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Two-dimensional ion crystals in a hybrid optical cavity trap for quantum information processing
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We numerically investigate a hybrid trapping architecture for two-dimensional (2D) ion crystals using static
electrode voltages and optical cavity fields for in-plane and out-of-plane confinements, respectively. By studying
the stability of 2D crystals against 2D-3D structural phase transitions, we identify the necessary trapping
parameters for ytterbium ions. Multiple equilibrium configurations for 2D crystals are possible, and we analyze
their stability by estimating potential barriers between them. We find that scattering to antitrapping states limits
the trapping lifetime, which is consistent with recent experiments employing other optical trapping architectures.
These 2D ion crystals offer an excellent platform for quantum simulation of frustrated spin systems, benefiting
from their 2D triangular lattice structure and phonon-mediated spin-spin interactions. Quantum information
processing with tens of ions is feasible in this scheme with current technologies.
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I. INTRODUCTION

Two-dimensional (2D) controlled many-body quantum
systems, with their enriched phase diagrams, open up a new
realm for physics study that is not readily accessible in one
dimension, e.g., geometric magnetic frustration [1,2] and
topological order [3,4]. Among all versatile quantum simu-
lators, trapped-ion systems are an excellent platform to in-
vestigate quantum information processing (QIP) experiments
[5,6]. Most conventional ion traps employ radio-frequency (rf)
fields in addition to static (dc) potentials to create ion con-
finement. Typical geometrical constraints of rf-trap electrodes
allow trapping of a chain of ions whose equilibrium posi-
tions are made to coincide with the “rf-null” line. This is to
avoid the so-called micromotion-heating problem in which the
driving rf fields cause unwanted heating of vibrational modes
of ions that are used to mediate quantum entanglement. De-
spite recent efforts in developing rf traps with microfabricated
electrodes for an ensemble of individual ions in a flexible
geometry [7,8], creating a two-dimensional micromotion-
free arrangement of ions remains a challenging technical
task.

Two-dimensional ion systems for QIP have been proposed
[9–12] and experimentally explored [7,8,13–22] with various
technologies. For example, crystals of hundreds of ions in
Penning traps, where the ion confinement is achieved with a
static magnetic field and dc potentials, have been used to sim-
ulate two-dimensional Ising spin systems [13,16]. However,
the ions rotate in the applied magnetic field of the Penning
trap, creating additional challenges in optically addressing
and measuring individual ion qubits. Another approach is to
minimize the impact of micromotion by carefully choosing
the geometries of laser beams that are used to address ions in
conventional rf traps. Two-dimensional ion crystals have been
studied in such systems for tens of ions [18,20,21], leading

to experimental simulation of quantum magnetism [23–25].
Alternatively, the long-range Coulomb-mediated spin-spin
interactions in an ion chain can be tailored to effectively
create a two-dimensional spin system [26–28]. However, such
synthetic systems often require fine-tuned static or dynamic
controls over the Hamiltonian, which can be experimentally
costly and error prone.

A way to obtain a rf-micromotion-free and nonrotating
two-dimensional ion system is to employ optical trapping of
ions, using the ac Stark shift from an optical beam. Indeed,
optical tweezers [29,30] and optical lattices [31,32] have been
used to trap ions in one dimension. However, the typical
depth of the optical trapping potential is small compared to
conventional rf and magnetic traps for experimentally fea-
sible optical configurations. Further, the optical potential is
dependent on atomic states, and hence, the lifetime of ions is
limited by scattering from the optical beam into antitrapping
or weakly trapped atomic states. The lifetime can be increased
by reducing the rate of scattering by increasing the frequency
separation (“detuning”) between the light and relevant atomic
transitions. For example, by changing the trapping beam from
visible to near infrared, the lifetime of an optically trapped
Ba+ ion was experimentally demonstrated [33] to increase
by a factor of 18 (from 166 ms to 3 s). However, increased
detuning also necessitates higher optical intensity to create a
deeper trapping potential suitable for a multi-ion system. A
natural way to enhance the intensity of the optical field is to
use a resonator cavity, which has been demonstrated as an
excellent tool for trapping [34], modifying the trapping po-
tential [35,36], and studying cavity quantum electrodynamics
effects for ions [37,38]. In this paper, we study a hybrid trap
architecture to trap 2D configuration of ions, in which the
in-plane confinement is provided by the dc potential and the
out-of-plane confinement is due to the optical standing wave
in the cavity.

2469-9926/2024/109(3)/032426(10) 032426-1 ©2024 American Physical Society

https://orcid.org/0000-0001-6876-3352
https://orcid.org/0000-0003-0692-3327
https://orcid.org/0000-0002-6483-8932
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.032426&domain=pdf&date_stamp=2024-03-22
https://doi.org/10.1103/PhysRevA.109.032426


SUN, TEOH, RAJABI, AND ISLAM PHYSICAL REVIEW A 109, 032426 (2024)

FIG. 1. Two-dimensional optical cavity trapping setup. Proposed
2D hybrid optical cavity trap setup (not to scale). Conventional
trapping is provided by rf voltages on the central electrode and static
(dc) voltages on the outer electrodes. Optical trapping along the
z axis is provided by the ac Stark shift experienced by ions from
the cavity-beam standing wave. The hybrid trapping consists of z
trapping from the cavity beam and radial (x, y) trapping from dc
voltages on the central electrode. Regarding the additional lasers for
individual quantum control, they should propagate along the z axis
to maximize optical resolution at individual ions. One can choose
the cavity mirror coatings such that they reflect the trapping laser but
transmit the control lasers.

This paper is structured as follows. In Sec. II, we discuss
the hybrid trapping potential created in our architecture. We
investigate the structural phase transition between 2D and
three-dimensional (3D) configurations of ions as a function
of trap anisotropy in Sec. III. We also find that the transverse
size of the optical cavity mode with respect to the charac-
teristic size of the ion crystal plays an important role in the
structural phase transitions. Unlike in one dimension, two-
dimensional ion crystals may have metastable equilibrium
configurations [39,40]. In Sec. IV, we estimate the potential
barrier between the stable and metastable configurations for
up to N = 9 ions. We find that the potential barriers are higher
than typical Doppler cooling temperatures. This may explain
the stability of observed configurations in experiments with
2D ion crystals [20,21,40]. In Sec. V, we discuss the lifetime
of multiple ions in the hybrid trap and identify the role of
various heating mechanisms. The 2D arrangement of ions
readily allows the creation of 2D spin models via the standard
Mølmer-Sørensen scheme [5,41,42]. We discuss examples
of spin-spin interactions between ions in 2D configurations
suitable for simulations of geometrically frustrated magnetic
models in Sec. VI. We also provide critical parameters (for
Yb+ ions) such as trap frequencies and the scattering rate
for experimentally achievable laser parameters and optical
cavities for a given target radial trap frequency.

II. OPTICAL 2D ION TRAPPING

The hybrid trapping architecture uses conventional trap-
ping electrodes and a high-finesse optical cavity to trap 2D
ion crystals, as schematically shown in Fig. 1. At first, the
ions are trapped in a 2D configuration with conventional dc
and rf voltages [20,21]. Then, the ions are transferred to
the micromotion-free optical trap by adiabatically ramping
up the laser intensity in the cavity and the dc voltages (on
the central ring electrode in Fig. 1) while ramping down the
rf potential and the dc voltages on the end electrodes. The
inhomogeneous spatial distribution of the laser intensity from

the standing wave created inside an optical cavity results in
a position-dependent ac Stark shift, providing confinement in
the z direction (i.e., out of plane for the 2D configuration).
The trapping laser (with frequency ωl ) can be either “blue”
(ωl > ωa) or “red” (ωl < ωa) detuned with respect to the
relevant atomic transitions ωa, determining the sign of the
ac Stark shift and whether the ions are trapped in a node or
antinode of the standing wave in the cavity.

In the hybrid optical trapping regime, we consider the total
potential of the N-ion system Utotal, consisting of three terms:

U total
({ri}N

i=1

) = U Coulomb + U dc + U opt, (1)

where U Coulomb is the Coulomb potential,

U Coulomb
({ri}N

i=1

) =
∑
i< j

e2

4πε0‖ri − r j‖ , (2)

and U dc is the potential from the dc circular electrode,

U dc
({ri}N

i=1

) =
∑

i

1

2
m

[(
ωdc

x xi
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(3)

Here, ri is the position vector of ion i, m is the mass of the
ion, ε0 is the permittivity of free space, and ωdc

ξ is the dc trap
frequency, with ξ ∈ {x, y, z}. Here, we have assumed that the
extent of the ion crystal in the radial direction is much smaller
than the size of the dc electrodes, and hence, the anharmonic-
ity in U dc can be neglected. In addition, ωdc

z should follow
(ωdc

z )2 = (ωdc
x )2 + (ωdc

y )2 to satisfy Laplace’s equation. The
optical potential inside the cavity with a Gaussian trapping
laser has the following form:
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)
, (4)

where w0 is the beam waist of the Gaussian beam inside
the cavity, w(zi) is the beam radius at position zi, λ is the
wavelength of the laser, and U opt

depth is the optical trap depth,
defined as the absolute value of the maximum ac Stark shift,
given by

U opt
depth =

∣∣∣∣∣−
∑

a

3πc2

2ω3
a

(
�a

ωa − ωl
+ �a

ωa + ωl

)
Imax

∣∣∣∣∣. (5)

Here, c is the speed of light, �a is the off-resonant scattering
rate, ωa is the atomic transition frequency between the ground
state and excited state a, and Imax is the maximum intensity
inside the cavity. Ions are trapped in the plane of z = 0 (see
Fig. 1), and hence, the potential in the z direction [in Eq. (4)]
can be assumed to be harmonic as well. We also assume that
the center of the ion crystal is at the origin, x = y = 0. In this
paper, we focus on 171Yb+ ions, which are both a popular
choice for QIP experiments and suitable for longer lifetimes
in a far-red-detuned optical trap (with the wavelength of the
optical trapping beam at 1064 nm).
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FIG. 2. The 2D-3D structural phase transition in ion crystals.
Results are shown for a large cavity beam waist w0 = 100 μm
compared to the size (≈23 μm for N = 100) of the 171Yb+ ion
crystal, with ωdc

r /2π = 0.5 MHz. The determination of stable and
metastable equilibrium positions is based on numerically calculated
results (see text). For small N ∈ [5, 30], we show the 2D-3D tran-
sition points with these stable (blue circles) and metastable (orange
triangles) equilibrium positions. For large N ∈ [40, 120], we do not
verify whether the numerical equilibrium positions (green squares)
are stable or metastable. The equilibrium points for N ∈ [30, 120]
are fitted with a power law to obtain an approximate scaling of the
2D-3D phase-transition points. Inset: Stable and metastable equilib-
rium configurations for N = 5.

III. STRUCTURAL PHASE TRANSITIONS

The anisotropy in trap frequencies determines whether a
2D ion crystal is stable against buckling into a 3D struc-
ture. We define the trap aspect ratio α ≡ ωz/ωr , where ωr ≡
ωx ≈ ωy, ωz, and ωr are the trap frequencies of the total
potential at the origin. Here, the trap frequencies arise from
both dc and optical trapping. The 2D-3D structural phase
transition is analogous to the well-studied [43,44] “zigzag”
phase transitions that arise in an ion chain. For α larger than
the phase-transition point, αtr , the ion crystal remains in the
2D phase. In addition to the trap aspect ratio, the 2D-3D
structural phase transitions in the optical cavity trap potential
also depend on the cavity beam waist w0. Note that the 3D
phase may be unstable if the trap depth along the z direction
is not adequate.

Figure 2 shows the critical trap aspect ratio αtr for various
number of ions (N = 8 to N = 120) in the regime where
the cavity waist w0 is much larger than the size of the ion
crystal rmax. We first calculate the equilibrium positions of the
N-ion 2D crystal by numerically optimizing the total potential
U total({ri}N

i=1) with respect to N-ion positions. In addition
to the stable equilibrium configuration corresponding to the
global potential minimum, there may exist metastable config-
urations corresponding to local minima as well [40]. However,
we cannot verify whether a given equilibrium configuration
is the true global minimum point of the potential. Instead, in
calculating various possible equilibrium positions, we rerun

our algorithm tens of times, with different initial guesses for
the ion positions. If multiple equilibrium positions are ob-
tained, we label the configuration with the minimum energy
as “stable.” Note that it is possible that our algorithm misses
identifying other equilibrium configurations, one of which
could be the true stable configuration. The 2D-3D structural
phase-transition points will, in general, be different for stable
and metastable configurations for the same N . We numerically
find that the variations in αtr are � 5% for up to N � 25,
except for N = 5, 9, and 21, for which the variations are
larger: 20%, 12%, and 7%, respectively.

The structural phase-transition point for a given equi-
librium configuration can be numerically determined by
monitoring the lowest out-of-plane normal-mode frequency
ωz

lowest as a function of ωz while keeping the equilibrium
positions of the 2D configuration fixed (i.e., keeping ωr fixed).
As ωz decreases, ωz

lowest decreases and eventually reaches
zero. Any further decrease in α results in an imaginary
ωz

lowest, suggesting a breakdown in the normal-mode approx-
imation around the chosen equilibrium position. The lowest
normal-mode frequency ωz

lowest = 0 corresponds to the 2D-
3D structural phase transition for the given 2D (stable or
metastable) configuration. In Fig. 2, we show the structural
phase-transition points for stable and metastable configura-
tions for N � 30. However, numerically finding the true stable
equilibrium configuration is challenging for a larger number
of ions. Hence, for N > 30, we show the transition point for
an equilibrium configuration without verifying whether that is
a stable or metastable configuration.

The linearity of αtr versus N in the log-log-scaled plot
in Fig. 2, especially for large N (�30), suggests that the
transition points follow a power law, αtr ≈ 1.1N0.265. Our nu-
merically obtained power-law exponent approximately agrees
with the theoretical predictions in a harmonic potential for
large N (up to N = 500), for which the exponents were cal-
culated to be 0.25 [43] and 0.26 [44]. Considerable deviation
from this power-law behavior is observed in both our numer-
ics and the previous theoretical work [44] for small N .

When the cavity beam waist w0 is smaller than or compara-
ble to the size of the ion crystal rmax, ions at different locations
experience substantially different local confinement. The 2D-
3D structural phase-transition point is dependent on w0 in this
regime, as shown in Fig. 3. As w0/rmax decreases, α scales
up steeply, and a much higher out-of-plane trap frequency
(at the origin) is required to maintain sufficiently strong out-
of-plane confinement for outer ions for the 2D phase to be
stable. For a given N , we find that αtr does not show a strong
dependence on the beam waist beyond a given w0/rmax. For
example, αtr approaches its asymptotic value, corresponding
to very large w0/rmax for N = 10, at w0/rmax ≈ 2.5. A higher
N corresponds to a smaller w0/rmax at which the asymptotic
limit is achieved. From a power-efficiency point of view, it is
practically beneficial to choose a cavity beam waist close to
this value to maximize the optical trap depth for the available
optical power without being limited by the inhomogeneity
in local optical confinement. Note that there may be addi-
tional considerations from the specific experimental protocol
in choosing a cavity beam waist, such as the maximum allow-
able differential ac Stark shift difference between inner and
outer ions, and the desired structure of the normal modes.
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FIG. 3. Structural phase-transition points for ion crystals with
different cavity beam waists. The 2D-3D structural phase-transition
points for 171Yb+ ions with N = 5, 10, 20, 30 (shown in different
colors) versus beam waist w0. The three curves are calculated using
stable equilibrium positions. Ions are trapped in an optical cavity
with ωdc

r /2π = 0.5 MHz.

With the study of structural phase transition combined with
the trapping parameters illustrated in Sec. II, we find that it
is feasible to trap ion crystals with several tens of ions in an
optical cavity trap potential (see Appendix A).

IV. POTENTIAL BARRIER BETWEEN
EQUILIBRIUM POSITIONS

Trapped ions experience various heating mechanisms,
which can lead to a change in their equilibrium configura-
tion, where multiple 2D equilibrium configurations exist. QIP
experiments generally rely on optically addressing individual
ions and exciting motional modes [41,42] that are specific
to a given equilibrium configuration, and hence, a change
in the ion configuration may be catastrophic. In this section,
we numerically investigate the stability of 2D ion crystals by
studying the potential barrier between equilibrium configura-
tions, which quantifies the minimum kinetic energy required
to transition between them.

Assuming that the out-of-plane trap frequency is strong
enough that ions can move only in the z = 0 plane, each N-ion
position is represented by a point in a 2N-dimensional config-
uration space. When the N-ion system transitions from one
equilibrium configuration to another, it traces a continuous
path connecting the two equilibrium positions in the same
space. We denote the maximum potential energy along the
path as the peak potential for that path. Among infinitely many
possible paths, we define the difference between the smallest
peak potential and U total of a given equilibrium configuration
as its corresponding potential barrier.

To identify the path with the smallest peak potential and
obtain upper bounds of potential barriers for a given N , we use
the optimization algorithm discussed in detail in Appendix B.
In Fig. 4, we show the results obtained using this optimization

FIG. 4. Potential barrier between equilibrium configurations.
The potential barriers are shown along numerically optimized paths
between the two equilibrium configurations for various N (see Ap-
pendix B for the algorithm). On the horizontal axis, paths equal to 0
and 1 represent the stable and metastable equilibrium configurations,
respectively. The potential energies of the stable equilibrium configu-
rations with N = 5, 6, and 9 are set to zero for comparison purposes,
but the three paths belong to different configuration spaces. The
two potential barriers for N = 6 stable and metastable configurations
(532 and 162 mK, respectively) are labeled. For N = 7 and 8, we find
only one 2D equilibrium configuration.

algorithm for 2D ion crystals with N = 5, 6, and 9. We find
only one metastable equilibrium configuration for each N .
For N = 5 and 9, the potential barriers corresponding to
metastable equilibrium configurations (the right end of the
plot) are around 40 to 60 mK, while the barriers for the
stable configuration are 456 and 230 mK, respectively. For
N = 6, the barrier for the metastable state is relatively higher
(162 mK), while the barrier for the stable state (532 mK) is
comparable to those for N = 5 and 9. We note that these
values for the potential barriers are higher than the typical
Doppler cooling temperatures, and hence, we do not expect
to see fluctuations between these stable and metastable con-
figurations unless we add extra energy into the system (e.g.,
during a nonadiabatic transfer from the conventional trap into
the hybrid trap). The potential barrier corresponding to the
metastable configuration can be comparable to the optical trap
depth (can achieve at least ∼100 mK in the optical cavity trap;
see Table I), and hence, the stability of such configurations
may be vulnerable to external perturbations. In that case, it
will be desirable to obtain the stable 2D configuration in
the conventional trap before transferring to the hybrid optical
trap.

V. TRAPPING LIFETIME AND SCALABILITY

Compared to conventional potentials, optical potentials
generally result in a significantly shorter ion-trapping lifetime
[29,30,33]. Nevertheless, to be practically valuable, this plat-
form requires optical trapping lifetimes that extend over at
least the same timescale as quantum experiments involving
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TABLE I. Optical trapping parameters for 171Yb+. The ion configuration [n1, n2, . . . ] indicates that n1 ions populate the “innermost ring,”
n2 ions populate the next inner ring, and so forth. The trapping beam waist is determined from the ion crystal radius based on results from
Fig. 3. For each N , the parameters are determined for the stable equilibrium position of the ion crystal. The ac Stark shift is the energy
shift of the ground 2S1/2 state. The differential shift is the difference between ac Stark shifts of two hyperfine states of the 6 2S1/2 manifold,
|F = 0, mF = 0〉 and |F = 1, mF = 0〉, with a π -polarized laser, and the center refers to the center-of-equilibrium position of the ion crystal,
whereas the edge is the position of the outermost ion. The minimum required optical power of the incident laser is calculated based on a cavity
finesse of 3000. The scattering rate refers to the total off-resonant scattering rate of one ion under the minimum cavity intensity at the center
of the ion crystal.

Ion number N

5 10 20 30

Ion configuration [5] [2, 8] [1, 7, 12] [5, 10, 15]
Radial dc trap frequency ωdc

r (MHz) 2π × 0.5 2π × 0.5 2π × 0.5 2π × 0.5
Laser wavelength λ (nm) 1064 1064 1064 1064
Minimum ion spacing (μm) 5.7 4.7 4.8 4.4
Ion crystal radius (μm) 4.8 7.8 10.9 13.4
Trapping beam waist w0 (μm) 14.4 21.0 27.3 26.8
Minimum required ac Stark shift at center (MHz h) 287 361 475 600

[(mK)] (13.8) (17.3) (22.8) (28.8)
Differential ac Stark shift at center (kHz h) 15 19 26 32
Differential ac Stark shift at edge (kHz h) 7.7 9.0 12 12
Minimum required cavity intensity at center (W/m2) 9.22 × 1011 1.16 × 1012 1.53 × 1012 1.93 × 1012

Cavity finesse F 3000 3000 3000 3000
Minimum required laser power (W) 0.31 0.84 1.9 2.3
Off-resonant scattering rate of an ion at center �off (s−1) 2.8 3.6 4.7 5.9

multiple ions (preferably 100 ms or more) [5]. The optical
trapping lifetime is defined as the time it takes for the optical
trapping probability popt to decrease to 1/e, where popt is the
probability of retaining all ions in the trap.

We find that scattering to antitrapping atomic states of the
ion is the limiting factor for the optical trapping lifetime,
consistent with the observations of prior optical trapping ex-
periments [33]. For example, the metastable 2D3/2 manifold
of the 171Yb+ ion experiences a positive ac Stark shift inter-
acting with the 1064-nm Gaussian laser, and hence, the 2D3/2

manifold is antitrapping. This manifold also has a relatively
long atomic lifetime of 61.8 ms [45], during which ions can
escape the trap. Since the trapping probability popt is defined
for the N-ion system, the trapping probability for each ion at
the end of the trapping lifetime should be (1/e)1/N such that
popt (τ ) = 1/e. If the scattering to metastable states is the only
loss mechanism, we have

e−�metaτ =
(

1

e

)1/N

, (6)

τ = 1

�metaN
, (7)

where τ is the optical trapping lifetime and �meta is the
scattering rate to metastable states. For example, if the total
off-resonant scattering rate for 171Yb+ is �off = 30 s−1, then
�meta = 0.15 s−1 since the branching ratio between 2P1/2 →
2S1/2 and 2P1/2 → 2D3/2 is 200:1 [46]. For a 2D ion crystal
with N = 20 171Yb+ ions, the scattering-rate-limited optical
trapping lifetime is τ = 333 ms. The loss due to scattering to
metastable states becomes dominant for large N , providing an
upper bound of (�metaN )−1 for the optical trapping lifetime. If
we apply a repumping laser actively transferring the popula-

tion out of the metastable states, the optical trapping lifetime
can be extended beyond this upper bound. For example, in
Lambrecht et al. [33], the optical trapping lifetime of a sin-
gle Ba+ ion was increased from 21 to 166 ms by applying
repumping lasers, which is an increase of nearly 8 times. In
the above analysis, we assume that each ion-loss event is
independent of others and all ions have the same scattering
rates.

In addition, collisions with background gas particles and
the recoil effect from scattering can also heat up the system,
although these effects are relatively minor (see Appendix C).

VI. VIBRATIONAL MODES AND SPIN-SPIN
INTERACTIONS

Two-dimensional ion crystals exhibit a rich vibrational-
mode structure. The highest-frequency mode along the
out-of-plane direction is the center-of-mass (c.m.) mode, with
the next-highest-frequency modes typically being the two tilt
modes (see Fig. 5). Furthermore, Fig. 5 shows that the modes
of the N = 10 2D ion crystal have a composite structure
composed of the typical modes in a one-dimensional (1D)
chain, i.e., the c.m. mode, tilt mode, and a V-shaped mode. For
example, the saddlexy mode is a composite mode of tiltx× tilty.
Additionally, we observe that the outer ions are the dominant
participants in the higher modes and the inner ions are the
dominant participant in the lower modes, with an exception
being the c.m. mode, in which all ions participate equally.
As there are more outer ions than inner ions, more energy is
required to move the ensemble of outer ions compared to the
ensemble of inner ions.
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FIG. 5. Out-of-plane (z) vibrational modes of an N = 10 2D ion crystal. The trap strengths are ωr/2π ≈ 0.5 MHz and ωz/2π = 2 MHz
for these numerical calculations. The mode labels are described in the text. To avoid degeneracies (see text) arising from rotational symmetry
in the total potential U total, we have introduced a 10 % anisotropy in the trap frequencies along the x versus y directions.

The equilibrium configuration of an ion crystal violates the
underlying symmetry of a trap that is isotropic along the x
and y directions (this is an example of spontaneous symmetry
breaking). However, we find that multiple modes, e.g., the
tilt modes, are still approximately degenerate for an isotropic
trap. By introducing slight anisotropy (∼8%), the degener-
acy in the tilt modes can be broken by approximately 0.5%;
however, a greater anisotropy (�20%) is needed to break the
degeneracy of the saddle modes by a similar amount.

In the above calculations, we assumed that the cavity beam
waist is much larger than the characteristic size of the ion
crystal. For smaller cavity beam waists, there will be inho-
mogeneous trapping of the inner and outer ions, stronger on
the inner ions and weaker on the outer ions. Consequently,
the frequency and shape of the modes will change [47]. For
example, the c.m. mode (with equal amplitude on all ions)
will not be an exact eigenmode for a finite cavity beam waist.
However, it is still an approximate mode. As an example,
for w0 = 21 μm and rmax ≈ 7.8 μm (from Appendix A), the
relative amplitudes of the weakest and strongest participating
ions are approximately 0.56. Increasing the cavity beam waist
will reduce the imbalance between the amplitudes of the par-
ticipating ions in the c.m. mode [47].

As mentioned in Sec. III, the lowest-frequency mode plays
an important role when characterizing the 2D-3D phase tran-
sition. Analogous to the zigzag phase in a 1D-2D phase

transition, the 3D configuration resembles the eigenvector of
the lowest-frequency mode; i.e., the middle ions buckle out of
the 2D plane past the phase-transition point.

The rich vibrational-mode structure can be used to generate
interesting spin-spin interaction profiles for the simula-
tion of quantum spin models [5,6]. By applying suitable
spin-dependent forces (SDFs) generated from laser beams,
spin-spin interactions can be engineered with controls (in
principle, arbitrary) over the strength, range, and sign of the
interaction profile. Spin models such as the long-range Ising
and XY models have been studied experimentally in a 1D
chain in conventional rf traps [26,27,48,49] and also in 2D
rotating crystals in Penning traps. Extending these protocol to
2D nonrotating crystals in our hybrid trap will enable access
to more complex quantum simulations of spin models, such as
2D frustrated Hamiltonians.

In the commonly used Mølmer-Sørensen scheme [41,42],
the effective Hamiltonian Ĥ of the trapped-ion system, when
driven by multiple SDFs, is

Ĥ =
∑
i< j

Ji j σ̂
(x)
i σ̂

(x)
j , (8)

where

Ji j = Erecoil

∑
n

�in� jn

∑
m

bimb jm

μ2
n − ω2

m

. (9)
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FIG. 6. Frustrated spin-spin interactions for N = 10 ions. (a) Out-of-plane (z) mode frequencies ωz
m (blue dashed lines) alongside the

SDF frequency μ ( red solid line). (b) Spin-spin interactions Ji j [calculated from Eq. (9)] follow a spatial power-law decay with exponent
β [Eq. (10)]. Inset: The resulting interaction graph. All the interactions are antiferromagnetic for this μ. The strongest interactions form a
triangular lattice, creating a frustrated spin system. (c) Variation in β versus the SDF frequency.

Here, Ji j is the spin-spin interaction strength between ions i
and j, Erecoil is the characteristic recoil energy from the laser
field driving the SDFs, μn is the nth SDF frequency, ωm is the
mth normal-mode frequency, and �in is the Rabi frequency of
ion i for the nth SDF.

Like a chain of ions, a power-law interaction profile can be
generated from a single SDF [5]. The form of the interaction
is

Ji j ∝ 1

‖ri − r j‖β
, (10)

where β is the power-law exponent. Figure 6 shows that
the exponent β can be tuned between 0 and 3 for a 2D
configuration when the SDF frequency is varied. A power-
law-like interaction in the 2D configuration, in comparison
with a 1D chain, exhibits magnetic frustration naturally due
to the additional spatial degree of freedom and the configu-
ration of the ions (shown in Fig. 6) resembling a triangular
lattice.

Other lattice structures can be obtained via optical engi-
neering of the Raman beams, similar to the case of 1D ion
chains [26,27]. Alternatively, the triangular lattice can be fur-
ther mapped to a square, kagome, or other lattice structure by
augmenting the analog simulation with digital gates [28].

VII. CONCLUSION

To summarize, our study demonstrates the potential of
utilizing an optical cavity to trap 2D ion crystals, offering
enhanced trap depth and an extended lifetime compared to
existing tweezer-based optical ion-trapping experiments. We
estimate that the off-resonant scattering to antitrapping states
from the cavity beam, rather than heating due to photon recoil
and collisions, is the limiting factor for trapping lifetime, par-
ticularly for large N . To increase the optical trapping lifetime,
one can either reduce the total off-resonant scattering rate or
apply a repumping laser. An alternative approach could be to

use ion species with a smaller atomic number, which do not
have any metastable states between the lowest atomic S and P
manifolds. However, there may be additional challenges when
using such ions, such as a reduced ac Stark shift at the same
optical intensity.

In addition, ions may be lost during the transferring pro-
cess between conventional and optical trapping regimes if
the transfer is not adiabatic enough to provide the ions with
energy to overcome the optical trap depth. We may also want
to minimize any motional excitation to avoid the necessity to
cool the ions in the optical trap, as cooling protocols may
populate antitrapping states. Due to the shallow optical trap
depth, detection of quantum states involving ion fluorescence
is likely not feasible without losing the ion from the trap.
Thus, transferring the ions back into the conventional trap is
preferable.

For QIP experiments with this system, the quantum coher-
ence will be destroyed by all off-resonant scattering events,
including those that do not lead to ion loss from the trap.
Therefore, coherence time of the full system is typically much
shorter than the optical trapping lifetime. The scattering rate-
limited coherence time is proportional to 1/(�offN ), where
�off is the total off-resonant scattering rate. Reducing the
scattering rate �off is the only way to overcome this funda-
mental limitation, leading to our choice of a 1064-nm laser for
this proposal. Alternatively, blue-detuned lasers for trapping
[50,51], where ions are trapped at the intensity minimum, can
be investigated [52] to reduce scattering rates that limit the
coherence time and trapping lifetime. However, as most ion
species have relevant transitions in the ultraviolet regime, it
may be challenging to create a deep optical potential with
blue-detuned lasers. The suitability of red- vs blue-detuned
trapping will also depend on the atomic structure of the
species. For example, Ba+ and Yb+ ions have very different
branching ratios into metastable D states, such that under the
same �off , �meta for Yb+ is much lower than that for Ba+.
We think that the low �meta makes Yb+ a better candidate
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compared to Ba+ for red-detuned optical traps, but Ba+ could
be a potential candidate for blue-detuned optical traps.
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APPENDIX A: TWO-DIMENSIONAL OPTICAL
TRAPPING PARAMETERS

Table I lists the minimum required trapping parameters for
2D ion crystals with different N to maintain the 2D regime.
Radial dc trap frequency determines the 2D ion crystal size
and ion spacing, which is chosen such that the ions can be
optically addressed for QIP experiments with low cross talk
between them [53].

Since the ac Stark shift and off-resonant scattering rate are
proportional to intensity, the listed parameters help to reveal
the proportionality constants. The listed minimum required
laser power is less than the damage threshold for cavity mirror
coatings, and is practically achievable. Hence, the optical trap
depth can be significantly improved beyond the listed mini-
mum ac Stark shift.

APPENDIX B: OPTIMIZATION ALGORITHM FOR
POTENTIAL BARRIER

In Sec. IV, potential barriers between stable and metastable
equilibrium positions of the 2D ion crystal were studied and
presented. The following optimization algorithm is used to
identify the path with the smallest peak potential. This algo-
rithm has the following steps:

(1) For a 2D N-ion crystal, the stable equilibrium position
is set to be the initial point xi for i = 0, and a metastable
equilibrium position is set to be the final point x f . The points
are defined in the 2N-dimensional configuration space.

(2) Define a neighborhood space of xi with linear size ε, as
shown in Fig. 7, which contains a set of N-ion positions that
are relatively close to the initial point.

(3) Select all points in the neighborhood space that are
closer to the final equilibrium position by a distance d or
larger, which is the gray region in Fig. 7. Since the size of the
neighborhood space scales up exponentially with respect to
N , numerically selecting all the points is not feasible. Instead,
nr = 1000 randomly sampled points in the gray region are
selected. We choose d ≈ ‖x0 − x f ‖/20 and neighborhood-
space linear size ε = 2.5d .

(4) Calculate the potential energy of all the selected points
in the neighborhood space.

(5) Assign each selected point a transition probability ac-
cording to the Boltzmann probability distribution

p j = normalize
[
e−(Ej−Ei )/kBTp

]
, (B1)

where Ei is the potential energy of the initial point, Ej is that
for the selected point, and kB is the Boltzmann constant. Tp is a

FIG. 7. Schematic diagram of one iteration in the optimization
algorithm.

hyperparameter with units of temperature, which determines
the volume of the trajectory space under consideration. We
empirically choose Tp = 1 mK, which is comparable to the
temperature of a Doppler-cooled ion.

(6) Take a sample (denoted as xi+1) from the selected points
according to the transition probability pj .

The sampled xi+1 in step 6 will replace the initial point
xi in step 2, and by repeating steps 2–6 until the distance
between the sampled point and the final point is smaller than
d , a path connecting the initial and final equilibrium positions
can be obtained using this algorithm. This algorithm biases the
trajectories towards smaller potential peaks. We calculate 10
paths with this approach and take the smallest potential peak
to find an upper bound of the potential barrier. Figure 4 plots
the trajectory with the smallest potential peak for a given N .

APPENDIX C: HEATING EFFECTS

The theoretical estimation of the optical trapping lifetime
is based on the analysis of the ion scattering rate and different
heating mechanisms. In Sec. V, we discussed how scattering
to antitrapping states can be the limiting factor in the optical
trapping lifetime. This conclusion is supported by a quan-
titative analysis of other sources of heating, which include
collisions with background gas particles and recoil heating
from photon scattering.

Since the ion trap chamber is not a perfect vacuum, ions
can collide with background gas particles (mostly hydrogen
molecules). Using the Langevin collision model, we find that
the Langevin collision rate of a single ion with hydrogen
molecules is only 1.3 per hour for a pressure of 10−11 mbar
at room temperature. Although a Langevin collision event
can provide enough energy for the ion to escape the trap,
the collision rate is negligibly small compared to the typical
optical trapping lifetime. There are non-Langevin collisions,
with the impact parameter being larger than a critical value,
such that the gas particles are not “captured” by the ion.
Significantly smaller energies are exchanged between the two
particles after the collision. The non-Langevin collision rate is
also relatively small compared to the expected optical trapping
lifetime. Our calculations show that the heating rate caused by
non-Langevin collisions with hydrogen molecules is less than
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0.1 mK/s for each ion under 10−11 mbar pressure and 300 K
temperature.

Recoil heating caused by the photon scattering from the op-
tical cavity trapping beam is even less impactful. For a 171Yb+

ion interacting with a λ = 1064 nm laser, the recoil energy is

Erec ≈ 5 × 10−5 mK × kB per ion per scattering event. Since
1064 nm is a far-detuned laser for a 171Yb+ ion such that
the off-resonant scattering rate is suppressed (see Table I),
this recoil heating rate should have a negligible impact on the
optical trapping lifetime.
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