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Anyonic quantum multipartite maskers in the Kitaev model
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The structure of quantum mechanics forbids a bipartite scenario for masking quantum information, however,
it allows multipartite maskers. The Latin squares are found to be closely related to a series of tripartite maskers.
This adds another item, significantly different from the original no-cloning theorem, to the no-go theorems. On
the other hand, anyonic excitations in two dimensions exhibit exotic collective behaviors of quantum physics, and
open the avenue of fault-tolerant topological quantum computing. Here, we give the Latin-square construction
of Abelian and Ising anyons in the Kitaev model and study the maskable space configuration in anyonic space.
The circling and braiding of Kitaev anyons are masking operations on extended hyperdisks in anyonic space. We
also realize quantum information masking in a teleportation way in the Kitaev Ising anyon model.
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I. INTRODUCTION

Several no-go theorems have been founded in the study of
quantum information, such as no-cloning [1,2], no-deleting
[3], no-broadcasting [4,5], and no-hiding theorems [6], which
describe the difference between the quantum and classical
worlds. Recently, Modi et al. [7] introduced another item,
the no-masking theorem, to the family of no-go theorems.
That is, it is impossible to mask an arbitrary state into bipar-
tite quantum systems. However, the task can be achieved in
multipartite scenarios, which reveals a significant difference
between the no-masking theorem and the original no-cloning
theorem. Li et al. [8] presented a unified construction of
tripartite scenarios based on the Latin squares. Subsequently,
probabilistic and approximate masking protocols are also
studied [9].

Quantum information masking is crucial to many quantum
communication topics, such as quantum secret sharing [10,11]
and quantum bit commitments [12,13]. Optical experimental
demonstrations of masking schemes have been reported very
recently [14,15]. However, quantum masking in condensed-
matter (many-body) systems is still absent.

This paper is devoted to the investigation of quantum infor-
mation masking in anyons, which are quasiparticles living in
two-dimensional condensed-matter systems. Anyons do not fit
into the usual statistics of fermions and bosons, but obey a new
form of fractional statistics, closely related with their famous
braiding and fusion rules [16–25]. The nontrivial topological
properties of anyons in the Kitaev spin-lattice model opened
the avenue of topological quantum computing [26–31].

The quantum information masking experiment is a tech-
nology that uses quantum mechanics to mask and protect
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information. Although the quantum information masking
experiment has many advantages in theory, it still faces
many difficulties and challenges in practical applications.
The Kitaev anyon system provides different ideas and meth-
ods for solving these problems in quantum information
masking, making it a strong contender for experimental
implementation.

(1) The fragility of quantum states: Quantum states are
very fragile and are easily affected by noise and interference
in the environment, leading to information loss and errors.
Therefore, how to effectively protect and manipulate quan-
tum states in quantum information masking experiments is a
huge challenge. The Kitaev anyon system is a topologically
protected system that can resist various forms of noise such as
phase noise. There is an energy gap between the ground-state
energy and excited-state energy of anyon systems, which can
make the system immune to local errors. This makes anyon
systems robust for quantum computation and quantum infor-
mation [26–29].

(2) Operation and control of qubits: In practical applica-
tions, the operation and control of qubits require very precise
and meticulous attention, otherwise it will lead to information
loss and errors. Therefore, how to achieve precise and reliable
control of quantum bits is also an important challenge faced
by quantum information masking experiments. The toric code
(or Kitaev surface code) provides a feasible and relatively
simple manipulation method [27,30].

(3) Generation and control of quantum entanglement:
Quantum entanglement is one of the key elements for re-
alizing quantum information masking. However, in practical
experiments, generating and controlling high-quality quantum
entanglement remains a technical challenge. The nonlocal
topological properties of particles in the Kitaev model provide
a potential solution to this problem. The topological properties
describe the overall properties of the system rather than the
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properties of individual particles. In addition, the ground state
of a system of host non-Abelian anyons is usually highly
entangled [26–29].

(4) The masking scheme should be universal for quantum
circuits, and a typical example, Ising anyons, are not intu-
itively universal. In the schemes of Li et al. [8], Latin squares
are used to realize masking in normal Hilbert spaces. But
the anyonic space is composed of the direct product of each
Hilbert subsystem space and the fusion Hilbert spaces of all
charges,

Hc
AB = ⊕

ab
Ha

A ⊗ Hb
B ⊗ V c

ab, (1)

where Ha
A is the space of charge a in the Hilbert subsystem

space A, and the space V c
ab is the fusion space containing the

fusion rules (details are shown in the following). In the process
of fusion (in the space V c

ab), the braiding of charges induces the
topological properties and causes entanglement. The braiding
process of Ising anyons not only generates additional phases,
but also accompanies the exchange of particles (the creation
and the annihilation of new particles—see Figs. 3 and 4).
It is intriguing whether they will interfere with the masking
process. Our work demonstrates that masking can still be
achieved, even in the case of Ising anyons.

In the present work, we construct the Latin-square masking
scenarios of Abelian anyons and Ising anyons (the simplest
non-Abelian anyons) in the Kitaev model. The braiding op-
erations on anyons manipulate the states in the maximal
maskable space, which are extended hyperdisks. This mask-
able space configuration of anyons allows a series of masking
schemes in many-body systems. We also demonstrate the
process of masking based on teleportation in the Kitaev Ising
anyon model.

This paper is organized as following: In the next section,
we present the masking protocol in a system of Abelian
anyons using the Latin-square construction. Section III shows
the process of masking in non-Abelian Ising anyons, which
has an explanation based on quantum teleportation. Finally,
the last section presents a summary.

II. THE KITAEV MODEL AND THE ABELIAN 1/2-ANYON

The Kitaev model is a honeycomb spin-lattice model in
which each 1/2 spin is located on the vertex of the hexagon.
Fermions and Z2 vortices are the excitation states of this
exactly solvable model. The excitations are divided into two
cases, Abelian anyons and non-Abelian anyons, and further-
more 16 types of statistics with Chern number c mod 16.
Bosons and gapped fermions are Abelian anyons which have
an even Chern number c. Vortices and gapless fermions are
non-Abelian anyons whose Chern numbers are odd [26,27].

A. Review of the Abelian 1/2-anyon and braiding rules

Wilczek [32,33] first introduced the Abelian anyons which
are represented by the braiding group. He pointed out that
the braiding of different quasiparticles for one circle caused
a Aharonov-Bohm phase exp(i2πkα) (α is the statistical pa-
rameter and k is the winding number) [32–34]. The Abelian
anyons have four superselection sectors: 1 (the vacuum), vor-
tices e and m, and fermion ε (we ignore another case in which

FIG. 1. The braiding operation of a and b. The fusion of a and b
is c.

the vortices are two mutual antiparticles). There are two cases
of Abelian anyons: One is the Chern number c = 0, 8, and
the other is c = ±4. Both of them are mod 16 with different
topological spins and Frobenius-Schur indicators. Here, we
consider the simplest Abelian anyons (called Abelian anyons
for short) with a Chern number c = 0, topological spin θ = 1,
and Frobenius-Schur indicator κ = 1. The fusion rules of the
Abelian anyons give

e × e = m × m = 1, ε × ε = 1, (2)

ε × e = m, ε × m = e, e × m = ε. (3)

The Abelian anyons are mod 2, which means that two of the
same quasiparticles annihilate to the vacuum. The braiding
operation can be represented by Rxy

z as in Fig. 1.
In this case, as shown in Fig. 2, all associativity relations

are trivial and the braiding rules are

Rem
ε = 1, Rme

ε = −1, Reε
m = 1, Rεe

m = −1,

Rεm
e = 1, Rmε

e = −1, Ree
1 = Rmm

1 = 1, Rεε
1 = −1.

(4)

The vortices e and m are bosons. The exchange of e and m is
different from that of m and e (Rem

ε = 1, Rme
ε = −1). With the

help of the representation of Gentile statistics, we gave a phys-
ical image for the exchange of different Abelian anyons [35].
Braiding different Abelian anyons depends on the topology
of the particles. Braiding two different quasiparticles for one
circle gives an additional phase −1 (e.g., Rem

ε Rme
ε = −1) to the

state, so these kinds of anyons are called Abelian 1/2-anyons
(exp[i2π · (1/2) · 1] = −1).

(a) (b)

FIG. 2. The braiding (circling) of e and m. (a) An e particle cir-
cling an m particle counterclockwise corresponds to Rme

ε · Rem
ε = −1.

(b) There is no braiding in this case, Rme
ε · (Rme

ε )−1 = 1, where the
two curves are separated.
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B. Masking protocol of the Abelian 1/2-anyon

According to the orthogonality of the matrix elements,
Latin squares are useful tools in quantum information mask-
ing. The matrix elements in each row and column of the Latin
squares are all different, which leads to the disappearance
of the cross terms during a trace. Two mutually orthogonal
Latin squares are those matrices whose products of the matrix
elements at the same locations are all different. Based on
Theorem 2 in Ref. [8], for a d-dimensional space, the quan-
tum states can be masked in Cd ⊗ Cd ⊗ Cd systems. In the
masking protocol of the Abelian 1/2-anyons, the space is four
dimensional (four superselection sectors {|1〉, |e〉, |m〉, |ε〉}).
We define three matrices A, B, C in C4 ⊗ C4 ⊗ C4,

A ≡

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ ⊗ (1 e m ε) or

⎛
⎜⎜⎝

1
e
m
ε

⎞
⎟⎟⎠ ⊗ (1 1 1 1),

(5)
where B and C are two mutually orthogonal Latin squares in
C4. The more ideal case is where A, B, C are three mutually
orthogonal Latin squares in C4. The matrix A can extend the
restrictive condition to Eq. (5). The masking protocol process
maps {| j〉||1〉, |e〉, |m〉, |ε〉} to

|ψ j〉 = 1

2

∑
k

|AjkB jkCjk〉. (6)

So we have the encoding process as

|�〉 =
∑

j

α j |ψ j〉 = 1

2

∑
jk

α j

∣∣AjkB jkCjk
〉
. (7)

In this case,

TrAB(|�〉〈�|) = TrAC (|�〉〈�|) = TrBC (|�〉〈�|) = I

4
,

where I is the identity matrix. The quantum information is
stored in the correlation of the tripartite system.

What calls for special attention is that the braiding of
anyons (exchange) and the braiding for circles (circling),
which are equal to operations on extended hyperdisks (which
differ from hyperdisks on normal Hilbert space), do not affect
the masking process, because the state vectors and their conju-
gations cancel out the phase factors attributed to the braidings.
The cases in point are the exchange of B and C or braiding C
around B for one circle. In other words, quantum information
masking is invariant under the braiding operations of Abelian
anyons. The details are given below.

Proof. We give one example and define

A =

⎛
⎜⎜⎝

1 e m ε

1 e m ε

1 e m ε

1 e m ε

⎞
⎟⎟⎠, B =

⎛
⎜⎜⎝

1 e m ε

e 1 ε m
m ε 1 e
ε m e 1

⎞
⎟⎟⎠,

C =

⎛
⎜⎜⎝

1 e m ε

ε m e 1
e 1 ε m
m ε 1 e

⎞
⎟⎟⎠. (8)

B and C are mutually orthogonal Latin squares. An arbitrary
state α|1〉 + β|e〉 + γ |m〉 + δ|ε〉 is mapped to a tripartite sys-
tem |�〉,

→ 1
2 [α(|111〉 + |eee〉 + |mmm〉 + |εεε〉)

+ β(|1eε〉 + |e1m〉 + |mεe〉 + |εm1〉)

+ γ (|1me〉 + |eε1〉 + |m1ε〉 + |εem〉)

+ δ(|1εm〉 + |emε〉 + |me1〉 + |ε1e〉)], (9)

TrAB(|�〉〈�|) = 1

2

∑
jk

|α j |2|Cjk〉〈Cjk| = I

4
. (10)

With a similar operation, the other two partial traces
are TrAC (|�〉〈�|) = TrBC (|�〉〈�|) = I/4. The mapping of
Eq. (7) is indeed a masking protocol.

Now we show the braiding (exchange) of B and C. Accord-
ing to Eq. (4), braiding B and C gives

→ 1
2 [α(|111〉 + |eee〉 + |mmm〉 + |εεε〉)

+ β(Reε|1eε〉 + |e1m〉 + Rεe|mεe〉 + |εm1〉)

+ γ (Rme|1me〉 + |eε1〉 + |m1ε〉 + Rem|εem〉)

+ δ(Rεm|1εm〉 + Rmε|emε〉 + |me1〉 + |ε1e〉)]. (11)

It can be proved that we still have

TrAB(|�〉〈�|) = TrAC (|�〉〈�|) = TrBC (|�〉〈�|) = I

4
.

Exchanging A and C, and A and B is similar.
Next, when we braid C around B for one circle, so we have

→ 1
2 [(α|111〉 + |eee〉 + |mmm〉 + |εεε〉)

+ β(ReεRεe|1eε〉 + |e1m〉 + RεeReε|mεe〉 + |εm1〉)

+ γ (RmeRem|1me〉 + |eε1〉 + |m1ε〉 + RemRme|εem〉)

+ δ(RεmRmε|1εm〉 + RmεRεm|emε〉 + |me1〉 + |ε1e〉)].
(12)

The formula TrAB(|�〉〈�|) = TrAC (|�〉〈�|) = TrBC (|�〉〈�|)
= I/4 is still tenable, and so does braiding any two of A, B,
and C for circles. �

As stated above, it can be said with certainty that all con-
clusions mentioned above are tenable when A, B, and C are
three mutually orthogonal Latin squares.

III. THE ISING ANYON

The algebraic and topological structures in conformal the-
ory lead to the exotic topological properties of non-Abelian
anyons. They are represented in the framework of topolog-
ical quantum field theory whose core is a unitary modular
category. The properties of non-Abelian anyons cannot be de-
scribed as simply as in the Abelian case. Non-Abelian anyons
are those vortices and gapless fermions whose Chern numbers
are odd.

A. Review of the Ising anyon and braiding rules

The simplest non-Abelian anyon is called an Ising anyon
(c = 1 is the Chern number). There are three superselection
sectors: the vacuum 1, the fermion ε, and the vortex σ . For
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FIG. 3. The braiding operation of an Ising anyon. A σ circling
an ε gives a phase factor −1. Two σ ’s circling induces exp(−iπ/4)
and is accompanied with an exchange of an ε.

non-Abelian anyons, the topological spin and the Frobenius-
Schur indicators of vortices are divided into eight pieces,
θσ = exp(iπc/8) and κσ = (−1)(c2−1)/8, and in addition θ1 =
1, θε = −1, κ1 = κε = 1. In the Ising anyon case, θσ =
exp(iπ/8) and κσ = κ = 1. The fusion rules of non-Abelian
anyons are

ε × ε = 1, ε × σ = σ, σ × σ = 1 + ε. (13)

According to the definition of braiding (Fig. 1), the braiding
rules of Ising anyons give (Fig. 3)

Rεε
1 = −1, Rσσ

1 = κe− iπc
8 = e− iπ

8 ,

Rεσ
σ = Rσε

σ = −ic = −i, Rσσ
ε = κe

i3πc
8 = e

i3π
8 . (14)

Besides an additional phase factor exp(−iπ/4), two σ ’s
braiding exchange a fermion ε.

B. Masking protocol of the Ising anyon

In the Ising anyon case, the space is three dimensional
(three superselection sectors {|1〉, |ε〉, |σ 〉}). The quantum in-
formation can be masked in a C3 ⊗ C3 ⊗ C3 Latin-square
construction. We also define the A matrix as

A ≡
⎛
⎝1

1
1

⎞
⎠ ⊗ (1 ε σ ) or

⎛
⎝1

ε

σ

⎞
⎠ ⊗ (1 1 1). (15)

We show the first form of A as an example. The Latin squares
in odd dimensions can be represented by cyclic permutation
operators. Here, we define forward and backward cyclic per-
mutation operators Pc f and Pcb as

Pc f |1, 2, 3, . . . , d〉 = |d, 1, 2, . . . , d − 1〉,
P2

c f |1, 2, 3, . . . , d〉 = |d − 1, d, 1, . . . , d − 2〉,
Pcb|1, 2, 3, . . . , d〉 = |2, 3, 4, . . . , d, 1〉,
P2

cb|1, 2, 3, . . . , d〉 = |3, 4, . . . , d, 1, 2〉. (16)

So B and C are

B =

⎛
⎜⎝ 1

Pc f

P2
c f

⎞
⎟⎠ ⊗ (1 ε σ ) =

⎛
⎝1 ε σ

σ 1 ε

ε σ 1

⎞
⎠, (17)

FIG. 4. The tripartite braiding operation of an Ising anyon.

C =
⎛
⎝ 1

Pcb

P2
cb

⎞
⎠ ⊗ (1 ε σ ) =

⎛
⎝1 ε σ

ε σ 1
σ 1 ε

⎞
⎠. (18)

Again, through the construction of Eqs. (6) and (7), an arbi-
trary state α|1〉 + β|ε〉 + γ |σ 〉 is mapped into

|�〉 = 1√
3

[α(|111〉 + |εεε〉 + |σσσ 〉)

+β(|1σε〉 + |ε1σ 〉 + |σε1〉)

+ γ (|1εσ 〉 + |εσ1〉 + |σ1ε〉)]. (19)

In the same way, we can get TrAB(|�〉〈�|) = TrAC (|�〉〈�|) =
TrBC (|�〉〈�|) = I/3, and the masking process is accom-
plished.

The braiding of non-Abelian anyons is a little complicated.
Based on Eq. (14) and Fig. 3, the circling of ε and σ gives a
phase factor −1, and the circling of two σ ’s induces a phase
factor exp(−iπ/4) that is accompanied by an exchange of one
ε. When circling two of the three particles, circling B around
A, for example, we have

|�〉 = 1√
3

[α(|111〉 − |εεε〉 + e−i π
4 |σσσ 〉)

+β(|1σε〉 + |ε1σ 〉 − |σε1〉)

+ γ (|1εσ 〉 − |εσ1〉 + |σ1ε〉)].

In this case, the phases cased by circling cancel out
each other in |�〉〈�| and TrAB(|�〉〈�|) = TrAC (|�〉〈�|) =
TrBC (|�〉〈�|) = I/3. We can mask the information too, as
does circling of any two particles in other cases. Braiding
(exchange) two adjacent particles, such as A and B or B and
C, is similar. For instance, braiding A and B shows

|�〉 = 1√
3

[α(|111〉 + Rεε|εεε〉 + Rσσ |σσσ 〉)

+β(|1σε〉 + |ε1σ 〉 + Rσε|σε1〉)

+ γ (|1εσ 〉 + Rεσ |εσ1〉 + |σ1ε〉)].

Here, Rσσ has two forms Rσσ
1 or Rσσ

ε according to the
fusion rules. Regardless of the situation, TrAB(|�〉〈�|) =
TrAC (|�〉〈�|) = TrBC (|�〉〈�|) = I/3. The masking process
can be achieved. The exchange of A and C proceeds in two
stages: One is a tripartite braiding (Fig. 4), and the other is the
exchange of B and C. The tripartite braiding is divided into
two parts with different probabilities (Fig. 4). So the mapping

032421-4



ANYONIC QUANTUM MULTIPARTITE MASKERS IN THE … PHYSICAL REVIEW A 109, 032421 (2024)

goes to

|�〉 = 1√
3

[
α

(
|111〉 + (Rεε )3|εεε〉

+ κ

(
Rσσ

1

)2

√
2

|σσσ 〉1 + κRσσ
1 Rσσ

ε√
2

|σσσ 〉ε
)

+β(Rσε|1σε〉 + Rεσ |ε1σ 〉 + Rσε|σε1〉)

+ γ (Rεσ |1εσ 〉 + Rεσ |εσ1〉 + Rσε|σ1ε〉)

]
. (20)

It is worth noting that the states |σσσ 〉1 and |σσσ 〉ε are
mutually orthogonal. Then, as mentioned above, the mask-
ing process is invariant under the exchange of two adjacent
particles. Substituting the values of those braiding opera-
tions, we also conclude the partial traces TrAB(|�〉〈�|) =
TrAC (|�〉〈�|) = TrBC (|�〉〈�|) = I/3. This also confirms that
the braiding and circling of Ising anyons are actually on
extended hyperdisks in the anyonic space of the Kitaev model,
and thus gives an extended support of Ref. [36]. Similar to
the above Abelian part, for Ising anyons, the ideal situation is
that matrices A, B, and C are three mutually orthogonal Latin
squares. In this ideal situation, all of the above discussed are
still established.

C. Masking based on teleportation

It has been proved that there exist certain correlations
between quantum information masking and teleportation. In
Ref. [37], Shang et al. point out that teleportation is a process
which masks the information first during the transference.
Reference [22] gives a quantum teleportation scheme using
Ising anyons. Here, we demonstrate quantum information
masking in a teleportation way in the Kitaev Ising anyon
model. Suppose the state to be teleported is |χ〉 = α|1〉 +
β|ε〉 + γ |σ 〉 (|α|2 + |β|2 + |γ |2 = 1). Alice and Bob share an
entangled quantum channel

|ϕ〉23 = 1√
3

(|11〉 + |εε〉 + |σσ 〉). (21)

Alice has the first and the second particles, and Bob holds the
third one. The state of the whole system is

|�〉123 = 1√
3

(α|1〉 + β|ε〉 + γ |σ 〉)1(|11〉 + |εε〉 + |σσ 〉)23.

(22)
With the help of Eq. (16), the above equation is mapped to

|� ′〉123 = 1√
3

(α|1〉 + β|ε〉 + γ |σ 〉)1(|11〉

+ Pc f 2Pcb3|εε〉 + P2
c f 2P2

cb3|σσ 〉)23, (23)

where Pc f 2 means the forward cyclic permutation operator
which acts on the second particle. The matrices of the second
and the third particles are mutually orthogonal Latin squares.
The quantum information can be masked in the partial sys-
tems. After the operation,

|� ′〉123 = 1
3 [(|χ1〉)12(α|1〉 + β|ε〉 + γ |σ 〉)3

+ (|χ2〉)12(α|1〉 + βω2|ε〉 + γω|σ 〉)3

+ (|χ3〉)12(α|1〉 + βω|ε〉 + γω2|σ 〉)3],

(|χ1〉)12 = |11〉 + |1ε〉 + |1σ 〉 + |ε1〉 + |εε〉
+ |εσ 〉 + |σ1〉 + |σε〉 + |σσ 〉,

(|χ2〉)12 = |11〉 + ω|1ε〉 + ω2|1σ 〉 + ω2|ε1〉 + |εε〉
+ω|εσ 〉 + ω|σ1〉 + ω2|σε〉 + |σσ 〉,

(|χ3〉)12 = |11〉 + ω2|1ε〉 + ω|1σ 〉 + ω|ε1〉 + |εε〉
+ω2|εσ 〉 + ω2|σ1〉 + ω|σε〉 + |σσ 〉, (24)

where ω = e
i2π

3 . The information is transferred from Alice
to Bob. This protocol demonstrates the teleportation process
using a masking mapping.

IV. SUMMARY

In the task of quantum masking, the information infor-
mation encoded in a single system is distributed to the
correlations among a composite system. Modi et al. [7]
pointed out that it is an impossible task in a bipartite sys-
tem, while it can be achieved when more participants are
allowed in the masking process. This phenomenon originated
from the linearity, unitarity, and entanglement in quantum
mechanics.

Here, we adopt exotic anyons in two-dimensional
condensed-matter systems as the platform to realize multipar-
tite masking scenarios. The anyonic space is quite different
from the normal Hilbert space, and the framework of anyonic
algebra is in a unitary braided fusion category. So how to
mask information in the anyonic space and the maskable con-
struction is worth researching and is conceivably complicated.
Based on Theorem 2 in Ref. [8], we present the Latin-square
masking protocols both in Abelian and non-Abelian anyons.
We may safely draw the conclusion that the maskable con-
structions in anyonic space are extended hyperdisks, and the
anyonic quantum entanglement which originates from the
braiding operations is the source of the quantum information
masking. We also realize quantum information masking in
a teleportation way in the Kitaev Ising model, to reveal the
relation between masking and teleportation in non-Abelian
anyons.

More protocols of other Abelian and non-Abelian anyons
cases and more realizations on the unitary evolution in quan-
tum field systems will be discussed in our future works.
Storing the information in the correlation is a material differ-
ence between a quantum computer and a classical computer.
It goes without saying that quantum information masking is of
great significance to the development of quantum computers
and its related evidence collection in the future.
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