maximum at t = π/2, where it four times greater
than the corresponding static QFI.

C. Qutrit models

We consider the same spin-1 system as in Sec. II C and
the same Hamiltonian. To compare results with the static
scenario, we set the initial state to |ψ0〉 = |1, 0〉, the QFIM
and bound will read

Q = 16 sin2 t

2

(
1 cos α

cos α 1

)
, D = 0, (44)

B = (
8 sin2 t/2 sin2 α

)−1
, R = 0. (45)

The D matrix and the R parameter vanish, i.e., we have com-
patibility between the two parameters. The QFI is maximal
(B is minimal) for orthogonal perturbations α = π/2 and for
t = π the QFIM is diagonal and maximal. As it happens with
qubits, in the dynamical scenario the bound is improved by a
factor of 4.

D. Anharmonic oscillator

We consider the same system of Sec. II D, prepare the
oscillator in the unperturbed ground state and let it evolve
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FIG. 1. B bound on the total variance for the joint estimation of
the anharmonicity parameters as a function of the interaction time.
The red solid line is the dynamical bound and the dashed black line
denotes the static one.

according to the perturbed Hamiltonian. Using Eqs. (39a)
and (39b) we evaluate the QFIM, which is a diagonal matrix
with entries (see Appendix B for details)

Q11 = 29
3 − 9 cos t − 2

3 cos 3t, (46)

Q22 = 3 (7 + cos 2t ) sin2 t, (47)

Q12 = Q21 = 0, (48)

whereas the quantumness R vanishes.
In Fig. 1 we show the bound B as a function of time (B

is a periodic function) compared to the static bound. As is
apparent from the plot, the dynamical scheme beats the static
one in the range t ∈ (0.721, 2.79). The absolute minimum
is obtained for t � 2.0, where we have B � 0.14, clearly
lower than the corresponding static value. We conclude that
preparing the oscillator in the unperturbed ground state and
performing measurements after a moderate time evolution is
an effective way to reveal the presence of anharmonic pertur-
bations and to estimate their amplitudes.

IV. CONCLUSION

In this paper, we addressed the estimation of weak quantum
perturbations analyzing two estimation scenarios: a static one,
where the parameters are inferred by performing measure-
ments on a stationary state, and a dynamical one, where the
system is prepared in a suitably optimized initial state and
measurements are performed after a given interaction time,
which itself may be optimized to enhance precision.

We found general formulas for the relevant quantities to
assess precision (i.e., the SLD, the QFIM, the scalar bound B
on the total variance, and the quantumness R) up to the leading
order in the perturbation parameters, and analyzed in some
details few quantum statistical models involving qubit, qutrit,
and oscillatory systems.

Our results indicate that dynamical estimation schemes
generally improve precision, although only for specific prepa-
rations of the system and values of the interaction time.
Ultimately, the choice between one scheme and the other does
depend on the specific features of the involved system, on

the experimental difficulties related to the preparation of the
initial state, and on the modulation of the interaction time. Our
results provide solid tools to compare the two approaches in a
generic situations.
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APPENDIX A: EXPLICIT EXPRESSIONS OF THE SLDs
FOR A TWO-PARAMETER PERTURBATIONS

Starting from the perturbed state in Eq. (18) and its deriva-
tives in Eqs. (19) and (20), the matrix elements α jk = [L1] jk

of the SLD operator relative to the parameter λ1 read

α11 = 0, (A1)

α22 = 4
(
λ1N1c2

1 + λ2
√

N1N2c1c2 cos γ
)
, (A2)

α33 = 4
(
λ1N1s2

1 + λ2
√

N1N2s1s2 cos(γ + ϕ)
)
, (A3)

α12 = α21 = 2
√

N1c1, (A4)

α13 = α31 = 2
√

N1s1, (A5)

α23 = α∗
32 = 4λ1N1c1s1

+ 2λ2
√

N1N2
(
c1s2e−i(γ+ϕ) + c2s1eiγ

)
, (A6)

whereas β jk = [L2] jk , i.e., those of the SLD operator relative
to the parameter λ2 are given by

β11 = 0, (A7)

β22 = 4
(
λ2N2c2

2 + λ1
√

N1N2c1c2 cos γ
)
, (A8)

β33 = 4
(
λ2N2s2

2 + λ1
√

N1N2s1s2 cos(γ + ϕ)
)
, (A9)

β12 = β21 = 2
√

N2c2e−iγ , (A10)

β13 = β∗
31 = 2

√
N2s2e−i(γ+ϕ), (A11)

β23 = β∗
32 = 4λ2N2c2s2e−iϕ

+ 2λ1
√

N1N2
(
c1s2e−i(γ+ϕ) + c2s1eiγ )

, (A12)

where Nj is the squared norm of the perturbation vector |ψ1
n, j〉,

c j = cos θ j

2 , and s j = sin θ j

2 , with j = 1, 2.

APPENDIX B: K1 AND K2 FOR THE ANHARMONIC
OSCILLATOR

In this Appendix, we present the explicit expressions of K1

and K2 in Eqs. (39a) and (39b) and their use in evaluating
the elements of the QFIM. The calculations are tedious but
straightforward, upon writing the nonlinear Hamiltonians in
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normal order as follows [51–53]:

xn = 1

2n/2
(a + a†)n

= n!

2n/2

[n/2]∑
k=0

n−2k∑
l=0

a†l an−2k−l

2k k! l! (n − 2k − l )!
, (B1)

where [n] denotes the integer part of n. We also use the fact
that for a generic function f (a, a†) of the bosonic operators
one has

eiya†a f (a, a†)e−iya†a = f (ae−iy, a†eiy). (B2)

We thus have

K1 =
1∑

k=0

3−2k∑
l=0

∫ t

0
dy e−iy(3−2k−2l )

× 3!

23/2

a†l a3−2k−l

2k k! l! (3 − 2k − l )!
, (B3)

=
1∑

k=0

3−2k∑
l=0

e−i t
2 (2k+2l−3) sin

[
t
2 (2k + 2l − 3)

]
1
2 (2k + 2l − 3)

× 3!

23/2

a†l a3−2k−l

2k k! l! (3 − 2k − l )!
, (B4)

and

K2 =
2∑

k=0

4−2k∑
l=0

∫ t

0
dy e−iy(4−2k−2l )

× 4!

22

a†l a4−2k−l

2k k! l! (4 − 2k − l )!
, (B5)

=
2∑

k=0

4−2k∑
l=0

e−i t
2 (2k+2l−4) sin

[
t
2 (2k + 2l − 4)

]
1
2 (2k + 2l − 4)

× 4!

22

a†l a4−2k−l

2k k! l! (4 − 2k − l )!
. (B6)

If we take the unperturbed ground states (the vacuum
state of the harmonic oscillator) we have 〈0|K1|0〉 = 0 and
〈0|K2|0〉 = 3

4 t .
To calculate the expectation values 〈0|K2

1 |0〉, 〈0|K2
2 |0〉,

and 〈0|K1K2|0〉 and evaluate the QFIM using Eq. (40)
we need to calculate expectations values of the form
〈0|a†l ′an′−2k′−l ′a†l an−2k−l |0〉. In particular, to calculate
〈0|K1K2|0〉, we need

〈0|a†l ′an′−2k′−l ′a†l an−2k−l |0〉
= δl ′,0δl,n−2k〈0|an′−2k′

a†n−2k|0〉
= δl ′,0δl,n−2kδk′,k+ n′−n

2

√
(n′ − 2k′)!(n − 2k)!

= 0 if n′ = n ± 1. (B7)

We conclude that 〈0|K1K2|0〉 = 0 and the same happens for
the quantumness R. To calculate the diagonal elements of the
QFIM we use

〈0|a†l ′an−2k′−l ′a†l an−2k−l |0〉 = (n − 2k)! δl ′,0δl,n−2kδk,k′ ,

such that

Q11 = 4 〈0|K2
1 |0〉

= 4

(
3!

23/2−1

)2 1∑
k=0

sin2
[

t
2 (3 − 2k)

]
(3 − 2k)2 22k (k!)2 (3 − 2k)!

= 29

3
− 9 cos t − 2

3
cos 3t, (B8)

and

Q22 = 4
(〈0|K2

2 |0〉 − 〈0|K2|0〉2
)

= 4

{(
4!

24/2−1

)2
[

1∑
k=0

sin2
[

t
2 (4 − 2k)

]
(4 − 2k)2 22k (k!)2 (4 − 2k)!

+ lim
k→2

sin2
[

t
2 (4 − 2k)

]
(4 − 2k)2 22k (k!)2 (4 − 2k)!

]
−

(
3

4
t

)2
}

= 3 (7 + cos 2t ) sin2 t . (B9)
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