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The primary objective of quantum Shannon theory is to evaluate the capacity of quantum channels. In spite
of the existence of rigorous coding theorems that quantify the transmission of information through quantum
channels, superadditivity effects limit our understanding of the channel capacities. In this paper, we mainly
focus on a family of channels known as multilevel amplitude damping channels. We investigate some of the
information capacities of the simplest member of the multilevel amplitude damping channel, a qutrit channel,
in the presence of correlations between successive applications of the channel. We find the upper bounds of the
single-shot classical capacities and calculate the quantum capacities associated with a specific class of maps after
investigating the degradability property of the channels. Additionally, the quantum and classical capacities of the
channels have been computed in entanglement-assisted scenarios.
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I. INTRODUCTION

In quantum information theory, information is encoded in
a quantum system and transmitted from one party to another
via a quantum communication channel. However, the com-
munication process is subject to imperfections because of
the presence of noise within the channel. Hence, the optimal
rate of information that can be efficiently transmitted via a
quantum channel is a topic of importance for the practical
implementation of information processing tasks. The term
channel capacity is used to quantify this information, and it is
the main focus of our paper [1,2]. From the pioneering work of
Shannon, one can compute the capacity of classical channels
using the principles and framework of classical information
theory [3]. A quantum channel can have multiple capacity
definitions based on whether classical, private classical, or
quantum information is being sent, as well as whether there
are any additional resources shared between the sender and re-
ceiver. The shared entanglement between the communicating
parties can have the potential to enhance the communication
capability, and the corresponding capacity is commonly re-
ferred to as the entanglement-assisted capacity [4–7].

In quantum operational theory, the noisy quantum chan-
nel is defined by a completely positive and trace-preserving
linear map (CPTP). Over the last three decades, the various
capacities of qubit channels have been investigated [8–10].
However, the different capacities for qubit channels are, in
general, not completely computable. For instance, while the
classical capacity of a depolarizing channel is known, the
quantum capacity is still unknown over a certain parameter
range, specifically when the depolarizing parameter is in the
interval 0 < p < 1/4 [11]. The detection scheme of quantum
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capacity for different quantum channels [12–14] has been
experimentally verified by Cuevas et al. [15], as reported
in their study. In the simplest case, a quantum channel is
memoryless, i.e., the channel acts independently on succes-
sive applications. However, in practical scenarios, memory
effects or correlations may be present between successive
applications of the channel. When the information transmis-
sion rate is high, such memory effects become unavoidable
and have been experimentally investigated in optical fibers
[16] and solid-state devices [17,18]. The perfect memory
channel or fully correlated channel can be realized physically
when the distance between two information carriers is negli-
gible such that the time interval τ between the interactions
of the local environment with successive carriers is much
shorter than the dissipation time τE of the environment, i.e.,
τ � τE [19]. Recently, an experimental method to detect the
lower bound of the quantum capacity of a correlated dephas-
ing channel was reported in Ref. [20], where the correlated
channels were realized using liquid crystals that affect the
polarization of photons. Over the last two decades, quantum
memory channels have gained significant attention from re-
searchers [21–30]. Moreover, it has been shown that the effect
of memory between successive applications of the channel can
enhance its quantum capacity [25,31]. The primary challenge
in computing classical and quantum capacities stems from
the fact that the associated Holevo quantity and coherent in-
formation exhibit a superadditivity property [32,33], and the
calculation of capacities involves a regularization process. Be-
cause of this difficulty, there are only a few memory channels
whose capacities have been analyzed completely [25,27,31].

The amplitude damping channel (ADC) is a well-known
example of a nonunital channel, and the information capac-
ities of qubit ADC have been investigated under different
scenarios [34–36]. The quantum capacity of a two-level
ADC is well comprehended. However, the classical capac-
ity remains unclear, with only knowledge of the single-shot
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classical capacity [34]. The single-shot classical capacity and
quantum capacity of a two-level ADC have been studied by
D’Arrigo et al. when the channel is fully correlated [37]. A
comprehensive analysis of the capacity of multilevel channels
is essential, given that these physical noises are unavoidable
when qudit states are used for information processing and
computational purposes. However, the information capacities
of the multilevel amplitude damping (MAD) channel have not
been explored well. Recently, Chessa et al. investigated the
quantum capacity of a three-level ADC [38]. Subsequently,
there are few other works that focus on the higher dimensional
amplitude damping noise model, particularly in terms of their
quantum capacity analysis [39,40].

The focus of this paper is on the fully correlated qutrit
MAD channel, in which two qutrits simultaneously relax from
high-energy states to the lower energy states. Making use of
the Lindblad master equation and finding the Kraus operators,
we have characterized the fully correlated MAD channel. We
specifically analyze the fully correlated MAD channel on the
qutrit space and systematically examine the quantum capac-
ity of different associated maps obtained by imposing some
constraints on the decay parameters. Before calculating the
capacities, we find the conditions under which these quan-
tities can be determined. We also compute an upper bound
of the single-shot classical capacities in some regions of the
damping parameters space. Finally, the quantum and classical
capacities have been analyzed in the entanglement-assisted
scenario.

The paper is organized in the following manner. In Sec. II,
we have discussed the MAD channel and the model cor-
responding to a fully correlated MAD channel. Section III
deals with an overview of complementary channels along with
the degradability property of the channel. This section also
addresses the covariance property of the channel. In Sec. IV,
we have derived the upper bound of single-shot classical
capacity in special cases of fully correlated MAD channels,
while Sec. V contains the analysis of quantum capacity in
different scenarios. Section VI is dedicated to the analysis
of the capacities in entanglement-assisted scenarios. Finally,
concluding remarks are given in Sec. VII.

II. THE MODEL

In this section, we begin with a brief review of the MAD
noise model, including memoryless and correlated scenarios
[1,2]. We also analyze the fully correlated MAD channel for
a three-level system from the Lindblad master equation ap-
proach. A MAD channel is a linear mapping which is a CPTP
map [4,5]. A d-dimensional MAD channel is described by the
following set of Kraus operators [38]:

E0 ≡ |0〉〈0| +
∑

1�l�d−1

√
1 − ζl |k〉〈k|, Ekl ≡ √

plk|k〉〈l|,

(1)

where {|l〉} are the set of orthonormal basis of the Hilbert
space HS with 0 � k, l � d − 1, plk are the decay param-
eters, and ζl = ∑

0�k<l plk � 1. In this paper, we will limit
our examination to the particular category of MAD channels
illustrated in Eqs. (1) that are linked to a three-level system or
qutrit system. For a single qutrit system, the evolution of the

density matrix is calculated by the relation ρt = ∑
EnρE†

n ,
where En is defined in Eqs. (1) and n can take values from 0
to 3.

For two consecutive uses of the memoryless MAD channel,
the evolution is

ρt = �(ρ) =
∑

i j

Em
i ⊗ Em

j ρEm
i

† ⊗ Em
j

†
, (2)

where Em refers to the Kraus operator corresponding to an un-
correlated channel or memoryless channel. If the subsequent
action of channels has some correlations, it is not possible to
write the Kraus operators simply as the tensor product of indi-
vidual single qutrit Kraus operators [41]. The transformation
of the density matrix ρ for two consecutive applications of the
channel with arbitrary degrees of memory can be written as

ρt = (1 − μ)
∑

i j

Em
i ⊗ Em

j ρEm
i

† ⊗ Em
j

† + μ
∑

k

Ec
k ρEc

k
†
,

(3)

where μ is the memory parameter and Ec corresponds to the
Kraus operator for a fully correlated channel. For μ = 0, the
channel is said to be a memoryless or uncorrelated channel,
whereas for μ = 1 the channel is a fully correlated or perfect
memory channel. We find the information capacity here for
this fully correlated channel. The explicit form of the Kraus
operators describing the fully correlated MAD channel can be
obtained from the solution of the Lindblad master equation,
which we will derive below methodically. The evolution of
a three-level system over time is described by the following
Lindblad master equation:

ρ̇ = Lρ = Lc(ρ) + D(ρ) = −i[H, ρ] + D(ρ), (4)

where ρ is the density matrix for a three-level system and
−i[H, ρ] represents the coherent evolution which is unitary
in nature, and D(ρ) is the damping part which indicates the
nonunitary evolution.

For a Markov quantum channel, a stochastic map can be
expressed as follows:

ρ → ρt = �(ρ) = eLtρ. (5)

The above equation gives the dynamics of the system coupled
with the reservoir. The nonunitary part, which gives the dissi-
pation of the density matrix, is

D(ρ) = �3

2
(2σ12ρσ21 − σ22ρ − ρσ22)

+ �2

2
(2σ02ρσ20 − σ22ρ − ρσ22)

+ �1

2
(2σ01ρσ10 − σ11ρ − ρσ11). (6)

In the above equation, �3, �2, and �1 are the sponta-
neous decay rates corresponding to the transition of atoms
from |2〉 → |1〉, |2〉 → |0〉, and |1〉 → |0〉, respectively. The
transition operator σkl indicates the transition of atom from
|k〉 → |l〉, i.e., σkl = |k〉〈l|. These transitions are governed by
the interaction between the system (S) and environment (E).

We now extend the Lindblad equation for the case of two
three-level atoms, where the action of the amplitude damping
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FIG. 1. Schematic representation of a fully correlated MAD
channel for a three-level system. A and B are two qutrits that undergo
these relaxations when they are fully correlated.

is fully correlated,

Dc(ρ) = �3

2
(2S12ρS21 − S22ρ − ρS22)

+ �2

2
(2S02ρS20−S22ρ − ρS22)

+ �1

2
(2S01ρS10 − S11ρ − ρS11), (7)

where Skl = σkl ⊗ σkl . The decay process associated with two
qutrits, A and B, is displayed in Fig. 1. There are several
methods available to solve the master equation of the form
shown in Eq. (7). We adopt the method proposed by Briegel
and Englert [42], wherein they used left {Li} and right {Ri},
damping bases with damping eigenvalue λi for a Lindblad
superoperator that yields the image of a trace-preserving,
completely positive map:

ρt = �(ρ) =
∑

i

Tr(Liρ)eλitRi. (8)

Here, the left and right eigenoperators {Li} and {Ri} have
the same eigenvalue λi and they satisfy the eigenvalue equa-
tions LD = λL and DR = λR, respectively. They also obey
the duality relation Tr{LiR j} = δi j .

Let us consider the initial density matrix of a two-qutrit
system in the absence of any interaction with the environment
as

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00 · · · ρ04 · · · ρ08

...
...

...

ρ40 · · · ρ44 · · · ρ48

...
...

...

ρ80 · · · ρ84 · · · ρ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

We solve Eq. (7) by converting the initial density matrix
in Hilbert space into the state in Fock-Liouville space and
finding the corresponding Lindblad superoperator. After that,
we find the left and right eigenbases and corresponding eigen-
values, which will give the output density matrix according to
Eq. (8). In our two-qutrit system, the Lindblad super-operator
is an 81×81 matrix with the eigenvalues (λi) (0)49, −(�2 +
�3)1, −((�2 + �3)/2)14, (�)1, (−�1/2)14, and ((�1 + �2 +
�3)/2)2, respectively. Note that the subscripts attached to the
eigenvalues correspond to the frequency of occurrence of each
specific eigenvalue.

Evidently, the dynamical evolution of the input density
matrix has the following form:

ρt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̃00 ρ01 ρ02 ρ03 e−�1t/2ρ04 ρ05 ρ06 ρ07 e− �2+�3
2 tρ08

ρ10 ρ11 ρ12 ρ13 e−�1t/2ρ14 ρ15 ρ16 ρ17 e− (�2+�3 )
2 tρ18

ρ20 ρ21 ρ22 ρ23 e−�1t/2ρ24 ρ25 ρ26 ρ27 e− (�2+�3 )
2 tρ28

ρ30 ρ31 ρ32 ρ33 e−�1t/2ρ34 ρ35 ρ36 ρ37 e− �2+�3
2 tρ38

e−�1t/2ρ40 e−�1t/2ρ41 e−�1t/2ρ42 e−�1t/2ρ43 ρ̃44 e−�1t/2ρ45 e−�1t/2ρ46 e−�1t/2ρ47 e− �1+�2+�3
2 tρ48

ρ50 ρ51 ρ52 ρ53 e−�1t/2ρ54 ρ55 ρ56 ρ57 e− �2+�3
2 tρ58

ρ60 ρ61 ρ62 ρ63 e−�1t/2ρ64 ρ65 ρ66 ρ67 e− �2+�3
2 tρ68

ρ70 ρ71 ρ72 ρ73 e−�1t/2ρ74 ρ75 ρ76 ρ77 e− �2+�3
2 tρ78

e− �2+�3
2 tρ80 e− �2+�3

2 tρ81 e− �2+�3
2 tρ82 e− �2+�3

2 tρ83 e− �1+�2+�3
2 tρ84 e− �2+�3

2 tρ85 e− �2+�3
2 tρ86 e− �2+�3

2 tρ87 e−(�2+�3 )tρ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10)

In the above density matrix,

ρ̃00 = ρ00 + ρ44(1 − e−�1t ) + ρ88(1 − e−(�2+�3 )t

−
(�)e−�1t + 
(�)e−(�2+�3 )t )

and

ρ̃44 = e−�1tρ44 + 
(�)(e−�1t − e−(�2+�3 )t ),

where 
(�) = �3/(�3 + �2 − �1). As discussed earlier, the
dynamics of a two-qutrit state ρ subject to a MAD chan-
nel with full Markovian memory can be written in terms
of Kraus representation as ρt = ∑

n EnρE†
n . It is evident

that the Kraus operators En can be computed from the
relation

∑
i Tr(Liρ)eλitRi = ∑

n EnρE†
n . The explicit ex-

pression of the Kraus operators is obtained by solving
the correlated Lindblad equation, which is presented as
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FIG. 2. The accessible domain of the damping parameters. The
colored region gives the values of the damping parameters for which
the CPTP property of the maps is satisfied.

follows:

E00 = |00〉〈00| +
√

1 − p1|11〉〈11|

+
√

(1 − p2)(1 − p3)|22〉〈22| +
2∑

i, j=0
i 	= j

|i j〉〈i j|,

E11 = √
p1|00〉〈11|,

E22 =
√

p1 + (1 − 
(�))p123|00〉〈22|,
E33 =

√

(�)p123|11〉〈22|, (11)

where 
(�) = �3/(�3 + �2 − �1), p123 = e−�1t −
e−(�2+�3 )t = (1 − p1) − (1 − p2)(1 − p3), and �2+�3 > �1.
We have written the Kraus operators in matrix form in
Appendix B to make its structure easier to understand. The
CPTP condition of the transformation is satisfied when
(1 − p1) � (1 − p2)(1 − p3), which gives accessible values
of p1, p2, and p3, shown in the colored region of Fig. 2. The
Kraus operators mentioned above fulfill the completeness
relation

∑
E†

n En = I . Conversely, the nonequivalence,∑
EnE†

n 	= I , implies that the channel is nonunital.

III. CHANNEL PROPERTIES

In the calculation of the quantum capacity, it is essential to
optimize the coherent information, which is determined from
the entropy of the output states of the quantum channel and
its complementary map. In this section, we provide a brief
description of the complementary channels, including the
degradability and antidegradability characteristics of quantum
channels. Additionally, we demonstrate the covariance prop-
erty of the channel.

A. Complementary channel and degradability

Let O(H) denote the space of positive linear operators on
a Hilbert space H. A quantum channel � maps the input
state of the system S into the output state of the system S′:
O(HS ) → O(HS′ ). If E and E ′ represent the corresponding
environment of the input system and output system, then
from the Stinespring representation [43,44], one can define a
quantum channel as

�(ρS ) = TrE ′ (V ρSV †), (12)

where V represents an isometry: HS → HS′ ⊗ HE ′ . In this
configuration, the complementary map �̃, which maps the
input system to the output environment, O(HS ) → O(HE ′ ),
is defined as

�̃(ρS ) = TrS′ (V ρSV †). (13)

If Ek are the Kraus operators which characterize the map �,
and the basis states of the environment are |k〉E , then the
operator V can be expressed as

V =
∑

k

Ek ⊗ |k〉E . (14)

We can express Eq. (13) equivalently as follows:

�̃(ρS ) =
∑
k,l

TrS′ [EkρSE†
k ]|k〉〈l|E . (15)

Let us revisit the definitions of a degradable channel and
an antidegradable channel [45]. A quantum channel � is
degradable when there exists another channel �D: O(HS ′ ) →
O(HE ′ ) such that

�̃ = �D ◦ �. (16)

In the above equation, the symbol “◦” represents the channel
concatenation. On the contrary, the channel is antidegrad-
able when there exists another map �AD: O(HE ′ ) → O(HS ′ )
such that

� = �AD ◦ �̃. (17)

If the mapping � is invertible, then we can simply make
the inversion of it to construct the superoperators �̃ ◦ �−1

or � ◦ �̃−1, and checking the CPTP of these super-operators
we can conclude whether the channel is degradable or anti
degradable. The complete positivity of the superoperators can
be determined by examining the positivity of its Choi matrices
[46]. One can represent quantum channels as a matrix in
the vector space since it connects the vector space of linear
operators. This can be done by vectorization of the density
matrices:

ρS =
∑

kl

ρkl |k〉S〈l| −→ |ρ〉〉

=
∑

kl

ρkl |k〉S ⊗ |l〉S�(ρS ) −→ M�|ρ〉〉. (18)

In the above equation, M� is a d2
S′ × d2

S dimension matrix,
connecting H⊗2

S′ and H⊗2
S . Hence, starting from Eq. (16), one

can write the following identity:

M�̃ = M�DM�. (19)
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Using this equality, one can represent the superoperator �̃ ◦
�−1 as M�̃M−1

� provided that M� is invertible.

B. Covariance property

Here we inspect the covariance properties of the MAD
channel with respect to certain unitary transformations. To
begin, we assume three unitary matrices:

V1 =
⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠,

V2 =
⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠,

V3 =
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠.

Now, we define 16 unitary operations (U0, . . . , U15) using the
above three matrices as follows:

Ui = Vm ⊗ Vn ∀m, n s.t 0 � m � 3 and 0 � n � 3,

where m and n take values 0,1,2,3 and we note that V0 = I3×3.
In the upcoming section, we will demonstrate how these uni-
taries can effectively eliminate the off-diagonal elements of
the density matrix.

All the unitary operations Ui either commute or anticom-
mute with the Kraus operators given in Eqs. (11). For a
particular Ui, for instance, U1 = V0 ⊗ V1, the Kraus opera-
tors E00 and E11 commute with the U1, whereas E22 and
E33 anticommute with U1: E00U1 = U1E00, E11U1 = U1E11,
E22U1 = −U1E22, and E33U1 = −U1E33.

Using these commutation and anticommutation relations,
it is straightforward to prove that

�(U1ρU1) = E00U1ρU1E†
00 + E11U1ρU1E†

11 + E22U1ρU1E†
22 + E33U1ρU1E†

33

= U1E00ρE†
00U1 + U1E11ρE†

11U1 + (−U1E22)ρ(−E†
22U1)+(−U1E33)ρ(−E†

33U1)

= U1�(ρ)U1. (20)

In the same way, we can prove the covariance under other Ui. Now, we find some unitary matrices that will swap some of the
diagonal entries of the density matrix with each other. These unitary matrices have the following form:

V1 = |00〉〈00| + |01〉〈02| + |10〉〈12| + |02〉〈01| + |20〉〈21| + |11〉〈11| + |12〉〈10| + |21〉〈20| + |22〉〈22|,
V2 = |00〉〈00| + |01〉〈21| + |10〉〈02| + |02〉〈10| + |20〉〈12| + |11〉〈11| + |12〉〈20| + |21〉〈01| + |22〉〈22|,
V3 = |00〉〈00| + |01〉〈10| + |10〉〈01| + |02〉〈20| + |20〉〈02| + |11〉〈11| + |12〉〈21| + |21〉〈12| + |22〉〈22|,
V4 = |00〉〈00| + |01〉〈12| + |10〉〈20| + |02〉〈21| + |20〉〈10| + |11〉〈11| + |12〉〈01| + |21〉〈02| + |22〉〈22|,
V5 = |00〉〈00| + |01〉〈20| + |10〉〈21| + |02〉〈12| + |20〉〈01| + |11〉〈11| + |12〉〈02| + |21〉〈10| + |22〉〈22|. (21)

The action of the unitaries defined above is to swap the posi-
tion of the diagonal without affecting the states |00〉, |11〉, and
|22〉. It is straightforward to confirm that Vi commutes with
the Kraus operators. Therefore, � is a covariant channel with
respect to the unitaries Vi:

�(ViρVi ) = Vi�(ρ)Vi.

We are operating these swap unitaries to make the optimiza-
tion procedure easier, which will be clear in the next section.

IV. CLASSICAL CAPACITY

The classical capacity C is determined by the maximum
amount of classical information that can be transmitted re-
liably through the quantum channel per single use of the
channel. The calculation of classical capacity involves op-
timization of the Holevo quantity over multiple uses of the
channel,

C(�) = lim
n→∞

1

n
χ̄ (�⊗n), (22)

where χ̄ (�) = maxξ j ,ρ j χ{�, (ξ j, ρ j )} and χ (�, {ξ j, ρ j}) is
the Holevo quantity over single uses of the channel. Generally,
the Holevo quantity obeys the superadditivity property [32].
The regularization process in Eq. (22) is an essential step to
find the classical capacity.

In this section, we mainly focus on single-shot classi-
cal capacity C1 of the fully correlated three-level ADC. The
single-shot classical capacity C1 is determined by optimizing
the Holevo quantity χ over single uses of the channel � and
over possible ensembles {ξ j, ρ j}, which is

C1 = max
ξ j ,ρ j∈H

χ (�, {ξ j, ρ j})

= max
ξ j ,ρ j∈H

⎧⎨
⎩S(�(ρ)) −

∑
j

ξ jS(�(ρ j ))

⎫⎬
⎭, (23)

with {ξ j} probability distribution and the average transmitted
message ρ = ∑

j ξ jρ j . S(ρ) = −Tr[ρ log2 ρ] is the von Neu-
mann entropy of the state ρ. The first term of χ corresponds
to the entropy of the channel output for the input quantum
state ρ, while the second term indicates the average entropy
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of the channel output. One can find an ensemble of pure input
states for any ensemble of mixed input states, such that the
resulting output states have a value of χ that is equal to or
greater than the original ensemble [47]. Hence, we define an
ensemble of pure state {ξ j, |ψ j〉} with the single-shot classical
capacity,

C1 = max
ξ j ,ρ j∈H

⎧⎨
⎩S(�(ρ)) −

∑
j

ξ jS(�(|ψ j〉〈ψ j |))
⎫⎬
⎭, (24)

where ρ = ∑
j ξ j |ψ j〉〈ψ j |. Now, our primary aim is to search

for the ensemble which will maximize χ . In the following
section, we give a comprehensive description of the method
we used.

The channel covariance properties discussed in the ear-
lier section are employed in this section to find the form of
the ensembles {ξ j, |ψ j〉} that solve the maximization prob-
lems (24). To make the optimization simpler, we first find
another ensemble {ξ ′

j, |ψ ′
j〉} by replacing each state |ψ j〉 of

the ensemble {ξ j, |ψ j〉} with the set {U0|ψ j〉, . . . , U15|ψ j〉},
where each state occurs with probability ξ ′

j = ξ j/16 [48]. The
corresponding density operator of the new ensemble ρ ′ =∑

j ξ
′
j |ψ ′

j〉〈ψ ′
j | has the following form:

ρ ′ =
∑

j

ξ j

16

(
|ψ j〉〈ψ j | +

15∑
i=1

Ui|ψ j〉〈ψ j |Ui

)

= 1

16

(
ρ +

15∑
i=1

UiρUi

)
. (25)

The density matrix ρ ′ has identical diagonal elements as ρ,
while its off-diagonal elements completely vanish. Next, our
objective is to show that

χ (�, {ξ ′
j, |ψ ′〉 j}) � χ (�, {ξ j, |ψ j〉}). (26)

Given that von Neumann entropy remains unchanged under
unitary operations [1], one may write {S(�(|ψ ′

j〉〈ψ ′
j |)) =

S(�(|ψ j〉〈ψ j |)). Hence, the second term of the Holevo quan-
tity becomes

∑
j

ξ ′
jS(�(|ψ ′

j〉〈ψ ′
j |)) = 16

∑
j

ξ j

16
S(�(|ψ j〉〈ψ j |))

=
∑

j

ξ jS(�(|ψ j〉〈ψ j |)). (27)

Now we use the fact that von Neumann entropy is a con-
cave function and find the output entropy corresponding to the
ρ ′ as

S(�(ρ ′)) = S

(
�

(
1

16
ρ + 1

16

15∑
i=1

UiρUi

))

� 1

16
S(�(ρ)) + 1

16

15∑
i=1

S(�(UiρUi ))

= S(�(ρ)). (28)

Hence, the validity of Eq. (26) is proved from Eqs. (27) and
(28). We can conclude from the above proof that one can
construct an ensemble with the same diagonal elements as
any given ensemble of pure states, such that the off-diagonal
entries of the density matrix vanish and the Holevo quantity
of this ensemble is at least as large as that of the original
ensemble.

We introduce a generic input state {ξ j, |ψ j〉},
|ψ〉 j = a j |00〉 + b j |01〉 + c j |02〉 + d j |10〉 + e j |11〉

+ f j |12〉 + g j |20〉 + h j |21〉 + k j |22〉, (29)

where a j, b j, c j, d j, e j, f j, g j, h j, and k j ∈ C and satisfy
the normalization condition. We can write the corresponding
density matrix ρ = ∑

j ξ j |ψ j〉〈ψ j |.
Eventually, the corresponding density matrix ρ ′, which

yields the upper bound of Holevo quantity, becomes the
diagonal matrix,

ρ ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α

β1

β2

β3

γ

β4

β5

β6

δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (30)

where we have assumed

α =
∑

j

ξ j |a j |2, β1 =
∑

j

ξ j |b j |2, β2 =
∑

j

ξ j |c j |2,

β3 =
∑

j

ξ j |d j |2, γ =
∑

j

ξ j |e j |2, β4 =
∑

j

ξ j | f j |2,

β5 =
∑

j

ξ j |g j |2, β6 =
∑

j

ξ j |h j |2, δ =
∑

j

ξ j |k j |2 .

Now we utilize the covariance property of the channel with
respect to the unitary swap operations defined in Eqs. (21).
We start with the ensemble {ξ ′

j, |ψ ′
j〉} defined in Eq. (30) and

create another ensemble by replacing each state |ψ ′
j〉 with the

set of states {|ψ ′
j〉, Vi|ψ ′

j〉}; each one occurs with probability
ξ ′

j/6. The new ensemble is denoted by {ξ̄ j, |ψ̄ j〉} and the new
density operator is

ρ̄ =
∑

j

ξ ′
j

6

(
|ψ ′

j〉〈ψ ′
j | +

5∑
i=1

Vi|ψ ′
j〉〈ψ ′

j |Vi

)

= 1

6

(
ρ ′ +

5∑
i=1

Viρ
′Vi

)
. (31)

We will prove that {ξ̄ j, |ψ̄ j〉} has the Holevo quantity χ , which
is greater or equal to that of the ensemble {ξ ′

j, |ψ ′
j〉}. The first
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term of the Holevo quantity χ takes the following form:

S(�(ρ̄ )) = S

(
�

(
1

6
ρ ′ + 1

6

5∑
i=1

Viρ
′Vi

))

� 1

6
S(�(ρ ′)) + 1

6

5∑
i=1

S(�(Viρ
′Vi ))

= S(�(ρ ′)). (32)

Now we prove that the second term of χ remains invariant
under swap unitaries:

∑
j

ξ̄ jS(�(|ψ̄ j〉〈ψ̄ j |)) = 6
∑

j

ξ ′
j

6
S(�(|ψ ′

j〉〈ψ ′
j |))

=
∑

j

ξ ′
jS(�(|ψ ′

j〉〈ψ ′
j |)). (33)

The above two equations (32) and (33) prove that the Holevo
quantity of the ensemble {ξ̄ j, |ψ̄ j〉} yields the upper bound of
that of the ensemble {ξ ′

j, |ψ ′
j〉}. Hence, one can infer that the

Holevo quantity of the ensemble {ξ̄ j, |ψ̄ j〉} is at least as large
as that of the original ensemble {ξ j, |ψ j〉}.

The subsequent section examines the single-shot classical
capacity of two specific channel types: the single decay chan-
nel and the V-type decay channel [49]. These channels are
obtained by imposing constraints on the decay parameters,
and we have computed their classical capacity using some al-
gebraic inequality and the convex property of binary Shannon
entropy. Due to the complex structure of eigenvalues of the
output state in the case of �-type decay channel and three
decay rate channels, we have not been able to get the analytic
expression of the single-shot classical capacity.

1. V-type decay channel

The lowermost energy level in this damping channel only
interacts with the two higher energy levels, and the transition
from |2〉 → |1〉 is not permitted. The Kraus operators that rep-
resent the V-type decay channel corresponding to two qutrit
systems can be derived by setting p3 to zero in Eqs. (11). The
resulting Kraus operators are provided below:

E00 = |00〉〈00| +
√

1 − p1|11〉〈11| +
√

1 − p2|22〉〈22|,

+
2∑

i, j=0
i 	= j

|i j〉〈i j|

E11 = √
p1|00〉〈11|, E22 = √

p2|00〉〈22|. (34)

These are the same Kraus operators used for a V-type tran-
sition in a three-level system in Ref. [50]. If the quantum
channel �(p1,p2,0) acts on the generic state given by Eq. (29),
the output density matrix becomes

ρ ′′
j = E00(|ψ j〉〈ψ j |)E†

00 + E11(|ψ j〉〈ψ j |)E†
11

+ E22(|ψ j〉〈ψ j |)E†
22. (35)

The matrix representation of the density matrix ρ ′′
j

is shown in Eq. (B19) of Appendix B by putting
ρ = |ψ j〉〈ψ j | in the above equation. The density

matrix has seven-dimensional noiseless subspace spans
{|00〉, |01〉, |10〉, |02〉, |20〉, |12〉, |21〉}. The two nonzero
eigenvalues are

η±
j = 1

2

[
1 ±

√
1 − l2

j

]
,

where l2
j = 4(1 − |a|2j − p1|e|2j − p2|k|2j )(p1|e|2j + p2|k|2j ).

From the expression of eigenvalues, we can see that η j solely
depends on the absolute value of the coefficients and is
independent of the phase. Therefore, we can assume the state
parameters are real.

The average entropy corresponding to the output state is
found as ∑

j

ξ jS(�(|ψ j〉〈ψ j |)) =
∑

j

ξ jH2(η j ), (36)

where H2(x) = −x log2(x) − (1 − x) log2(1 − x) is com-
monly known as Shannon’s binary entropy.

Finally, one can modify the ensemble {ξ̄ j, |ψ̄ j〉}
and obtain another ensemble {ξ̃ j, |ψ̃ j〉} by replacing
coefficients bj , c j , d j , f j , g j , and h j of each |ψ̄ j〉 by
|b̃ j |2 = |c̃ j |2 = |d̃ j |2 = | f̃ j |2 = |g̃ j |2 = |h̃ j |2 = (|b j |2 +
|c j |2 + |d j |2 + | f j |2 + |g j |2 + |h j |2)/6. It is straightforward
to prove that this ensemble {ξ̃ j, |ψ̃ j〉} will give the same
density matrix ρ̄. It can also be checked that the Holevo
quantity will be unchanged, which is clear from the expression
of eigenvalues η±

j .
The series of relations established so far demonstrate that

we can find an ensemble {ξ̃ j, |ψ̃ j〉}, which enables us to deter-
mine the upper bound of the Holevo quantity of any arbitrary
ensemble {ξ j, |ψ j〉}. This is because {ξ̃ j, |ψ̃ j〉} is a subset of
the original ensemble {ξ j, |ψ j〉}. Consequently, maximizing
the Holevo quantity for {ξ̃ j, |ψ̃ j〉} will also result in the maxi-
mum for the entire set {ξ j, |ψ j〉}.

In summary, we have to investigate the classical capacity
of the ensemble {ξ̃ j, |ψ̃ j〉}, where the states have the following
form:

|ψ̃〉 j = a j |00〉 + b j |01〉 ± b j |02〉 ± b j |10〉 + e j |11〉
± b j |12〉 ± b j |20〉 ± b j |21〉 + k j |22〉. (37)

The corresponding density matrix ρ̄, which gives the maxi-
mum Holevo bound, is a diagonal matrix with the elements
{α, β, β, β, γ , β, β, β, δ}, where

α =
∑

j

ξ j |a j |2, β =
∑

j

ξ j |b j |2, γ =
∑

j

ξ j |c j |2,

δ =
∑

j

ξ j |d j |2, (38)

and they satisfy normalization relation |aj |2 + 6|b j |2 +
|c j |2 + |d j |2 = 1. The entropy of the output state for the chan-
nel �(p1,p2,0) with the input state ρ̄ is

S(�(ρ̄)) = − (α + p1γ + p2δ) log2 (α + p1γ + p2δ)

− 6β log2 β − γ (1 − p1) log2 ((1 − p1)γ )

− δ(1 − p2) log2 ((1 − p2)δ). (39)
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Now we utilize the following inequality to calculate the lower bound of the second term of the Holevo quantity:

∑
j

ξ jH2

{
1 +√

1 − [(6|b j |2 + |e j |2 + |k j |2)2 − (6|b j |2 + (1 − 2p1)|e j |2 + (1 − 2p2)|k j |2)2]

2

}

�
∑

j

ξ jH2

{
1 +√

1 − [2p1|e j |2 + 2p2|k j |2]2

2

}
� H2

⎧⎪⎨
⎪⎩

1 +
√

1 − [
2p1

∑
j ξ j |e j |2 + 2p2

∑
j ξ j |k j |2

]2
2

⎫⎪⎬
⎪⎭

= H2

{
1 +

√
1 − [2p1γ + 2p2δ]2

2

}
. (40)

The first inequality we obtain using the relation X 2 − Y 2 � (X − Y )2, when X � Y , and the second inequality is obtained using
the convexity property of the binary entropy function H2( 1+√

1−x2

2 ). The complete expression of the Holevo quantity for the
V-type decay channel is obtained by maximizing it over all possible values of α, β, γ , and δ, which is

χ (�, {ξ̃ j, |ψ̃ j〉}) = max
α,β,γ ,δ

(
(α + p1γ + p2δ) log2 (α + p1γ + p2δ) − 6β log2 β − γ (1 − p1) log2 ((1 − p1)γ )

− δ(1 − p2) log2 ((1 − p2)δ) + H2

{
1 +

√
1 − [2p1γ + 2p2δ]2

2

})
. (41)

Therefore, we can conclude that Eq. (41) gives the upper
bound of the single-shot classical capacity C1 of the V-type
decay channel. In Fig. 3(a), we have shown the upper bound
of C1 with respect to the decay rates p1 and p2. In the case of
complete damping (p1 = 1) of the energy level |11〉, the out-
put density matrix becomes eight-dimensional, indicating the
maximum value of the capacity log2 8 at p2 = 0. Figure 3(b)
illustrates the decay of the upper bound of C1 as a function of
p2, under the condition that the energy level |11〉 is completely
damped.

2. Single decay channel

The upper bound of the capacity C1 for the single decay
channel, i.e., only one of the three damping parameters pi is
nonzero, can be calculated from Eq. (41) by setting one of the
damping parameters p1 or p2 equal to zero. Since the Kraus
operators for the mappings �(p1,0,0), �(0,p2,0), and �(0,0,p3 )

have the same form, the corresponding Holevo quantity will
also be same. Hence, we can write the expression of the
Holevo quantity for the mapping �(p1,0,0) as

χ (�, {ξ̃ j, |ψ̃ j〉}) = max
α,β,γ ,δ

(
(α + p1γ ) log2 (α + p1γ )

− 6β log2 β − γ (1 − p1) log2 ((1− p1)γ )

− δ log2 δ + H2

{
1 +

√
1 − [2p1γ ]2

2

})
.

(42)

The above equation is an upper bound of the Holevo quantity,
which is the upper bound of the single-shot classical capac-
ity of the map �(p1,0,0). After performing the optimization
over all possible values of α, β, γ , and δ, one can obtain the
variation of C1 with respect to the damping parameter p1,

which is depicted in Fig. 4(a). Figure 4(b) displays the state
parameters α, β, γ , and δ against p1 during the optimization
process.

V. QUANTUM CAPACITY

The quantum capacity, Q, represents the fundamental
measure of a channel’s capability to transmit and convey
quantum information reliably. The asymptotic expression for-
mally defining the quantum capacity of the channel � is
[51,52]

Q = lim
n→∞

Qn

n
, Qn = max

ρ (n)
Ic(�⊗n, ρ (n) ), (43)

where the input state for n instances of channel usage is
represented by ρ (n) and the coherent information is

Ic(�⊗n, ρ (n) ) = S(�⊗n(ρ (n) )) − S(�̃⊗n(ρ (n) )), (44)

with S(ρ) = −Tr[ρ log2 ρ] the well-known expression of von
Neumann entropy corresponding to state ρ and �̃ is the com-
plementary map of �. For a degradable channel, the coherent
information shows additivity property and the quantum ca-
pacity Q reduces to its single-shot capacity Q1. However, an
antidegradable channel is a zero-capacity channel because of
the no-cloning principle. It is to be noted that the optimization
process outlined in Eq. (43) must be conducted over the set of
density matrices ρ (n) corresponding to n uses of the channel.

Let us consider the generic input state {ξ j, |ψ j〉} and the
corresponding density matrix ρ = ∑

j ξ j |ψ j〉〈ψ j | as defined
earlier in Eq. (29). We aim to identify the category of input
states that enables us to find the quantum capacity specifically
by maximizing the coherent information. To accomplish this
goal, we observe that it is possible to construct a diagonal
density operator for any two-qutrit density operator ρ, as
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FIG. 3. (a) The upper bound of single-shot classical capacity (C1)
of channel �(p1,p2,0) varies according to the damping parameter p1

and p2. The value of C1 is obtained through numerical optimization.
(b) The dynamics of C1 with respect to p2 when the first excited state
is completely damped, i.e., p1 = 1.

shown below:

ρ ′ = 1

16

(
ρ +

15∑
i=1

UiρUi

)
. (45)

Eventually, the density matrix ρ ′ becomes the diagonal matrix
with elements {α, β1, β2, β3, γ , β4, β5, β6, δ}. Now, we will
prove that the coherent information of ρ ′ is greater than or
equal to that associated with state ρ:

Ic(�,ρ ′) = Ic

(
�,

1

16

(
ρ +

15∑
i=1

UiρUi

))

� 1

16
Ic(�,ρ) + 1

16

15∑
i=1

Ic(�, UiρUi )

= 1

16
Ic(�,ρ) + 1

16

15∑
i=1

S(�(UiρUi ))

− 1

16

15∑
i=1

S(�̃(UiρUi )) = Ic(�,ρ). (46)

FIG. 4. (a) The upper bound of single-shot classical capacity (C1)
of channel �(p1,0,0) varies according to the damping parameter p1.
The value of C1 is obtained through numerical optimization. (b) The
populations α, β, γ , and δ with respect to the damping parameter
p1 during the optimization. The plots of β and δ overlap during
optimization.

We have utilized the property of degradable channels in
the inequality above, which states that coherent information
of degradable channels exhibits concave behavior. We use
the fact that the von Neumann entropy is invariant under
unitary operations and arrive at the following conclusion:
S(�(UiρUi )) = S(�(ρ)).

Now, we can make a new state ρ̄,

ρ̄ = 1

6

(
ρ +

5∑
i=1

Viρ
′Vi

)
,

where Vi are defined in Eqs. (21). Here the den-
sity matrix ρ̄ becomes a diagonal matrix with elements
{α, β, β, β, γ , β, β, β, δ}, where β is defined in Eqs. (38).

In the same way as above, using the concavity property
of the degradable channel, we can show that the coherent
information Ic(�, ρ̄ ) � Ic(�,ρ ′). We may conclude that by
optimizing the coherent information of the diagonal state ρ̄,
we can derive the quantum capacity. Therefore, within the
degradable region, the expression of quantum capacity is

Q(�) = Q1(�) = max
ρ̄

Ic(�, ρ̄ )

= max
ρ̄

{S(�(ρ̄ )) − S(�̃(ρ̄ ))}. (47)
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Our next task involves calculating the quantum capacity of the
fully correlated MAD channel. Nevertheless, there is an obsta-
cle that we need to overcome. First, we need to check whether
the channel is degradable or nondegradable. We have shown
in Appendix B that our fully correlated two-qutrit MAD chan-
nel �(p1,p2,p3 ) is nondegradable. It is also not antidegradable.
Hence, we simplify the problem by setting one or two decay
parameters in such a way that the Kraus operators required to
represent the map are less than four, and then we show the
resulting maps exhibit degradability properties in some range
of decay parameters. In the following subsection, we system-
atically examine the quantum capacity of a fully correlated
MAD channel under various conditions, one by one.

1. Single decay channel

The instances of the fully correlated MAD channel that we
are analyzing in this context involve situations where only one
of the three damping parameters, pi, has a nonzero value. The
associated maps for this single decay are �(p1,0,0), �(0,p2,0),
and �(0,0,p3 ) respectively.

We observe that two nonzero Kraus operators correspond-
ing to the mapping �(p1,0,0) are

E00 = |00〉〈00| +
√

1 − p1|11〉〈11| + |22〉〈22|

+
2∑

i, j=0
i 	= j

|i j〉〈i j|

E11 = √
p1|00〉〈11|.

The expression for the transformation �(p1,0,0)(ρ) and the
corresponding complementary map �̃(p1,0,0)(ρ) according to
Eq. (15) are given in Appendix B. It is noteworthy to men-
tion that the structure of the Kraus operators for the single
decay map admits the partial coherent direct sum (PCDS)
structure. According to Ref. [39], a PCDS map is degradable
if its diagonal blocks are also degradable. We can also use
that method to find the degradability condition for the map
�(p1,0,0). However, we conducted the degradability analysis
using the matrix inversion method without considering the
PCDS structure, as reported in Appendix B.

From the channel degradability analysis, we have seen
that the channel is degradable for p1 � 1

2 . Even though the
channel is not degradable or antidegradable for p1 � 1

2 , we
can still compute its quantum capacity in this range using
the monotonicity constraint of the quantum capacity function
discussed in Appendix A.

Consequently, the quantum capacity in the degradable re-
gion (0 � p1 � 1/2) is obtained as follows:

Q(�) = max
ρ̄

Ic(�, ρ̄ )

= max
ρ̄

{S(�(ρ̄)) − S(�̃(ρ̄ ))}

= max
α,β,γ ,δ

{−(α + p1γ ) log2 (α + p1γ ) − 6β log2 β

− ((1 − p1)γ ) log2 ((1 − p1)γ ) − δ log2 δ

+ (1 − p1γ ) log2 (1 − p1γ ) + p1γ log2 (p1γ )}.
(48)

FIG. 5. (a) The quantum capacity (Q) of channel �(p1,0,0) varies
according to the damping parameter p1. (b) The populations α, β, γ ,
and δ refer to the states which optimize the quantum capacity formula
corresponding to the �(p1,0,0) channel with respect to the damping
parameter p1.

The above equation yields the value of Q equal to log2 8 at
p1 = 1/2. This value serves as the upper bound of Q for
the region 1/2 < p1 � 1, which is evident from the mono-
tonic behavior of the quantum capacity function. Again, from
Eq. (B6) in Appendix B, one can observe that the trans-
formation has eight-dimensional decoherence-free subspace
spanning over |00〉, |01〉, |02〉, |10〉, |12〉, |20〉, |21〉, and |22〉
bases. Hence, the lower bound of the Q for the single decay
map is log2 8. Since the lower bound of Q coincides with the
upper bound, we can conclude that quantum capacity is log2 8
in the nondegradable region.

The results are depicted in Fig. 5. In the case of p1 = 0,
the value of the quantum capacity becomes log2 9, which is
obviously the maximum value of Q for the nine-dimensional
density matrix.

In the above section, we have calculated the quantum ca-
pacity for the mapping �(p1,0,0). It can be readily observed that
the other groups of transformation �(0,p2,0) and �(0,0,p3 ) can
be transformed into each other by simply swapping energy
levels. Therefore, the quantum capacity of these three groups
should be the same, as each channel can be derived from
the other, i.e., Q(�(p,0,0)) = Q(�(0,p,0)) = Q(�(0,0,p) ) for all
values of p between 0 and 1.
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2. Double decay channel

This section focuses primarily on a model that allows for
only two possible transitions. Specifically, we consider a sce-
nario where one of the three damping parameters p1, p2, or p3

is equal to zero. Further, we classify the double decay channel
as a V-type or �-type decay channel, depending upon the con-
ditions p3 = 0 and p1 = 0 [49]. In the following subsection,
we calculate the quantum capacity of these channels since
they are degradable. However, when p2 = 0, the channel is
referred to as a �-type decay channel and can be described
by four Kraus operators. Since the �-type decay channel is
not degradable, we are unable to calculate the corresponding
quantum capacity of this channel.

A. V-type decay channel

If the decay parameter p3 is equal to zero, the atoms un-
dergo a V-type transition, which is commonly referred to as a
V-type decay channel. For this channel, the accessible values
of p1 and p2 lie on the surface EFH, as shown in Fig. 2.
The Kraus operators representing the V-type decay channel
are given in Sec. IV 1, where we computed the classical ca-
pacity for this type of channel. In Appendix B, we provide
the expression for both the transformation �(p1,p2,0)(ρ) and
its corresponding complementary map �̃(p1,p2,0)(ρ) and the
degradability analysis of the channel. From the degradability
analysis, we have seen that the channel is degradable for p1 �
1/2 and p2 � 1/2, and the quantum capacity reduces to the
single-shot capacity in this region. In other ranges of p1 and
p2, the channel is nondegradable. To calculate the quantum
capacity Q in the nondegradable region, we use the results
of the capacity analysis corresponding to maps �(1,p2,0) and
�(p1,1,0) along with the monotonic property of the quantum
capacity function. The quantum capacity analysis of the maps
�(1,p2,0) and the technical details of the capacity analysis in
the nondegradable region of the V-type decay channel are
provided in Appendix B.

The following expression gives the quantum capacity in the
degradable region:

Q(�) = max
α,β,γ ,δ

{−(α + p1γ + p2δ) log2 (α + p1γ + p2δ)

− 6β log2 β − γ (1 − p1) log2 ((1 − p1)γ )

− δ(1 − p2) log2 ((1 − p2)δ) + p1γ log2 (p1γ )

+ (1 − p1γ − p2δ) log2 (1 − p1γ p2δ)

+ p2δ log2 (p2δ)}. (49)

From the above expression, the values of Q(�) can be deter-
mined on the border of the degradable region, i.e., �(1/2,p2,0)

and �(p1,1/2,0)∀p1, p2 � 1/2 is known. Now, we calculate
the quantum capacity at the edge of the parameter space,
i.e., Q(�(1,p2,0)) and Q(�(p1,1,0)). We have shown that for
a specific value of p1 or p2, the quantum capacity has the
same value at the border of the degradable region and on the
edges. Thus, based on the monotonicity constraint described
in Eq. (A10), it can be concluded that the quantum capacity
remains unchanged in the intermediate region. The behavior
of Q(�(p1,p2,0)) with respect to p1 and p2 is displayed in
Fig. 6.

FIG. 6. Contour plot of the quantum capacity (Q) for the V-type
decay channel, �(p1,p2,0) with the damping parameters p1 and p2. In
the range, p1 and p2 are less than or equal to 1/2 (area enclosed by
the dashed red line) and the channel is degradable. If both p1 and p2

exceed the value 1/2, the channel is nondegradable.

According to the findings presented in Ref. [38], it has
been demonstrated that the uncorrelated V-type decay channel
exhibits antidegradability property within the region p1 � 1/2
and p2 � 1/2, which implies that the quantum capacity in this
particular region is effectively zero. Here, we have shown that
the fully correlated V-type decay channel is not antidegradable
and has the lowest quantum capacity value log2 7.

B. �-type decay channel

In this type of damping channel, energy level |2〉 of the
two three-level systems interacts with the lower lying levels
|1〉 and |0〉 in a correlated manner. In this case, we examine
the quantum capacity value for � that belongs to the square
surface CDEH depicted in Fig. 2, which is defined by the con-
dition p1 = 0. According to Eqs. (11), one can write the Kraus
operators that describe this channel as

E00 = |00〉〈00| + |11〉〈11| +
√

1 − p23|22〉〈22|

+
2∑

i, j=0
i 	= j

|i j〉〈i j|,

E22 =
√

(1 − 
)p23|00〉〈22|,

E33 =
√


p23|11〉〈22|,
where, for convenience, we have taken p23 = 1 −
(1 − p2)(1 − p3) and 
 = ln (1 − p3)/(ln (1 − p3) +
ln (1 − p2)).

The symmetry of the model under the exchange of p2

and p3 is apparent from the structure of the Kraus operators.
Hence, we conclude that

Q(�(0,p2,p3 ) ) = Q(�(0,p3,p2 ) ). (50)

In Appendix B, we show the transformation �(0,p2,p3 )

and complementary map �̃(0,p2,p3 ). We have seen that the
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FIG. 7. Contour plot of the quantum capacity (Q) for the �-type
decay channel, �(0,p2,p3 ) with the damping parameters p2 and p3. In
the range (1 − p2)(1 − p3) � 1

2 , the channel is degradable. However,
in other regions, the channel is nondegradable, and the correspond-
ing value of quantum capacity is fixed at log2 8, obtained from the
monotonicity principle.

channel is degradable for (1 − p2)(1 − p3) � 1
2 , and it is not

antidegradable in any region. The equation represents the
quantum capacity of the channel in the degradable region:

Q(�) = max
α,β,γ ,δ

{−(α + (1 − 
)p23δ) log2 (α + (1 − 
)p23δ)

− 6β log2 β − (γ + 
p23δ) log2 (γ + 
p23δ)

− ((1 − p23)δ) log2 (1 − p23)δ) + (
p23δ)

× log2(
p23δ) + ((1 − 
)p23δ) log2 ((1 − 
)p23δ)

+ (1 − p23δ) log2 (1 − p23δ)}. (51)

At the border of the degradable region (1 − p2)(1 − p3) =
1/2 (shown in the dashed red curve in Fig. 7), the value
of the quantum capacity can be determined, which is log2 8.
This value serves as the upper bound of Q in the nondegrad-
able region. We also observe that the output density matrix
has eight-dimensional decoherence-free subspace. Hence, the
lower bound of the quantum capacity is log2 8. From the
composition rule and monotonicity constraint of the quantum
capacity function, we conclude that Q(�) = log2 8 in the
nondegradable region. The behavior of the quantum capacity
Q(�(0,p2,p3 ) ) with respect to p2 and p3 is illustrated in Fig. 7.
In the case of an uncorrelated �-type decay channel, as shown
in Ref. [38], the channel is antidegradable between p2 + p3 �
1/2 and p2 + p3 � 1 indicates zero value of quantum ca-
pacity, and beyond the range p2 + p3 = 1 the channel is not
CPTP. However, a fully correlated �-type decay channel is
CPTP for all values of p2 and p3, and the lowest value of
quantum capacity is log2 8.

Three decay rate channel

Let us consider the region 1 − p1 = (1 − p2)(1 − p3),
which is indicated by the surface BEFH in Fig. 2. This spe-
cial three decay rate map, satisfying the above-mentioned

FIG. 8. Contour plot of the quantum capacity (Q) of the specific
three decay rate channel, �(p23,p2,p3 ) with the damping parameters
p2 and p3. In the range (1 − p2)(1 − p3) � 1

2 (area enclosed by the
dashed red curve), the channel is degradable like the �-type decay
channel. However, in the other region, the channel is nondegradable,
and the corresponding value of quantum capacity value is fixed at
log2 7 obtained from the monotonicity principle.

constraint, admits the following Kraus operators:

E00 = |00〉〈00| +
√

(1 − p23)|11〉〈11|

+
√

(1 − p23)|22〉〈22| +
2∑

i, j=0
i 	= j

|i j〉〈i j|,

E11 = √
p23|00〉〈11|, E22 = √

p23|00〉〈22|, (52)

where we have denoted p1 = 1 − (1 − p2)(1 − p3) = p23 for
convenience.

From the structural symmetry of the Kraus operators, it is
clear that under the exchange of p2 and p3, quantum capacity
does not change. Hence, we can write

Q(�(p23,p2,p3 ) ) = Q(�(p23,p3,p2 ) ). (53)

Similar to the �-type decay channel, this map, �(p23,p2,p3 ),

is also degradable in the region (1 − p2)(1 − p3) � 1
2 . In the

degradable region, the quantum capacity for this channel is

Q(�) = max
α,β,γ ,δ

{−(α + p23γ + p23δ) log2 (α + p23γ + p23δ)

− 6β log2 β − γ (1 − p23) log2 ((1 − p23)γ )

− (1 − p23δ) log2 (1 − p23δ) + p23γ log2 (p23γ )

+ p23δ log2 (p23δ) + (1 − p23γ − p23δ)

× log2 (1 − p23γ − p23δ)}. (54)

In the other region, we can also calculate the quantum capac-
ity using the composition rule and monotonicity constraints
like the �-type decay channel. The output density matrix
corresponding to this channel can be verified to possess a
seven-dimensional decoherence-free subspace. This observa-
tion indicates that the lower bound of the quantum capacity
for this channel is given by log2 7. The quantum capacity for
this map �(p23,p2,p3 ) is displayed in Fig. 8.
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VI. ENTANGLEMENT ASSISTED CAPACITY

In this section, we examine the classical and quan-
tum capacities of the fully correlated MAD channel in the
entanglement-assisted scenario. The concept of entanglement-
assisted quantum capacity, QE , refers to the maximum
quantity of quantum information which can be transferred
reliably through a given channel per each use of that chan-
nel, with the assumption that the two communicating parties
have access to an unlimited supply of entanglement resources
beforehand. It can be expressed as [7,53]

QE = 1
2 max

ρ
I (�,ρ), (55)

where the optimization process is carried out with respect to
the input ρ and

I (�,ρ) = S(ρ) + Ic(�,ρ). (56)

The mutual information functional I is equal to the coherent
information functional Ic with the addition of entropy S(ρ)
of input state. The mutual information functional satisfies the
additivity property [54] and, because of that, no regularization
is needed in the calculation of QE . So, we can write

I (�,ρ) = S(ρ) + S(�(ρ)) − S(�̃(ρ)). (57)

The covariance property of von Neumann entropy and con-
cavity of the coherent information also apply here for mutual
information.

The entanglement-assisted classical capacity CE refers to
the optimal transmission rate of classical information with
the assistance of unrestricted entanglement shared between
communicating parties. It is equal to twice the entanglement-
assisted quantum capacity value, i.e.,

QE = 1
2 (CE ). (58)

The explicit expressions of entanglement-assisted quantum
capacity for the single decay, double decay, and triple decay
channels are given in Appendix B. In Figs. 9 and 10, we have
illustrated the dynamics of QE for two different maps: the first
one is for the single decay map �(1,p1,0), while the second
one corresponds to the map �(p,p,p), where all the decay rates
are equal. In addition, the corresponding populations of α, β,
γ , and δ during the optimization process for a single decay
channel have been plotted. In Fig. 11, the dynamics of QE for
the V-type decay channel, �-type decay channel, and special
three decay rate channel have been displayed.

VII. CONCLUSION

In quantum information theory, the qubit ADC model is a
well-known example of quantum noise. It has been shown that
the correlated ADC channel has higher information transmis-
sion capacity and can protect quantum correlations efficiently.
In our paper, we have investigated the information capac-
ity for a multidimensional version of the correlated ADC
model with a special focus on dimension d = 3. We have
explicitly calculated the upper bound of the single-shot clas-
sical and quantum capacities of various maps associated with
the fully correlated MAD channels on the qutrit space. This

FIG. 9. (a) The plot of QE for the single decay channel �(p1,0,0)

with respect to the damping parameter p1. The solution of the op-
timization problem given in Eq. (B24) determines the values of QE

at different p1. (b) The populations α, β, γ , and δ refer to the states
that optimize the CE formula for the �(p1,0,0) channel with respect
to the damping parameter p1. The plots of β and δ overlap during
optimization.

computation has expanded the set of models whose capacity
is known. In Ref. [38], it has been shown that V-type and
�-type memoryless qutrit MAD channels exhibit antidegrad-
ability properties in some specific regions, which leads to zero
quantum capacity in that region. On the other hand, the fully
correlated V-type and �-type qutrit channels do not exhibit
antidegradability and have positive quantum capacity over the
entire range of parameters. We have observed that the �-type
decay channel exhibits a higher quantum capacity compared
to the V-type decay channel. The insights this research pro-
vides can be useful in designing and optimizing quantum
communication systems to operate in noisy environments. The
findings of this paper provide a basis for further exploration
of the information capacity for MAD channels with arbitrary
degrees of memory.
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FIG. 10. (a) The plot of QE for the channel �(p,p,p) with respect
to the damping parameter p. The solution of the optimization prob-
lem given in Eq. (B27) in Appendix B, which determines the values
of QE at different p1. (b) The populations α, β, γ , and δ refer to the
states that optimize the CE formula corresponding to the map �(p,p,p).

APPENDIX A: COMPOSITION RULE

The study presented in Ref. [38] established that, un-
der composition rules, MAD channels are closed, a useful
property for examining their information capacities. Here we
examine whether fully correlated MAD channels exhibit sim-
ilar behavior. We note that if �(p′

1,p′
2,p′

3 ) and �(p′′
1,p′′

2,p′′
3 ) are two

maps such that they fulfill the CPTP conditions, then we have

�(p′
1,p′

2,p′
3 ) ◦ �(p′′

1,p′′
2,p′′

3 ) = �(p1,p2,p3 ). (A1)

The significance of the above equation in addressing our cur-
rent problem lies in the channel data-processing inequalities
[36,55]. If a CPTP map �(p1,p2,p3 ) is obtained by combining
two CPTP maps �(p′

1,p′
2,p′

3 ) and �(p′′
1,p′′

2,p′′
3 ), then the chan-

nel data processing inequality indicates that any information
capacity function F such as classical capacity C, quantum
capacity Q, entanglement-assisted quantum capacity QE , etc.,
must satisfy the relation described below [56]:

F (�(p1,p2,p3 ) ) � min
{
F
(
�(p′

1,p′
2,p′

3 )
)
,F
(
�(p′′

1,p′′
2,p′′

3 )
)}

. (A2)

The new rate vector (p1, p2, p3) for the V-type decay channel
from Eq. (A1) is

p1 = p′
1 + p′′

1 − p′
1 p′′

1,

p2 = p′
2 + p′′

2 − p′
2 p′′

2, (A3)

FIG. 11. (a) Contour plot of QE for the V-type decay channel,
�(p1,p2,0) with damping parameters p1 and p2. (b) Contour plot of
QE for the �-type decay channel; �(0,p2,p3 ) varies with damping
parameters p2 and p3. (c) Contour plot of QE for the three decay
rate channels; �(p,p2,p3 ) varies with damping parameters p2 and p3.

and the new rate vector of components for the �-type decay
channel

p2 = p′
2 + p′′

2 − p′
2 p′′

2,

p3 = p′
3 + p′′

3 − p′
3 p′′

3, (A4)
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which also satisfies CPTP conditions. The aforementioned
inequality (A2) can be utilized to predict the monotonic be-
havior of the capacity F (�(p1,p2,p3 ) ) with respect to the decay
rates {p1, p2, p3} by applying it to Eq. (A1). The lower and
upper bounds obtained from this inequality can prove to be
valuable in expanding the capacity formula to domains where
the map is nondegradable. In specific cases, for a single-decay
fully correlated MAD channel defined by the single nonzero
decay parameter (for example, p1), we obtain

�(p′
1,0,0) ◦ �(p′′

1,0,0) = �(p′′
1,0,0) ◦ �(p′

1,0,0) = �(p1,0,0).

(A5)

In this way, we can infer that the capacity functional
F (�(p1,p2,p3 ) ) is a nonincreasing function with respect to de-
cay parameter p1:

F
(
�(p1,0,0)

)
� F (�(p′,0,0)), ∀p1 � p′. (A6)

Similarly, for other single decay maps �(0,p2,0) and �(0,0,p3 ),
we can deduce the above inequality and prove their nonin-
creasing behavior. We can write the mapping �(p1,p2,p3 ) in
terms of the composition form

�(p1,p2,p3 ) = �(0,0,p̄3 ) ◦ �(0,p̄2,0) ◦ �(p1,0,0), (A7)

where p̄2 = p1 + (1 − 
)p123 and p̄3 = 
p123

1−p1−(1−
)p123
.

Alternatively, we can write the given composition

�(p1,p2,p3 ) = �(0,p̄2,0) ◦ �(0,0,p̄3 ) ◦ �(p1,0,0), (A8)

where p̄2 = p1+(1−
)p123

1−
p123
and p̄3 = 
p123. To make the nota-

tion simpler in the above equation, we have written 
(�) ≡ 


and p123 = (1 − p1) − (1 − p2)(1 − p3). For V-type decay
channel setting p3 = 0, we obtain the relation

�(p1,p2,0) = �(0,p2,0) ◦ �(p1,0,0) = �(p1,0,0) ◦ �(0,p2,0). (A9)

Equation (A2) leads to the following condition:

F
(
�(p1,p2,0)

)
� min

{
F
(
�(0,p2,0)

)
,F
(
�(p1,0,0)

)}
. (A10)

For the �-type decay channel, �(0,p2,p3 ) can be written as the
following composition:

�(0,p2,p3 ) = �(0,0,p̃3 ) ◦ �(0,p̃2,0) = �(0,p̃2,0) ◦ �(0,0,p̃3 ),

(A11)

and we obtain the inequality

F
(
�(0,p2,p3 )

)
� min

{
F
(
�(0,p̃2,0)

)
,F
(
�(0,0,p̃3 )

)}
, (A12)

where p̃2 = (1 − 
)p23, p̃3 = 
p23

1−(1−
)p23
, and p23 = 1 −

(1 − p2)(1 − p3).

APPENDIX B

1. Degradability of �(p1,p2,p3 ) map

First, we write the matrix form of the Kraus operator for the
fully correlated MAD channel, which will be used in different
cases with different conditions,

E00 =

⎡
⎢⎢⎢⎢⎢⎣

I4×4 √
1 − p1

I3×3 √
(1 − p2)(1 − p3)

⎤
⎥⎥⎥⎥⎥⎦

9×9

, E11 =

⎡
⎢⎢⎢⎢⎢⎣

√
p1 . . . 0

O4×5
...

. . .
...

0 . . . 0

O4×4 O4×4

⎤
⎥⎥⎥⎥⎥⎦

9×9

,

E22 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
√

p1 + (1 − 
(�))p123

0 . . . 0 0

...
. . .

...
...

0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

9×9

, E33 =

⎡
⎢⎢⎢⎢⎢⎣

0 . . . 0

O4×5
...

. . .
...

0 . . .
√


(�)p123

O4×4 O4×4

⎤
⎥⎥⎥⎥⎥⎦

9×9

, (B1)

where 
(�) = �3/(�3 + �2 − �1), p123 = e−�1t − e−(�2+�3 )t = (1 − p1) − (1 − p2)(1 − p3), and O and I are, respectively, the
null matrix and identity matrix. The map is completely positive when (1 − p1) � (1 − p2)(1 − p3). If the map �(p1,p2,p3 ) acts
on the input state ρ given in Eq. (9), the output state is given by

�(p1,p2,p3 )(ρ)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̃00 ρ01 ρ02 ρ03
√

p̃1ρ04 ρ05 ρ06 ρ07
√

p̃2 p̃3ρ08

ρ10 ρ11 ρ12 ρ13
√

p̃1ρ14 ρ15 ρ16 ρ17
√

p̃2 p̃3ρ18

ρ20 ρ21 ρ22 ρ23
√

p̃1ρ24 ρ25 ρ26 ρ27
√

p̃2 p̃3ρ28

ρ30 ρ31 ρ32 ρ33
√

p̃1ρ34 ρ35 ρ36 ρ37
√

p̃2 p̃3ρ38√
p̃1ρ40

√
p̃1ρ41

√
p̃1ρ42

√
p̃1ρ43 ρ̃44

√
p̃1ρ45

√
p̃1ρ46

√
p̃1ρ47

√
p̃1

√
p̃2 p̃3ρ48

ρ50 ρ51 ρ52 ρ53
√

p̃1ρ54 ρ55 ρ56 ρ57
√

p̃2 p̃3ρ58

ρ60 ρ61 ρ62 ρ63
√

p̃1ρ64 ρ65 ρ66 ρ67
√

p̃2 p̃3ρ68

ρ70 ρ71 ρ72 ρ73
√

p̃1ρ74 ρ75 ρ76 ρ77
√

p̃2 p̃3ρ78√
p̃2 p̃3ρ80

√
p̃2 p̃3ρ81

√
p̃2 p̃3ρ82

√
p̃2 p̃3ρ83

√
p̃1

√
p̃2 p̃3ρ84

√
p̃2 p̃3ρ85

√
p̃2 p̃3ρ86

√
p̃2 p̃3ρ87 p̃2 p̃3ρ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B2)
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where p̃1 = 1 − p1, p̃2 = 1 − p2, p̃3 = 1 − p3, ρ̃00 = ρ00 + p1ρ44 + (p1 + (1 − 
(�))(1 − p1 − (1 − p2)(1 − p3)))ρ88 ρ̃44 =
(1 − p1)ρ44 + 
(�)(1 − p1 − (1 − p2)(1 − p3))ρ88. The complementary map �̃(p1,p2,p3 ) corresponding to the above map is

�̃(p1,p2,p3 )(ρ)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − p1ρ44 − p23ρ88 0 0 0 0
√

p1ρ04 0 0 0 0
√

p1 + (1 − 
(�)p123ρ08 0 0 0 0
√

1 − p1
√


(�)p123ρ48

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

p1ρ40 0 0 0 0 p1ρ44 0 0 0 0
√

p1
√

p1 + (1 − 
(�)p123ρ48 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

p1 + (1 − 
(�)p123ρ80 0 0 0 0
√

p1
√

p1 + (1 − 
(�)p123ρ84 0 0 0 0 p1 + (1 − 
(�)p123ρ88 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

1 − p1
√

p1 + (1 − 
(�)p123ρ84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 − p1ρ44 − p23ρ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B3)

where p23 = 1 − (1 − p2)(1 − p3) and p123 = (1 − p1) −
(1 − p2)(1 − p3).

First, let us begin by investigating whether the map is
degradable or antidegradable. In this context, we follow the
method outlined in Sec. III A. The channel is said to be
degradable when the mapping �D = �̃ ◦ �−1 is a CPTP map.
The map �D is said to be CPTP if the Choi matrix associated
with �D is positive. Here, we have checked the complete
positivity of the mapping �D by writing the states ρ, �(ρ)
and �̃(ρ) in Liouville-Fock space, finding the transformation
matrix M� between ρ and �(ρ), and the transformation
matrix M�̃ between ρ and �̃(ρ), and finally checking the
positivity of the following matrix:

M�D = M�̃M−1
� . (B4)

Similarly, the channel is said to be antidegradable when the
matrix:

M�AD = M�M−1
�̃

(B5)

is a positive matrix. First, we calculate the supermaps M� and
M�̃ from Eqs. (B2) and (B3). Then, following Eq. (B4), we
observe that M�D is positive when (1 − p1) < (1 − p2)(1 −
p3). However, as previously shown in the main text, the map
�(p1,p2,p3 ) is CPTP when it fulfills the condition (1 − p1) �
(1 − p2)(1 − p3). Hence, the map �D is not CPTP. Now, we
have to prove that any other degrading CPTP maps do not
exist. In this way, we can ensure the nondegradability of the
map �(p1,p2,p3 ). To prove this, we use Theorem 3 given in
Ref. [57], which is as follows:

Theorem Let � : O(HS ) → O(HS′ ) be a quantum channel
with the complementary channel �̃ : O(HS ) → O(HE ′ ) and

the corresponding superoperator M� be a full rank matrix:
rank[M�] = min[d2

S , d2
S′ ]. Then, if a degrading map �D :

O(HS′ ) → O(HE ′ ) exists, it is unique iff dS′ � dS .
We observe that the dimension of the input state ρ and

output state �(p1,p2,p3 )(ρ) are same, i.e., dS = dS′ and the
superoperator M� is a triangular matrix, which is a full
rank matrix except in two cases: when p1 = 1 or when (1 −
p2)(1 − p3) = 0. Hence, in cases p1 	= 1 and (1 − p2)(1 −
p3) 	= 0, the map M� is a full rank matrix and since �D is
not CPTP, the map � is not degradable.

Now, in the cases when p1 = 1 and (1 − p2)(1 − p3) = 0,
the map M� is not full rank matrix and, hence, not invert-
ible. If we carefully note �(p1,p2,p3 ) and �̃(p1,p2,p3 ) given in
Eqs. (B2) and (B3) after imposing constraints p1 = 1 and
(1 − p2)(1 − p3) = 0, we find many elements that are present
in � but absent in �̃. For instance, when p1 = 1 we find the
elements ρ04, ρ48 of the input state ρ are present in �̃ but
absent in �. Similarly, when (1 − p2)(1 − p3) = 0, we find
the components ρ08, ρ48 of the input state ρ are present in �̃

but absent in �. Therefore, there is no linear map that we can
apply to �(ρ) to obtain �̃(ρ). Hence, the channel �(p1,p2,p3 )

is not degradable.
Now, we can confirm the antidegradability of the chan-

nel by establishing that ker �̃ 	⊂ ker � [58]. we find many
elements—e.g., the elements |00〉〈01|, |00〉〈02|, etc.—that
are present in �(p1,p2,p3 ) but absent in �̃(p1, p2, p3). Hence,
the kernel of �̃(p1, p2, p3) cannot be a subset of �(p1,p2,p3 ).
However, we can directly conclude that the channel is not
antidegradable by examining the matrix �(p1,p2,p3 ) since it
possesses a seven-dimensional decoherence-free subspace.
Hence, the lower bound of quantum capacity is log2 7. But,
for an antidegradable channel, the quantum capacity should
be zero. Hence, the channel �(p1,p2,p3 ) is not antidegradable.
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a. Single decay channel

The instances of the fully correlated qutrit MAD chan-
nel that we are analyzing in this context involve situations
where only one of the three damping parameters, pi has a
nonzero value. The associated maps for this single decay
are �(p1,0,0), �(0,p2,0), and �(0,0,p3 ), respectively. Note that

the mappings �(0,p2,0) and �(0,0,p3 ) can be obtained from the
mapping �(p1,0,0) by swapping the energy levels |00〉 ↔ |11〉
and |00〉 ↔ |22〉. Consequently, the quantum capacity of the
three single decay channels is the same. The transformation
�(p1,0,0)(ρ) can be obtained according to the equation ρt =∑

n EnρEn
†, as

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1ρ44 + ρ00 ρ01 ρ02 ρ03
√

1 − p1ρ04 ρ05 ρ06 ρ07 ρ08

ρ10 ρ11 ρ12 ρ13
√

1 − p1ρ14 ρ15 ρ16 ρ17 ρ18

ρ20 ρ21 ρ22 ρ23
√

1 − p1ρ24 ρ25 ρ26 ρ27 ρ28

ρ30 ρ31 ρ32 ρ33
√

1 − p1ρ34 ρ35 ρ36 ρ37 ρ38√
1 − p1ρ40

√
1 − p1ρ41

√
1 − p1ρ42

√
1 − p1ρ43 (1 − p1)ρ44

√
1 − p1ρ45

√
1 − p1ρ46

√
1 − p1ρ47

√
1 − p1ρ48

ρ50 ρ51 ρ52 ρ53
√

1 − p1ρ54 ρ55 ρ56 ρ57 ρ58

ρ60 ρ61 ρ62 ρ63
√

1 − p1ρ64 ρ65 ρ66 ρ67 ρ68

ρ70 ρ71 ρ72 ρ73
√

1 − p1ρ74 ρ75 ρ76 ρ77 ρ78

ρ80 ρ81 ρ82 ρ83
√

1 − p1ρ84 ρ85 ρ86 ρ87 ρ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B6)

The corresponding complementary channel �̃(p1,0,0)(ρ) cal-
culated according to the Eq. (15) in the main text:

�̃ =

⎛
⎜⎜⎜⎜⎜⎝

1 − p1ρ44 0 0
√

p1ρ04

0 0 0 0

0 0 0 0
√

p1ρ40 0 0 p1ρ44

⎞
⎟⎟⎟⎟⎟⎠. (B7)

For the single decay channel, we have found that M�D is
positive when, p1 � 1

2 . Therefore, the channel is degradable
for p1 � 1

2 . This degrading map is unique since M� for the
single decay map is a full rank matrix and the dimension of ρ

and �(p1,0,0)(ρ) are the same: dS = dS′ [57]. From Eq. (B6),
we observe that the channel has eight-dimensional noiseless
subspace. Hence, we can say that the single decay channel
is not antidegradable. In the degradable region, the expres-
sion of quantum capacity is given in Eq. (48). However, we
can calculate the quantum capacity for p1 � 1/2 using the
monotonic behavior of Q and the lower bound discussed in
the following section. From Eq. (B6), we can see that the
transformation is noiseless over the subspace |00〉, |01〉, |02〉,
|10〉, |12〉, |20〉, |21〉, and |22〉. Therefore, the lower bound of
quantum capacity and classical capacity is

Q(�), C(�) � log2 8 = 3. (B8)

Now, in the degradable region, we already know the quantum
capacity value. At p = 1/2, the quantum capacity Q(�) = 3
and the lower bound of Q(�) is 3. It is also shown in Eq. (A6)
that the Q(�) is a nonincreasing function. Therefore, beyond
p = 1/2 the value of the quantum capacity becomes constant,
which is log2 8 = 3.

b. �(1,p2,0) channel

In this subsection, we calculate the quantum capacity for
the map �(1,p2,0) when the first excited state is completely
damped and transition |22〉 ↔ |00〉 is possible. The value of
this quantum capacity will be useful to calculate that of a
V-type decay channel in the nondegradable region, which we
will show in the next subsection. The Kraus operator describ-
ing this channel is

E00 = |00〉〈00| + 〈11| +
√

1 − p2|22〉〈22|,

+
2∑

i, j=0
i 	= j

|i j〉〈i j|

E11 = |00〉〈11|, E22 = √
p2|00〉〈22|.

The transformation of ρ under this channel can be written as

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p2ρ88 + ρ00 + ρ44 ρ01 ρ02 ρ03 0 ρ05 ρ06 ρ07
√

1 − p2ρ08

ρ10 ρ11 ρ12 ρ13 0 ρ15 ρ16 ρ17
√

1 − p2ρ18

ρ20 ρ21 ρ22 ρ23 0 ρ25 ρ26 ρ27
√

1 − p2ρ28

ρ30 ρ31 ρ32 ρ33 0 ρ35 ρ36 ρ37
√

1 − p2ρ38

0 0 0 0 0 0 0 0 0

ρ50 ρ51 ρ52 ρ53 0 ρ55 ρ56 ρ57
√

1 − p2ρ58

ρ60 ρ61 ρ62 ρ63 0 ρ65 ρ66 ρ67
√

1 − p2ρ68

ρ70 ρ71 ρ72 ρ73 0 ρ75 ρ76 ρ77
√

1 − p2ρ78√
1 − p2ρ80

√
1 − p2ρ81

√
1 − p2ρ82

√
1 − p2ρ83 0

√
1 − p2ρ85

√
1 − p2ρ86

√
1 − p2ρ87 (1 − p2)ρ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B9)
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The corresponding complementary map is given by

�̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − ρ44 − p2ρ88 0 0 0 ρ04 0 0 0
√

p2ρ08

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

ρ40 0 0 0 ρ44 0 0 0
√

p2ρ48

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0√
p2ρ80 0 0 0

√
p2ρ84 0 0 0 p2ρ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B10)

The superoperator M� corresponding to the map �(1,p2,0) is not a full rank matrix (not invertible). We observe that components
of input state ρ like ρ04, ρ48 that belong to �(1,p2,0) are not present in �̃(1,p2,0). Hence, no linear map exists that can transform
�(1,p2,0) into �̃(1,p2,0). Therefore, we can conclude that the channel is not degradable. On the other hand, we find many
elements—e.g., the elements |00〉〈01|, |00〉〈02|, etc.—that are present in �(1,p2,0) but absent in �̃(1, p2, 0). Hence, the kernel
of �̃(1, p2, 0) cannot be a subset of �(1,p2,0). Moreover, the channel �̃(1,p2,0) has seven-dimensional noiseless subspace, which
suggests that the channel has positive quantum capacity. Therefore, the channel is not antidegradable.

However, we are still able to calculate the quantum capacity by simulating the output state �(1,p2,0)(ρ) by �(1,p2,0)(�) =
φp2 (�), where � is the density matrix span over eight-dimensional space: |00〉, |01〉, |02〉, |10〉,|12〉, |20〉, |21〉, and |22〉.
Specifically, we can write

Q�1,p2 ,0 = Q(1)
�(1,p2 ,0)

= Qφp2
. (B11)

Now, our goal is to show that the quantum capacity of the map φp2 is equal to that of the �(1,p2,0), i.e., we have to prove Eq. (B11).
It is obvious that Qφ is the natural lower bound of the Q�. The coherent information maxρ Ic(�1,p2,0, ρ) � max� Ic(�1,p2,0,�).
We can write the mathematical expression

Q� � Qφ. (B12)

Now, we will prove Qφ is the upper bound of Q� as follows. The map φp2 acts on eight-dimensional Hilbert space span over
|00〉, |01〉, |02〉, |10〉,|12〉, |20〉, |21〉, and |22〉. For the generic density matrix �, the output state is

φp2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�00 + �44 + p2�88 �01 �02 �03 �05 �06 �07
√

1 − p2�08

�10 �11 �12 �13 �15 �16 �17
√

1 − p2�18

�20 �21 �22 �23 �25 �26 �27
√

1 − p2�28

�30 �31 �32 �33 �35 �36 �37
√

1 − p2�38

�50 �51 �52 �53 �55 �56 �57
√

1 − p2�58

�60 �61 �62 �63 �65 �66 �67
√

1 − p2�68

�70 �71 �72 �73 �75 �76 �77
√

1 − p2�78

√
1 − p2�80

√
1 − p2�81

√
1 − p2�82

√
1 − p2�83

√
1 − p2�85

√
1 − p2�86

√
1 − p2�87 (1 − p2 )�88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B13)

and the complementary map has the following form:

φ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − p2�88 0 0 0 0 0 0
√

p2�08

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0√
p2�80 0 0 0 0 0 0 p2�88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B14)

where for i, j = 0, 1, 2, 3, 5, 6, 7, 8, we set �i, j = 〈i|�| j〉.
The basis |i〉 and | j〉 are |0〉 ≡ |00〉, |1〉 ≡ |01〉, |2〉 ≡ |02〉,
|3〉 ≡ |10〉, |4〉 ≡ |11〉, |5〉 ≡ |12〉, |6〉 ≡ |20〉,|7〉 ≡ |21〉, and
|8〉 ≡ |22〉, respectively. Explicitly, we can write

�(1,p2,0) = φp2 ◦ ε, (B15)

where ε is a CPTP map: H(S) → H(S′) that transforms
the state of the system S to S′ by completely eliminating
level |11〉 and transferring its population to the |00〉 level,
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i.e.,

ε(ρ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00 + ρ44 ρ01 ρ02 ρ03 ρ05 ρ06 ρ07 ρ08

ρ10 ρ11 ρ12 ρ13 ρ15 ρ16 ρ17 ρ18

ρ20 ρ21 ρ22 ρ23 ρ25 ρ26 ρ27 ρ28

ρ30 ρ31 ρ32 ρ33 ρ35 ρ36 ρ37 ρ38

ρ50 ρ51 ρ52 ρ53 ρ55 ρ56 ρ57 ρ58

ρ60 ρ61 ρ62 ρ63 ρ65 ρ66 ρ67 ρ68

ρ70 ρ71 ρ72 ρ73 ρ75 ρ76 ρ77 ρ78

ρ80 ρ81 ρ82 ρ83 ρ85 ρ86 ρ87 ρ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B16)

where ρi j = 〈i|ρ| j〉. From Eq. (B15), using the composition
rule as described in Appendix A, we can say Qφ is the upper
bound of Q�, i.e.,

Q� � Qφ. (B17)

Finally, we can calculate Q� by finding the degradability of
Qφ and using the monotonic behavior of Qφ in the nondegrad-
able region. First, we check the degradability of the mapping
φp2 given in Eq. (B13). By checking the positivity of the
superoperator MφD , we can figure out that for p2 � 1/2 the
channel is degradable. In this regime, the computed quantum

capacity is

Qφ = max
�d

{S(φp2 (�D)) − S(φ̃p2 (�D))}

= − (α + p2δ) log2(α + p2δ) − 6β log2 β − δ(1 − p2)

× log2(δ(1 − p2)) + (1 − p2δ) log2((1 − p2δ))

+ p2δ log2(p2δ), (B18)

where the maximization is performed over the density matrix
�d = α|00〉〈00| + β|01〉〈01| + β|02〉〈02| + β|10〉〈10| +
β|12〉〈12| + β|20〉〈20| + β|21〉〈21| + β|22〉〈22|, which
spans over eight-dimensional subspace because of the
complete elimination of the level |11〉. However, the map
has a seven-dimensional noiseless subspace. Therefore, the
lower bound of the quantum capacity is log2 7. Hence, we
can also conclude that the channel is not antidegradable.
By finding out the Qφ at p2 = 1/2 and using its monotonic
property as described in the Appendix, we find the quantum
capacity beyond p � 1/2, which is displayed in Fig. 12. By
swapping the energy level, we will get the map �(p1,1,0) from
�(1,p2,0). The above analysis also applies to the mapping
�(p1,1,0).

c. V-type decay channel

The lowermost energy level in this damping channel only
interacts with the two higher energy levels, and the transi-
tion from |22〉 → |11〉 is not permitted. The transformation
�(p1,p2,0) takes the following form:

�=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1ρ44 + p2ρ88 + ρ00 ρ01 ρ02 ρ03
√

1 − p1ρ04 ρ05 ρ06 ρ07
√

1 − p2ρ08

ρ10 ρ11 ρ12 ρ13
√

1 − p1ρ14 ρ15 ρ16 ρ17
√

1 − p2ρ18

ρ20 ρ21 ρ22 ρ23
√

1 − p1ρ24 ρ25 ρ26 ρ27
√

1 − p2ρ28

ρ30 ρ31 ρ32 ρ33
√

1 − p1ρ34 ρ35 ρ36 ρ37
√

1 − p2ρ38

√
1 − p1ρ40

√
1 − p1ρ41

√
1 − p1ρ42

√
1 − p1ρ43 (1 − p1)ρ44

√
1 − p1ρ45

√
1 − p1ρ46

√
1 − p1ρ47

√
1 − p1

√
1 − p2ρ48

ρ50 ρ51 ρ52 ρ53
√

1 − p1ρ54 ρ55 ρ56 ρ57
√

1 − p2ρ58

ρ60 ρ61 ρ62 ρ63
√

1 − p1ρ64 ρ65 ρ66 ρ67
√

1 − p2ρ68

ρ70 ρ71 ρ72 ρ73
√

1 − p1ρ74 ρ75 ρ76 ρ77
√

1 − p2ρ78

√
1 − p2ρ80

√
1 − p2ρ81

√
1 − p2ρ82

√
1 − p2ρ83

√
1 − p1

√
1 − p2ρ84

√
1 − p2ρ85

√
1 − p2ρ86

√
1 − p2ρ87 (1 − p2)ρ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B19)

The corresponding complementary channel �̃(p1,p2,0)(ρ) calculated according to Eq. (15) in the main text:

�̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − p1ρ44 − p2ρ88 0 0 0
√

p1ρ04 0 0 0
√

p2ρ08

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
√

p1ρ40 0 0 0 p1ρ44 0 0 0
√

p1
√

p2ρ48

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
√

p2ρ80 0 0 0
√

p1
√

p2ρ84 0 0 0 p2ρ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B20)
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FIG. 12. Quantum capacity of the map �(1,p2,0) varies with decay
rate p2.

Note that the map �(p2,p1,0) can be obtained from the map
�(p1,p2,0) by swapping the levels |11〉 ↔ |22〉. Hence, the
quantum capacity of these two maps is the same. Now, we
calculate the range of the values of p1 and p2 for which the
channel is degradable. We obtain M�D as given in Eq. (B4),
an 81 × 81 matrix which is positive when (1 − 2p1) � 0 and
(1 − 2p1) � 0. Hence, �D is CPTP when p1 � 1/2 and p2 �
1/2 and the map is degrading in this range. The superoperator
M� corresponding to V-type decay channel is a full rank
matrix except p1 = 1. Now, when p1 	= 1, we can say the
degrading map is unique according to Theorem 3 given in
Ref. [57]. In the case of p1 = 1, the channel becomes �(1,p2,0),
which is neither degradable nor antidegradable, as discussed
in the earlier section. We find the elements ρ01, ρ02, etc.,
of the input state ρ are present in �̃(p1,p2,0) but absent in
�(p1,p2,0). Therefore, there is no linear map that we can apply
to �̃(ρ) to obtain �(ρ). Moreover, the V-type decay channel
has a seven-dimensional noiseless subspace, indicating that
the lower bound of quantum capacity is log2 7. Hence, we can

conclude that the V-type decay channel is not antidegradable.
The expression of quantum capacity in the degradable regime
is given in Eq. (49). Again, we use the composition rule as
given in Appendix A to calculate the quantum capacity in the
nondegradable region.

It is important to note that the capacities are also known at
the edges of the parameter space. This is because when one
of the rates is zero, the system reduces to the single-decay
fully correlated MAD channel and the expression of quantum
capacity for that given in the main text. If one of the levels is
completely damped, then the channel reduces to �(1,p2,0) or
�(p1,1,0) for which the analysis of quantum capacity is done
in the previous section. We also know the quantum capacity
value on the border of the degradable region, i.e., Q�(1/2,p2 ,0)

and Q�(p1 ,1/2,0) is known for all values of p1, p2 � 1/2. We find
that the quantum capacity on the edge and the border of the
degradable region are the same. Accordingly, we can say

Q�(1/2,p2 ,0) = Q�(1,p2 ,0) ∀p2 � 1/2,

Q�(p1 ,1/2,0) = Q�(p1 ,1,0) ∀p1 � 1/2. (B21)

The value of Q� at p1 = 1/2 and p2 = 1/2 is equal to log2 7.
Hence, Q�(1/2,p2 ,0) = Q�(p1,1/2,0) = log2 7 ∀p1 � 1/2 and p2 �
1/2, which is also the upper bound of Q� in the regions p1 >

1/2 and p2 > 1/2. On the other hand, the seven-dimensional
noiseless subspace of the transformation indicates that the
lower bound of Q� is equal to log2 7. Since the lower bound
and upper bound of quantum capacity are the same, the value
of Q� in the regions p1 > 1/2 and p2 > 1/2 is log2 7. Hence,
using the monotonicity constraint, we can say the value of
quantum capacity in the entire nondegradable region, which
is shown in Fig. 6.

d. �-type decay channel

In damping channels of this type, energy level |2〉 interacts
with the lower lying levels |1〉 and |0〉.

The transformation �(0,p2,p3 )(ρ) can be written as

�=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − 
)p23ρ88 + ρ00 ρ01 ρ02 ρ03 ρ04 ρ05 ρ06 ρ07
√

1 − p23ρ08

ρ10 ρ11 ρ12 ρ13 ρ14 ρ15 ρ16 ρ17
√

1 − p23ρ18

ρ20 ρ21 ρ22 ρ23 ρ24 ρ25 ρ26 ρ27
√

1 − p23ρ28

ρ30 ρ31 ρ32 ρ33 ρ34 ρ35 ρ36 ρ37
√

1 − p23ρ38

ρ40 ρ41 ρ42 ρ43 
p23ρ88 + ρ44 ρ45 ρ46 ρ47
√

1 − p23ρ48

ρ50 ρ51 ρ52 ρ53 ρ54 ρ55 ρ56 ρ57
√

1 − p23ρ58

ρ60 ρ61 ρ62 ρ63 ρ64 ρ65 ρ66 ρ67
√

1 − p23ρ68

ρ70 ρ71 ρ72 ρ73 ρ74 ρ75 ρ76 ρ77
√

1 − p23ρ78

√
1 − p23ρ80

√
1 − p23ρ81

√
1 − p23ρ82

√
1 − p23ρ83

√
1 − p23ρ84

√
1 − p23ρ85

√
1 − p23ρ86

√
1 − p23ρ87 1 − p23ρ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B22)
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The corresponding complementary map �̃(0,p2,p3 )(ρ) is

�̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − (1 − p23)ρ88 0 0 0 ρ08
√

(1 − 
)p23 0 0 0 ρ48
√


p23

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

ρ80
√

(1 − 
)p23 0 0 0 (1 − 
)p23ρ88 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

ρ84
√


p23 0 0 0 0 0 0 0 θ p23ρ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B23)

Now, we find the values of p2 and p3 for which the channel is
degradable. We observe the matrix M� is a full rank matrix
and dS = dS′ . We obtain M�D as given in Eq. (B4), a 81 × 81
matrix which is positive when (1 − p2)(1 − p3)� 1

2 . There-
fore, in this range where (1 − p2)(1 − p3) � 1

2 , the channel
�(0,p2,p3 ) is degradable, and the degrading map is unique [57].
The presence of an eight-dimensional noiseless subspace in
�(0,p2,p3 ) indicates that the channel has positive quantum ca-
pacity for all possible values of p2 and p3. This observation
indirectly suggests that the �-type decay channel is not an-
tidegradable. The expression of the quantum capacity in the
degradable region is given in Eq. (51). When p1 or p2 is zero,
the channel becomes a single decay channel for which the
quantum capacity is known. As we stated, the transformation
�(0,p2,p3 ) has eight-dimensional noiseless subspace span over
|00〉, |01〉, |02〉, |10〉, |11〉, |12〉, |20〉, and |21〉. Hence, the
lower bound of the quantum capacity value is log2 8 = 3,
which is the same at the boundary of the degradable region
(1 − p2)(1 − p3) = 1/2. Hence, from the monotonicity con-
straint, we can obtain the value of quantum capacity in the
nondegradable region, which is equal to Q(0,p2,p3 ) at (1 −
p2)(1 − p3) = 1/2. The plot of quantum capacity with p2 and
p3 is shown in Fig. 7.

2. Entanglement assisted capacity

Here, we have given the expression of entanglement-
assisted quantum capacity QE for different possible maps.

a. Single decay channel

In the case of a single decay fully correlated MAD channel,
the expression of entanglement-assisted quantum capacity is
as follows:

QE (�) = max
ρ̄

I (�, ρ̄ )

= max
ρ̄

{S(�(ρ̄)) + Ic(�, ρ̄ )}

= max
α,β,γ ,δ

{−α log2 α − γ log2 γ − (α + p1γ )

× log2 (α + p1γ ) − 12β log2 β − ((1 − p1)γ )

× log2 ((1 − p1)γ ) − 2δ log2 δ + (1 − p1γ )

× log2 (1 − p1γ ) + p1γ log2 (p1γ )}. (B24)

To obtain the value of QE for a given p1, numerical optimiza-
tion is performed over all possible values of α, β, γ , and δ.
The corresponding dynamics of QE with the decay rate p1 are
shown in Fig. 9. The above result is also true for other single
decay mappings, namely, �(0,p2,0) and �(0,0,p3 ) because of the
symmetry in the transformation.

b. V-type decay channel

Similarly, for the V-type decay channel, we also calculate
the entanglement-assisted quantum capacity, which is

Q(�) = max
α,β,γ ,δ

{−α log2 α − γ log2 γ − δ log2 δ

− (α + p1γ + p2δ) log2 (α + p1γ + p2δ)

− 12β log2 β − γ (1 − p1) log2 ((1 − p1)γ )

− δ(1 − p2) log2 ((1 − p2)δ) + p1γ log2 (p1γ )

+ (1 − p1γ − p2δ) log2 (1 − p1γ p2δ)

+ p2δ log2 (p2δ)}. (B25)

After performing the numerical optimization over α, β, γ ,
and δ, the obtained value of QE is plotted in the contour plot
Fig. 11 with respect to p1 and p2.

c. �-type decay channel

For the �-type decay channel, the equation of QE is given
below:

Q(�) = max
α,β,γ ,δ

{−α log2 α − 12β log2 β − γ log2 γ−δ log2 δ

− (α + (1 − 
)p23δ) log2 (α + (1 − 
)p23δ)

− (γ + 
p23δ) log2 (γ + 
p23δ) + (
p23δ)

× log2(
p23δ) − ((1 − p23)δ) log2 (1 − p23)δ)

+ (1 − p23δ) log2 (1 − p23δ) + ((1 − 
)p23δ)

× log2 ((1 − 
)p23δ)}. (B26)

The corresponding contour plot of QE is displayed in Fig. 11.

d. Three decay rate channel

Now, we consider a transformation �(p,p,p) in which all
the decay rates are the same. For this mapping, we could
not calculate the quantum capacity as the channel is neither
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degradable nor antidegradable. However, the entanglement-
assisted quantum capacity can be calculated as follows:

Q(�) = max
α,β,γ ,δ

{−α log2 α − γ log2 γ − δ log2 δ

− (α + pγ + pδ) log2 (α + pγ + pδ) − 12β log2 β

− ((1 − p)γ + (1 − p)δ) log2 ((1 − p)γ+(1 − p)δ)

− ((1 − p)2δ) log2 ((1 − p)2δ) + (pγ ) log2 (pγ )

+ 2(1 − pγ + (p2 − 2p)δ) log2 (1 − pγ )

+ (p2 − 2p)δ) + (pδ) log2(pδ)}. (B27)

We have plotted the �(p,p,p) against decay parameter p in
Fig. 10.
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