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We show that a single polynomial entanglement measure is enough to verify equivalence between generic

n-qubit states under stochastic local operations with classical communication (SLOCC). SLOCC operations may
be represented geometrically by Mobius transformations on the roots of the entanglement measure on the Bloch
sphere. Moreover, we show how the roots of the three-tangle measure classify four-qubit generic states, and
propose a method to obtain the normal form of a four-qubit state, which bypasses the possibly infinite iterative

procedure.
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I. INTRODUCTION

Quantum entanglement is one of the key manifestations of
quantum mechanics and the main resource for technologies
founded on quantum information science. In particular, quan-
tum states with nonequivalent entanglement represent distinct
resources, which may be useful for different protocols. The
idea of clustering states into classes exhibiting different qual-
ities under quantum information processing tasks resulted in
their classification under stochastic local operations assisted
by classical communication (SLOCC). Such a classification
was successfully presented for two, three, and four qubits
[1-4]. However, the full classification of larger systems is
completely unknown. Even the much simpler problem of de-
tecting if two n-qubit states (n > 4) are SLOCC equivalent is,
in general, quite demanding [5-8].

Among several approaches to the entanglement quantifica-
tion and classification problem, a particularly useful one is via
SL-invariant polynomial (SLIP) measures. Well-known ex-
amples are concurrence and three-tangle, which measure the
two-body and three-body quantum correlations of the system
[9,10]. SLIPmeasures provide not only a convenient method
for entanglement classification but also its practical detection.
Indeed, it was shown that almost all SLOCC equivalence
classes can be distinguished by ratios of such measures [3].
Any given two n-qubit states are then SLOCC equivalent if a
complete set of SLIP measures has the same values for both
of them [5]. For more than four qubits, however, the size of
such a set grows exponentially, making it intractable to use
this approach to discriminate SLOCC-equivalent states with
more than four qubits [11].

In this paper, we show that, contrary to intuition, a single
SLIP measure is enough to verify the SLOCC equivalence
between any two generic pure n-qubit states. By generic state,
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we mean the set of all pure states except of the measure zero
subset with respect to the Haar measure. We achieve this
by using a mathematical trick, in particular, we use a SLIP
measure defined for n-qubit systems to verify equivalence of
systems of n + 1 qubits. In essence, we look at how the roots
of the SLIP measure for those states behave under SLOCC.
We show that if the states are SLOCC equivalent, then the
roots of the SLIP measure for each state must be related by a
Mobius transformation, which is straightforward to verify. In
particular, we use this procedure to show that the three-tangle
measure is enough to discriminate between generic four-qubit
states. Finally, we show how one may use the roots of a
SLIP entanglement measure to obtain the normal form of a
four-qubit state, which bypasses the possibly infinite iterative
standard procedure.

II. POLYNOMIAL INVARIANT MEASURES

An entanglement measure is a function E(|y)) defined
for pure states of n qubits, which vanishes on the set of
separable states. One of the desired features of entanglement
measures is invariance under SLOCC operations. Mathemati-
cally, a SLOCC operation might be uniquely determined by
the action of local invertible operators L € SL(2, C)®" [1].
An entanglement measure E defined for all pure states of n
qubits is called a SL-invariant polynomial of homogeneous
degree h if it is a homogeneous polynomial of degree % in the
state coefficients, an it is invariant under any local operation
0=0,® - 0,, where O; € SL(2, C). It is easy to see
that those two conditions are equivalent to the fact that £
satisfies

E(k Oly) = "E(1¥))

for each real constant ¥ > 0 and invertible linear opera-
tor O [1,3,12]. Such polynomial will be denoted by SLIPZ,
where the top index indicates the degree of the polynomial
and the bottom index is related to the number of qubits.
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Well-known examples are concurrence and three-tangle
[9,10]. Both of those measures, concurrence and three-tangle,
can be written as the absolute value of the antilinear expec-
tation value of simple operators. Indeed, for a two-qubit pure
state |¥) = cpp|00) + co1101) + c19/10) 4 ¢11|11) its concur-
rence reads as C(|y)) = |cooc11 — coiciol = [(¥loy @ oy|¥)].
Furthermore, the three-tangle 7 defined for three-qubit
states [y) € H3 takes relatively simple form:

Oy =] > n(Wlo;@a,@a¥)). (1)

Jj=ld.x,y,z

with notation (94, Ny, 1y, 7;) = (=1, 0, 1, 1). Moreover, the
degree-four polynomial invariants for four qubits described by
Luque and Thibon in Ref. [13] can be also written as similar
expressions [14]. This simple idea of exploring the antilinear
expectation value of the tensor product of Pauli operators was
further used for constructing invariants of an arbitrary number
of qubits [12,14,15]. For example, the following formulas:

E® D (|yr)) =

’

Yoo ((Yloj®oy - @0y Y1)
—————

Jj=ld,x,y,z o

)
E®(y))

Yo il ®0i®e,®- - @0y |¥))
Jyi=Id,x,y,z 2%

’

3)

with (Uld, Nxs Ny, 772) = (vIds Vx, Vy, vz) = (_17 Os lv l) are a
degree-four SLIP measure for odd and even number of qubits,
respectively [14].

A general method to construct various SLIP measures
based on this simple idea of exploring the antilinear expecta-
tion value of the tensor product of Pauli operators was further
invented in Refs. [12,14,15]. In particular any SLIP measure
E can also be extended to mixed states by determining the
largest convex function on the set of mixed states, which
coincides with E on the set of pure states [16]. Despite its
simple definition, the evaluation of a convex roof extension
requires nonlinear minimization procedure, and for a general
density matrix is a challenging task [17-20]. An attempt to
address this challenging task was carried out by introducing
the so-called zero polytope, the convex hull of pure states with
vanishing E measure [21-24]. In the particular case of rank-
two density matrices p, the zero polytope can be represented
inside a Bloch sphere, spanned by the roots of E [22,25]. We
adapt this approach focusing only on the roots of polynomial
invariants, equivalently the vertices of the zero polytope.

III. SYSTEM OF ROOTS

Consider a (n + 1)-partite qubit state |i). The state |y)
can be uniquely written as

1) = 10)[¥0) + [D)|¥1), “4)

providing the canonical decomposition of the reduced density
matrix p = |Y¥o){Wo| + |¥1)(¥| obtained by tracing out the
first qubit. Note that the states |{) and |y;) are in general

|11)

FIG. 1. The stereographic projection relating the family of states
|,) on the extended complex plane with the associated family of
states |1Zz) on the Bloch sphere. The spherical coordinates (0, ¢) and
the complex coordinate z are related via the stereographic projection
7 =ctg(6/2) e,

neither normalized nor orthogonal. Consider now the family
of states

V) = zlYo) + Y1), ®)

where z is taken from the extended complex plane ¢ , i.e.,
complex numbers plus infinity. We denote this the extended
plane representation. In addition, consider any SLIPﬁ measure
E defined on the set of n-partite pure qubit states. Since E is
polynomial in the coefficients of [y,), it is also polynomial
in the complex variable z [21]. Therefore, the polynomial
E(z|Yo) + |¥1)) has exactly h roots: ¢y, ..., {, (which may
be degenerated and/or at infinity), related to the degree of
E. By using the complex number z, the states |1;) can be
mapped to the surface of a sphere via the standard stereo-
graphic projection (0, ¢) := (arctan 1/|z|, —argz) written in
spherical coordinates. This way, a point on the unit two-sphere
(6, @) can be associated with the quantum state

. 0 0
1Y) = COS§|¢0>+sm§e Y1) (6)

with z = ctg(9/2) e, such that |y) lies in the north pole
and [y1) lies in the south pole, see Fig. 1. We denote this the
Bloch sphere representation. Note that |y,) o |v,) and that
neither of these states is normalized, since [vo) and |v) are
not normalized in general either.

Local operations on the system of roots

To each linear invertible operator O = ({ 3), one may

: PR : /. aztb :
associate a Mobius transformation z > 2’ := -7, mapping

the extended complex plane C into itself [26,27]. The compo-
sition of such transformations represents the multiplication of

the associated operators. In particular, z — 2’ := 4= is an
inverse Mobius transformation related with O~! = (_dc ;b).

Note that although Mobius transformations are typically rep-
resented on the extended complex plane, one may represent
them as transformations on the Bloch sphere via the stere-
ographic projection. The correspondence between invertible
operators and Mobius transformations represented on the
Bloch sphere was already successfully used for SLOCC clas-
sification of permutation-symmetric states [28-30].
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To study the effect of SLOCC operations on the system of
roots we begin by acting on the first qubit of a state |1) written
in the form of Eq. (4) with an invertible linear operator O. In
terms of the family of states |y,) in Eq. (5), this operation
induces the map

az+b
[V2) = W) = —— Vo) + Y1), @)

cz+d
i.e., the index is mapped via the Mobius transformation z —
7= jjj:;’, see Appendix A. In addition, since |v,) o |,), we

have that the family of states |1;Z) also transforms according to
Eq. (7). This reflects the fact that the states |v,) and |y,) asso-
ciated to the extended complex plane and the Bloch sphere are
related by a stereographic projection of the variable z. Using
Eq. (7) and the defining equation E(&;|vo) + Y1) = 0 for
the roots ¢; of the polynomial E, one concludes that the roots
transform according to the inverse Mobius transformation as-
sociated to the operator O, i.e., {; —> _df;fa Finally, although
the system of roots changes with local operations acting on the
qubit that is being traced out in Eq. (4), it is invariant under lo-
cal operations acting on any other qubit since the polynomial
E is SL(2, C)®" invariant. We summarize these results in the
theorem below, see Appendix A for a detailed proof.

Theorem 1. Consider an (n -+ 1)-partite pure quantum
state [¢) = |0)|¥o) + [1)|¥1). The roots ¢; of any SLIPZ en-
tanglement measure associated to the partial trace of the first
qubit:

(i) are invariant under invertible operators, i.e., invariant
under 1 ® O; € SL(2, C)®" operators;

(ii) transform via an inverse Mobius transformation ¢/ =
% with respect to the O = (f Z) ® 1" operator.

It is crucial to emphasize that normalizing the states |y)
and |v) after the action of the operator O, as is the case
in existing related works [21,22,24,25,31], would spoil the
mapping of Eq. (7). As a consequence, the action of SLOCC
operators on the states |¢;) would no longer be given by the
corresponding Mobius transformation, and the statements in
Theorem 1 would no longer hold.

The decomposition (4) can be performed with respect to

any other subsystem, each with its own system of roots. Any
local operator Oy = (¢ Z) acting on the kth qubit will influ-

ence independently the corresponding kth system of roots via
the Mobius transformation ¢; +— _df’;’a. On the other hand,
if acting globally with a local operator O ® - - - ® O,41, all
roots (and thus all zero polytopes) will be affected. Since a
Mobius transformation is a bijective mapping on the Bloch
sphere, the total number of roots will always be preserved
[31]. Moreover, the existence of a local transformation be-
tween two given states becomes straightforward to verify

since Mobius transformations are fully classified.

IV. VERIFICATION OF SLOCC EQUIVALENCE

Theorem 1 provides a solution for the problem of discrim-
inating quantum states up to SLOCC equivalence. To verify if
two pure states are SLOCC equivalent, one can use the follow-
ing procedure, which takes a single SLIPf’Z measure and two
pure (n + 1)-qubit states as an input. In the generic situation,
it returns a set of at most [3’!(2’)]'”rl SLOCC operators as an

output. The input states are SLOCC equivalent if and only if
(iff) they are interconnected by one of the output operators.

Procedure 1. Choose any SLIPZ entanglement measure of
degree & > 3 and two (n + 1)-qubit states.

(i) Calculate the roots of a chosen measure for each sub-
system for both states. If for any subsystem the number of
roots of both states is not equal, such states are not SLOCC
equivalent. Otherwise, denote by A; the number of roots of
both states calculated for ith subsystem. If &; > 3 for all
1 <i < n+ 1, the procedure will be conclusive. Note that for
a generic state h; = h > 3 for each subsystem i.

(i) Focus on one subsystem i, 1 < i < n+ 1, and deter-
mine all Mobius transformations, which transform the roots
of the first state into roots of the second state. For example,
choose three of the h; roots from each state and write the
unique Mobius transformations between the two triplets of
roots. Repeat this for all 3!(];') possibilities of choosing three
out of &; roots for the second state. Derive the local operators
O; associated to Mobius transformations.

(iii) Repeat step (ii) for all other subsystems and then
consider the tensor products O ® - - - ® O, of all the local
operators obtained.

(iv) If the two given (n+ 1)-qubit states are SLOCC
equivalent, at least one of these operators must transform one
state into the other (up to the normalization). Otherwise, they
are not SLOCC equivalent.

Proposition 1. Consider any SLIP" measure and two (1 +
1)-qubit states. If both states have at least three roots with
respect to each subsystem, they are SLOCC equivalent iff
they are interconnected by one of the operator obtained as an
outcome of Procedure 1.

We refer to Appendix B for a proof of this statement.
Intuitively, a generic pure quantum state will have exactly
h distinct roots for each subsystem, where / is the degree
of the SLIPZ measure. Thus, any such measure of degree
h < 3 should be sufficient to verify SLOCC equivalence be-
tween generic quantum states. We confirmed this intuition
by looking at several examples of degree-four measures. In
particular, Eqs. 3 and 2 provides a family of SLIP measures
for arbitrary number of qubits. We examined those measures,
and for each number 4 < n < 20 of qubits, we generated a
sample of a thousand (n + 1)-qubit states and each state had,
indeed, four distinct roots with respect to any subsystem [32].
Furthermore, we confirm this numerical result analytically
and proved that a generic pure quantum state has, indeed,
four distinct roots for each subsystem for measures defined
via Egs. 3 and 2. By generic state, we mean the set of all pure
states except of the measure zero subset with respect to the
Haar measure, see Appendix C for more details. This result
applies for an arbitrary number of qubits, thus proving the
following proposition.

Proposition 2. A single SLIP measure is enough to provide
necessary and sufficient conditions for any two generic pure n-
qubit states to be SLOCC equivalent. We refer to Appendix D
for a technical proof of this statement.

V. NORMAL SYSTEM OF ROOTS

In the previous section we showed that in principle any
SLIP measure of degree 4 > 3 can be used to verify SLOCC
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[v0)

[11)

[31)

FIG. 2. A normal system of roots z, 1/z, —z, —1/z together with the conjugate points z, 1/Z, —Z, —1/Z span the cuboid whose faces are
parallel to the XZ, XY, and Y Z planes. There are 24 rotations of the Bloch sphere, which preserve this property, composing the elements of
the group G,4. Two of them, namely the rotation by a 7 /2 angle around X and Y axes are presented. The system of roots transforms according
to Egs. (F1)—(F3), giving z — 7/ := == and z = 7" := Z—{ for the two rotations.

—iz+1

equivalence. In this section, we consider the special case when
such a measure has degree 1 = 4.

First, recall that any three distinct points on the sphere
can be transformed onto any other three distinct points via a
unique Mobius transformation, see Appendix E. While this
is not the case for four points, it is possible to take any
four complex points zi, 22, 73, 24 and associate a so-called
cross-ratio

B-U—2
B—nu—2u

Az, 20,23, 24) 1= (8)
which is preserved under Mobius transformations [26,29].
Systems of four distinct points are related via Mobius trans-
formations if their cross-ratios are related in the same way.
The cross-ratio is not invariant under permutations of points,
however, and depending on the ordering taken for the four
points, it takes six values: A, % 1—2, ﬁ, %, )\)\Tl [29].
A particularly interesting set of four points is one of the
form z, 1/z, —z, —1/z, which we call a normal system, see
Fig. 2. Any set of four points may be mapped into a normal
system, for which z, 1/z, —z, —1/z will be the solutions of
the fourth-degree equation A = 4z%/(1 + z%)?, where X is the
corresponding cross-ratio from Eq. (8). Such a map is unique
up to symmetries of the cube, i.e., the group of 24 rotations
generated by 7 /2 rotations along the X, Y, Z axis, denoted
by G,4. Appendix F contains the exact description of the
group Gys. In Appendix G we formally show the following
mathematical result.

Proposition 3. Each  nondegenerated  four  points
21,22, 23, 24 on the Bloch sphere can be transformed onto
the normal form z, %, -z, —% via a Mobius transformation 7.
The latter is uniquely defined up to 24 rotations in the group
Gos.

This mathematical result has interesting implications for
the SLOCC verification and classification problems. Indeed,
assume that E is SLIP! measure of degree i = 4, and the state
|Y) € ’H? @+ has exactly four distinct roots for each subsys-
tem. By Proposition 3, one can find a Mobius transformation
T; that transforms roots for each system i into the normal
form. By Theorem 1, the local operators O; corresponding to
transformations 7; transform state |) into the form with roots
for ith system being in normal form, hence

) :=01® - ® Opri1l¥) )

is a state for which roots of measure E for each subsystem
are in normal form. We call |v/) an E-normal form of a state
|vr) with respect to measure E. Note that the E-normal form
of a state, if it exists, is defined up to the group g;'j‘ of local
rotations. We illustrate this procedure on a simple example of

broadly discussed four-partite state %E(|O)|GHZ) + [1)|W))

[22,24]. We calculate its roots for 7> measure (1) and find the
Mobius transformation transforming them into a normal sys-
tem, see Appendix H for detailed calculations. As a result, we
obtain SLOCC operator that transforms the aforementioned
state into its normal form with respect to 3 measure, see
Fig. 3.

In this way, for the chosen SLIPfl measure E, we defined
the E-normal form of any state that has exactly four roots with
respect to measure E for each system. As we have shown in
Proposition 2, choosing, for example, measure E defined on
Egs. (3) and (2), provides E-normal form of the generic state
of any number of qubits.

This allows us to address more ambitious problems, when,
for example, one needs to verify the pairwise SLOCC equiva-
lence of a larger number of states. Indeed, one can reduce each
of them to E-normal form and then compare them using only
a finite (and relatively small) group Q’g’jl of local rotations.
Furthermore, such E-normal form might be possibly used for
an even more challenging task of SLOCC classification of

[%o)
~ 1 ’2;/3
O=N| .5 5
2 2273
_
a:1+\/§
B=1+1 .
[¥1) N=_22 [¥1)

B(2+a)

[0) [GHZ) + |1)[W)

IGabcd>

FIG. 3. The system of four roots (represented as blue dots) re-
lated to the three-tangle polynomial measure t® evaluated on the
first subsystem of the state 1/ﬁ(|0) IGHZ) + |1)|W)). This system
of four points can be mapped into a normal system (i.e., symmet-
rically related points z, —z, 1/z, —1/z) by a Mobius transformation.
Similar local transformations can be performed with respect to other
subsystems, transforming the states into a state in the normal form.
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pure states. Indeed, as we will demonstrate in the next section,
the T3 -normal form for measure (1) can be successfully used
to classify generic four qubit states. Recall that the problem of
classifying n < 5 states still remains open [5-8].

We will finish this section by pointing out the intriguing
connection between E-normal form of a state and, so-called,
normal form of a state [33]. Recall that a state is in a normal
form if reduced density matrices to one subsystem are all
maximally mixed, i.e., proportional to the identity. Normal
form, if it exists, is defined up to the local unitary operations.
The process of determining the normal form of a state, if it
exists, may turn out to be an infinite iterative minimization
process [33]. On the other hand, the process of obtaining
E-normal form of a state is straightforward and consists of
a finite number of steps. As we observed, for four-qubit states
the normal form of a state coincides with its 7®-normal form,
see Appendix H. For systems with a larger number of qubits
n > 4 (especially for n = 5.6), we unsuccessfully searched for
measures £ for which E-normal form would coincide with
normal form of a state. Such measures, if found, would lead
to a simple procedure for obtaining a normal form of a state
for arbitrary number of qubits.

We illustrate this procedure by transforming the widely
discussed four-partite state \/%(|O)|GHZ) + [1)|W)) [22,24]

into its normal form, see Fig. 3. Without this technique, the
standard way of obtaining the normal form would indeed
result in an infinite iterative procedure.

VI. STATE CLASSIFICATION

We show that for small numbers of qubits n = 3,4 our
approach might be successfully used for the more demand-
ing problem of entanglement classification. Focusing first
on the three-qubit case, genuinely entangled pure states are

SLOCC equivalent to either |GHZ) = L2(|000) + |111)) or

(W) = %(|001) +1010) + [100)) [34]. Using the two-tangle

7 [9] as the entanglement measure, one may use the roots
to distinguish between the two classes. Indeed, all rank-two
reduced density matrices of the |W) state have a single root,
while there are always two distinct roots for the |GHZ)
state [25].

Contrary to the three-qubit case, there are infinitely
many SLOCC classes of four-qubit states [34]. Although
four-qubit states were divided into nine families [2,35,36],
we will focus on generic four-qubit states, i.e., four-qubit
states with random coefficients belonging to the so-called
Gupeq family—the four-qubit SLOCC family with the
most degrees of freedom. The representative state is of
the form |Gupeq) = #UOOOO) + [1111)) + ";d(|0011) +
11100)) + ££(10101) + 1010)) + 25¢(j0110) + |1001)),
where a® # b* # ¢? # d* are pairwise different. Choosing
the three-tangle ® (1) as the entanglement measure, the
states |G,peq) have four nondegenerate roots already in
the normal form, see Appendix I. Since the normal form
of roots is unique up to the group G,4, the problem of
SLOCC equivalence of states |G,sy) becomes solvable,
with a discrete amount of solutions. Indeed, it can quickly
be confirmed if two states in the G, class are SLOCC
equivalent by checking if one can be obtained from the other

by the action of an element of the finite class of operators
O € G$;'. We thus find that exactly 192 states of the form
|Gapea) are SLOCC equivalent.

Proposition 4. Two states |Gupeq) and |Gypeq) are
SLOCC equivalent iff their coefficients are related by the
following three operations: multiplication by a phase fac-
tor (@', V', c’,d") = e (a, b, c, d), permutation of coefficients
(@,b,c,d)=o0o(a,b,c,d), and change of sign in front of
two coefficients from a, b, ¢, d.

See Appendix I for a detailed proof of the above statement.
We finish this section by pointing out some intriguing connec-
tions between this result and other related problems. Note that
the symmetry in Proposition 4 is given by the Weyl group of
Cartan type D4 and it has already been observed that the gen-
erators of four-qubit polynomial invariants exhibit this type of
symmetry [13,35]. As a consequence, this result constitutes
a relation between four-qubit invariants and the convex roof
extension of three-tangle 7, which may shed some light
on the problem of generalizing the CKW inequality [10] for
four-qubit states [12,19,20,37,38], and beyond [37-39].

VII. CONCLUSIONS

In this paper, we showed how a single SLIP,’: entanglement
measure is enough to verify if two generic (n 4 1)-qubit states
to be SLOCC equivalent. Our result is applicable for any
number of qubits. This was possible by showing that the roots
of any SLIP" measure transform via Mobius transformations
under the SLOCC operations performed on the subsystems. In
that way, SLOCC equivalence between two states is implied
by the easily verifiable existence of a Mobius transformation
relating aforementioned roots for each subsystem. Moreover,
we define the E-normal form of the state with respect to
the given SLIPfZl:4 measure E, for which roots are symmet-
rically distributed on the Bloch sphere. Such form is simple
to determine and exists for generic states. In comparison,
so-called, normal form of state requires possibly infinite iter-
ative minimization procedure. Furthermore, we demonstrated
our approach on four-qubit states, and showed that the roots
of the three-tangle measure 7> are enough to fully classify
four-qubit states from the most generic G, family. Lastly,
as we observed that for four-qubit states the 7*-normal form
coincides with the normal form of a state, which gives a pro-
cedure to determine the normal form of state that circumvents
the possibility of an infinite iterative process of the standard
procedure.
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APPENDIXES

In the Appendixes, we present detailed proofs of the state-
ments presented in the main body of the paper, as well as a
summary of the related results concerning Mobius transfor-
mations, SLIP entanglement measures, Haar measure on the
set of pure quantum states, and SLOCC classification.

Appendixes A and B contain proofs of Theorem 1 and
Proposition 1, respectively. Appendix C summarizes basic
results regarding the Haar measure on the set of pure quantum
states and discusses the notion of generic quantum states.
Appendix D proves the main result of a paper, namely Propo-
sition 2. The proof is based on two technical lemmas related
to the systems of odd and even number of qubits, see Lemma
1 and Lemma 2, respectively. Appendix E presents a well-
known form of a unique Mdobius transformation transforming
two given tuples of three points one onto another. Appendixes
F and G discuss details regarding an E-normal form of a state
with respect to a given measure E. Furthermore, Appendix H
provides an explicit example of transformation of a state into
its E-normal form. Appendix I presents proof of Proposition
4, which is reproducing the SLOCC-classification results for
the generic systems of four qubits. The E-normal form proves
to be useful for that purpose. Lastly, in Appendix J, we ap-
ply the presented method to verify the SLOCC equivalence
between certain five-qubit states.

APPENDIX A: PROOF OF THEOREM 1

We present a proof for Theorem 1. Any (n + 1)-partite
qubit state |{) € HY @D might be written as

[¥) = 10)[¥o) + [1)[1).

Such a form provides the canonical decomposition of the
reduced density matrix p = |Y) (Yol + |¥1){(¥1]| over the
non-normalized states [vg), [¥1) € ’H?N , obtained by tracing
out the first qubit. Consider now a reversible operator O =

¢ Z) € sL2, C) acting on the first qubit. Under the action of
this operator, the state |i) is transformed into

[¥') := Oly) = (al0) + bI1)|vo) + (c[0) + d[1)|y)
= 10)¥) + D)y,

(AL)

where

o) = alo) + clyn), (A2)

[¥ry) == blpo) +dyn). (A3)

Consider now any superposition of states |)) and |¢). Ob-
serve that

[V.) = zlyg) + Y1) = z(alo) + cl¥n)) + blvo) + dlyn)
= (az + D)Yo) + (cz + d)|Yn)

az +

cz+

where the complex number cz + d was factored out in order
for the transformation to map states from the extended plane
representation to the extended plane representation. In other
words, we have

b
dhﬁo) + Y1),

X

az+b
@ z) = Yz /) "= ,
[Y) = 1Y), z xd

i.e., the operator O transforms states in the extended plane
representation by applying a Mdobius transformation on the
index z. Suppose now that ¢; is a zero of a h-degree poly-
nomial function E, i.e., E(¢;|vo) + |¥1)) = 0. Acting on the
first qubit with O, the density matrix after tracing out the
first qubit becomes |v) (V] + [¥]) (¥}, so the entanglement
measure E will be zero for some new roots ¢/, such that
E(&/|y) + 1¥1)) = 0. Using Egs. (A2)—(A3), the latter equa-
tion can be transformed into

'+ Db
E((cc{ +d><f§; o) + wn)) —0,

(A4)

(A5)

where the factor (c¢/ + d) is irrelevant since any root mul-
tiplied by it will still be a valid root. Comparing with the
equation for the roots before the action of O, we reach the
conclusion that the roots transform according to the inverse
Mobius transformation as

dgi—»b

—egta (A0

C,‘/ =
under the action of the operator 0. As a consequence, the
roots of the zero polytope transform with respect to the in-
verse Mobius transformation associated to the operator O =

¢ Z). Analyze now the case when O is a unitary operator
O = U. Since any unitary operator I/ can be represented as

cosa sina €'
sina e~ cosa
phase), it will simply rotate the Bloch ball, together with the
zero polytope.
Consider now multilocal operators O; = 01 ® ... ® O,
acting on the remaining qubits of the state |i) from Eq. (A1).
The state |y) will transform accordingly as

[¥') := Ozlyr) = 10) Ozlvo) +I1) Ozlyn) -
=) =)

a rotation R = (_ ¢) (up to an irrelevant global

(AT)

After the action of (J;, a state in the extended plane rep-
resentation will have a value of entanglement measure E
equal to

ElYg) + Y1) = E(Os(zlo) + 1))

However, since E is SL(2, C)®" invariant, we have that
E(zlyo) + Y1) =0 iff E(zl$g) + [¥()) =0, and so the
roots of both polynomial equations are the same. As a
consequence, the roots of the zero polytope will remain
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unchanged under the action of Oj;. This concludes the proof of
Theorem 1.

APPENDIX B: PROOF OF PROPOSITION 1

In order to prove Proposition 1, we begin with the follow-
ing simple observation:

Observation 1. For two sets A ={z;,...,z;,} and A’ =
{wy, ..., wy} of h distinct elements of the extended complex
plane z;, w; € C, h > 2, there exists at most h(h —1)(h —
2) = 3!(;‘) Mobius transformations, which map A into A’.

Proof. Suppose that T is a Mobius transformation that
transforms A into A’. Thus,

Tz)=w;, T()=w, T(z)=w;,

for distinct indices i, ir,i3 = 1, ..., h. Observe that there
are exactly h(h — 1)(h — 2) possibilities for choice of those
indices. For each such possibility, there is a unique Mobius
transformation, which maps z; = w;,, z2 = w;,, 23 = Wi,
see Appendix D [40]. Therefore there are at most h(h —
1)(h — 2) Mobius transformations that map A into A'. |

Remark 1. Usually, there are more efficient methods to
determine all Mobius transformations that map a given set
A into the other A’. For example, if |A| =|A’| =4, one
may calculate the values of cross-ratios. If they differ for any
choice of orderings in A and A’, those sets are not related by
any Mobius transformation.

Proof of Proposition 1. Suppose that two (n+ 1)-qubit
states |), |¢) € 7-[;8’ @+ have at least three roots calculated
with respect to a given SLIPZ measure E for each subsystem.
We will show that both states are SLOCC equivalent iff in the
outcome of Procedure 1 there is an operator O providing such
equivalence.

First, notice that if in the outcome of Procedure 1 there
is an operator providing SLOCC equivalence, both states are
SLOCC equivalent. Hence, described condition is a sufficient
condition for SLOCC equivalence.

Second, we will see that the described condition is a neces-
sary condition for SLOCC equivalence. Indeed, suppose that
states |y), |¢) are SLOCC equivalent, i.e., there exists an
operator

O0=01® - ®0Out1 (BI)

such that O|¢r) o |¢) for some operators O; € SL(2, C). De-
note by 7; the Mobius transformation corresponding to O;.
Denote by A; = {z}, ..., z;',i} the system of roots of the state
|[Yr) calculated with respect to ith subsystem. According to
Theorem 1, the ith system of roots of a state |¢p) ox O|y)
is simply Al = {T;(2}), ..., E(zfli)}. In particular 7; maps A;
into A}, hence will be found in Step 2 of Procedure 1. Note,
that there might be other operators transforming A; into A,
hence in Step 2, one may obtain multiple local operators.
Similarly for any other subsystem, the transformation 7; (and
the corresponding local operator ;) will be found. Hence
among all local operators in the outcome of Procedure 1, there
will be operator O from Eq. (B1). ]

APPENDIX C: FUBINI-STUDY MEASURE
AND GENERIC STATES

A Fubini-Study measure of the set of pure quantum states
(known also as a Haar measure) is a unique probability
distribution on H,44 1, which is invariant under any unitary op-
eration acting on the whole H 4. It can be explicitly written
as a probability density distribution

d
d! - 92i—1
Qt, . v, 01, 00) = — [ eos 6 sin 677, (1)

i=1

where 6; € [0, %], v; € [0, 27], on the set of pure quantum
states parametrized as

d d
) = Z (ei"f cos 6; 1_[ sin 04> liy € Har1, (C2)

i=0 {=i+1

with the convention 6y = vy = 0 [26]. Notice that states in
Eq. (C2) are normalized and

27 27 Z 7
/ / / / Q(vl,...,vd,él,...,Gd)dvl
0 0 0 0

-dv2-~-dvdd9]-~-d9[1=1

hence 2 is, indeed, a probability distribution. Notice that all
random variables 6;, v; in Eq. (C1) are chosen independently
according to the uniform distribution ®(v;) = %vi on [0, 2]
for v; variables, and according to

Q:(6;) = 2icos 6 sin 67! (C3)
distribution on [0, Z].

Since HS" = H,n, the Fubini-Study measure is also well
defined on the set of pure quantum states of n qubits ’H?”.
We will notice some properties of such a distribution, while
expressing the state in the form |y) = |0)[vo) + |1)|v). For
simplicity, we introduce the index sets J = {0, 1}, Jy =
JN\A{O,...,0}, and for any index I = (iy,...,i,) € J, we
denote by |I| the decimal representation of the binomial
string I, i.e., |I| = Z’]f:l 2j*1ij. In order to determine the
Fubini-Study measure on H$"*!, we will use the following
isomorphism between H$"*!' = H,..1 defined on the basis
vectors as |il) — [i2" + |I|) for [ € J, and where i =i+
1(mod 2). In such a way, the Fubini-Study measure on ’H?"H
is given by the probability density distribution independent for
each random variable and written jointly as

, , , (2n+l _ 1)1
Q(v,,@;,v,,,é’,,:lej,l 6\7/)=W
. 1 _ . "—
. 1_[ cos 0 sing; A 1_[ cos 6, sin (6;)*"'171,
IeJ e,

(C4)

where 6;, 6; € [0, 71, and vy, v; € [0, 27], on the set of pure
quantum states parametrized as

V) = 10)|¥0) + (H sin 0 )Il)ll/f{), (C5)

leTJ
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where

1Y) =Zd1|1>, d; = ™ cos 6y l_[ sin @,

leJ JeJ:
1=

1Y) =Zc1|1), c; = e cos 6] l_[ sin@;,  (C6)

IeJ JeJ:
[J1>1]

with the convention 6)_, = v, = 0. Notice that the state
coefficients of |y) depends only on 6;, v; variables, while
state coefficients of |y{) depend only on 6;, v, variables.
Furthermore, state coefficient d; of |vy) depends only on the
variables v; and 6; for J € J such that |J| > |I]. In particular,
dy...o is the only coefficient in |y/y) depending on 6...9, while
dy...0, do..o1 are the only coefficients in [v) depending on
6o...01, €tc.

By a generic pure quantum state [¢) € 5" we understand
a random state chosen with respect to the Fubini-Study mea-
sure on the set of quantum states [26]. In that sense, we say
that some property occurs with probability zero for generic
state iff it occurs only on the set of measure zero among all
pure quantum states with respect to the Fubini-Study measure.
Notice that such a notion of generic states [41-43] is not the
only one that appears in literature. Some authors refers to
generic states as those whose stabilizers meet certain symme-
try conditions [44—46]. It is worth mentioning that those two
notions of generic states among pure quantum states agrees up
to the measure zero subset on the set of pure quantum states
with respect to the Fubini-Study measure.

APPENDIX D: PROOF OF PROPOSITION 2

In this section, we will prove that a generic pure quantum
state will have exactly four distinct roots for each subsystem,
for measures defined in Eqs. (2) and (3). We begin with the
following lemma.

Lemma 1 (even case). Consider a generic pure quantum
state |y) € 7—[?”“ of even number of qubits written in the
form [y) = |0)[o) + 1)|41) where [y), [¢1) € H5", and a
SLIP measure E™ presented in Eq. (2). The conditional prob-
ability that the polynomial equation E™(|1o) + z|v1)) =0
has no multiple root at z = 0 under the condition that it has at
least a single root at z = 0 is zero.

Proof. Consider an (n + 1)-qubit state |/) € HS"™" writ-
ten in the form |¢¥) = |0)|¥o) + [1)|¥1), and suppose that
n =2k + 1 is an odd number. We will evaluate the entan-
glement measure presented in Eq. (2) on the following state

Vo) + z|¥1), ie.,

EFD () + zlyn)

= Y. 0 (olo;®0, & ®0yli)

Jj=ld,x,y,z

+2z(Y1]0; ® 0y @ - - - ® oy Vo)

+ZZ<¢1|G,,‘ Roy®--- Qo |1/;l>)2 .
[

2k

Furthermore, we expand the equation above as an absolute
value of a degree-four polynomial in z variable, namely

E(2k+1)(|w0>+z|wl)): |C0+C1Z+C2Z2+C3Z3 +C4Z4 s

where the coefficients C; are of the following form:

> (Wolo; @0y ® -+ ® oy )

j=Id,x,y,z

. (¢0|0j Q oy QR ® 0y|1/;0) — E(2k+1)(|1ﬂ0>),
Ci=2 Y njlo;®0,® - ®oyli)

Jj=ld,x,y,z

(Yolo; @ oy @ -+ ® oy | o).

Co=

Notice that the equation E"(|yro) + z|v/1)) = 0 has root at
z = 0 iff the coefficient Cy = 0, and has a multiple root at z =
0 iff coefficients Cy, C; = 0. Therefore we will prove that the
conditional probability

P(C, =0|Cy=0)=0 (D1)

that C; = 0 under the condition Cy = 0 is zero.
We can rewrite the coefficients Cy, C; in the following way:

Co = (¥olA(Y0)),
Ci = (Y1|A(Wo)),

where |A(v)) is the following vector:

IA(Y0)) = A(Y0) W),

defined by operator
AWo) = > (j{olo; @ oy -+ ® 0y Pg))
j=Id,x,y,z

U/®Gy®0y

Notice that |A(vy)) is a function of state coefficients of |1)
only. State coefficients of |y;) are not related to the state
coefficients of |Y) in anyway by a norm, see Egs. (C5) and
(C6), hence the space of solutions for the equation

Ci = (Y1lA(¥o)) =0 (D2)

is of zero measure iff |A(yy)) % 0. Therefore, condition
Eq. (D1) can be rewritten as the conditional probability

P(AW0)) = 0] (YolA(¥o)) =0) =0 (D3)

that |A(¥o)) = 0 under the condition (yy|A(¥)) = 0 is zero.
For simplicity, we will introduce the following notation:

B = (¥olox ® 0y - - ® 0y [¥y),

for i =0,2,3. It is easy to see that (VolA(y)) = —ﬂé +
B3 + B3, hence the condition (y1]A(¢)) = 0 can be rewritten
as

> i =—B+ B3+ =0. (D4)
k

Furthermore, the operator A() takes the following form:

A(o) = Znuﬂuou ®oyQ: - ®oy.
w
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Observe that condition |A(vy)) = A(x/fo)Wo) = 0 is equiva-
lent to requiring that IWO) belongs to the null space N[A ()]
of the matrix A(¥). Therefore, we have an immediate impli-
cation: if the null space of the operator A(v) is trivial, i.e.,
NTA(¥0)] = {0} then |A(y)) # 0. Since the null space of o,
is empty, so is the null space of any number of tensor products
of oy. Hence, we will find a null space A (Z NuBuoyu).
One simple way to do this is to calculate the elgenvectors of
> 4 MuBuoy, and look at the space spanned by the eigenvectors
whose eigenvalues are 0. It is straightforward to show that
the eigenvalues and eigenvectors of a general combination of
Pauli matrices ), a,,0, are given by

azta /a%+a%+a§
vy = a+ia; , Aizaoi,/a%+a%+a%.
1

Hence, for a, = n, B, under the condition Cy = 0 [in form
Eq. (D4)], we have the eigensystem

NN
Ui={<_l 1/32 )}, Ar = Po=x ﬁg

Therefore if By # 0 then |A(yp)) # 0. Recall that the con-
dition Cy =0 is equivalent to ﬂg = ﬂ22 —|—ﬁ32, hence the
following conditional probability:

P(Bo=018; =B +B;) =0

that By = 0 under the condition ,Bg = ﬂ% + ﬂ32 is zero implies
Eq. (D3). In the remaining part of the proof, we will show that
Eq. (D5) holds true.

We begin by expanding the n-qubit state |y) in the com-
putational basis

|¥0) = Z

,,,,

(D5)

i gulJ1s <o i)

Notice that gy takes the followmg form in the computational

basis:
Z d.il “‘jndil v lp (Jiloglir)-

X (j2, «ves Juloy @ - @ 0ylia, ..., 0p).

Notice that because of the cancellation 8, = 0, we can further
simplify the expression for §; and single out one state coeffi-
cient, namely dj...q. We have

Bo = 2(=1)* (Do + D3),
B2 =0,

Bz = 2(=1)" (Dy — D»), (D6)
where
Dy = (=1)"dy dyy,
1eT
Dy =Y (-1 dy;, (D7)
1eT
where Z = {0, 1}"~! is the index set introduced for consis-
tency of the notation, and for any bit string I = (i; e In—1),
we define its complement [ = as [ := (ij, ..., i,_ 1) where

i[j=1i;+ 1(mod2),and |I| =
ing to Eq. (D6), the condition B3 =
following:

Z;“] i;. Expanding By accord-
ﬂ2 + ,33 becomes the

(Do + D1)* = (Dy — D1)* (D8)

and hence has exactly two solutions, either Dy = 0 or D| =
0. Notice that under any of those two solutions the condi-
tion By = 0, i.e., Dy + D = 0 becomes Dy = D; = 0. Hence
Eq. (D5) can be rewritten as the following conditional
probability:

PDy=0AD =0|Dy=0vVv D;=0)=0. (DY)
Notice that

PMDy=0AD=0|Dy=0V D;=0) <

P(Dy=0[Dy =0)+P(D; =0[Dy = 0), (D10)

hence we will show that both terms on the right-hand side of
the equation above vanish.

Note that equation Dy = 0 imposes conditions on the state
coefficients dy;, I € Z only, while equation D; = 0 on the
state coefficients d;, I € Z, see Eq. (D7). Since equations
Dy =0 and Dy = 0 impose conditions on different state co-
efficients, intuitively condition Dy = 0 should not enforce
D, = 0 being satisfied (and vice versa). This can be rigorously
shown by the properties of Fubini-Study measure. Recall that
state coefficients dy; in |¢y) depend on 6y;, and vi; where
I € {0,1}""! only, see Eqs. (C5) and (C6). Therefore, the
condition D; = 0 can be rewritten in 6,; and v,; variables as

f(@]], Vir . I e I) (Dll)

where f is an elementary function in 6, vi; : I € 7 variables.
The exact form of f can be traced back from Eq. (D7) and
Eq. (C6). In particular f, as an elementary function, is con-
tinuous on its domain. Similarly, the condition Dy = 0 can be
rewritten in 6p; and vo; variables as

g, vor : 1€Z)=0 (D12)

where g is an elementary, hence continuous, function. There-
fore, P(D; = 0] Dy = 0) can be rewritten as the following
conditional probability:

P(f6y,viy:1€l)= I1el)=0)=0

(D13)

0| g(Boz, vor :

where f, g are elementary (in particular continuous) func-
tions on its domains defined on different variables. Recall
that the random variables 6;, v; : I € {0, 1} were chosen in-
dependently with continuous probability density distributions
described in Eq. (C4), i.e., v; are chosen independently ac-
cording to the uniform distribution ®(v;) = v, on [0, 2],
and 6; are chosen according to

Q0 = @™ +2|I)cos 6 sin > 21 (D14

distribution on [0, 5]. Therefore, a random quantum state
|¥0), which satisfies condition g(6y;, vo; : I € Z) = 0 is given
by randomly chosen values of 6;,v; : I € {0, 1}" with re-
spect to the probability distributions in Eq. (D14) for which
8Os, vor : 1 € Z)=0. It does not impose, however, any
further constrains on vy; 0;; coefficients. Hence the value
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of f(017,vi; : 1 € ) under condition g(6y;, vo; : 1 € Z) =0
does not vanish except of measure zero subspace for such in-
duced probability distribution, hence P (D, = 0|Dy = 0) = 0.
An analogous argument shows that P(Dy = 0|D; = 0) = 0,
and hence that Eq. (D9) holds true, which finishes the proof
of Lemma 1. ]

Below, we prove the result analogous to Lemma 1, for any
odd number of qubits.

Lemma 2 (odd case). Consider a generic pure quantum
state |y) € 7’-[%9 "1 of odd number of qubits written in the form
[¥) = 10)¥o) + 11)|41) where [¥), [¥1) € HS", and a SLIP
measure E ™ presented in Eq. (3). The conditional probability
that the polynomial equation E ™ (|v/o) + z|¥1)) = 0 has no
multiple root at z = 0 under the condition that it has at least
single root at z = 0 is zero.

Proof. Consider an n-qubit state [yy) € H$" written in the
form |y) = |0)|¥o) + |1)|¥1), and suppose that n = 2k is an
even number. We will evaluate the value of a measure E X
presented in Eq. (3) on the following state |v) + z|¥). Thus,
we have

E®(Jyro) + zI¥1))

=| > nvi(Yolo; ®0i @0y ® - ® 0yl1)

Jri=ld,x,y,z

+2z(Y1lo; ® 0, R 0y ® - - - ® 0y |¥r)

+ 2|0, ®0; ®0, ® -+ 7y [Y1))?|. (D15)
2k

Observe that by expanding it further, it is an absolute value of
a degree-four polynomial in the z variable:

E®O (o) +zl¥n) = |Co + Crz + C2° + G2 + Guz.

where the coefficients are of the following form:

Co= Y njvi(Yolo;®0;®0,® - ®aylh0)

Jyi=Id,x,y,z
(Yolo; ® 01 ® 0y ® - - - ® 0y |Wo) = EF (1),
C=2 Y nyi{¥lo;®0i®0,®: & oylv)

Jyi=ld,x,y,z

{Yolo; ®0; @0y ® -+ - @ oy | o),

with (1w, Ny, Ny, M2) = (Vid, Yy, Vy, v) = (—1,0, 1, 1). No-
tice that the equation E™(|v/o) + z|1/;)) = 0 has a root at
z = 0 iff the coefficient Cy = 0, and has a multiple root at
z = 0 iff coefficients Cy, C; = 0. Therefore we will prove the
conditional probability

P(C;=0|C,=0)=0 (D16)
that C; = 0 under the condition Cy = 0 is zero.
|
Boo — Bos — Bzo + B33 i(Boz — B32)

B— —i(Bo2 — B32) Boo + Bos — Bzo — B33
B —i(B20 — B23) B
—Bn —i(B20 + B23)

We can rewrite the coefficients Cy, C; in the following way:

Co = (YolA(Wo)),
C = (WilAWo)),
where |A(v)) is the following vector:
IAW0)) = A(0)[¥o),
defined by operator
Y niYoloi ® 05 @ 0y -+ ® 0y [¥))

i,j=Id,x,yz

D17)

A(o) =

O‘[®o‘]®o‘y®o‘y

Notice that |[A(v)) is a function of state coefficients of |1)
only. State coefficients of |yr;) are not related to the state
coefficients of |1) in anyway by a norm, see Egs. (C5) and
(C6), hence the space of solutions for the equation

Ci = (Y1lA(¥o)) =0

is of zero measure iff |A(yy)) # 0. Therefore, condition
Eq. (D16) can be rewritten as the conditional probability

P(AW0)) = 0] (YolA(¥o)) =0) =0 (D19)

that |A(¥()) = 0 under the condition (Y¥]|A(¥g)) = 0 is zero.
Observe that in order to show that |[A(v)) = A(w0)|$0) £0
it is enough to show that the first coefficient of |A(1/g)) is non-
vanishing, i.e., (0...0|A(v)) # 0. Therefore the following
conditional probability:

P((0...0]A(0)) = 0 (¥olA(0)) =0) =0

that (0...0|A(10)) = 0 under the condition (Y¥]|A(¥g)) =0
is zero implies Eq. (D19). In the remaining part of the proof,
we will show that Eq. (D20) holds true.
For simplicity, we will introduce the following notation:
ﬁkp = (w0|0k & Op & Oy -+ ® O‘y|$0)v

for i,j=0,2,3. It is easy to see that the condition
(¥0lA(¥o)) = 0 can be rewritten as

0= mnh,

k.p
= Bio — B — Bz — B + B + B33 — B3y + B3 + Bis-
(D21)

(D18)

(D20)

Furthermore, the operator A(v) takes the following form:

A(o) = Z NiNpPipor @0, | ® 0y, Q@ -+ R 0y

k.p
=B®0,® - ® 0, (D22)

where matrix B is presented on next Equation.

i(B20 — B23) —B2
B i(Bao + B23)
Boo — Boz + Bz — B3 i(Boz + B3)
—i(Bo2 + B32) Boo + Boz + B3o + B33
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We will expand an n-qubit state |) in the computational
basis

n

|1/f0)= d][]nl.]l’ 7]1’!)

JtseeesJn=

Notice that By, takes the following form in the computational
basis:

IBkP — Z d]] jndll ey (]1|Uk|ll)(]2|gp|l2>

3 cees JnlOy ® -+ ® Oyliz, ..., in).
We can further simplify the expression for By ,:

Boo = (=) "1(Dgo + Do1 + Dig + D1y),
Bos = (—1)* "' (Do — Do1 + Do — D),
Bso = (=1 (Doo + Dor — D1o — D),
By3 = (=1)"'(Doo — Dor — Dig + D),
Br = 2(=1)(By — By,

Boz = B2 = P = Pz =0,

where we define the following quantities:

Djj = Z(_l)mdijldijfs

(D23)

1T

By =Y (—=1)"doosdyyy,
IeT

By =) (—=1)"dyy 1dyor,
IeT

and Z = {0, 1}"~2 is the index set introduced for consistency
of the notation, and for I = (i1, ..., i,_2), we define [ =
(i1, ... i) where i; =i; + 1 (mod2), and |I| = Y " 7 i;.
With above notation at hand, Eq. (D21) becomes the
following:

8 (Do1D1o + D11Dgy) —2(By — By) = 0. (D24)

We will single out dy..o state coefficient from the equa-
tion above. Notice that the state coefficient dy_¢ appears in
Dqp and By terms only. Denote by

Doy = Doy — 2dp...odoo1.1,
Doo = Do + 2dp...01do01---10,
By = By — 2dy..0d...1,
By = By + 2dy...01d} .10 (D25)

Observe that d...o appears in Dy and By, but does not ap-
pear in any of the following terms Dog, Do1, D10, D11, Bo, Bi.
Hence Eq. (D24) might be solved with respect to d...o vari-
able, and become

dy o= 4(Do1D1o + D11Dgo) — (Bo — By)
2(dy...;1 — 4Dy 1dgor...1) ’

In such a way, we expressed the condition (Y|A(Yp)) = 0,
which appears in Eq. (D20) as an equation satisfied by the

(D26)

dp...o state coefficient. As a next step, we will investigate thr
following equation:

(0...0]A(o)) = 0.
From (D22), (D17), and (D23), we have
(A(lﬂ())|0 L0y = 4Dy 1door...1 + 2(By — By)d,...1.

(D27)

Notice that in the equation above the d..o coefficient appears
only in By term. By expressing By according to (D25), and
substituting dy...o according to (D26), Eq. (D27) becomes

O =4d0()1..4]D11 + Sd]...]

dy..q. — 4dyy1..1D11
- (dy..1Do1D1o + D11 (door..1 (B — Bo) + dy...1Dgo)).
(D28)

Notice that in the equation above, the coefficient d...o; appears
only in Doy and By terms. With the notation (D25), we can
single out the d..q; coefficient and solve Eq. (D28) with
respect to d...; variable:

2d? Do1Dyo + Dy .
4dy..1D11(doo1..10d1...1 — doo1..1d1...10)

- ((doo1.1d1..1(2By + 1)
— 2doo1..1(dy..1 By + 2door..1D11) + 2d12.ulboo)-
(D29)

Notice that with Egs, (D26) and (D29) in hand, Eq. (D5) can
be rewritten as the following conditional probability:

P(Eq. (D29) holds | Eq. (D26) holds) = 0 (D30)

that the probability that Eq. (D29) holds under the condition
that Eq. (D26) holds is zero.

Note that Eq. (D26) expresses state coefficient dy..o as a
function of other state coefficients, and it defines a subspace
in the state space in which it holds. Intuitively, there should
be no restriction on other state coefficients, as Eq. (D29),
in such a subspace. Hence Eq. (D30) should be satisfied.
This intuition can be rigorously shown by properties of the
Fubini-Study measure. In the remaining part of the proof, we
show that Eq. (D30) holds, indeed, true. Notice that dj...q is
on the left-hand side of Eq. (D26) and does not appear on
the right-hand side of Eq. (D26). We will recall now some
properties of Fubini-Study distribution on the set H?"“ pre-
sented in Egs. (C5) and (C6). Recall that, dj...c is the only
coefficient in [vp) depending on 6y..¢. Therefore, by mul-
tiplying Eq. (D29) by [],. % ﬁ, where we used notation
Jo = {0, 1"\ {0, ..., 0}, Eq. (D29) takes the following form:

e cos ..o = f(Or, v : I € Jp), (D3D)

dy..o1 =

where f is an elementary function in 6, v; : I € J, variables,
where exact form of f can be traced back from Eq. (D29) by
substituting successively Eq. (D7) and Eq. (C6). In particular
f, as an elementary function, is continuous on its domain.
Similarly, the coefficient dj..o; is on the left-hand side of
Eq. (D26) and does not appear on the right-hand side of
Eq. (D26), moreover, there is no dy... coefficient in both sides
of Eq. (D26). As we noticed in Eq. (C6), while dj...g, dy...o; are
the only coefficients in |1) depending on 6...o;, therefore, by
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multiplying Eq. (D26) by [, ;, s> Where we used notation
T =T\ {0, ...,0, 1}, Eq. (D26) takes the following form:

€ cos By..o1 = g0, vy 2 I € Th), (D32)

where g is an elementary function in 6, v; : I € J; variables,
where exact form of g can be traced back from Eq. (D26) by
substituting successively Eq. (D7) and Eq. (C6). In particular
g, as an elementary function, is continuous on its domain.
In summary, Eq. (D30) can be rewritten as the following
conditional probability:

P(Ei V-0 cos By...01 = g0, vi 1 I € J1) |

|0 cosby.o = fO,vi:1eTp))=0  (D33)

that the probability that e/ cos 6.1 = g0, vi : I € Jy)
under the condition that e/ "0 cos 6y..o = f (67, v; : I € Jp) is
zero, where f, g are elementary (in particular continuous)
functions on its domains in 6;,v;: 1 € Jy and 6, v, : [ €
J variables, respectively. Recall that the random variables
6;, vy : 1 € J were chosen independently with continuous
probability density distributions described in Eq. (C4), i.e., v;
are chosen independently according to the uniform distribu-
tion ®(v;) = %v; on [0, 2], and 6; are chosen according to

Q0 = 2" +2I])cos 6 sin 2 21 (D3g)

distribution on [0, Z]. Therefore, a random quantum state
[ o), which satisfies condition e/** cos 8y..g = f(0;, vy : I €
Jo) is given by randomly chosen values of 6;, v; : [ € Z with
respect to the probability distributions in Eq. (D34) for which
the norm of (6, v; : I € Jy) is smaller than one, and coeffi-
cients vy..., 6p...o uniquely determined by the value of function
f. It does not impose, however, any further constrains on
Vo...01 Bo...01 coefficient in terms od 6;, v; : I € J; coefficients
(except of the norm of f being sufficiently small). Hence the
following equation e'*% cos ..o = g(Or, v; : I € Jy) will
be not satisfied except of measure zero subspace for such
induced probability distribution. This shows that Eq. (D10)
holds true, and hence finishes the proof of Lemma 2. ]

Proposition 5. Consider a generic pure quantum state
|Y) € 7—[?"‘” written in the form |y¥) = |0)|vo) + |1)|v1)
where |Yg), |Y¥) € ’H?". Furthermore, consider the polyno-
mial equation

E™ (1Y) +zl¢1) =0

in z variable, where E™ is a SLIP measure presented in
Eq. (2) for an even number of qubits n = 2(k + 2) and Eq. (3)
for an odd number of qubits n = 2k + 1. For a generic state
V) € 7—[?"“ the above polynomial equation has exactly four
distinct roots with probability one. In other words, the set of
states for which Eq. (D35) has less then four distinct roots is
of measure zero with respect to the Fubini-Study measure.
Proof of Proposition 5. We will see that the statement of
Proposition 5 easily follows from Lemma 1 and Lemma 2
and properties of Fubini-Study measure. Recall that Fubini-
Study probability distribution on H¥ "*1 is invariant under any
unitary operation acting on the whole space 7-{,58’”“. Hence the
probability that Eq. (D35) has multiple roots is bigger or equal
to the probability that Eq. (D35) has multiple root at z =0

(D35)

under the condition that it has at least single root at z = 0 is
zero. Hence Lemma 1 and Lemma 2 justify the statement. W

Observe that while using a SLIP measure defined in
Egs. (2) and (3) (depending on the parity of the number of
qubits n) in Procedure 1 (described in the main body of the
paper) a generic pure n-qubit state has exactly four roots with
probability one. Therefore, together with Proposition 1 from
the main body of the paper (proven in Appendix B), it shows
that a single SLIP measure is enough to provide necessary
and sufficient conditions for any two generic pure n-qubit
states to be SLOCC equivalent. Hence, we have the following
corollary.

Corollary 1. A single SLIP measure, Eq. (2) for an even
number of qubits n = 2(k 4 2) and Eq. (3) for an odd number
of qubits n =2k + 1, is enough to provide necessary and
sufficient conditions for any two generic pure n-qubit states
to be SLOCC equivalent. Corollary 1 can be written shortly
as Proposition 2 from the main body of the paper.

APPENDIX E: UNIQUE MOBIUS TRANSFORMATION

It is well known that for a given tuple of three dis-
tinct points zj, z2,z3 and any second tuple of such points
w1, wo, ws on the extended complex plane @, there is a unique
Mobius transformation 7', which transforms one tuple into the
other, i.e.,

T(Zl) = wq,

There are several ways to determine the form of 7. An explicit
form can be found by evaluating the determinant [40]:

T(z) =wy, T(z3)=ws.

Zw z w1
1wy 21wy 1
T (z) := det E1l
@ owr w1 (ED)
3W3 73 W3 1
This results into the following form of 7':
az+b
T(z)= , (E2)
cz+d
where
zwy wp 1 W 21w
a=det|zw, wy 1), b=det|zw, 2z w]|,
zzwz w3 1 3W3 73 W3
z1 w1 1wy 21
c=det|lzz, wy 1], d=det|zw 2z
23 w3 1 3W3 23

Note that the corresponding SL(2, C) operator is of the form
0=+
N ‘¢

N = [det (‘C‘ 2) = V@ - )@ —5)@ - )

V(Wi — wa)(wy — w3)(wy — w3).

3) with the normalization constant

APPENDIX F: ROTATION GROUP G4

Consider the set of four symmetrically related points ® =
{z, %, -z, —%}. It is very convenient to associate with them the
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cuboid spanned by eight points:

- 1 11 _ 1
PUD = {Z, = =% —=,2, T, % —j},
Z z Z z
as it is presented on Fig. 2. Observe that all six faces of the
cuboid are parallel to one of the planes: XZ, XY, or YZ. In
fact, this property is equivalent to the initial assumption that
the set of points @ is in normal form. Clearly, all rotations of
the Bloch ball preserve the form of the cuboid. Nevertheless,
only a special subgroup of all rotations preserve faces of the
cuboid being parallel to XZ, XY, or Y Z. This special subgroup
G4 contains 24 elements spanned by three rotations of /2
around X, Y, and Z axis, given by:

_( cosm/4  —isinm/4\ 1 (1 i
Rx(”/z)_<_isin7t/4 cos i /4 )_E<_i 1)’
(F1)
_(cosm/4 —sinm/4\ 1 (1 -1
R,(7/2) _(sin m/4  cos 7T/4) B E(l ! >’
(F2)

—in /4 1 _

In fact, this is a group of rotations preserving the regular cube
(the group of orientable cube symmetries). Clearly, all rota-
tions in the G4 group preserve the normal-form structure of
®. On the other hand, the normal form is uniquely determined
up to 24 rotations in the G4 group.

APPENDIX G: PROOF OF PROPOSITION 3

We present a proof of Proposition 3. For each complex
number A there exists another complex number z, such that
the cross-ratio of the four points is equal to A, i.e.,

Ty =%, —— = A
4 Z

Indeed, the cross-ratio on the left side equals 472 /(1 + 72)?,
and the equation 4z /(1 + z?)*> = X has exactly four solutions
A= +J1-2 1

— —R0, T -
2 20 T2

(G1)

20 (G2)
Therefore, for a given value A there exists a unique A-normal
system, such that the cross-ratio of its vertices is given by
(20, %; —20, —%) = A. Replacing the vertex zo by any other
vertex 2o, 1/z0, —29, or —1/z9 does not change the value of
the cross-ratio (zo, %; —20, —Zl) = A. Note that there exists
a unique Mobius transformation 7', which maps zi, z2, 23
onto z9, 1/z9, —20, with the remaining z4 mapped onto —1/z.
Observe as well that the value of zp is unique up to its
inverse, opposite, and opposite inverse elements, according
to Eq. (G2), with the corresponding Mdobius transformations
associated to the matrices T, 0T, 0,T, and 0. T . Each of those
transformations maps the set of points {z;, z2, z3, z4} onto the
same set of points {zg, 1/z9, —20, —1/z0}, although the exact
bijection between those two sets of roots is different for each
transformation.

Depending on the order of four points {zi, 22, 23, 24},

the corresponding cross-ratio takes six values: A, % 1 -

A, ﬁ, AT’l, and ﬁ For each of these, there is a correspond-
ing set of solutions of the form {zo, 1/z9, —20, —1/20} via
Eq. (G2) with four related Mobius transformations. Therefore,
there are in total 24 Mobius transformations that map any four
nondegenerated points onto a normal system, each of them
related by an element of the group G4, which has exactly 24

elements.

APPENDIX H: TRANSFORMATION OF A STATE
INTO ITS NORMAL FORM

We illustrate the procedure to determine the normal form
of four-qubit states on the following example:

[¥) o¢ |0)|GHZ) + [1)|W)
= |0000) + [0111) + [1100) -+ |1010) + |1001)
— 10 [000) 4 [111) 4-[1) [100) + |010) + [001)
) Y1)

(HI)

of the widely discussed four-partite state [22,24]. We will
focus attention on the first subsystem. Corresponding states
[Yo) and |v¢) are indicated on Eq. (H1). We will use the
three-tangle measure. The following polynomial t(3)(|v) +
z|1)) is of a degree four in variable z, and has exactly four
distinct roots:

71 =0,

2 =—V4,

5= 3 i3,
20 = —/4 M3,

The corresponding value of the cross-ratio is equal to A =
1 + ¢*/3, As it is shown in Proposition 3, there is a unique
Mobius transformation 7', which maps z, 22, z3, z4 onto the
system Zo, Zlo, —20, —% where zp is a root of a polynomial
4z2/(1 + 7%)? = . Choose one of its roots, eg,zo=1+ V2.

Appendix C presents one way of obtaining the exact transfor-
mation T, giving

7— —Hf
_ V4
T@= A+V3)(A4D) , o 14 (H2)
2 Nz
which performs the mapping
1
T =2=1+v2 T@=— T@)=-2u
0
According to Proposition 3, T'(z4) = —Zio and hence T maps

21, 22, 23, Z4 into the normal system of roots. Note that the
corresponding SL(2, C) operator is of the form

3 _ 13
o - V2 1 ﬁl " Vil (H3)
(1+l)(3+«/§) 1+ é)( —+i) 13_;11

which is presented on Fig. 3. Similar calculations for three
remaining subsystems lead to the following SLOCC operator:

0=0180,80;8 s, (H4)
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where O is presented on Eq. (H3) and O, = O3 = O, :=
O, 0,, which transforms state (H1) into the |Gpcq) form

a+d a—d
|Gaped) = T(lOOOO)—I—Illll)) + T(IOOII) + [1100))

b
+ %00101) +11010))

b_
+ Tc(|0110>+|1001>)

with parameters

(12 — 8i)

b §i<3 +2V3).

c=0,

d= —‘3—‘((6 +3i) + (3 + 2i)V/73).

APPENDIX I: PROOF OF PROPOSITION 4

Consider the state |Ggpq) and its decomposition with
respect to the first subsystem |Ggpeq) = |0)|Wo) + |1) 1),

where
+d b+ b
%) =aT|000>+“ )+ c|101)+—|110>
d —d b b
Wl):%unw%uow +C|010>+—|001>

Suppose that T®(¢|yo) + |¥1)) =0. Since @ is a
SL2,C )®3 invariant, for any local operators Oy, O,, O3 we
have

(01 ® Oy ® O3)(¢|Wo) + Y1) =

Observe that
h/fO) :(Ux ® Oy ® 0X)|l/,])5

V1) =(0x ® 0 @ 0:)|Y1),
|

where oy, 0y, 0, are Pauli matrices. Therefore by taking all
local operators 01, O,, O3 equal to o, we may conclude that

0 =10, ® 0, ® 0.)(C|W0) + [¥1)))

= ¢|Yn) + |Po) éllﬁo) + Y1),

hence 1/¢ is another root of T, Similarly, by considering
(0, ® 0, ® 0y) and (0, ® 0, ® o), one may find another two
roots —¢, —1/¢ of ©®. This shows that the roots of t®
evaluated on any state from the G,p.; family are symmetrical
with respect to rotations around X, Y, Z axes by the angle
m. Writing 7@ (z]y0) + |¥1)) = 0 explicitly, we obtain the
equation

o) + 1Y) = AP —2QB+ A +A =0,

where A = (0> — ?)(@® — d?) and B = (¢? — d*)(a* — b?).
The above equation is nondegenerated iff A, B, A 4+ 2B # 0,
which happens iff a> # b* # ¢® # d? are pairwise different.

Lemma 3. Any local operator O =00, O3 ®
04 € SL(2, (C)®4, which transforms states |Gupear) X
O|Gapeq) With a* # b? # ¢* # d?, is of the form O; € Ga.

Proof. A local operator O; acting on the first qubit and
transforming the state |G pcq) onto |Gypear), also transforms
their systems of roots denoted as A and A’, respectively,
via the action of the corresponding Mobius transformation.
Note that both systems A and A’ are in the normal form,
therefore, according to Proposition 3, we have that O; € Gy4.
A similar analysis with respect to all other qubits shows that
02, 03,04 € Goa. [ |

This way, searching for SLOCC equivalence between the
states |Gapeq) and |Gypeq) becomes restricted to the search
within the finite class of operators O € gﬁ“. Since the group
Gr4 has only 24 elements, one may numerically verify that
there are exactly 8 x 24 = 192 states in the G,y family,
which are SLOCC equivalent to |Ggpq) by O € 9334. For
example, the following operation:

R(p)er(p)er(Per(z)  w

transforms state |Ggpeq) into |G_p_qcq). This might be sim-
ply written as a transformation of a tuples of indices: the
tuple (a, b, ¢, d) is transformed into the tuple (—b, —a, c, b).
Similarly, the operators showed on the following right-hand
sides provide the corresponding transformations of the tuple
(a, b, ¢, d) on the left-hand side:

&(D)on(3)on(T)on(3) < waen

2

R(Z)on(3)on(3)on(D) < canea

R(m)QR(7)®1®1 «— (a,—b

, —C, d)s

R(m) QR (1) ®1Q®1 «— (a,b, —c, —d),
R(mM®1@R,(m)®1 «— (d, c,b,a),
R.(@m 1R (m)®1 «— (b,a,d, c).

Additionally, the tuples (a, b, c,d) and (—a, —b, —c, —d)
represent the same state. Note that any composition of the

(

above operations also provides SLOCC equivalences between
|Gapea) states. The eight aforementioned transformations of
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tuples generate all permutations of the a, b, ¢, d indices, to-
gether with the change of a sign of any two or all four indices.
There are exactly 24 permutations and for each permutation
the signs can be matched in exactly 1 + (g) + 1 =8 ways.
This gives in total 192 tuples representing SLOCC-equivalent
states, which perfectly matches the numerical result.

Finally, another trivial manipulation with indices a, b, ¢, d
comes from multiplying by a global phase, which is an irrele-
vant operation due to the fact that quantum states are elements
of a projective space. This operation transforms the indices as

(eiea, &%, ¢, eiad) ~(a,b,c,d),

resulting in the same quantum state for any real number 0 €
[0, 27). In particular, for 6 = 7, we observe that system of
opposite indices determines the same state as the initial one,
ie., (—a,—b,—c,—d) ~ (a, b, c,d).

APPENDIX J: EXACT SCENARIOS

In order to exemplify the viability of the results in this
work, we present another nontrivial scenario where our
method is useful. We show how a single four-qubit entan-
glement SLIPj measure might be used to verify whether
five-qubit states are SLOCC equivalent. Among several SLIPZ
measures defined for system of four qubits, the so-called M
measure has degree 4 [13,35] and is defined as the determinant

Co000  €1000  Coo10  €1010

. Coo01  €1001  Coo11  C1o011
M(|y)) = det ; Jd1

Co100  C1100  Co110  C1110

Coto1  C1101  Cor1r Ci111

where ¢;, ;, i, i, are state coefficients, i.e.,

E Ciy ininia 115 125 13, 14).

i1,02,03,i4=0

lv) =

‘We demonstrate now how the M measure can be used to verify
whether two given five-qubit states are SLOCC equivalent. As

TABLE 1. Cross-ratio of roots of M measure calculated for each
subsystem of |¢) state rounded to the fourth decimal place.

Number of subsystem Value of cross-ratio

1 0.8656 + 0.5008i
2 0.5 + 0.5906i
3 0.5 — 0.4844i
4 0.5+ 0.5397i
5 0.9231 + 0.3845i

an example, consider the following five-qubit state:

[¢) =]00001) + |00111) 4 |01001) + |01010) + |01101)
+ [10000) 4 |10010) + [10101) + [10110) 4 |11011)
+ 1111100).

By permuting the five subsystems of the state |1/), we obtain
in total 5! = 120 five-qubit states. In the following, we will
show that such states are not pairwise SLOCC equivalent.
Indeed, for each subsystem of a state |v/), we may calculate
the roots of the M measure according to Procedure 1. For
any subsystem, there are four distinct roots. The values of
the corresponding cross-ratios are presented in Table I. It is
straightforward to show that no two values of cross-ratios
corresponding to different subsystems (see Table I) are related
by A, %, 1—A, ﬁ % or ﬁ As a direct consequence of
Theorem 1, one concludes that those states are not SLOCC
equivalent. Indeed, the states obtained from |y) by nonidenti-
cal permutation of subsystems will have corresponding cross
ratios simultaneously permuted. Therefore, for some subsys-
tems, the values of cross-ratios corresponding to any two such
states are not related via A, %, 1—2A, ﬁ, %”, or ﬁ As a
consequence, there is no Mobius transformation relating the
roots of any subsystem (see Remark 1), and hence there is
no SLOCC operator, which might relate those two states. A
similar reasoning holds true for any pair of states obtained
from |y{) by permuting its subsystems by two distinct per-
mutations. Finally, we note that these results would otherwise
be highly computationally demanding if standard procedures
were applied.
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