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Witnessing quantum coherence with prior knowledge of observables
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Quantum coherence is the key resource in quantum technologies, including faster computing, secure commu-
nication, and advanced sensing. Its quantification and detection are, therefore, paramount within the context
of quantum information processing. Having certain prior knowledge of the observables may enhance the
efficiency of coherence detection. In this work, we posit that the trace of the observables is a known quantity.
Our investigation confirms that this assumption indeed extends the scope of coherence-detection capabilities.
Utilizing this prior knowledge of the trace of the observables, we establish a series of coherence-detection
criteria. We investigate the detection capabilities of these coherence criteria from diverse perspectives and
ultimately ascertain the existence of four distinct and inequivalent criteria. These findings contribute to the
deepening of our understanding of coherence-detection methodologies, thereby potentially opening new avenues
for advancements in quantum technologies.
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I. INTRODUCTION

Quantum coherence [1,2] is a fundamental phenomenon
in quantum mechanics, enabling quantum systems to exist
in superpositions of multiple states simultaneously. It plays
a pivotal role in various quantum technologies, from quantum
computing [3] and quantum metrology [4,5] to nanoscale ther-
modynamics [6–9] and energy transport in biological systems
[10–12]. As such, coherence represents a critical resource for
various quantum information-processing tasks.

Significant strides have been made toward the measure-
ment of quantum coherence based on numerous innovative
approaches [13–43]. Quantum resource theory [14–16,22,30]
has garnered significant attention, proving instrumental in ad-
vancing our understanding of coherence. Under the quantum
resource theory framework, various coherence monotones and
measures have been introduced, including the relative entropy
of coherence, the �1 norm of coherence, the coherence of
formation, the geometric measure of coherence, and the ro-
bustness of coherence.

Coherence witnesses, like their entanglement-witness
[44–48] counterparts, have emerged as potent tools for coher-
ence detection in experimental settings [49–52] and coherence
quantification in theoretical contexts. In contrast to con-
ventional methods that rely on state tomography, coherence
witnesses can directly identify the coherent states [53–55]. It
is worth noting that Napoli et al. [15] made significant con-
tributions to estimating the lower bound on the robustness of
coherence by utilizing the coherence witnesses, emphasizing
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the importance of this concept in deepening our under-
standing of quantum coherence. More recently, Wang et al.
[54,55] conducted a relatively comprehensive exploration of
coherence witnesses. Nevertheless, research on coherence
witnesses remains relatively limited. In practical applications,
we often possess valuable prior knowledge about the observ-
ables involved. This naturally raises an important question:
can such prior knowledge enhance the accuracy and effective-
ness of coherence detection?

In this work, we systematically investigate coherence wit-
nesses within the framework of prior knowledge about the
trace of observables. We demonstrate that knowing the exact
value of the trace for a given observable indeed enhances
our ability to detect coherent states. Moreover, by leverag-
ing varying degrees of prior knowledge about the trace of
observables, we establish a series of criteria for detecting
coherence. Then, we explore the properties of these criteria,
such as completeness, finite completeness, finite intersection,
and inclusion, which assist us in singling out four classes of
inequivalent coherence criteria.

The rest of this paper is organized as follows. In Sec. II,
we provide an overview of coherence witnesses and unveil
a series of coherence criteria under varying degrees of prior
knowledge concerning the traces of observables. In Sec. III,
we analyze these coherence criteria from various perspectives,
including completeness, finite completeness, finite intersec-
tion, and inclusion. Finally, in Sec. IV we summarize our
findings and outline potential avenues for future research.

II. COHERENCE WITNESSES WITH PRIOR
KNOWLEDGE OF OBSERVABLES

We denote byH a d-dimensional Hilbert space with com-
putational basis B := {|i〉, i = 1, 2, . . . , d}, H the set of all
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d × d Hermitian matrices, and D the set of all density matri-
ces (self-adjoint positive-semidefinite matrices with trace 1).
Let � be the set of incoherent states with respect to the basis
B; namely, � comprises all density matrices of the form

δ =
d∑

i=1

δi|i〉〈i|. (1)

Hence, all the states within D\� are referred to as coherent
states.

By definition the set � of incoherent states is convex and
compact. From the Hahn-Banach theorem [56], a hyperplane
which separates an arbitrary given coherent state from the
set of incoherent states must exist. A coherence witness is a
Hermitian operator W ∈ H such that (1) Tr(W δ) � 0 for all
incoherent states δ ∈ � and (2) a coherent state ρ such that
Tr(W ρ) < 0 exists. The first condition implies that all the
diagonals of W are non-negative, while the second implies
that W has some negative eigenvalue. We denote by H� the
set of d × d Hermitian matrices with non-negative diago-
nal elements and �− the set with some negative eigenvalue.
The general coherence witnesses are then generally given by
H� ∩ �−.

In addition to the above coherent witnesses, there are other
kinds of coherent witnesses defined by strengthening condi-
tion 1 to Tr(W δ) = 0 for all δ ∈ � but relaxing condition 2 to
Tr(W ρ) �= 0 for some state ρ [15,52,54]. Here, the strength-
ened condition implies that all the diagonals of W must be
zero, while the relaxed condition allows for detecting more co-
herent states by this witness. In other words, prior knowledge
about the observables may enable one to detect the coherence
better.

For the usual coherence witness W ∈ H� ∩ �−, the condi-
tion Tr(W δ) = 0 for all incoherent states δ ∈ � is equivalent
to Tr[W ] = 0. This motivates us to define the set of all coher-
ence witnesses with the same trace. Therefore, for each real
number R � 0, we introduce the set

WR := {W ∈ H�
∣∣ Tr[W ] = R}. (2)

Note that the set of observables with zero trace W0 is just
the set of all d × d Hermitian matrices with zero diagonal
entries. For example, in a qubit system, i.e., d = 2, W0 =
{aσ1 + bσ2 | a, b ∈ R}. Here and in the following, σi, where
i = 1, 2, 3, represents the Pauli matrices defined as

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

The prior knowledge of the trace of the witness can en-
hance the ability to detect coherence. For fixed R > 0 we have,
for any W = (wi j ) ∈ WR and δ = ∑d

i=1 δi|i〉〈i| ∈ �,

0 � Tr[W δ] =
d∑

i=1

wiiδi �
d∑

i=1

wii = R.

Therefore, if W = (wi j ) is previously known in the set WR,
then either Tr[W ρ] < 0 or Tr[W ρ] > R implies the coherence
of ρ. Moreover, some W = (wi j ) ∈ WR and density matrix ρ

such that Tr[W ρ] > R do exist. In fact, for any 0 < r < R, let

W = (R − r)|1〉〈1| +
√

rR(|1〉〈2| + |2〉〈1|) + r|2〉〈2|

FIG. 1. Classical coherence witness vs a coherence witness with
prior knowledge of the trace.

and W = λ+|v+〉〈v+| + λ−|v−〉〈v−| be its spectral decom-
position. As λ+λ− = (R − r)r − (

√
rR)2 = −r2 < 0, we can

always assume λ+ > 0 and λ− < 0. For ρ = |v+〉〈v+| we
have

Tr[W ρ] = λ+ = (λ+ + λ−) − λ−
= Tr[W ] − λ− = R − λ− > R.

As a consequence, the prior knowledge of the trace of the
observables indeed extends the scope of coherent-state detec-
tions (see Fig. 1).

However, if we just know that the observables cannot be
traceless, i.e., such observables are chosen from the set W> :=
{W ∈ H� | Tr[W ] > 0}, we find that such little prior knowl-
edge of the trace of observables cannot help us to enhance
the coherence detection. That is, to ensure that the witness
W detects the coherence of ρ, we still need to observe the
violation of Tr[W ρ] � 0 as usual. To prove this, we need to
show only that

{Tr[W δ]
∣∣ W ∈ W>, δ ∈ �} = {r ∈ R | r � 0};

that is, for any real number r � 0, W ∈ W> and δ ∈ � always
exist such that Tr[W δ] = r. If r > 0, choosing any W ∈ W>

with Tr[W ] = dr and δ = Id
d , we have

Tr[W δ] = 1

d
Tr[W ] = r.

If r = 0, setting W = |1〉〈1| + |1〉〈2| + |2〉〈1| and ρ = |2〉〈2|,
we have Tr[W ρ] = 0 = r.

Throughout this paper, we set R := {r ∈ R|r � 0} ∪
{>,�}. For each R ∈ R, we set IR := {Tr[W δ] | W ∈ WR, δ ∈
�} and DR := {Tr[W ρ] | W ∈ WR, ρ ∈ D}. For each R ∈ R, a
corresponding coherence-witness criterion can be formulated
as follows.

Coherence criterion: (WR, DR, IR). For any ρ ∈ D, if there
exists some W ∈ WR such that Tr[W ρ] ∈ DR \ IR, then ρ is a
coherent state.

For any R ∈ R, we can immediately verify that DR = R.
From the above discussion, the set IR is classified into fol-
lowing three classes (see Fig. 2): (1) IR = {r ∈ R |0 � r � R}
when R is a positive real number, (2) IR = {r ∈ R | r � 0}
when R is either � or >, and (3) IR = {0} when R = 0.
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FIG. 2. An intuitive view of the range of IR for R ∈ {r ∈ R|r �
0} ∪ {>,�}.

To classify coherence criteria we define CR[W ] as the set
of all coherent states that can be witnessed by W in the setting
(WR, DR, IR), that is, CR[W ] = {ρ ∈ D | Tr[W ρ] ∈ DR \ IR}.
Moreover, we denote W c

R := {W ∈ WR | CR[W ] �= ∅}, i.e.,
the set of all nontrivial coherence witnesses of the coherence
criterion (WR, DR, IR). We find that W c

R = WR ∩ �− (see the
proof in the Appendix).

For W ∈ H�, if we set R = Tr[W ], then W belongs to WR

and W�. We find that

CR[W ] = C�[W ] ∪ C�[RId − W ].

It is easy to check that C�[W ] is a convex set; i.e., if
Tr[W ρ] < 0 and Tr[W σ ] < 0, then Tr[W (tρ + (1 − t )σ )] <

0 for t ∈ [0, 1]. However, if C�[W ] �= ∅ and C�[RId − W ] �=
∅, the set CR[W ] is not a convex set. In this case, CR[W ] is
a disjoint union of two convex sets (see cases A and C in
Fig. 3 for a qubit system). In fact, for any ρ ∈ C�[W ] and σ ∈
C�[RId − W ], we must have Tr[W ρ] < 0 and Tr[W σ ] >

R � 0. Therefore, there must be some t∗ ∈ (0, 1) such that
Tr{W [t∗ρ + (1 − t∗)σ ]} = 0, which indicates that t∗ρ + (1 −
t∗)σ /∈ CR[W ].

We say that two coherence criteria (WR1 , DR1 , IR1 ) and
(WR2 , DR2 , IR2 ) are equivalent if there is a bijection F :
W c

R1
→ W c

R2
such that CR1 [W ] = CR2 [F (W )] for any W ∈

W c
R1

. It is an intuition that the coherence criteria arising from
knowing different values of traces may be almost the same
in detecting the coherence. For any positive real number R1

or R2, the two criteria (WR1 , DR1 , IR1 ) and (WR2 , DR2 , IR2 ) are
equivalent in the above sense. In fact, we can define a map
F from W c

R1
to W c

R2
by sending W ∈ W c

R1
to R2

R1
W. Clearly,

R2
R1

W ∈ W c
R2

as W has non-negative diagonals and Tr[ R2
R1

W ] =
R2
R1

Tr[W ] = R2
R1

R1 = R2. It is easy to verify that it is a bi-
jection. For any ρ ∈ D, 0 � Tr[W ρ] � R1 is equivalent to
0 � Tr[ R2

R1
W ρ] � R2. Therefore, we always have CR1 [W ] =

CR2 [F (W )].
However, to fully classify the previously mentioned co-

herence criteria, we need to study more properties of these
criteria. After that, we will go back and tackle this problem.

III. PROPERTIES AND CLASSIFICATION OF
COHERENCE CRITERIA

For each R ∈ R, we have established the coherence crite-
rion (WR, DR, IR). It is natural to ask whether these criteria
are complete in the sense that they detect all the coherent

states, namely, the following relation holds:

D\� =
⋃

W ∈WR

CR[W ].

Concerning the completeness of our coherence criteria, we
have the following conclusion.

Theorem 1. Completeness. For each R ∈ R, the coherence
criterion (WR, DR, IR) is complete.

Proof. Suppose ρ is a coherent state. Without loss of
generality, we assume ρmn = 〈m|ρ|n〉 �= 0, where m �= n. We
need to show that some W ∈ WR such that Tr[W ρ] ∈ DR \ IR

always exist. As R ∈ R, the interval (−∞, 0) ⊆ DR \ IR. It is
sufficient to prove that some W ∈ WR such that Tr[W ρ] < 0
always exist. We prove the theorem according to following
four cases.

(1) R = 0. We define W Re
j,k := (| j〉〈k| + |k〉〈 j|)/2 and

W Im
j,k := i(| j〉〈k| − |k〉〈 j|)/2 for each 1 � j < k � d. Note

that we always have Tr[W Re
j,k ρ] = Re(ρ jk ) and Tr[W Im

j,k ρ] =
Im(ρ jk ), where ρ jk = 〈 j|ρ|k〉, Re(z) = α, and Im(z) = β

for any complex number z = α + βi ∈ C. Clearly, W0 :=
{W Re

j,k ,W Im
j,k | 1 � j < k � d} ⊆ W c

0 . As ρmn �= 0, either
Tr[W Re

m,nρ] �= 0 or Tr[W Im
m,nρ] �= 0. That is, ρ is in C0[W Re

m,n]
or C0[W Im

m,n]. Therefore,

D\� =
⋃

W ∈W0

C0[W ]. (3)

Without loss of generality, we assume that Tr[W Re
m,nρ] �= 0.

Since Tr[W Re
m,nρ] is a real number, Tr[W Re

m,nρ] or Tr[−W Re
m,nρ]

is negative, and both ±W Re
m,n are in W0. Hence, some W ∈ W0

such that Tr[W ρ] < 0 always exists.
(2) R is �. DenoteW� := {±W Re

j,k ,±W Im
j,k | 1 � j < k �

d}. By definition, we have W� ⊆ W c
�. Similar to the argu-

ment in case 1, some W ∈W� such that Tr[W ρ] < 0 always
exists. Therefore,

D\� =
⋃

W ∈W�

C�[W ]. (4)

(3) R is >. From case 2, there is some W ∈W� such
that Tr[W ρ] < 0. Note that the diagonals of W are all zeros.
For each ε > 0, set Wε = W + εId . Clearly, Wε has positive
diagonals, and Tr[Wε] = dε > 0. Hence, Wε ∈ W>. Specially,
choosing ε = −Tr[W ρ]

2 , we have

Tr[Wερ] = Tr[W ρ] + εTr[ρ]

= Tr[W ρ] + ε = Tr[W ρ]

2
< 0.

(4) R is a positive real number. From case 3, there is some
Wε ∈W> such that Tr[Wερ] < 0. Set WR = R

Tr[Wε ]Wε . Clearly,
WR ∈ WR and

Tr[WRρ] = R

Tr[Wε]
Tr[Wερ] < 0.

The above four cases together complete the proof. �
So each coherence criterion presented here is complete. As

a consequence, we can restate the coherence criteria by the
following four classes.
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(A) For (WR, DR, IR), with R being a positive real number,
a state ρ ∈ D is coherent if and only if W ∈ WR such that
Tr[W ρ] < 0 or Tr[W ρ] > R exists.

(B1) For (W>, D>, I>), a state ρ ∈ D is coherent if and
only if there exists W ∈ W> such that Tr[W ρ] < 0.

(B2) For (W�, D�, I�), a state ρ ∈ D is coherent if and
only if W ∈ W� such that Tr[W ρ] < 0 exists.

(C) For (W0, D0, I0), a state ρ ∈ D is coherent if and only
if W ∈ W0 such that Tr[W ρ] �= 0 exists.

Criteria B1 and B2 coincide with the standard criterion,
while criteria A and C differ due to the incorporation of prior
knowledge of the trace of observables. Generally, given a
Hermitian matrix W with R = Tr[W ], we always have

C�[W ] ⊆ C�[W ] ∪ C�[RId − W ] = CR[W ].

The prior knowledge of the trace of W could extend the scope
of coherent-state detections. Now we proceed to apply these
criteria to a qubit system as an example, highlighting the
benefits of detecting coherence with prior knowledge of the
trace of observables.

Example 1. For a qubit system, i.e., when d = 2, prior
knowledge of the exact value R of the trace of the observ-
able W can double the efficiency of observing coherent states
compared to the standard criterion. More precisely, CR[W ] is
a disjoint union of C�[W ] and C�[RI2 − W ], and there is
a one-to-one correspondence between C�[W ] and C�[RI2 −
W ], given by (x, y, z) mapped to (−x,−y,−z).

In fact, let W = (RI2 + aσ1 + bσ2 + cσ3)/2 and ρ =
(I2 + xσ1 + yσ2 + zσ3)/2. Note that W is an effective co-
herent witness; i.e., W belongs to H� ∩ �− if and only if
|c| � R <

√
a2 + b2 + c2. And ρ is a density matrix if and

only if x2 + y2 + z2 � 1. Thus, one can recognize the points
within the unit ball centered at the origin as the elements of
density matrices. The set of all incoherent states is � = {(I2 +
zσ3)/2 | −1 � z � 1}. Moreover, Tr[W ρ] = (R + ax + by +
cz)/2. Therefore, the condition Tr[W ρ] < 0 is equivalent
to ax + by + cz < −R, and the condition Tr[W ρ] < 0 or
Tr[W ρ] > R is equivalent to ax + by + cz < −R or ax +
by + cz > R.

If R > 0 and we have no information about the specific
value of R, then we can employ only criterion B1 or B2 (i.e.,
the standard coherence criterion) for this witness. Therefore,
W is capable of detecting only the coherence of ρ whose cor-
responding coordinates (x, y, z) satisfy ax + by + cz < −R
(see cases B1 and B2 in Fig. 3). On the contrary, if we
have prior knowledge of the value of R, we can apply crite-
rion A to this witness, enabling the detection of states with
coordinates (x, y, z) satisfying either ax + by + cz < −R or
ax + by + cz > R (see case A in Fig. 3).

If R = 0 (in this context, c = 0 since |c| � R) and we
have no specific information about the value of R, then we
can apply only criterion B2 to this witness. Consequently,
W is capable of detecting the coherence of ρ whose cor-
responding coordinates (x, y, z) satisfy ax + by < 0. On the
contrary, if we are aware beforehand that R = 0, then we can
apply criterion C to this witness, allowing the detection of
states with coordinates (x, y, z) satisfying either ax + by < 0
or ax + by > 0 (see case C in Fig. 3).

Tr 0

Tr

Tr 0

Tr 0

Tr 0

Tr 0

Tr 0

Tr

Tr 0

A

FIG. 3. An intuitive view of the detection range of each type
of coherence witness for the qubit system. Here, the red line on
the z axis represents the set of incoherent states. The orange disk
represents the states ρ with Tr[W ρ] = 0. The purple disk represents
the coherent states ρ with Tr[W ρ] = R.

Therefore, prior knowledge of the trace of the observable
can double the efficiency of observing coherent states.

A coherence criterion (WR, DR, IR) is called finitely com-
pletable if all the coherent states can be detected by a finite
set of coherent witnesses in W c

R . That is, a finite set {Wi}n
i=1 ⊆

W c
R such that

D\� =
n⋃

i=1

CR[Wi]

exists. Otherwise, we call it finitely incompletable.
Theorem 2. Characterization of finite completeness. Let R

be an element in R. The coherence criterion (WR, DR, IR) is
finitely completable if and only if R is 0 or �.

Proof. From Eqs. (3) and (4) and the definition of
finitely completable, both coherence criteria (W0, D0, I0) and
(W�, D�, I�) are finitely completable.

Now we show that for any positive real number R, the
criterion (WR, DR, IR) is finitely incompletable. If not, some
R > 0 and a set W := {Wi}n

i=1 ⊆ W c
R such that D \ � =

∪n
i=1CR[Wi] exist. That is, for any coherent states ρ, some

W ∈W such that Tr[W ρ] < 0 or Tr[W ρ] > R always exists.
On the other hand, we set ρε = Id

d + εH , where H = |1〉〈2| +
|2〉〈1| and ε ∈ (0, 1

d ), and M = max(|Tr{[W − �(W )]H}| :
W ∈W) + 1. Note that

Tr[W ρε] = R

d
+ εTr{[W − �(W )]H}.

If we set ε = min{ R
2dM , 1

2d }, then we have 0 < 1
2d R �

Tr[W ρε] � 3
2d R < R for every W ∈W. However, ρε is a

coherent state which cannot be detected by all the witnesses
inW.

Now we show that the criterion (W>, D>, I>) is
also finitely incompletable. For any finite set W> :=
{Wi}n

i=1 ⊆ W c
>, we define M1 := max(|Tr{[W − �(W )]H}| :

W ∈W) + 1, and m1 := min{Tr[W ] : W ∈W>} > 0. If we
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set ε1 = min{ m1
2dM1

, 1
2d }, then Tr[W ρε1 ] � m1

2d > 0 for every
W ∈W>. That is, ρε1 is a coherent state whose coherence
cannot be detected by the witnesses inW>.

From Theorem 2, only those criteria that include all ob-
servables with traces being zero are finitely completable. In
this sense, types A and B1 are quite different from types
B2 and C. Although the criteria and the plots (presented in
Fig. 3) of types B1 and B2 seem the same, they are, in fact,
inequivalent.

In the following we discuss the conditions when the finite
intersections of CR[W ] may be empty, for which the case with
R being � was discussed in Ref. [54].

Theorem 3. Property of finite intersection. Let R ∈ R and
W := {Wi}n

i=1 ⊆ W c
R . Then the following statements hold.

(1) For the case R ∈ (0,∞) and any subset W′ with
cardinality |W′| � � n

2�, if tW > 0 for each W ∈W′ and∑
W ∈W′ tW = 1 always exist such that

∑
W ∈W′ tW W � 0, then⋂n

i=1 CR[Wi] = ∅.

(2) If R is > or �, then
⋂n

i=1 CR[Wi] = ∅ if and only if
there is some non-negative ti � 0 and

∑n
i=1 ti = 1 such that∑n

i=1 tiWi is positive semidefinite.
(3) If R = 0, a common coherent state exists that can be

detected by all Wi via the criterion of type C. That is, we
always have

C0[W] :=
n⋂

i=1

C0[Wi] �= ∅.

Moreover, the cardinality of C0[W] is infinity. That is, given
any set of finitely many coherent witnesses, they share in-
finitely many common coherent states.

Proof. (1) If ρ ∈ ⋂n
i=1 CR[Wi], then Tr[Wiρ] < 0 or

Tr[Wiρ] > R. Let I0 := {i | Tr[Wiρ] < 0, 1 � i � n} and
IR := {i | Tr[Wiρ] > R, 1 � i � n}. Without loss of gen-
erality, we assume the set IR is larger than I0. Then,
correspondingly, the cardinality must be greater than or
equal to � n

2�. Define W′ := {Wi|i ∈ IR}. By assumption,
there are ti > 0 for i ∈ IR such that

∑
i∈IR

ti = 1 and W :=∑
i∈IR

tiWi � 0. Therefore, all eigenvalues of W are non-
negative. Moreover, as Tr[W ] = R, all the eigenvalues of W
are less than or equal to R. Hence, W � RId , which implies
Tr[W ρ] � R. On the other hand, for each i ∈ IR, we have
Tr[Wiρ] > R, which leads to

Tr[W ρ] =
∑
i∈IR

tiTr[Wiρ] > R
∑
i∈IR

ti = R

and thus a contradiction. Hence,
⋂n

i=1 CR[Wi] = ∅.

(2) The argument for the case that R is � can be directly
referred to Ref. [54]. When R is >, as D> and I> are the same
as D� and I�, the proof goes similarly to the one given in [54].

(3) We prove the statement by induction on n. First, we
consider the case with n = 2. As both C0[W1] and C0[W2] are
nonempty, we assume ρ ∈ C0[W1] and σ ∈ C0[W2]. We may
assume that ρ, σ /∈ C0[W1] ∩ C0[W2], i.e., ρ /∈ C0[W2] and
σ /∈ C0[W1]. Equivalently, we have Tr[W2ρ] = Tr[W1σ ] = 0.

Then for any λ ∈ (0, 1), the matrix πλ := λρ + (1 − λ)σ ∈
D. Moreover, Tr[W1πλ] = λTr[W1ρ] �= 0 and Tr[W2πλ] =
(1 − λ)Tr[W2σ ] �= 0. That is, for each λ ∈ (0, 1), the state πλ

belongs to C0[W1] ∩ C0[W2]. Now suppose that the statement

holds when the cardinality of the set of coherence witnesses is
equal to n − 1. LetW = {W1,W2, . . . ,Wn}. We defineW1 =
{W1, . . . ,Wn−1} and W2 = {W2, . . . ,Wn}. By induction, the
two sets

C0[W1] :=
⋂

W ∈W1

C0[W ], C0[W2] :=
⋂

W ∈W2

C0[W ]

are nonempty. Suppose ρ ∈ C0[W1] and σ ∈ C0[W2], i.e.,
Tr[Wi ρ] �= 0 and Tr[Wi+1σ ] �= 0 for all i = 1, 2, . . . , (n −
1). If Tr[Wnρ] �= 0 (Tr[W1σ ] �= 0), we have ρ ∈ C0[W]
(σ ∈ C0[W]), which proves the nonemptiness of C0[W].
Therefore, we might assume Tr[Wnρ] = 0 and Tr[W1σ ] =
0. Similarly, for each λ ∈ (0, 1), we define πλ := λρ +
(1 − λ)σ ∈ D. Then we have Tr[W1πλ] = λTr[W1ρ] �= 0 and
Tr[Wnπλ] = (1 − λ)Tr[Wnσ ] �= 0. Moreover, for each inte-
ger i ∈ [2, n − 1], we have ai := Tr[Wiρ] �= 0 and bi :=
Tr[Wiσ ] �= 0. Define fi(λ) := Tr[Wiπλ] = λai + (1 − λ)bi =
(ai − bi )λ + bi and f (λ) := ∏n−1

i=2 fi(λ). If ai = bi for all i ∈
[2, n − 1], we have Tr[Wiπλ] = bi �= 0. Then πλ ∈ C0[W].
If not, f (λ) is a nontrivial (not a constant) polynomial of λ.

Therefore, there are only finite λ’s, say, λ j ( j = 1, 2, . . . , N )
such that f (λ j ) = 0. Therefore, for each λ ∈ (0, 1) \ {λ j}N

j=1,

we always have f (λ) �= 0. Hence, Tr[Wiπλ] = fi(λ) �= 0 for
all integer i ∈ [2, n − 1], which also holds for i = 1, n. There-
fore, they all belong to the set C0[W].

For each coherent state ρ, a witness Wρ exists which cannot
detect the coherence of ρ, i.e., ρ /∈ C0[Wρ]. If C0[W] is finite,
suppose C0[W] = {ρ j}m

j=1. Then we have( ∩n
i=1 C0[Wi]

) ⋂( ∩m
j=1 C0[Wρ j ]

) = ∅,

which leads to a contradiction. �
From Theorem 3, we conclude that the coherence criterion

of type C is different from the other types. Moreover, we
can also conclude that the coherence criterion of type A is
also different from type B (that is, types B1 and B2) from the
following examples.

First, there do exist Wi’s ∈ W c
R which satisfy all the con-

ditions of statement 1 in Theorem 3. Take d = n = 3, for
example,

W1 =

⎡
⎢⎣

R
2 0 R

6

0 R
2

R
6

R
6

R
6 0

⎤
⎥⎦, W2 =

⎡
⎢⎣

0 R
6

R
6

R
6

R
2 0

R
6 0 R

2

⎤
⎥⎦,

W3 =

⎡
⎢⎣

R
2

R
6 0

R
6 0 R

6

0 R
6

R
2

⎤
⎥⎦.

We easily check that 1
2W1 + 1

2W2,
1
2W2 + 1

2W3,
1
2W1 +

1
2W3, and 1

3W1 + 1
3W2 + 1

3W3 satisfy the assumed conditions.
Hence, CR[W1] ∩ CR[W2] ∩ CR[W3] = ∅. Moreover, for the
case with d = n = 2, if we set

W1 =
[

R −R
2

−R
2 0

]
, W2 =

[
0 R

2
R
2 R

]
, ρ =

[
1
4

1
3

1
3

3
4

]
,

then 1
2W1 + 1

2W2 = RI2. Hence, C>[W1] ∩ C>[W2] =
C�[W1] ∩ C�[W2] = ∅. However, Tr[W1ρ] = − R

12 < 0,
and Tr[W2ρ] = 13

12 R > R. Therefore, ρ ∈ CR[W1] ∩ CR[W2].
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Now we study more about the inclusion and identity rela-
tions among the family of sets CR[W ], where W ∈ WR.

Theorem 4. Property of inclusion or identity. Let R ∈ R and
W1,W2 ∈ W c

R . The following statements hold.
(1) If R ∈ (0,∞), then CR[W1] = CR[W2] if and only if

W1 = W2 or W1 + W2 = RId (the statement is true only if d =
2).

(2) If R is > or �, CR[W1] = CR[W2] if and only if r ∈
R+ := {r ∈ R | r > 0} such that W2 = rW1 exists. Moreover,
CR[W2] ⊆ CR[W1] if and only if a ∈ R+ and a positive-
semidefinite operator P such that W2 = aW1 + P exist.

(3) If R = 0, then C0[W1] = C0[W2] if and only if some
r ∈ R \ {0} such that W2 = rW1 exist (we call two such wit-
nesses R equivalent). If W1 and W2 are not R equivalent, then
C0[W1] �⊆ C0[W2], and C0[W2] �⊆ C0[W1].

Proof. We first prove the statements 2 and 3.
For statement 2, for any Hermitian matrix W ∈ H,

define SW := {ρ ∈ D| Tr[W ρ] = 0} and MW := {X ∈
Matd (C)| Tr[W X ] = 0}. Suppose that CR[W1] = CR[W2]. We
claim that SW1 = SW2 . Otherwise, without loss of generality,
we assume that ρ ∈ SW1 and ρ /∈ SW2 , i.e., Tr[W1ρ] = 0
and Tr[W2ρ] �= 0. If Tr[W2ρ] < 0, then ρ ∈ CR[W2] and
ρ /∈ CR[W1], which contradicts the assumption. Therefore,
Tr[W2ρ] > 0. Now choosing any σ ∈ CR[W1], we have
Tr[W1σ ] < 0 and Tr[W2σ ] < 0. For each ε ∈ (0, 1),
define ρε = εσ + (1 − ε)ρ ∈ D. Then for small enough ε,
we have Tr[W1ρε] < 0 but Tr[W2ρε] > 0, which implies
that ρε ∈ CR[W1] but ρε /∈ CR[W2]. Hence, we obtain again
a contradiction. Therefore, SW1 = SW2 . By Lemma 2 in the
Appendix, MW1 = MW2 implies W2 = cW1 for some nonzero
complex number. With this at hand, it is easy to show that c
is, in fact, a positive real number. The other direction of the
first statement in statement 2 is obvious.

Now we prove the second statement. Suppose that there
are a ∈ R+ and a positive-semidefinite operator P such that
W2 = aW1 + P. For any ρ ∈ CR[W2], we have 0 > Tr[W2ρ] =
aTr[W1ρ] + Tr[Pρ]. This implies that Tr[W1ρ] < 0 because
we always have Tr[Pρ] � 0 for positive-semidefinite P.

Therefore, ρ ∈ CR[W1] and CR[W2] ⊆ CR[W1].
Suppose that CR[W2] ⊆ CR[W1]. We prove that a ∈ R+

and a positive-semidefinite operator P such that W2 = aW1 +
P exist. Set t1 = Tr[W1] and t2 = Tr[W2]. Clearly, t1, t2 � 0
as W1,W2 ∈ H�. We prove the conclusion according to the
following four cases.

(a) Both t1 and t2 are positive. Note that CR[W1] =
CR[W1/t1] and CR[W2] = CR[W2/t2]. Following the proof of
Lemma 1 and Corollary 1 in Ref. [55] (which is correct under
the assumption that the traces of the observables are 1), we
have W2/t2 = a1W1/t1 + Q for some positive a1 and positive-
semidefinite Q. Therefore, W2 = aW1 + P, where a = a1t2/t1
and P = t2Q.

(b) t1 = 0, but t2 > 0. It is easily verified that CR[W2] ⊆
CR[W1 + W2] ⊆ CR[W1]. Similarly, we have

W2/t2 = a1(W1 + W2)/t2 + Q (5)

for some positive a1 and positive-semidefinite Q. From
the trace of Eq. (5), we obtain 1 = a1 + Tr[Q]. Therefore,
0 < a1 � 1. Clearly, a1 �= 1; otherwise, Tr[Q] = 0 implies
that Q = 0 and W1 = −t2/a1Q = 0 is not a nontrivial co-
herent witness. Hence, 0 < a1 < 1. Equation (5) can be

reexpressed as

W2 = a1

1 − a1
W1 + t2

1 − a1
Q.

(c) t1 > 0, but t2 = 0. We easily show that CR[W2] ⊆
CR[W1 + W2] ⊆ CR[W1]. Similarly, we have

(W1 + W2)/t1 = a1W1/t1 + Q (6)

for some positive a1 and positive-semidefinite Q. The trace of
Eq. (6) gives rise to 1 = a1 + Tr[Q]. Therefore, 0 < a1 � 1.
Clearly, a1 �= 1; otherwise, W2 = t1Q = 0 cannot be a non-
trivial coherent witness. We can rewrite Eq. (6) as (1 −
a1)W1 + W2 = t1Q and obtain CR[W2] ⊆ CR[(1 − a1)W1 +
W2] ⊆ CR[W1]. On the other hand, CR[t1Q] = ∅. Therefore,
this case cannot happen as CR[W2] �= ∅.

(d) t1 = t2 = 0. For this case, we show that this can hap-
pen only when W2 = aW1. In fact, for small enough ε > 0,
CR[W2 + εId ] ⊆ CR[W2] ⊆ CR[W1]. By the argument of case
b, we have aε > 0 and a positive-semidefinite operator Pε such
that W2 + εId = aεW1 + Pε , which implies that the diagonals
of Pε are all ε. Moreover, as Pε is positive semidefinite, the
module of each off-diagonal element must be smaller than ε.
The matrix Pε converges to the zero matrix (up to the entries)
when ε → 0. Taking the limit ε → 0, we have W2 = aW1.

For statement 3, if W2 = rW1 for r �= 0, we always have
Tr[W2ρ] = rTr[W1ρ] for all ρ ∈ D. In this case, Tr[W2ρ] = 0
if and only if Tr[W1ρ] = 0. Hence, C0[W2] = C0[W1]. Con-
versely, if C0[W1] = C0[W2], we have, equivalently, SW1 =
SW2 . By Lemma 2 in the Appendix, we get MW1 = MW2 . By
definition, MW1 is just the orthogonal complement space to
the vector W1. Hence, the space has dimension d2 − 1. So the
vectors that are orthogonal to each element in MW1 are just
CW1. Therefore, there is a nonzero c ∈ C such that W2 = cW1.
Since W2 is Hermitian, we have c ∈ R.

We prove the second statement in statement 3 by con-
tradiction. Without loss of generality, we may assume that
C0[W1] ⊆ C0[W2]. Then we have MW1 ⊆ MW2 . As both are
a linear space of the same dimension d2 − 1, they must be
equal, i.e., MW1 = MW2 . Similar to the above derivations, we
deduce that W2 and W1 are R equivalent, which contradicts
the assumption.

For case 1, if R is positive real and W ∈ W c
R , we have

CR[W ] = C�[W ] ∪ C�[RId − W ]. If RId − W is not positive
semidefinite, then C�[RId − W ] �= ∅. In this setting, CR[W ]
is a disjoint union of two convex sets.

Suppose that CR[W1] = CR[W2]. If C�[RId − W1] = ∅,
we must have C�[RId − W2] = ∅, which yields C�[W1] =
C�[W2]. By case 2, W2 = rW1 for some positive r. Taking into
account the trace, we must have r = 1. If C�[RId − W1] �=
∅, we have C�[RId − W2] �= ∅. Moreover, either C�[W1] =
C�[W2] or C�[W1] = C�[RId − W2]. For the former case,
we have shown that W1 = W2. For the latter case, we also
have C�[W2] = C�[RId − W1], from which we can deduce
(d − 1)W1 = RId − W2 and (d − 1)W2 = RId − W1. If d > 2,
we have W1,W2 ∝ Id , which contradicts W1,W2 ∈ W c

R . How-
ever, for the case with d = 2, the two equations merge into
W1 + W2 = RId .

Moreover, for d = 2 we have Tr[W1ρ] + Tr[W2ρ] = R for
any ρ ∈ D. Hence, Tr[W1ρ] < 0 if and only if Tr[W2ρ] >
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R, and Tr[W1ρ] > R if and only if Tr[W2ρ] < 0. Therefore,
CR[W1] = CR[W2]. �

With the above results, we are ready to give a full classifi-
cation of the variant coherence criteria.

Theorem 5. There are exactly four inequivalent classes
among the variant coherence criteria {(WR, DR, IR) | R ∈ R}.

Proof. First, we have shown that the criteria of type A are
all equivalent.

Second, the criterion of type C is not equivalent to other
types. In fact, in the settings of A, B1, and B2, there are always
two witnesses, W1 and W2, such that CR[W1] ∩ CR[W2] = ∅.
However, that is not the case when R = 0.

Third, the criterion of type B2, i.e., (W�, D�, I�), is not
equivalent to types A and B1. In fact, the criterion of type B2

is finitely completable, but the other two are not.
Moreover, C>[W ] are always convex for each W ∈ W c

>.
But this fact may not be true for CR[W ] when R > 0.
Therefore, criteria of types A and B1 are inequivalent. To con-
clude we have exactly four inequivalent classes of coherence
criteria. �

IV. CONCLUSION AND DISCUSSIONS

Based on prior knowledge of observables, we have pre-
sented a series coherence criteria which detect coherence
better than the usual ones without prior knowledge of observ-
ables. Moreover, through a systematic and rigorous study of
the properties of criteria such as completeness, finite com-
pleteness, finite intersection, and inclusion, we have singled
out four classes of inequivalent coherence criteria. These re-
sults help to deepen our understanding of coherence-detection
methodologies and thereby highlight advancements in quan-
tum technologies.

There are also some interesting problems left, such as the
condition of the inclusion of CR[W ] when R > 0 for statement
1 of Theorem 4. From a practical perspective, delving into
the advantages of coherence witnesses when prior knowl-
edge is retained, particularly in scenarios involving noise in
the measurement of the operator value, is a compelling and
worthwhile research avenue. Further exploration of coherence
detection enriched by prior knowledge may promise to unlock
even greater potential. It would also be appealing to extend
our scheme to deal with the case of entanglement witnesses.
Our research may serve as a catalyst for future investigations
of quantum coherence detection, as well as the detection of
other resources like quantum correlations.
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APPENDIX: TWO LEMMAS AND A PROOF OF THE
CLAIM W c

R = WR ∩ �−

In order to prove the claim W c
R = WR ∩ �−, we need the

following lemma.
Lemma 1. If W ∈ H� \ {0} is not positive semidefinite,

then some density matrices ρ ∈ D exist such that Tr[W ρ] <

0. Moreover, a positive density matrix σ ∈ D also exists such
that Tr[W σ ] = 0.

Proof. From the given assumption, the matrix W has both
positive and negative eigenvalues. Suppose the spectral de-
composition of W is

W =
∑
λi>0

λi|ei〉〈ei| +
∑
λ j<0

λ j |e j〉〈e j | +
∑
λk=0

λk|ek〉〈ek|,

where {|ei〉}λi>0 ∪ {|e j〉}λ j<0 ∪ {|ek〉}λk=0 is an orthonormal
basis of the system H . For any fixed j such that λ j < 0,
the state ρ = |e j〉〈e j | satisfies Tr[W ρ] = λ j < 0. Set α :=∑

λi>0 λi and β := ∑
λ j<0 |λ j |. Clearly, α, β > 0. We define

Q =
∑
λi>0

β|ei〉〈ei| +
∑
λ j<0

α|e j〉〈e j | +
∑
λk=0

|ek〉〈ek|.

Then Q is a positive matrix. Moreover, we have

Tr[W Q] = β
∑
λi>0

λi + α
∑
λ j<0

λ j = βα + α × (−β ) = 0.

Then σ = Q/Tr[Q] is the density matrix we wanted. That is,
σ is a positive matrix and satisfies Tr[W σ ] = 0.

Proof of the claim W c
R = WR ∩ �−. Clearly, both sets

are contained in WR \ {0}. For any W ∈ WR ∩ �−, W has
some negative eigenvalue. From Lemma 1, a ρ exists such
that Tr[W ρ] < 0. Hence, CR[W ] �= ∅ for such W . Therefore,
WR ∩ �− ⊆ W c

R .
Now suppose that W ∈ WR \ {0} but W /∈ WR ∩ �−.

Therefore, W must be positive semidefinite (which is impos-
sible when R = 0), which implies that Tr[W ρ] � 0 for all
ρ ∈ D. Therefore, when R is � or >, CR[W ] = ∅. If R is a
positive real number, all the eigenvalues of W must be less
than or equal to R. Hence, we have 0 � W � RId . Therefore,
0 � Tr[W ρ] � R for all ρ ∈ D and CR[W ] = ∅ for such W .
No matter what R is, the set CR[W ] = ∅. This implies that
such a W is not an effective coherence witness, i.e., W /∈ W c

R .
Hence, we must have WR ∩ �− = W c

R . �
In the following, we present another lemma that is reused

multiple times throughout this paper.
Lemma 2. Let R ∈ R and W ∈ W c

R be a coherent
witness. Define SW := {ρ ∈ D| Tr[W ρ] = 0}, HW := {H ∈
H| Tr[W H] = 0}, and MW := {X ∈ Matd (C)| Tr[W X ] =
0}. Then the following sets are equal: spanC (SW ) =
spanC (HW ) = MW .

Proof. Notice that each W ∈ W c
R is not positive semidefi-

nite. From Lemma 1, there is a positive state ρ ∈ D such that
Tr[W ρ] = 0. So ρ ∈ SW by definition.
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Clearly, SW ⊆ HW ⊆ MW by definition. Therefore,
spanC (SW ) ⊆ spanC (HW ) ⊆ MW . First, we show that
MW ⊆ spanC (HW ). In fact, for any X ∈ MW , we
have Tr[W X ] = 0. Therefore, Tr[W X †] = Tr[X †W ] =
Tr[X †W †] = Tr[(W X )†] = Tr[W X ]† = 0. Then we have
Tr[W (X + X †)] = 0 and Tr[W (iX − iX †)] = 0. However,
since H1 = (X + X †) and H2 = i(X − X †) ∈ H, they both
belong to HW . Notice that X = (H1 − iH2)/2. Hence, it
belongs to spanC (HW ).

Now we prove that spanC (HW ) ⊆ spanC (SW ). It suffices
to show that HW ⊆ spanC (SW ). For any H ∈ HW , we have

H ∈ H and Tr[W H] = 0. We can find small enough ε ∈ (0, 1)
such that Pε := εH + (1 − ε)ρ is positive. Set N = Tr(Pε ).
Then ρε := Pε/N = ε

N H + 1−ε
N ρ ∈ D. Moreover, we have the

equality

Tr[W ρε] = ε

N
Tr[W H] + 1 − ε

N
Tr[W ρ] = 0.

Therefore, ρε ∈ SW . Note that H can be written as a linear
combination of ρε and ρ. Hence, HW ⊆ spanC (SW ), which
completes the proof. �
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