
PHYSICAL REVIEW A 109, 032420 (2024)

Dynamic adaptive quantum approximate optimization algorithm for shallow, noise-resilient circuits
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The quantum approximate optimization algorithm (QAOA) is an appealing proposal to solve NP problems
on noisy intermediate-scale quantum (NISQ) hardware. Making NISQ implementations of the QAOA resilient
to noise requires short ansatz circuits with as few controlled-NOT (CNOT) gates as possible. Here we present
the dynamic adaptive quantum approximate optimization algorithm (Dynamic-ADAPT-QAOA). Our algorithm
significantly reduces the circuit depth and the CNOT count of standard ADAPT-QAOA, a leading proposal
for near-term implementations of the QAOA. Throughout our algorithm, the decision to apply CNOT-intensive
operations is made dynamically, based on algorithmic benefits. Using density-matrix simulations, we benchmark
the noise resilience of ADAPT-QAOA and Dynamic-ADAPT-QAOA. We compute the gate-error probability
p�

gate below which these algorithms provide, on average, more accurate solutions than the classical, polynomial-
time approximation algorithm by Goemans and Williamson. For small systems with six to ten qubits, we
show that p�

gate > 10−3 for Dynamic-ADAPT-QAOA. Compared to standard ADAPT-QAOA, this constitutes an
order-of-magnitude improvement in noise resilience. This improvement should make Dynamic-ADAPT-QAOA
viable for implementations on superconducting NISQ hardware, even in the absence of error mitigation.
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I. INTRODUCTION

NP problems are ubiquitous in computer science, occurring
frequently in combinatorial optimization, and machine learn-
ing [1,2]. Finding their solutions is computationally hard. One
strategy to solve NP problems, relies on the Ising model [3–5].
An NP problem is encoded in the real and symmetric matrix
Wi j . The (approximate) solution is then found by approximat-
ing the ground-state energy E0 of an Ising Hamiltonian

Ĥ = 1

4

N∑
i, j=1

Wi jẐiẐ j, (1)

where Ẑi denotes the Pauli-z operator acting on qubit i =
1, . . . , N . Approximate solutions are usually found using
heuristics [6–9] or adiabatic quantum computers [10–13]. The
quality of these solutions can be compared to the average-
case-solution accuracy of the Goemans and Williamson (GW)
algorithm [14], which, in the worst case, provides approx-
imate solutions within 87.8 . . . % of the true ground-state
energy in polynomial time (using an alternative representation
of the NP problem).

Recent works [15,16] have proposed solving NP prob-
lems on gate-based quantum computers, using the quantum
approximate optimization algorithm (QAOA). The QAOA
identifies approximate solutions to NP problems by creating
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upper bounds to the ground-state energy E0 of H via the
Rayleigh-Ritz variational principle:

E0 � E (�β, �γ ) = 〈�(�β, �γ )|Ĥ |�(�β, �γ )〉. (2)

The classically hard-to-represent trial state is prepared on a
quantum computer by evolving an initial state |�0〉:

|�(�β, �γ )〉 = ÛP(�β, �γ )|�0〉, (3)

using a parametrized ansatz circuit

ÛP(�β, �γ ) =
P∏

p=1

[
e−iβpÂpe−iγpĤ

]
. (4)

The QAOA then optimizes the parameters to minimize the
energy expectation value E (�β, �γ ).

In the original proposal of the QAOA [15], the form of
the ansatz circuit [Eq. (4)] is inspired by a Trotterized form
of the adiabatic theorem [17]. By setting the mixer Hamil-
tonian to Âp = ∏N

i=1 X̂i for all p, and the initial state to
|�0〉 = |+〉 · · · |+〉, the QAOA finds the ground state exactly
as the number of Trotter steps tends to infinity (P → ∞).
Unfortunately, large values of P lead to intractably deep ansatz
circuits. In the presence of noise, the need for deep circuits
precludes the implementation of the QAOA on existing quan-
tum hardware [18,19].

To reduce the intractably deep quantum circuits, adaptive
QAOA (ADAPT-QAOA) [20] was developed. The algorithm
improves the ansatz circuit in P iterations. Further, it al-
lows the mixer Hamiltonian Âp to vary in each iteration p,
by choosing it from a mixer pool P . In noiseless numer-
ical simulations, ADAPT-QAOA has been demonstrated to
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FIG. 1. The pth iteration of ADAPT-QAOA: After initialization,
the ansatz circuit from the previous iteration Ûp−1 is augmented by
appending unitary evolutions generated by Ĥ and Âp. The optimal
circuit parameters �β�

p, �γ �
p are identified by minimizing the measured

energy expectation.

generate shallower circuits than the QAOA. Despite these im-
provements, ADAPT-QAOA lies outside the scope of current
hardware. Moreover, the resilience of ADAPT-QAOA to noise
has never been quantified.

In this paper, we benchmark ADAPT-QAOA in the pres-
ence of noise. Using density-matrix simulations, we compute
the gate-error probability p�

gate below which the quantum algo-
rithm outputs, on average, better approximate solutions than
the classical GW algorithm. For small systems of six to ten
qubits, we find that ADAPT-QAOA requires p�

gate compara-
ble to or smaller than the gate-error probabilities available
on current hardware. To reduce the hardware requirements
of ADAPT-QAOA further, we develop Dynamic-ADAPT-
QAOA. This algorithm removes redundant components from
the ansatz circuits. For the problems we study, Dynamic-
ADAPT-QAOA reduces the circuit depths significantly. For
instance, in noiseless simulations of six-qubit systems,
Dynamic-ADAPT-QAOA surpasses the average-case-solution
accuracy of the GW algorithm with approximately 80%
fewer controlled-NOT (CNOT) gates than the original ADAPT-
QAOA. This reduction in CNOT gates leads to improved
noise resilience, with p�

gate being approximately an order of
magnitude better than that of the original ADAPT-QAOA.
Dynamic-ADAPT-QAOA may thus be implementable on cur-
rent superconducting hardware, even in the absence of error
mitigation.

II. DYNAMIC-ADAPT-QAOA

In this section, we introduce Dynamic-ADAPT-QAOA.
Our presentation strategy is to first review the standard
ADAPT-QAOA template. Subsequently, we describe its im-
provement via Dynamic-ADAPT-QAOA.

A. ADAPT-QAOA

As depicted in Fig. 1, ADAPT-QAOA grows the ansatz
circuit in P steps. In each step p, unitary evolutions generated
by Ĥ and Âp are appended to the circuit from the previous

step:

Ûp(�βp, �γp) = e−iβpÂpe−iγpĤÛp−1(�βp−1, �γp−1). (5)

The process starts from Û0 = 1̂. Concurrently, the real param-
eter vectors are updated as

�βp = (βp, �βp−1) and �γp = (γp, �γp−1), (6)

starting from empty vectors �β0 = () and �γ0 = (). In each step,
an optimal mixer Hamiltonian Âp is picked from a pool P such
that the energy gradient is maximized (see below). The circuit
parameters are then optimized,

�β�
p, �γ �

p = argmin�βp,�γp
[Ep(�βp, �γp)], (7)

to minimize the energy expectation value

Ep(�βp, �γp) = 〈�0| Û †
p (�βp, �γp)ĤÛp(�βp, �γp) |�0〉 . (8)

This yields an upper bound E �
p = Ep(�β�

p, �γ �
p ) on the

ground-state energy E0, and an optimal trial state |��
p〉 ≡

Ûp(�β�
p, �γ �

p )|�0〉. Iterating this process provides a hierarchy of
bounds E �

0 > E �
1 > · · · > E �

p > · · · � E0. The algorithm ter-
minates when p = P or if |E �

p−1 − E �
p| falls below a predefined

threshold ε.
To accelerate convergence, ADAPT-QAOA picks the mixer

Hamiltonian which maximizes the energy gradient. To eval-
uate this gradient, the optimal trial state is augmented by
appending a cost and a mixer unitary:

|�p(βp, γp; Â)〉 = e−iβpÂe−iγpĤ |��
p−1〉. (9)

The energy variation due to the added parameters

δEp(βp, γp; Â) = 〈�p(βp, γp; Â)|Ĥ |�p(βp, γp; Â)〉 (10)

enables the definition of a corresponding energy gradient:

Gp(γp; Â) ≡ ∂

∂βp
δEp(βp, γp; Â)

∣∣∣∣
βp=0

= 〈��
p−1|eiγpĤ i[Â, Ĥ ]e−iγpĤ |��

p−1〉. (11)

Evaluating this gradient for each Â ∈ P allows for selecting
the optimal mixer:

Âp = argmaxÂ∈P [|Gp(γp; Â)|]. (12)

Throughout this work, we use the same mixer pool as in
ADAPT-QAOA [20],

P = P0 ∪ P1 ∪ P2, (13)

comprising QAOA mixers (P0) as well as Pauli strings of
length one (P1) and length two (P2):

P0 =
{

N∑
n=1

X̂n,

N∑
n=1

Ŷn

}
,

P1 =
N⋃

n=1

{X̂n, Ŷn},

P2 =
N⋃

n,n′=1
n �=n′

{X̂n, Ŷn} × {X̂n′ , Ŷn′ , Ẑn′ }. (14)
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B. Dynamic-ADAPT-QAOA

Motivation. Our motivation for developing Dynamic-
ADAPT-QAOA comes from two observations. First, in each
step p, the quantum circuit representing the cost unitary
e−iγpĤ requires O(N2) CNOT gates (see Appendix A). On the
other hand, the quantum circuit representing the mixer unitary
e−iβpÂp requires only O(1) CNOT gates [21]. As CNOT gates
induce noise, minimizing the number of cost unitaries in the
ansatz circuit could be valuable [22]. Second, in standard
ADAPT-QAOA, the vector of optimal parameters �γ �

p tends to
be sparse, with many parameters taking values close to zero
(see Sec. III B). As cost unitaries e−iγpĤ with γp ≈ 0 hardly
affect the final quantum circuit, it could be advantageous to
exclude them altogether.

Idea. In general, the energy expectation value in Eq. (8) is
a nontrivial function of the circuit parameters. Hence, it is not
obvious how to predict which entries in �γ �

p would take optimal
values close to zero. Yet, in ADAPT-QAOA, optimal circuit
parameters of the pth iteration are usually well approximated
by the circuit parameters of the previous iteration:

�β�
p ≈ (β�

p, �β�
p−1) and �γ �

p ≈ (γ �
p , �γ �

p−1). (15)

Thus, we can estimate the optimal circuit parameters β�
p, γ

�
p

of the pth iteration, by studying the minima of

δEp(βp, γp) ≡ δEp(βp, γp; Âp). (16)

As explained in Appendix B, for Pauli-string mixers Âp, we
can identify whether δEp(βp, γp) has minima near γ �

p = 0. To
this end, we split the cost Hamiltonian into two parts Ĥ =
Ĥ− + Ĥ+, such that Ĥ− commutes and Ĥ+ anticommutes with
Âp. This enables the evaluation of three additional expectation
values:

Bp = 〈��
p−1|iÂpĤ+|��

p−1〉 ≡ Gp(0; Âp)/2, (17a)

Cp = 〈��
p−1|ÂpĤ2

+|��
p−1〉, (17b)

Dp = 〈
��

p−1

∣∣iÂpĤ3
+
∣∣��

p−1

〉
. (17c)

As shown in Appendix B, δEp(βp, γp) has a local minimum at
γ �

p = 0 if

Cp = 0 and BpDp > 0. (18)

Algorithm. Dynamic-ADAPT-QAOA excludes the cost
unitary of the pth iteration, if Âp is a Pauli string and condi-
tion (18) holds. Otherwise, the algorithm follows the standard
mixer-selection procedure of ADAPT-QAOA. That is, if Âp is
not a Pauli-string but a standard QAOA mixer, the ansatz cir-
cuit and parameter vectors are grown as described in Eqs. (5)
and (6). On the other hand, if Âp is a Pauli string that does
not satisfy condition (18) the gradients for all Â ∈ P are
reevaluated at some given offset γp = ±γ̃ , and the optimal
mixer is redetermined:

Âp = argmaxÂ∈P [max(|Gp(+γ̃ ; Â)|, |Gp(−γ̃ ; Â)|)]. (19)

After redetermining Âp, the ansatz circuit and parame-
ter vectors are grown as described in Eqs. (5) and (6).

Pseudocode summarizing Dynamic-ADAPT-QAOA is given
in Algorithm 1.

ALGORITHM 1. Dynamic-ADAPT-QAOA.

1: Init pool P; accuracies ε, δ1, δ2; and offset γ̃ .
2: Init p ← 0.
3: Set initial state |��

0〉 ← |+〉 · · · |+〉;
4: Init parameters �β0 ← (), �γ0 ← ().
5: Set optimal parameters �β�

0 ← (), �γ �
0 ← () and unitary Û0 ← Î .

6: while not converged do
7: p ← p + 1
8: //Select mixer with maximal gradient
9: ∀Â ∈ P evaluate Gp(0; Â) ← 〈��

p−1|[iÂ, Ĥ ]|��
p−1〉

10: Select optimal mixer: Âp ← argmaxÂ∈P [|Gp(0; Â)|]
11: if Âp is a Pauli string in P1 ∪ P2 then
12: //Test, if the cost unitary is needed
13: Evaluate Bp, Cp, Dp in Eq. (17)
14: if |Cp| � δ1 and Bp · Dp > δ2 then
15: //Append only mixer unitary to ansatz circuit
16: Update �γp ← �γp−1; �βp ← (βp, �βp−1)
17: Ûp(�βp, �γp) ← e−iβpÂpÛp−1(�βp−1, �γp−1)
18: else //Default back to ADAPT-QAOA
19: Update |�̃±

p 〉 ← exp(∓iγ̃ Ĥ )|��
p−1〉

20: ∀Â ∈ P redo Gp(±γ̃ , Â) ← 〈�̃±
p |[iÂ, Ĥ ]|�̃±

p 〉
21: Select Âp ← argmaxÂ∈P [|Gp(±γ̃ , Â)|]
22: //Append mixer and cost unitary to ansatz
23: Update �γp ← (γp, �γp−1); �βp ← (βp, �βp−1)
24: Ûp(�βp, �γp) ← e−iβpÂpe−iγpĤÛp−1(�βp−1, �γp−1)
25: else if Âp is a QAOA mixer in P0 then
26: //Append standard QAOA mixer to ansatz circuit
27: Update �γp ← (γp, �γp−1); �βp ← (βp, �βp−1)
28: Ûp(�βp, �γp) ← e−iβpÂpe−iγpĤÛp−1(�βp−1, �γp−1)
29: //Optimize ansatz circuit and update bound
30: Optimize parameters �β�

p, �γ �
p ← argmax�βp,�γp

[Ep(�βp, �γp)]

31: Update ansatz state |��
p〉 ← Ûp(�β�

p, �γ �
p ) |�0〉

32: Repeatedly create |��
p〉 and sample bit strings

33: Compute E �
p ← Ep(�β�

p, �γ �
p ) from bit strings

34: //Check convergence
35: if p = P or |E �

p−1 − E �
p | < ε then

36: converged ← True
37: Return bit strings, E �

p , circuit Ûp, params �β�
p, �γ �

p

Remarks I (Alternative versions). In Appendix C, we dis-
cuss two alterations of Dynamic-ADAPT-QAOA. These are
alterations that could save quantum resources. However, they
are detrimental to the performance of our algorithm. In the
first alteration, all cost unitaries are, a priori, removed from
the ansatz circuit. In the second alteration, the algorithm does
not reevaluate the optimal mixer Âp at γp = ±γ̃ if condition
(18) fails. As shown in Appendix C, both of these alterations
prevent the algorithm from converging towards highly accu-
rate solutions.

Remarks II (Barren plateaus). Common worries regard-
ing variational quantum algorithms concern barren plateaus
(vanishing gradients) and the presence of bad local minima
[23–30]. A promising way to mitigate these issues is to reduce
the circuit depths [30,31], which is precisely what our algo-
rithm does. Moreover, since the gates of adaptive variational
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quantum algorithms are tailored to the optimization prob-
lem itself, there are indications that these algorithms avoid
such issues better than other variational quantum algorithms
[30,32–35]. In the instances studied below, Dynamic-ADAPT-
QAOA efficiently implements the variational optimization.

Remarks III (Shot-based implementation). In Algorithm 1
we formulate Dynamic-ADAPT-QAOA, based on expectation
values. However, on a real quantum computer, expectation
values must be evaluated by sampling. In order to bridge this
gap (along with other intricacies, such as dimensionless units),
we describe a more practical shot-based implementation of
Dynamic-ADAPT-QAOA in Appendix D, Algorithm 2.

Remarks IV (Sampling overhead). For Dynamic-ADAPT-
QAOA one may worry that evaluating Cp and Dp in each
iteration of the algorithm may add significant sampling over-
head. In Appendix D, we show that this is not the case. By
analyzing various sampling strategies [36–39] we calculate
upper bounds for the number of samples needed to sample
expectations corresponding to energies, gradients, Cp and Dp,
with a given precision. Order estimates for Max-Cut prob-
lems are presented in Appendix D 5. Our results indicate that
O( f (N )) samples are required to estimate the energy param-
eters line 29 of Algorithm 1. [Here O( f (N )) indicates the
number of times an optimizer needs to evaluate the energy
expectation.] Our results further show that measuring all the
energy gradients in lines 8 and 19 of Algorithm 1, will require
O(N2) samples. As compared to these estimates the need for
O(1) samples to measure Cp and Dp should be negligible.

III. BENCHMARKING

In this section, we benchmark Dynamic- and standard
ADAPT-QAOA in numerical simulations. Our investigation
will demonstrate that Dynamic-ADAPT-QAOA can remove
redundant components from the ansatz circuits of standard
ADAPT-QAOA. We show that this leads to a reduced CNOT

count and an increased noise resilience.

A. Benchmarking methodology

Max-Cut. In what follows, we benchmark ADAPT-QAOAs
on random instances of weighted Max-Cut problems. Con-
sider allocating weights to the edges of an N-vertex graph.
In this work, we consider complete, i.e., fully connected,
graphs. The edge weights between vertices i ∈ {1, . . . , N} and
j ∈ {1, . . . , N} form a real symmetric matrix Wi j with zeros
on its diagonal. A binary vector �b ∈ {0, 1}N defines a cut, a
splitting of all vertices into two disjoint sets. A cut value is
defined as the sum of edge weights between the two partitions:

V (�b) =
N∑

i, j=1

Wi jbi(1 − b j ). (20)

The weighted Max-Cut problem is to find the binary vector
�b� that maximizes the cut value: �b� = argmax�bV (�b). �b� cor-
responds to the optimal partition, which yields the maximal
cut value Vmax = V (�b�). By mapping binary variables bi =
(1 + zi )/2 to the eigenvalues zi ∈ {−1, 1} of Ẑi, the weighted
Max-Cut problem becomes equivalent to finding the ground
state of the Ising model, Eq. (1). We create random Max-Cut

FIG. 2. Diagramatic representation of a five-vertex weighted
graph. The vertices are labeled 1–5. The weights are shown next
to the corresponding edges. The partition resulting in a Max-Cut,
(135)(24), is depicted using different shades of gray. The Max-Cut
value is 40. Directly above the graph we illustrate how the problem
maps onto a qubit system. The qubits’ spins point in different vertical
half-planes, corresponding to which set of the Max-Cut partition they
are in.

instances by uniformly sampling edge weights Wi j ∈ [0, 1].
This is known to generate NP-hard problems [40,41]. For a
visualization of Max-Cut, see Fig. 2.

Approximation ratio. Our benchmarks compare the
average-case solution accuracy of three algorithms: The
average-case solution accuracy of Dynamic- and standard
ADAPT-QAOA, as well as the average-case solution accuracy
of the classical, polynomial-time approximation algorithm by
Goemans and Williamson (GW). Rather than solving Max-
Cut exactly, all three algorithms sample a collection of bit
strings [42]. This leads to a distribution of approximate cut
values, Eq. (20), with average cut values Vd, Vs, and VGW,
respectively. Algorithms providing a higher average cut value
tend to provide better-quality solutions. Further, normalizing
the average cut value by the maximal achievable value Vmax al-
lows for averaging various instances of Max-Cut. This defines
our key performance metric—the average-case approximation
ratio:

αd ≡ Vd

Vmax
, αs ≡ Vs

Vmax
, and αGW ≡ VGW

Vmax
. (21)

The GW algorithm is the classical, polynomial-time algo-
rithm that achieves the best worst-case approximation ratio of
87.8 . . . % [14]. Its average-case approximation ratio, which
will be considered in this paper, typically reaches even better
values: αGW > 87.8 . . . % [14]. Below, we will compare the
average-case approximation ratio of the GW algorithm αGW to
numerically computed values of αd and αs. In our simulations,
we average the results over 100 random instances of the Max-
Cut problem. In real applications of the QAOA, one would
return the cut corresponding to the sampled bit string with
minimum cost, not the average. However, in the small prob-
lem sizes studied here, the final wavefunction has substantial
overlap with all bit strings. Thus, for a relatively small number
of shots the true solution will always be obtained. Therefore,
we compare the average approximation ratios. Further, we
emphasize that our comparison between QAOAs and the GW
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algorithm focuses on comparing solution accuracy in terms of
average-case approximation ratios, as opposed to comparing
their computational time complexity.

Simulations. To assess the average-case approximation ra-
tios of Dynamic- and standard ADAPT-QAOA in the presence
of noise, we use full density-matrix simulations, as previously
described in Ref. [34]. First, the unitaries in Eq. (5) are com-
piled to standard circuit representations [21]. To simulate the
effect of noise, we work with density matrices. In the evolu-
tion of the quantum states, we apply a depolarizing channel
after each CNOT gate:

D(i, pgate)[ρ] : (1 − pgate)ρ + pgate

3

∑
P̂

P̂iρP̂i. (22)

Here ρ is the density matrix after the CNOT gate, i denotes
the target qubit of the CNOT gate, pgate ∈ [0, 1] denotes the
gate-error probability, and the P̂i-summation is over the three
Pauli matrices acting on qubit i. Owing to the diverse na-
ture of current quantum hardware, a noise model cannot
be both platform agnostic and realistically detailed. Never-
theless, our noise model captures the depolarizing effect of
two-qubit gates, which is the dominant noise source across
several platforms [43,44]. We deem our model a reasonably
hardware-agnostic compromise, which should be sufficient to
assess fundamental quantitative features.

Since full density-matrix simulations require extensive
computing time, we apply an approximation similar to that
outlined in Ref. [34]. In more detail, we simulate ADAPT-
QAOAs by growing their ansatz circuits in the absence of
noise. We store the optimal ansatz circuits Up at each iteration
step p. Subsequently, we investigate the effect of noise by
simulating the preoptimized circuit Up at various noise levels
pgate on our density matrix simulator. As demonstrated in Ap-
pendix E, the noiseless-growth approximation has little effect
on our results.

Parameters. Before presenting our findings, we specify the
hyperparameters used in our simulations. By setting ε = 0, we
ensure that the convergence criterion corresponds to having
reached a certain circuit depth. The depth is determined by the
number of iterations, which we set to P = 12. For Dynamic-
ADAPT-QAOA, the cost-unitary offset (see Algorithm 1)
was set to γ̃ = 0.1, following the settings used in [20]. In
Algorithm 1, δ1 > 0 would mitigate some experimental er-
rors in the identification of a local minimum where, in ideal
scenarios, Cp = 0. Similarly, δ2 > 0 would mitigate some ex-
perimental errors in establishing whether Bp · Dp is positive.
In our simulations, we set δ1 = 0. To emulate practical im-
plementations, we choose δ2 ∈ (0, 10−4) after performing a
hyperparameter search for each separate graph.

B. Vanishing cost parameters

As mentioned in Sec. II B, our motivation to develop
Dynamic-ADAPT-QAOA stems from the observation that
standard ADAPT-QAOA appends cost unitaries to the quan-
tum circuit in cases where they do not lead to any significant
improvement in convergence. In Fig. 3 we show data which
support this conclusion. The histogram of optimal cost

FIG. 3. Histogram of optimized circuit parameters γ �
p , taken

from the cost unitaries from all layers of the ansatz circuits grown
with Dynamic- and standard ADAPT-QAOA. The data were acquired
in noiseless simulations of 100 instances of Max-Cut on six-vertex
graphs. The algorithms were run until a maximum circuit depth of
P = 12.

parameters γ � of standard ADAPT-QAOA exhibits a well-
defined peak at γ � = 0. A majority (≈70%) of the cost
unitaries do not contribute to the algorithm’s convergence.
This peak is absent in the corresponding histogram for
Dynamic-ADAPT-QAOA: Our algorithm successfully re-
moves redundant cost unitaries from the ansatz circuits.

C. Benchmarking the CNOT-count reduction

Now, we show that Dynamic-ADAPT-QAOA significantly
reduces the number of CNOT gates needed to reach a cer-
tain algorithmic precision. In Sec. II we described how
Dynamic-ADAPT-QAOA prunes unnecessary circuit ele-
ments. To investigate the effect on the CNOT count, we
consider how the average-case approximation ratio α, av-
eraged over 100 instances of Max-Cut, improves as the
algorithm grows the quantum circuit. Our results are shown in
Fig. 4. We plot data from both noiseless and noisy simulations
of Dynamic- and standard ADAPT-QAOA. In both scenarios,
Dynamic-ADAPT-QAOA uses significantly fewer CNOT gates
to reach a fixed average-case approximation ratio. For a fixed
gate-error probability this CNOT reduction allows Dynamic-
ADAPT-QAOA to calculate more accurate average-case
approximation ratios than standard ADAPT-QAOA. In noise-
less simulations, we see that Dynamic-ADAPT-QAOA needs
approximately 80% fewer CNOT gates than ADAPT-QAOA
to calculate average-case approximation ratios that outper-
form the average-case approximation ratios achievable with
the classical GW algorithm for six-vertex complete graphs.
Moreover, at a gate-error probability of pgate = 0.122%, the
Dynamic-ADAPT-QAOA can achieve better average-case ap-
proximation ratios than the average-case approximation ratios
of the GW algorithm, while the standard ADAPT-QAOA
cannot. In the next section, we widen our analysis of how
noise affects the quantum algorithms’ achieved average-case
approximation ratios.

D. Benchmarking the noise resilience

In this section, we analyze how noise affects the quality of
average-case approximation ratios of Dynamic- and standard
ADAPT-QAOA. The convergence curves presented in Fig. 4
show that increasing the gate-error probability pgate worsens
the best attainable average-case approximation ratio α�. More
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FIG. 4. Convergence curves for the Dynamic- and standard
ADAPT-QAOA, applied to six-vertex complete graphs, with and
without noise. 1 − α is plotted as a function of the number of
CNOT gates present in the ansatz circuits UP. The dashed horizon-
tal curve corresponds to the average-case approximation ratio of
the classical GW algorithm. The shaded regions correspond to the
95% confidence intervals. The convergence curves for three gate-
error probabilities are shown: pgate = 0.0%, 0.122%, and 0.263%.
These are depicted using solid, dashed, and dash-dotted line styles,
respectively. Stars indicate the maximally attainable average-case
approximation ratio α�.

specifically, as ADAPT-QAOA grows the circuit (leading to
an increase of CNOT gates on the abscissa) the average-case
approximation ratio improves initially. However, as the circuit
acquires more CNOT gates, the effect of noise starts to domi-
nate, leading to a subsequent deterioration of the average-case
approximation ratio. This causes the characteristic “smirk”
shape of the convergence curves in Fig. 4. The dip of each
convergence curve marks the best attainable average-case ap-
proximation ratio α� at a certain gate-error probability pgate.

Figure 4 indicates that Dynamic-ADAPT-QAOA outper-
forms the average-case solution quality of standard ADAPT-
QAOA in the presence of noise. To quantify this benefit of
our algorithm, we investigate α� as a function of pgate in
Fig. 5. For all values of pgate, Dynamic-ADAPT-QAOA cal-
culates better average-case approximation ratios than standard
ADAPT-QAOA. Evidently, our algorithm exhibits better noise
resilience.

As can be seen from the leftmost portion of Fig. 5,
given sufficiently weak noise, both Dynamic- and standard
ADAPT-QAOA can provide better average-case approxima-
tion ratios than the average-case approximation ratio of the
GW algorithm. We now investigate the range of gate-error
probabilities for which Dynamic- and standard ADAPT-
QAOAs achieve such an improvement. To this end, we
define the gate-error probability p�

gate, below which the quan-
tum algorithms achieve a better average-case approximation
ratio than the average-case approximation of the GW algo-
rithm. In Fig. 6 we plot p�

gate with respect to the number
of graph vertices. Compared to standard ADAPT-QAOA,

FIG. 5. Best attainable average-case approximation ratio α� as a
function of the gate-error probability pgate. The data were acquired
in noisy simulations of six-vertex graphs. The error bars show the
standard error in the mean average-case approximation ratio. The
dashed curve corresponds to the mean average-case approximation
ratio of the classical GW algorithm. The shaded regions correspond
to the 95% confidence intervals.

Dynamic-ADAPT-QAOA can achieve a better average-case
approximation ratio than the average-case approximation ratio
of the classical GW algorithm for Max-Cut at roughly an order
of magnitude larger values of p�

gate. In particular, the criti-
cal probability at which Dynamic-ADAPT-QAOA achieves
higher average-case approximation ratios than the average-
case approximation ratio of the GW algorithm is p�

gate = 1.3 ±
0.2% for six-vertex graphs and p�

gate = 0.13 ± 0.05% for ten-
vertex graphs. Both of these values are well above achieved
gate-error probabilities [45], implying that for small Max-Cut
problems with less than ten vertices Dynamic-ADAPT-QAOA
may, on average, achieve better quality approximate solutions

FIG. 6. p�
gate with respect to different graph sizes. At gate-error

probabilities below p�
gate the quantum algorithms outperform the

average-case solution quality of the classical GW algorithm. The
horizontal line shows the experimentally achieved two-qubit gate-
error probability in state-of-the-art superconducting hardware [45].
The error bars show the standard error.
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than the GW algorithm on existing hardware. On the other
hand, for standard ADAPT-QAOA, the critical probability to
generate on average higher quality solutions than the GW
algorithm on existing hardware is currently achievable only
for graphs with less than seven vertices.

IV. DISCUSSION

We have introduced Dynamic-ADAPT-QAOA, a quantum
algorithm for combinatorial optimization. Similar to the orig-
inal ADAPT-QAOA algorithm, our algorithm variationally
approximates the ground state of an Ising Hamiltonian. Thus,
it can provide approximate solutions to NP problems. By
dynamically assessing the importance of unitaries before they
are added in the variationally grown algorithms, Dynamic-
ADAPT-QAOA can operate with remarkably few CNOT gates.
Above, we benchmarked the average (as opposed to the worst-
case) solution accuracy of our algorithm. For example, in
the idealized case of no noise, Dynamic-ADAPT-QAOA re-
quires on average about 35 (350) CNOT gates to achieve better
average-case solution accuracy than the GW algorithm on
six-vertex (ten-vertex) graphs. Moreover, we have shown that
for graphs with six to ten vertices, Dynamic-ADAPT-QAOA
can, on average, provide more accurate solutions than the GW
algorithm, even in the presence of noise levels comparable
with current state-of-the-art hardware [45]. This should make
Dynamic-ADAPT-QAOA an attractive candidate to showcase
proof-of-principle computations on NISQ hardware. Finally,
we conclude this work with a few comments.

Other QAOAs. There are plenty of promising QAOA and
VQE-inspired algorithms in the literature [15,46–55]. How-
ever, this work focuses on ADAPT-QAOAs [20]—mainly
due to their relatively shallow ansatz circuits. In the future,
it would be of interest to expand the benchmarks of noise
resilience to other types of QAOA. It would also be of interest
to augment Dynamic-ADAPT-QAOA by warm starting [56]
to get better than classical approximation ratios at even lower
CNOT count with even higher noise resilience.

Other algorithms. This study focuses on investigating the
utility of gate-based quantum computers for solving NP-
problems. However, adiabatic quantum computers [10–13]
and state-of-the-art annealing heuristics [6–9,57] can com-
fortably handle systems with up to 5000 and 100 000 spins,
respectively, most likely at a higher solution accuracy. More-
over, other approximation algorithms [58,59] could also lead
to high average solution accuracy. This shows that QAOA
still has a long way to go before reaching practical quantum
advantage.

Error mitigation. Applying error-mitigation techniques
[60–63] to boost expectation values would straightforwardly
improve the average-case approximation ratios of standard
and Dynamic-ADAPT-QAOA; see Appendix F. However, to
the best of our knowledge, error-mitigation methods have
never been used to improve the underlying bit strings. Conse-
quently, error-mitigation methods would not improve the cut
value provided by the experimentally accessible bit strings.
An interesting direction of future research is to consider
how error-mitigation techniques could be used to improve
not only the cut value, but also the bit strings provided by
a QAOA.

Code to run the algorithms and reproduce the plots of this
paper is publicly available at [64].
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APPENDIX A: CNOT GATE COUNT IN COST UNITARIES

In this Appendix we show that the number of CNOT gates
included in implementations of the cost unitaries in QAOA
scales quadratically with the number of vertices for complete
graphs. This forms part of the motivation for our development
of Dynamic-ADAPT-QAOA.

The general form of a parameterized cost unitary is e−iγ Ĥ ,
where the Ising Hamiltonian is defined in Eq. (1). For com-
plete graphs, Ĥ is a summation of O(N2) two-qubit Pauli
strings, where N equals the number of vertices. As all of these
Pauli strings are of the same general form, namely with two
z-measurements, they all commute with one another. Hence,
we can rewrite the cost unitary as a product of O(N2) RZZ
gates:

e−iγ Ĥ =
N∏

i, j=1

exp

(
−i

γWi j

4
ẐiẐ j

)
. (A1)

Each of these RZZ gates can be implemented using two CNOT

gates. Therefore, we conclude that each cost unitary included
in the parameterized unitary of the algorithm contributes
O(N2) CNOT gates to the quantum circuit decomposition.

APPENDIX B: THEORETICAL ASPECTS UNDERLYING
DYNAMIC-ADAPT-QAOA

In this Appendix we provide further details on the analysis
of minima in the energy variation, Eq. (16).

1. Splitting of cost Hamiltonians

To begin, we note that any cost Hamiltonian Ĥ , Eq. (1),
can be decomposed into two parts, Ĥ− and Ĥ+, which com-
mute and anticommute with a given Pauli-string mixer Â,
respectively. To show this, denote the qubit indices as a vertex
set V := {1, . . . , N} with the corresponding edge set given as
E = {(i, j) ∈ V × V | i < j}. This allows for writing the cost
Hamiltonian, Eq. (1), as

Ĥ = 1

2

∑
(i, j)∈E

Wi jẐiẐ j . (B1)

To split the Hamiltonian, we split the edge set E into two
disjoint subsets E− and E+, such that

E = E− ∪ E+ and E− ∩ E+ = ∅. (B2)

This defines two Hamiltonians

Ĥ− = 1

2

∑
(i, j)∈E−

Wi jẐiẐ j and Ĥ+ = 1

2

∑
(i, j)∈E+

Wi jẐiẐ j,

(B3)

such that

Ĥ = Ĥ− + Ĥ+. (B4)
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For later reference, we note that Ĥ , Ĥ−, and Ĥ+ commute.
For mixer Hamiltonians Â ∈ P , which are Pauli strings of

length one, acting on qubit n = 1, . . . , N via X̂n or Ŷn, we
partition the edge set of Ĥ as follows:

E−(n) = {(i, j) ∈ E | if neither i nor j is n}, (B5)

E+(n) = {(i, j) ∈ E | if either i or j is n}. (B6)

For mixer Hamiltonians Â ∈ P , which are Pauli strings of
length two, acting on qubits n, n′ = 1, . . . , N , we partition the
edge sets as follows: (1) If the Pauli string takes the form
Ẑn · Ẑn′ , the partition of edges is trivial E− = E and E+ = ∅.
(2) If the Pauli string is of the form X̂n · Ẑn′ , we use the
partition of single Pauli strings acting on n. (3) If the Pauli
string is of the form X̂n · X̂n′ , X̂n · Ŷn′ , or Ŷn · Ŷn′ , respectively,
we partition the edge set of Ĥ as follows:

E−(n, n′) = {(i, j) ∈ E | if i and j differ from n and n′, or if i = n and j = n′, or j = n and i = n′}, (B7)

E+(n, n′) = {(i, j) ∈ E | if either i or j is equal to n or n′, but not both}. (B8)

These partitions ensure that Ĥ− and Ĥ+ commute or anticom-
mute with Pauli strings Â of length one or two, respectively.

2. Energy variation

Next, we analyze the energy variation, Eq. (16), with re-
spect to a mixer Â, as defined by Eqs. (9) and (10):

δEp(βp, γp; Â) = 〈
��

p−1

∣∣eiγpĤ eiβpÂĤe−iβpÂe−iγpĤ
∣∣��

p−1

〉
.

(B9)

To analyze this expression further we rewrite it as

δEp(βp, γp; Â) = 〈��
p−1|Ĥ−|��

p−1〉
+ cos(2βp)〈��

p−1|Ĥ+|��
p−1〉

+ sin(2βp)〈��
p−1|iÂĤ+e−i2γpĤ+|��

p−1〉
(B10)

To derive this expression we used the following properties of
Pauli strings Â:

1̂ = Â2 and e−iβpÂ = 1̂ cos(βp) + iÂ sin(βp). (B11)

Moreover, we use that Ĥ = Ĥ− + Ĥ+ and the established
commutation relations implying

Ĥ−Â = ÂĤ−, and Ĥ+Â = −ÂĤ+, (B12)

as well as

e−iγpĤ = e−iγpĤ+e−iγpĤ− = e−iγpĤ−e−iγpĤ+ . (B13)

Next, defining the following quantities:

E−
0 = 〈��

p−1|Ĥ−|��
p−1〉, (B14a)

E+
0 = 〈��

p−1|Ĥ+|��
p−1〉, (B14b)

B(γp) = 〈��
p−1|iÂĤ+e−i2γpĤ+|��

p−1〉, (B14c)

C(γp) = 〈��
p−1|ÂĤ2

+e−i2γpĤ+|��
p−1〉 = 1

2∂γpB(γp),

(B14d)

D(γp) = 〈��
p−1|iÂĤ3

+e−i2γpĤ+|��
p−1〉 = − 1

2∂γpC(γp),

(B14e)

one rewrites the energy fluctuation, Eq. (B10), as

δEp(βp, γp; Â) = E−
0 + E+

0 cos(2βp) + sin(2βp)B(γp).

(B15)

3. Gradients, stationary points, and Hessian
of the energy variation

The gradient of the energy fluctuation are then given as

∂γpδEp(βp, γp; Â) = 2 sin(2βp)C(γp), (B16)

∂βpδEp(βp, γp; Â) = 2[− sin(2βp)E−
0 + cos(2βp)B(γp)].

(B17)

Evaluating the gradient at γp = 0, βp = 0 gives

|Gp(Â)| = |2B(0)| = |〈��
p−1|iÂĤ+|��

p−1〉|. (B18)

We further note that the stationary points β̄p, γ̄p where the
gradient vanishes, fulfill the following conditions:

0 = sin(2β̄p)C(γ̄p) and sin(2β̄p)E−
0 = cos(2β̄p)B(γ̄p).

(B19)

This implies stationary points of two types:

Type 1: sin(2β̄p,1) = 0 and B(γ̄p,1) = 0, (B20)

Type 2: C(γ̄p,2) = 0 and

E−
0 sin(2β̄p,2) = B(γ̄p,2) cos(2β̄p,2). (B21)

Further computing the second derivatives

∂2
γp

δEp(βp, γp; Â) = −4 sin(2βp)D(γp), (B22)

∂βp∂γpδEp(βp, γp; Â) = 4 cos(2βp)C(γp), (B23)

∂γp∂βpδEp(βp, γp; Â) = 4 cos(2βp)C(γp), (B24)

∂2
βp

δEp(βp, γp; Â) = −4[cos(2βp)E−
0 + sin(2βp)B(γp)]

(B25)
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gives the Hessian

Hess(βp, γp) =
(−4 sin(2βp)D(γp) 4 cos(2βp)C(γp)

4 cos(2βp)C(γp) −4[cos(2βp)E−
0 + sin(2βp)B(γp)]

)
. (B26)

The determinant of the Hessian is given as

Det[Hess(βp, γp)] = 16[sin(2βp) cos(2βp)D(γp)E−
0

+ sin2(2βp)B(γp)D(γp)

− cos2(2βp)C(γp)]. (B27)

Evaluating the determinant at the stationary points results in

Det[Hess(β̄p,1, γ̄p,1)] = −16 cos2(2β̄p,1)C2(γ̄p,1) and

Det[Hess(β̄p,2, γ̄p,2)] = 16B(γ̄p,2)D(γ̄p,2). (B28)

The determinant of type 1 stationary points is always negative,
indicating a positive and a negative eigenvalue of the Hessian
matrix. This implies that type 1 stationary points are saddle
point of the energy variation. On the other hand, the determi-
nant of type 2 stationary points is positive if

B(γ̄p,2)D(γ̄p,2) > 0. (B29)

This implies that both eigenvalues of the Hessian matrix have
the same sign, and thus indicates the existence of a minimum
or a maximum of the energy variation.

Next, we analyze the trace of the Hessian, which is identi-
cal to the sum of its eigenvalues

Tr[Hess(βp, γp)] = −4[sin(2βp)D(γp) + cos(2βp)E−
0

+ sin(2βp)B(γp)]. (B30)

Evaluating the trace at type-2 stationary points, Eq. (B21), and
using its properties results in

Tr[Hess(β̄p,2, γ̄p,2)] = −4{sin(2β̄p,2)[D(γ̄p,2) + B(γ̄p,2)]

+ cos(2β̄p,2)E−
0 }, (B31)

= −4 sin(2β̄p,2)

[
D(γ̄p,2) + B(γ̄p,2)

+ (E−
0 )2

B(γ̄p,2)

]
. (B32)

To analyze the sign of the trace further, note that there are two
distinct type-2 stationary points

β̄p,2,− ∈ [−π/2, 0] and β̄p,2,+ ∈ [0, π/2]. (B33)

Depending on the sign of D(γ̄ )p,2 + B(γ̄ )p,2 + (E−
0 )2/B(γ̄p,2)

one of these solutions will lead to a positive and the other one
to a negative trace. Thus, as long as Eq. (B29) is fulfilled, the
energy variation, will always have a unique minimum.

4. Assessment criteria for Dynamic-ADAPT-QAOA

Summarizing the aforementioned analysis, Eq. (B21) and
Eq. (B29) imply that the energy variation, Eq. (16), has a

unique minimum at γ̄p,2 = 0 if

C(0) = 0 and B(0)D(0) > 0. (B34)

Substituting Â = Âp into these equations, allows for identi-
fying B(0) ≡ Bp, C(0) ≡ Cp, and D(0) ≡ Dp [as defined in
Eq. (17)] and results in condition (18). Dynamic-ADAPT-
QAOA tests this condition to confirm whether the energy
fluctuation has a unique minimum at γ̄p,2 = 0, indicating an
optimal value at γ �

p ≈ 0.

APPENDIX C: COMPARISON OF
DYNAMIC-ADAPT-QAOA VERSIONS

In this Appendix we provide numerical evidence support-
ing the two details presented at the end of Sec. II B related
to the execution of Dynamic-ADAPT-QAOA. In particular,
we analyze the convergence of three versions of Dynamic-
ADAPT-QAOA:

(1) The full version which we consider in all other parts of
this paper

(2) A version in which we remove the cost unitaries from
all layers of the quantum circuit

(3) A version in which we do not reevaluate the energy
gradients Gp(γp; Â), and keep using the same mixer Âp in the
case where condition (18) is not met.

The data are presented in Fig. 7. We find that the full
version of Dynamic-ADAPT-QAOA produces a much better
average-case approximation ratio when compared to the other
two tested versions. We conclude that the two aforementioned
subtleties to our algorithm are justified, and contribute to its
improved average-case solution accuracy.

FIG. 7. Convergence curves for three versions of Dynamic-
ADAPT-QAOA, applied to six-vertex complete graphs, without
noise. 1 − α is plotted as a function of the depth P of the parameter-
ized unitary UP. The shaded regions depict 95% confidence intervals
for the mean average-case approximation ratio, averaged over 100
randomized graphs.
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APPENDIX D: SHOT-BASED IMPLEMENTATION AND
SAMPLING COMPLEXITY OF DYNAMIC-ADAPT-QAOA

In the body of the paper, we present our algorithm based
on expectation values. However, on a real quantum com-
puter, expectation values must be evaluated by sampling. In
this section we describe a sample-based implementation of
Dynamic-ADAPT-QAOA and assess its sample complexity.
To arrive at a sample-based implementation, we require sev-
eral considerations. These include the following:

(1) Introducing appropriate dimensionless units in
Appendix D 1.

(2) Explicitly expressing the gradients in Eq. (11) and
additinal parameters in Eq. (17) in terms of a linear com-
bination of Pauli strings, given by the weights Wi j of Ĥ in
Appendix D 2.

(3) Replacing expectation values with sample means and
summarizing the sample-based implementation of Dynamic-
ADAPT-QAOA, as described in Appendix D 3.

(4) Estimating the sample count of energy measurements,
gradient measurements as well as measuring the linear re-
sponse and curvature coefficient Cp and Dp under standard
sampling strategies [36–39] in Appendix D 4.

(5) Estimating sample complexity for Max-Cut problems
in Appendix D 5.

(6) Considering parallel gradient sampling in
Appendix D 6.

(7) Fixing the relative precisions as described in
Appendix D 7.

The aforementioned considerations will support the fol-
lowing conclusion, stated in the main text. In each iteration of
(Dynamic-)ADAPT-QAOA the largest number of samples is
required for estimating expectation values of the energy, when
optimizing circuit parameters as well as measuring gradients
of O(N2) mixer operators. Additionally, evaluating Cp and
Dp to decide as to whether or not a cost Hamiltonian can be
saved, represents a mild overhead. Specific order estimates for
MaxCut problems are summarized in Appendix D 5.

1. Dimensionless units

Scaling. To motivate dimensionless units, consider a linear
scaling of the weight factors in Eq. (1), given by

Wi j �→ λWi j . (D1)

Under this transformation the energy operators scale linearly

Ĥ �→ λĤ, Ĥ+ �→ λĤ+, Ĥ− �→ λĤ−. (D2)

Additionally, expectation values related to energy and gradi-
ents change linearly

Ep �→ λEp, Gp �→ λGp, Bp �→ λBp, (D3)

while the expectation of the linear response and curvature
parameter scale quadratically or cubically, respectively, as

Cp �→ λ2Cp and Dp �→ λ3Dp. (D4)

This is undesirable, as a change in the energy scale should
not change the operation of Dynamic-ADAPT-QAOA. To
overcome this issue we now formulate our algorithm in di-
mensionless units.

Energy scale. To introduce appropriate dimensionless units
we define an energy scale Vt > 0. The energy scale should also
scale linearly as

Vt �→ λVt , (D5)

upon mapping the weights Wi j to λWi j . A suitable choice for
the energy scale Vt is the norm of the minimal eigenvalue of
Ĥ . Alternatively, for Max-Cut the largest eigenvalue of the
cost operator which represents the cut values, given by

V̂ = 1

4

N∑
i, j=1

Wi j (1 − Ẑ j Ẑ j ), (D6)

that is, the cut value Vmax is also a suitable choice for the
energy scale Vt . Since neither the minimal energy of H nor
Vmax are generally know, one could also use the cut value
VGW achieved by the GW algorithm to set the energy scale
Vt . Note that scaling energies with Vt implies we will measure
accuracies relative to that energy scale. This is precisely what
we do, when comparing approximation ratios.

Dimensionless units. To define dimensionless units we
introduce dimensionless weights for the cost Hamiltonian rel-
ative to the energy scale Vt as

W̄i j = Wi j

Vt
. (D7)

This leads to dimensionless energy operators given as

̂̄H = Ĥ

Vt
, ̂̄H+ = Ĥ+

Vt
, ̂̄H− = Ĥ−

Vt
. (D8)

Next, we scale the circuit parameters as

�̄βp = �βp and �̄γp = Vt �γp, (D9)

respectively. This ensures that the unitary evolutions in Eq. (5)
remain identical aŝ̄U p( �̄βp, �̄γp) = Ûp(�βp, �γp). (D10)

This defines the dimensionless energy expectation value

Ēp(�βp, �γp) = 〈�0| ̂̄U †

p( �̄βp, �̄γp)
Ĥ

Vt

̂̄U p( �̄βp, �̄γp) |�0〉 , (D11)

and its optimal parameters

�̄β�
p, �̄γ �

p = argmin �̄βp, �̄γp
[Ēp( �̄βp, �̄γp)]. (D12)

The dimensionless optimal parameters define the optimal state
after p − 1 iterations

|��
p−1〉 = ̂̄U p−1( �̄β�

p−1, �̄γ �
p−1) |�0〉 , (D13)

which defines dimensionless gradients of Pauli strings Â ∈ P
(which are already dimensionless) in the pth iteration as

Ḡp(γ ; Â) = 〈��
p−1| eiγ̄ ̂̄H+ i2ÂĤ+

Vt
e−iγ̄ ̂̄H+ |��

p−1〉 , (D14)

and the additional dimensionless expectation values of the pth
iteration for the Pauli string Âp of maximal gradient as

B̄p = 〈��
p−1|

iÂpĤ+
Vt

|��
p−1〉 ≡ Ḡp(0; Âp)/2, (D15a)

C̄p = 〈��
p−1|

ÂpĤ2
+

V 2
t

|��
p−1〉, (D15b)

D̄p = 〈��
p−1|

iÂpĤ3
+

V 3
t

|��
p−1〉. (D15c)
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For notational convenience, we will drop the overbar from
symbols indicating dimensionless units. Nonetheless, going
forward all quantities are to be understood as considered in
dimensionless units.

2. Pauli-string representation of measurement operators

In this sections we show that gradient, linear response, and
curvature operators can be expressed as linear combinations
of Pauli strings Ŝ. This is useful to assess their sampling
complexity:

Ĝ(Â) := iÂĤ+ =
N∑

i=1

gi(Â)̂Si(Â), (D16)

Ĉ(Â) := ÂĤ2
+ =

N∑
i, j=1

ci, j (Â)̂Si, j (Â), (D17)

D̂(Â) := iÂĤ3
+ =

N∑
i, j,k=1

di, j,k (Â)̂Si, j,k (Â). (D18)

Pauli mixers of length 1. First, we consider mixer operators
of length one, i.e., Â ∈ P1. In what follows let n = n(Â) de-
note the qubit which the Pauli operator Â = P̂n acts on. The
corresponding anticommuting part of Ĥ is then given as

Ĥn,+ = Ẑn

N∑
j=1

Wn, j

2
Ẑ j . (D19)

Recall that diagonal weights are zero, such that ∀i = 1, . . . , N
we have Wii = 0. Further defining the multiplicative part that
depends only on Pauli Z operators as

ĥn =
N∑

j=1

Wn, j

2
Ẑ j, (D20)

one shows

Ĥn,+ = Ẑnĥn, Ĥ2
n,+ = ĥ2

n, and Ĥ3
n,+ = Ẑnĥ3

n. (D21)

Next, defining the z-modified Pauli strinĝ̄Pn := iP̂nẐn, (D22)

which maps P̂n = Ŷn to ̂̄Pn = −X̂n and P̂n = X̂n to ̂̄Pn = Ŷn,
one shows that

Ĝ(Â) = ̂̄Pnĥn = ̂̄Pn

∑
i

Wn,i

2
Ẑi, (D23)

Ĉ(Â) = P̂nĥ2
n = P̂n

N∑
i, j=1

Wn,iWn, j

2
ẐiẐ j, (D24)

D̂(Â) = ̂̄Pnĥ3
n = ̂̄Pn

N∑
i, j,k=1

Wn,iWn, jWn,k

2
ẐiẐ j Ẑk . (D25)

From these expression we can read off the terms gi(Â), ci, j (Â),
di, j,k (Â), as well as the corresponding Pauli strings Ŝi(Â),
Ŝi, j (Â), and Ŝi, j,k (Â), respectively. It is further worth noting

that (1) While P̂n and ̂̄Pn act only on qubit n, the operators in
ĥn act on all qubits, but n. Thus, P̂n and ̂̄Pn, commute with ĥn.

(2) Further, all Pauli strings in the above operator representa-
tion commute with each other and can therefore be measured
simultaneously. (3) When evaluating the expectation values of
the above operators for a trial state we use standard methods
[36–39]. First, one rotates the operators P̂n (or ̂̄Pn) into the
z-basis, by adding a single qubit rotation on the nth qubit to the
ansatz circuit [38]. After that, one determines the eigenvalue
of the Pauli string, by sampling in the z-basis.

Pauli mixers of length II with one Ẑ. Next, we consider
mixer operators of length two, given as Â = P̂nẐn′ , where P̂n is
an X̂ or a Ŷ operator acting on qubit n and the second operator
a Pauli Ẑ acting on a different qubit n′ �= n. The corresponding
anticommuting part of Ĥ is again given by Ĥn,+. Following
the same steps as above one shows that

Ĝ(Â) = ̂̄PnẐn′ ĥn = ̂̄PnẐn′
∑

i

Wn,i

2
Ẑi, (D26)

Ĉ(Â) = P̂nẐn′ ĥ2
n = P̂nẐn′

N∑
i, j=1

Wn,iWn, j

2
ẐiẐ j, (D27)

D̂(Â) = ̂̄PnẐn′ ĥ3
n = ̂̄PnẐn′

N∑
i, j,k=1

Wn,iWn, jWn,k

2
ẐiẐ j Ẑk .

(D28)

From these expression we can again read off the terms gi(Â),
ci, j (Â), di, j,k (Â), as well as the corresponding Pauli strings
Ŝi(Â), Ŝi, j (Â), and Ŝi, j,k (Â), respectively. It is again worth not-

ing that (1) While P̂n and ̂̄Pn act only on qubit n, the operators
in Ẑn′ ĥn act on all qubits, but n. Thus, P̂n and ̂̄Pn, commute
with Ẑn′ ĥn. (2) Further, all Pauli strings in the above operator
representation commute with each other and can therefore be
measured simultaneously. (3) When evaluating the expecta-
tion values of the above operators for a trial state we use
standard methods [36–39]. First, one rotates the operators P̂n

(or ̂̄Pn) into the z-basis, by adding a single qubit rotation on the
nth qubit to the ansatz circuit [38]. After that, one determines
the eigenvalue of the Pauli string, by sampling in the z-basis.

Pauli mixers of length II without Ẑ. Finally, we consider
mixer operators of length two, i.e., Â ∈ P2, where none of
the two operators is a Ẑ operator. In what follows let n =
n(Â), n′ = n′(Â) with n �= n′ denote the two qubits which the
Pauli operator Â = P̂nP̂′

n acts on. Next, we define the coeffi-
cients

hn,n′
j :=

{
1
2Wn, j if j �= n, n′

0 if j = n, n′ . (D29)

This allows defining an operator of Pauli Ẑ operators, which
acts on neither n nor n′ as

ĥn,n′ =
N∑

j=1

hn,n′
j Ẑ j . (D30)

Using this operator, we can express the part of Ĥ which
anticommutes with Â as

Ĥn,+ = (Ẑn + Ẑn′ )
N∑

j=1

hn′n′
j Ẑ j = (Ẑn + Ẑn′ )̂hn,n′ , (D31)
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and its second and third power as

Ĥ2
n,+ = 2(̂1 + ẐnẐn′ )̂h2

n,n′ , (D32)

Ĥ3
n,+ = 4(Ẑn + Ẑn′ )̂h3

n,n′ . (D33)

Again, one shows that for mixers Â = P̂nP̂n′ with n �= n′ and
P̂n ∈ {Xn,Yn} and P̂n′ ∈ {Xn′ ,Yn′ } one has

Ĝ(Â) = (̂̄PnP̂n′ + P̂n
̂̄Pn′ )̂hn,n′ , (D34)

Ĉ(Â) = 2(P̂nP̂n′ − ̂̄Pn
̂̄Pn′ )̂h2

n,n′ , (D35)

D̂(Â) = 4(̂̄PnP̂n′ + P̂n
̂̄Pn′ )̂h3

n,n′ . (D36)

From these expression we can read off the terms gi(Â), ci, j (Â),
di, j,k (Â), as well as the corresponding Pauli strings Ŝi(Â),
Ŝi, j (Â), and Ŝi, j,k (Â), respectively. It is further worth noting

that (2) While the operators P̂nP̂n′ , ̂̄PnP̂n′ , P̂n
̂̄Pn′ , and ̂̄Pn

̂̄Pn′

act only on qubits n or n′, the operators in ĥn,n′ act on all
qubits, but n, n′. Thus, P̂nP̂n′ , ̂̄PnP̂n′ , P̂n

̂̄Pn′ , and ̂̄Pn
̂̄Pn′ commute

with ĥn,n′ . (2) Further, all Pauli strings in the above operator
representation commute with each other and can therefore be
measured simultaneously. (3) When evaluating the expecta-
tion values of the above operators for a trial state we use
standard methods [36–39]. First, one rotates the operators
P̂nP̂n′ , ̂̄PnP̂n′ , P̂n

̂̄Pn′ , and ̂̄Pn
̂̄Pn′ into the z-basis. This requires

adding single and two-qubit qubit rotations on the nth and the
n′th qubit after executing the circuit for ansatz preparation.
After that, one determines the eigenvalue of the Pauli string,
by sampling in the z-basis.

3. Replacing expectation value with sample mean

As a next step towards making Dynamic-ADAPT-QAOA
more realistic for deployment on a quantum computer, we
will replace (dimensionless) expectation values by their corre-
sponding sample mean. In general, any expectation value (in
dimensionless units) X , will be replaced by a sample-based
estimator X . For convenience, we will denote the sample-
based estimator by the same symbol in a calgraphic font.
In the algorithm, instead of making reference to a certain
(dimensionless) expectation value given by

X = 〈��
0 |U †X̂U |��

0〉 , (D37)

we will state “Sample X with precision ε to get X .” To achieve
this one applies a specified circuit U to the state |�0〉 =
|+〉 · · · |+〉 to generate the state U |�0〉 several times. This
is repeated until the probability that the estimator X deviates
from X̄ by less then ε is below a small given probability δ:

P [|X̄ − X | > ε] < δ. (D38)

To achieve this, one will generally have to repeat the sampling
process M times, where M will depend on the operator X , the
precision ε, and the failure probability δ. Specific bounds for
M(X, ε, δ) to sample an expectation value X will be discussed
further below.

In Dynamic-ADAPT-QAOA, we will sample the following
expectation values: To estimate the dimensionless energy ex-
pectation value Ep we sample Ep with precision ε. To estimate
dimensionless gradients Gp(γ̄ ; A) we sample Gp(γ̄ ; A) with
precision ε. And finally, to estimate C̄p and D̄p we sample Cp

with precision ε′ and Dp with precision ε′′, respectively. A
pseudocode summary of the sample-based algorithm is given
in Algorithm 2.

4. Sampling requirements

a. Standard sampling strategies

To assess the sample requirements of Dynamic-ADAPT-
QAOA, let us first recall standard strategies [36–39] for
estimating expectation values of a (dimensionless) operator X̂
which consists of L Pauli strings Ŝ1, . . . , ŜL of arbitrary length
as follows:

X̂ =
L∑

l=1

hl Ŝl . (D39)

String-by-string sampling. A common strategy to sample
an expectation value X of X̂ is to sample Ml eigenvalues
{Sm

l : m = 1, . . . , Ml} for each Pauli string Ŝl resulting in an
estimator

X (M1, . . . , Ml ) =
L∑

l=1

hl

Ml

Ml∑
m=1

Sm
l . (D40)

By linearity of expectation, the expectation of the estimator is
identical to the expectation of the operator

E[X (M1, . . . , Ml )] = E[X̂ ]. (D41)

Moreover, assuming all eigenvalues Sm
l for all Pauli strings

have been sampled independently, it follows that

Var[X (M1, . . . , Ml )] =
L∑

l=1

h2
l Var[̂Sl ]

Ml
�

L∑
l=1

h2
l

Ml
. (D42)

Here the later inequality follows from Var[̂Sl ] � 1. Then
minimizing the upper bound for a fixed number of samples
M = ∑

l Ml , gives the optimal measurement strategy [36,37],
where the lth Pauli string gets allocated the number of samples
given by

Ml = |hl |
√

Var[̂Sl ]∑′L
l |h′

l |
√

Var[̂Sl ]
M, (D43)

leading to a variance, given by

Var[X (M1, . . . , Ml )] = 1

M

(
L∑

l=1

|hl |
√

Var[̂Sl ]

)2

. (D44)

Using Chebyshev’s inequality, one shows that

P [|X (M1, . . . , Ml ) − E[X̂ ]| > ε] �

(∑L
l=1 |hl |

√
Var[̂Sl ]

)2

ε2M
.

(D45)
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ALGORITHM 2. Dynamic-ADAPT-QAOA implementation.

1: //All quantities in dimensionless units
2: Init pool P
3: Init energy precision ε with desired accuracy of approximation ratio.
4: Set precisions ε, ε ′, ε ′′, and thresholds δ′, δ′′. //For example, using Eq. (D107)
5: Init p ← 0.
6: Init the initial state |��

0〉 = |+〉 · · · |+〉.
7: Init circuit parameters �β0 ← (), �γ0 ← () and its optimal values �β�

0 ← (), �γ �
0 ← ().

8: Init circuit Û0(�βp, �γp) ← Î .
9: Sample Ep(�β�

p, �γ �
p ) = 〈��

0 | Û †
p (�β�

p, �γ �
p )ĤÛp(�β�

p, �γ �
p ) |��

0〉 with precision ε to get Ep(�β�
p, �γ �

p ).
10: while not converged do
11: p ← p + 1
12: //Select mixer with maximal gradient
13: ∀Â ∈ P sample gradient Gp(0; Â) = 〈��

0 | Û †
p−1(�β�

p−1, �γ �
p−1)i[Â, Ĥ ]Ûp−1(�β�

p−1, �γ �
p−1) |��

0〉 with precision ε to get Gp(0; Â).
14: Select mixer with maximal gradient Âp ← argmaxÂ∈P [|Gp(0; Â)|].
15: //Grow circuit
16: if Ap is a Pauli string then
17: //Test, if the cost unitary is needed
18: Sample Cp = 〈��

0 | Û †
p−1(�β�

p−1, �γ �
p−1)[ÂpĤ 2

+(Âp)]Ûp−1(�β�
p−1, �γ �

p−1) |��
0〉 with precision ε ′ to get Cp.

19: Sample Dp = 〈��
0 | Û †

p−1(�β�
p−1, �γ �

p−1)[iÂpĤ 3
+(Âp)]Ûp−1(�β�

p−1, �γ �
p−1) |��

0〉 with precision ε ′′ to get Dp.
20: if |Gp(0; Ap)| > ε and |Cp| � δ′ and|Dp| > δ′′ and Gp(0; Ap)Dp > 0 then
21: //Add only mixer to parameters and circuits
22: �γp ← �γp−1

23: �βp ← (βp, �βp−1)
24: Ûp(�βp, �γp) ← e−iβpÂpÛp−1(�βp−1, �γp−1)
25: else //Do standard ADAPT-QAOA
26: //Preadd cost unitary to circuit
27: Ûp(γ̃ ) ← e−iγ̃ ĤÛp−1(�β∗

p−1, �γ ∗
p−1)

28: //Reselect mixer with maximal gradient
29: ∀Â ∈ P sample Gp(±γ̃ ; Â) = 〈��

0 | Û †
p (γ̃ )i[Â, Ĥ ]Ûp(γ̃ ) |��

0〉 with precision ε to get Gp(±γ̃ ; Â).
30: Select Âp ← argmaxÂ∈P [max(|Gp(±γ̃ , Â)|)]
31: //Add mixer & cost to parameters & circuits
32: �γp ← (γp, �γp−1)
33: �βp ← (βp, �βp−1)
34: Ûp(�βp, �γp) ← e−iβpÂpe−iγpĤÛp−1(�βp−1, �γp−1)
35: else if Ap is a QAOA mixer then //standard QAOA
36: //Add mixer & cost to parameters and circuits
37: �γp ← (γp, �γp−1)
38: �βp ← (βp, �βp−1)
39: Ûp(�βp, �γp) ← e−iβpÂpe−iγpĤÛp−1(�βp−1, �γp−1)
40: //Optimize ansatz circuit and update bound
41: Optimize params �β�

p, �γ �
p ← argmax�βp,�γp

[Ep(�βp, �γp)]

42: Sample to estimate Ep(�β�
p, �γ �

p ) = 〈��
0 | Û †

p (�β�
p, �γ �

p )ĤÛp(�β�
p, �γ �

p ) |��
0〉 with precision ε to get Ep(�β�

p, �γ �
p ).

43: //Check convergence
44: if p = P or |Ep−1(�β�

p−1, �γ �
p−1) − Ep(�β�

p, �γ �
p )| < ε then

45: converged ← True
46: Return Ep, circuit Up, params �β�

p, �γ �
p

Thus, to guarantee that the sample mean X (M1, . . . , Ml ) de-
viates from the true expectation E[X̂ ] by less than epsilon
with probability less than δ one requires M(X, ε, δ) samples
as given by

M(X, ε, δ) =
(∑L

l=1 |hl |
√

Var[̂Sl ]
)2

ε2δ
�
(∑L

l=1 |hl |
)2

ε2δ
.

(D46)

Using the fact that each Pauli string hl Ŝl has a spectrum
bounded in [−|hl |, |hl |] one can further derive a tighter bound

by using Hoeffding’s inequality. This would result in a sample
count given by

M(X, ε, δ) =
(∑

l |hl |
)2

ε2
log

(
2

δ

)
(D47)

to guarantee that

P [|X (M1, . . . , Ml ) − E[X̂ ]| > ε] � δ. (D48)

All-strings-at-once sampling. Finally, for all operators rel-
evant to Dynamic-ADAPT-QAOA we showed above that all
Pauli strings in the respective expansions commute. This
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means we can measure all their expectation values simulta-
neously as discussed above. Thus, we can define an estimator
of the expectation value X based on M eigenvalues {X m : m =
1, . . . , M} of X̂ given as

X (M ) = 1

M

M∑
m=1

X m. (D49)

For this estimator one shows that

E[X (M )] = E[X̂ ], (D50)

and assuming all eigenvalues X m to have been sampled inde-
pendently, it is easy to show that

Var[X (M )] = Var[X̂ ]

M
. (D51)

Thus, using Chebychev’s inequality, one shows that

P [|X (M ) − E[X̂ ]| > ε] �
√

Var[X̂ ]

ε2M
. (D52)

To guarantee that the sample mean X (M ) deviates from the
true expectation E[X̂ ] by less than epsilon with probability at
most δ one requires M(X, ε, δ) samples as given by

M(X, ε, δ) = Var[X̂ ]

ε2δ
. (D53)

In general, we expect sampling all commuting strings at
once to be the more sample efficient strategy to estimate
expectation values. Therefore, we recommend measuring all
Pauli strings at once, whenever possible. On the other hand,
using the fact that an operator X will have a spectrum bounded
in [Xl , Xr] with

|Xr − Xl | � 2
L∑

l=1

|hl | (D54)

we can use Popoviciu’s inequality

Var[X̂ ] � |Xr − Xl |2
4

�
(

L∑
l=1

|hl |
)2

, (D55)

to bound the sample count of sampling all strings at once as

M(X, ε, δ) = Var[X̂ ]

ε2δ
� |Xr − Xl |2

4ε2δ
�
(∑L

l=1 |hl |
)2

ε2δ
.

(D56)

This implies that when deriving worst case sample estimate
below, we will often not make a difference between all-
strings-at-once and string-by-string-based sampling. It will,
however, allow a tighter bound for energy expectation values.

b. Sample counts for Dynamic-ADAPT-QAOA

We will now give (worst-case) sample counts for Dynamic-
ADAPT-QAOA. This concerns the expectation values of the
energy, gradient, linear response, and curvature parameters.
Note that all bounds will be given by coefficients which derive
from weights Wi j in units with dimension. For that reason, the
energy rescaling Vt will appear as an explicit factor.

Energy. First, we consider energy expectation values,
which we sample with precision ε and failure probability less

than δ. To begin with note that the spectral width of Ĥ is
identical to the spectral width of the cost operator V̂ . Thus
the spectral width of the dimensionless Ĥ is given by

|Er − El | � Vmax

4Vt
�

N∑
i,l=1

|Wil |
4Vt

, (D57)

and the sample count is bounded as

M(E , ε, δ) � (Vmax/4Vt )2

ε2δ
�
(∑N

i,l=1 |Wil |/4Vt
)2

ε2δ
, (D58)

where the inner estimate holds for all-strings-at-once sam-
pling and the outer bound for both Pauli-string-based sam-
pling and all-strings-at-once sampling.

Additional parameters. Finally, when sampling a single
gradient with precision ε, the linear response with precision
ε′, or curvature parameter with precision ε′′ (either string-by-
string or all-strings-at-once), we can upper bound their sample
count as

M(G(γ ; Â), ε, δ) =
(∑N

i=1 |gi(Â)|/Vt
)2

ε2δ
, (D59)

M(Cp, ε
′, δ) =

(∑N
i, j=1 |ci, j (Âp)|/V 2

t

)2

ε′2δ
, (D60)

M(Dp, ε
′′, δ) =

(∑N
i, j,k=1 |di, j,k (Âp)|/V 3

t

)2

ε′′2δ
. (D61)

5. Sampling complexity for Max-Cut

In this section we evaluate the per iteration sampling com-
plexity for the Max-Cut problem defined in the body of our
paper. To this end recall that the weights Wi j with i < j in
dimensional units are sampled from a uniform distribution on
the interval [0,1]. Weights along the diagonal Wii = 0. Further,
we now set the typical energy scale to be the Max-Cut value
Vmax of the cost operator as

Vt = Vmax = �(N ). (D62)

Energy. With the above assumption one shows that the
dimensionless energy expectation can be sampled all-strings-
at-once with precision ε and failure probability less than δ

using only

M(E , ε, δ) = 1

4ε2δ
. (D63)

Further, assuming the classical optimizer scales as O( f (N ))
optimizing the dimensionless energy in each iteration with
precision ε will require samples of the order of

ME = O

(
f (N )

ε2δ

)
. (D64)

In contrast, using that
∑N

i,l=1 Wi j < N2 sampling the di-
mensionless energy expectation with precision ε with a
string-by-string base strategy will require samples of the order
of

M(E , ε, δ) = O

(
N2

ε2δ

)
. (D65)
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This is worse and all-strings-at-once sampling should be ap-
plied.

Additional parameters. Finally, when assessing the sam-
pling complexity of individual gradients, linear response, and
curvature parameters per iteration, we can use that the coeffi-
cients of ĥn are bounded as

N∑
j=1

|Wn, j |
2

� N

2
(D66)

as well as that the coefficients of ĥn,n′ are bounded as

N∑
j=1, j �=n′

|Wn, j |
2

� N

2
(D67)

to show that

M(G(γ ; Â), ε, δ) = (N/Vmax)2

ε2δ
= O

(
1

ε2δ

)
, (D68)

M(Cp, ε
′, δ) =

(
N2/V 2

max

)2

ε′2δ
= O

(
1

ε′2δ

)
, (D69)

M(Dp, ε
′′, δ) =

(
N3/V 3

max

)2

ε′′2δ
= O

(
1

ε′′2δ

)
. (D70)

Thus, by naively sampling the gradients for all O(N2) mixer
operators independently, the total sampling cost per iteration
for gradients is at most

MG = O

(
N2

ε2δ

)
. (D71)

6. Parallel gradient sampling

Next, we consider a method for reducing the overhead
of gradient sampling which has recently been presented
for ADAPT-VQE [39]. Instead of sampling |P1 ∪ P2| =
O(N2) gradients G(γ ; Â) for each Pauli-string mixer Â ∈
P1 ∪ P2, it samples Pauli-string components of various gra-
dients in parallel. Here we show that applying this method for
Dynamic-ADAPT-QAOA will unfortunately not improve the
worst-case estimate for the sample count.

At first, note that gradient operators result from a commu-
tator of a mixer operator Â ∈ P1 ∪ P2 and the Hamiltonian Ĥ
as follows:

Ĝ(Â) = [Â, Ĥ ] =
N∑

i, j=1

Wi j

2Vt
[Â, ẐiẐ j]. =

∑
i, j∈E+(Â)

Wi j

Vt
Â, ẐiẐ j .

(D72)

Here the last line follows from the following facts. If the com-
mutator [Â, ẐiẐ j] vanishes (i.e., if ẐiẐ j is in the commuting
set of Â) then the term vanishes. Else, if the [Â, ẐiẐ j] does not
vanish, then ẐiẐ j is in the anticommuting set of Â and we have
[Â, ẐiẐ j] = 2ÂẐiẐ j .

Next, consider two commuting Pauli-string mixer opera-
tors Â and Â′. Following [39] we show

∀Â, Â′ ∈ P1 ∪ P2 s.t. [Â, Â′] = 0

⇒ [[Â, ẐiẐ j], [Â′, ẐiẐ j]] = 0. (D73)

To proof this note that, if neither [Â, ẐiẐ j] = 0 nor
[Â′, ẐiẐ j] = 0, then both Â and Â′ anticommute with ẐiẐ j as

[[Â, ẐiẐ j], [Â′, ẐiẐ j]] = 4[ÂẐiẐ j, Â′ẐiẐ j]

= 4ÂẐiẐ j Â
′ẐiẐ j − 4Â′ẐiẐ j ÂẐiẐ j

= −4ÂÂ′ + 4Â′Â = 4[Â′, Â] = 0.

(D74)

This shows that Pauli strings originating from nonvanishing
commutators [Â, ẐiẐ j] and [Â′, ẐiẐ j] in distinct gradient op-
erators Ĝ(Â) and Ĝ(Â′), induced by commuting Pauli mixers
[Â, Â′] = 0, can be measured simultaneously.

Next, we organize the Pauli strings mixers (P1 ∪ P2) into
3N + 2 disjoint subsets of commuting Pauli-string mixers.
First, define the set of qubit indices with the nth index re-
moved as

Q(n) = {1, . . . , N} \ {n}. (D75)

Use this to collect all pairs XY , (Y Z and ZX ), respectively,
into n = 1, . . . , N subsets, respectively, where X , (Y and Z),
respectively, is pinned on the nth qubit, as

P (n) := {X̂nŶn′ : n′ ∈ Q(n)}, (D76)

P (N + n) := {ŶnẐn′ : n′ ∈ Q(n)}, (D77)

P (2N + n) := {ẐnX̂n′ : n′ ∈ Q(n)}, (D78)

respectively. Finally, gather all remaining mixers composed
of X - or XX -type into one commuting set and all mixers
composed of Y - or YY -type into a second commuting set:

P (3N + 1) := {X̂n : n = 1, . . . , N}⋃
{X̂nX̂n′ : n, n′ = 1, . . . , N ∧ n �= n′}, (D79)

P (3N + 2) := {Ŷn : n = 1, . . . , N}⋃
{ŶnŶn′ : n, n′ = 1, . . . , N ∧ n �= n′}. (D80)

For each of the above 3N + 2 subpools P (α) (with α =
1, . . . , 3N + 2) we know that for any two operators Â, Â′ ∈
Pα we have [Â, Â′] = 0. Hence, Pauli strings ÂẐiẐ j , induced
by nonvanishing commutators [Â, ẐiẐ j] in gradient operators
Ĝ(Â) with Â in the same pool Pα , can be sampled simultane-
ously. (This requires applying single qubit rotations on up to
N qubits, to simultaneously rotate all Pauli strings ÂẐiẐ j with
Â ∈ Pα into the z-basis. This is actually always possible.)

Next, using the above structure we acquire samples as
follows:

(1) For all Â ∈ P (α = 1) simultaneously sample Mi j

eigenvalues {Sm(ÂẐiẐ j )|m = 1, . . . , Mi j}, corresponding to
the Pauli strings ÂẐiẐ j .

(2) Repeat, the previous step, for all 3N + 2 pools.
(3) Repeat, the previous two steps, for all combinations

i, j with i = 1, . . . , N and j = 1, . . . , N .
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Completing the above sample acquisition, we construct
gradient estimators as follows:

G(Â; Mi j ) =
∑

i, j∈E+(Â)

Wi j

Vt Mi j

Mi j∑
m=1

Sm(ÂẐiẐ j ). (D81)

Since all eigenvalues in the aforementioned estimator have
been sampled independently, one proves

E[G(Â; Mi j )] = E[Ĝ(Â)] (D82)

as well as

Var[G(Â; Mi j )] =
∑

i, j∈E+(Â)

W 2
i jVar[ÂẐiẐ j]

V 2
t Mi j

�
∑

i, j∈E+(Â)

W 2
i j

V 2
t Mi j

.

(D83)

Again, fixing the total number of samples in the above sample
acquisition to MP

G = (3N + 2)
∑N

i, j=1 Mi j and choosing

Mi j = MP
G

3N + 2

|Wi j |/Vt∑N
i, j |Wi j |/Vt

(D84)

leads to a variance given by

Var[G(Â; Mi j )] = 3N + 2

MP
G

⎛⎝ ∑
i, j∈E+(Â)

|Wi j |
Vt

√
Var[ÂẐiẐ j]

⎞⎠
×
⎛⎝ N∑

i, j=1

|Wi j |
Vt

⎞⎠. (D85)

Using Chebychev’s inequality, one shows that

P [|G(Â; Mi j ) − E[Ĝ(Â)]| > ε] �
(3N + 2)

(∑
i, j∈E+(Â) |Wi j |/Vt

√
Var[ÂẐiẐ j]

)(∑N
i, j=1 |Wi j |/Vt

)
ε2MP

G

. (D86)

Thus, to guarantee that the sample means G(Â; Mi j ) of all Â ∈ P1 ∪ P2 deviates from their true expectation E[Ĝ(Â)] by less than
ε with probability less than δ one requires MP

G samples as given by

MP
G =

(3N + 2)
(∑

i, j∈E+(Â) |Wi j |/Vt

√
Var[ÂẐiẐ j]

)(∑N
i, j=1 |Wi j |/Vt

)
ε2δ

� (3N + 2)

(∑N
i, j=1 |Wi j |/Vt

)2

ε2δ
. (D87)

As discussed in Ref. [39] this shows that sampling all
gradients in parallel is indeed only O(N ) larger than a
string-by-string-based sampling of Ĥ . [Recall that the latter
would require M(E , ε, δ) < (

∑N
i, j=1 |Wi j |/Vt )2/(ε2δ) sam-

ples.] Nevertheless, as we can measure the expectation of the
energy of the Ising model with all strings at once, we were
able to derive a tighter bound on the energy variance, resulting
in fewer samples M(E , ε, δ) = 1/(ε2δ).

Finally, we evaluate the sample count of parallel gra-
dient sampling for the Max-Cut problem. Specifically,
we use

∑
i, j∈E+(Â)

|Wi j |
√

Var[ÂẐiẐ j] � N and
N∑

i, j=1

|Wi j | � N2

(D88)

to show that sampling all gradients of one iteration in parallel
will require a number of shots on the order of

MP
G � (3N + 2)N3

ε2V 2
maxδ

= O

(
N2

ε2δ

)
. (D89)

Notably, this worst case bound is identical to the worst
case bound of Eq. (D71), which summarizes the shot count
for sampling all gradients induced by Pauli-string mixers
Â ∈ P1 ∪ P2 individually. Thus, it remains to be seen in
practice, whether sampling all gradients in parallel is as
beneficial for QAOA as it was found to be for VQE in
Ref. [39].

7. Suggesting relative precisions

We now propose relative sampling precisions for energies,
gradients, linear response, and curvature operators. The result
is given by Eq. (D107).

a. Further analysis of the energy fluctuation

To begin with, we return to the energy fluctuation defined
in Eq. with parameters defined in Eq. :

δEp(βp, γp; Â) = E−
0 + E+

0 cos(2βp) + B(γp) sin(2βp).

(D90)

Note that this function depends on γp only via the parameter
B(γp). Next, rewrite this function as

δEp(βp, γp; Â) = E−
0 −

√
|E+

0 |2 + |B(γp)|2

× cos(2βp − 2β̃p(B(γp))), (D91)

where

β̃p(B(γp)) := 1
2 Atan2(−B(γp), E+

0 ). (D92)

This shows that for each fixed value of γp the energy fluc-
tuation δEp(βp, γp; Â) as a function of βp ∈ [−π/2, π/2]
has a single unique minimum at β̃p(B(γp)). In other words,
β̃p(B(γp)) has a valley, running “parallel” to the γp direction
with its deepest point located at β̃p(B(γp)). Around this min-
imum, the curvature in β-direction is always positive. Hence,
to trace minima in δEp(βp, γp; Â) it is sufficient to trace along
β̃p(B(γp)) in the gamma direction. This is achieved by setting
β = β̃p(B(γp)) and analyzing the reduced energy fluctuation
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along the valley parameterized by β = β̃p(B(γp)) as

δEp(γp) = E−
0 −

√∣∣E+
0

∣∣2 + ∣∣B(γp)
∣∣2. (D93)

This simplification allows us to determine whether the energy
fluctuation has a minimum, maximum or a saddle at γp = 0,
by considering the above simplified function.

To determine whether the energy fluctuation has a min-
imum near γp = 0 we further analyze the reduced energy
fluctation at γp = 0. To this end we subtract the energy at
γp = 0 and define

�(γp) = δ(γp) − δ(0) = −
√

|E+
0 |2 + |B(γp)|2

+
√

|E+
0 |2 + |B(0)|2 � |B(γp) − B(0)|. (D94)

(The upper bound results from the triangle inequality.) Next,
Taylor expanding �(γp) to quadratic order in γp gives

�(γp) = − B(0)B′(0)√
|E+

0 |2 + |B(0)|2
γp

− 1

2

⎡⎢⎣ B(0)B′′(0)√
|E+

0 |2 + |B(0)|2
+ |E+

0 |2|B′(0)|2√
|E+

0 |2 + |B(0)|2
3

⎤⎥⎦γ 2
p

+ O(γ 3
p ). (D95)

At this point recall Eqs. (B14) and (17), which imply that

B(0) = Gp(γp; Âp)/2, (D96)

B′(0) = 2Cp, (D97)

B′′(0) = −4Dp. (D98)

Since the optimization of gradients ensures that Dynamic-
ADAPT-QAOA selects 2|B(0)| = |Gp(γp; Âp)| > 0, the
above Taylor expansion implies that the energy fluctuation
�(γp) will have a minimum at γp = 0, if

B′(0) = 2Cp = 0 and

B(0)B′′(0) = −4BpDp

= −2Gp(γp; Â)Dp < 0. (D99)

Otherwise, either B′(0) is nonzero, implying that the energy
fluctuation has a significant slope along the γp-direction and a
better minimum is located at a different location of γp �= 0.
Or B′(0) = 0 but B(0)B′′(0) > 0, implying that the energy
fluctuation has a saddle at γp = 0. Again, this implies a lower
energy fluctuation should be located at a different location
of γp �= 0. Both cases, are covered by the algorithm stepping
away to γ = ±γ̃ .

b. Setting accuracy parameters

Finally, we turn our attention to assessing the conditions in
Eq. (D99) in the presence of finite sampling errors. Recall, in
each iteration we assess

(1) Gp(γp; Âp) estimates Gp(γp; Âp) = 2B(0) = 2Bp s.t.
P [|Gp(γp; Âp) − Gp(γp; Âp)| > ε] < δ.

(2) Cp estimates Cp = C(0) = 2B′(0) s.t. P [|Cp − Cp| >

ε′] < δ.

(3) Dp estimates Dp = D(0) = −B′′(0)/4 s.t. P [|Dp −
Dp| > ε′′] < δ.

Further, recall that dimensionless units are scaled with the
typical energy scale Vt of the system. Thus, dimensionless
energies behave similar to approximation ratio. Thus we rec-
ommend to fix ε on the order of an acceptable error in an
approximation ratio. Next, we recommend sampling energies
and gradients with an energy precision ε which is better than
the desired energy scale ε, for example using ε ≈ ε

10 . Next, we
discuss how to ensure the conditions in Eq. (D99) with high
probability.

Convexity condition. To ensure the convexity condition
B(0)B′′(0) < 0 in Eq. (D99) with high probability, we will
implement the following tests:

|Gp(γp; Â)| � ε and |Dp| � δ′′ and Gp(γp; Â)Dp � 0.

(D100)

The first test ensures that Bp > (ε − ε)/2 with probability
larger (1 − δ). The second test ensures that Dp > (δ′′ − ε′′)
with probability larger (1 − δ). Further keeping ε > ε and
δ′′ > ε′′ ensures that

P [sign(Gp(γp; Â)Dp) = sign(Gp(γp; Â)Dp)] > (1 − 2δ).

(D101)

In other words, the product of estimators Gp(γp; Â)Dp has
the same sign as the expectation value product Gp(γp; Â)Dp

with probability larger than 1 − 2δ. And thus, the third
test Gp(γp; Â)Dp � 0 ensures that the convexity condition
Gp(γp; Â)Dp � 0 is assessed correctly with high probability
larger than 1 − 2δ.

Vanishing linear response. Finally, to approximately ensure
vanishing linear response, i.e., B′(0) = 0 in Eq. (D99) with
high probability, we will implement the following tests:

|Cp| � δ′ (D102)

with relative accuracies chosen as δ′ = 2ε′, ε′ = 2(4/3)ε2/3/3,
δ′′ = 2ε′′, and ε′′ = 2−(4/3)ε1/3 (as also summarized in
Eq. (D107)). The reasoning behind these choices is as follows.
|Cp| � δ′ guarantees that |Cp| � δ′ + ε′ with high probabil-
ity larger than 1 − δ. This may offset the true minimum of
�(γp) to a different location γp,min � 1 in the vicinity of
γp = 0. In the worst case, this leads to an energy error upper
bounded by

|�(γp)| � |B(γp) − B(0)| =
∣∣∣∣B′(0)γp − B′′(0)

2
γ 2

p + O
(
γ 3

p

)∣∣∣∣.
(D103)

This upper bound takes the maximal value at

γp,min = − B′(0)

B′′(0)
. (D104)
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This would lead to the maximal possible energy error,
given as

|�(γp)| �
∣∣∣∣ B′(0)2

2B′′(0)

∣∣∣∣+ O(|γp,min|3)

=
∣∣∣∣ B′(0)2

2B′′(0)

∣∣∣∣+ O

(∣∣∣∣ B′(0)

B′′(0)

∣∣∣∣3
)

. (D105)

With our sampling conditions we know that B′(0) must have
been smaller than |B′(0)| < 3ε′/2 with high probability and
|B′′(0)| > 4ε′′ with large probability. Further using the pro-
posed relations between accuracies, we find that the energy
remains bounded to order ε with high accuracy as given by

|�(γp)| � 9ε′2

25ε′′ + O

(
27ε′3

29ε′′3

)
= ε

2
+ O

(ε

2

)
= O(ε).

(D106)

Thus, our sampling conditions are designed such that the
maximal energy error induced by making a wrong decision
is at most O(ε).

Summary of accuracies. This summarizes our recom-
mended choice of accuracies as follows. Set ε as the desired
accuracy of the approximation ratio and choose other ratios as
follows:

ε = ε/10, (D107a)

δ′ = 2ε′, (D107b)

ε′ = 2(4/3)ε2/3/3, (D107c)

δ′′ = 2ε′′, (D107d)

ε′′ = 2−(4/3)ε1/3. (D107e)

APPENDIX E: NOISELESS
AND NOISY CIRCUIT GROWTH

In this Appendix we present numerical evidence support-
ing our approach to evaluating the average-case solution
accuracy of Dynamic- and standard ADAPT-QAOA. In Ap-
pendix A we mention two methods for analyzing the evolution
of the average-case approximation ratio achieved by the
quantum algorithms. In one, the effects of noise are im-
plemented during the circuit growth. This is representative
of how the algorithm would be run in an experiment us-
ing real hardware. However, simulating this approach using
density matrices requires large computing times, making
it impractical. Therefore, we make use of the alternative
method, used previously in the context of variational quan-
tum eigensolvers [34]. This alternative approach relies on the
theoretical result that noise in variational quantum algorithms
primarily flattens the parameter landscape, without altering its
structure [65].

In particular, we grow the quantum circuits in the absence
of noise, recording the optimal components and parameters
found during each iteration. To investigate the effect of noise
afterward, we simulate the preoptimized circuits while in-
cluding the respective noise channel where necessary. This

FIG. 8. Convergence curves for Dynamic- and standard ADAPT-
QAOA, applied to six-vertex complete graphs, with noise. 1 − α is
plotted as a function of the depth P of the parameterized unitary UP.
The data for both noiseless and noisy growth of the quantum circuit
are presented. The error bars and shaded regions depict the standard
error in the mean average-case approximation ratio, averaged over
100 randomized graphs.

greatly reduces the computational time required for running
the quantum algorithms, making it the preferable method for
numerical investigations.

It is important to check whether growing the quantum
circuits in the noiseless regime significantly alters the results
of our analysis. To address this, we compare the two meth-
ods described above in the context of 6-vertex graphs. The
resulting data are shown in Fig. 8 for a gate-error probability
of pgate = 0.122%. We find that both methods produce, on
average, the same behavior for either algorithm. This justifies
our use of the less computationally time-consuming approach
for circuit growth simulation.

APPENDIX F: ERROR MITIGATION
IN DYNAMIC-ADAPT-QAOA

In this Appendix we show that error mitigation techniques
can be used to improve the mean average-case approximation
ratio which can be achieved by Dynamic-ADAPT-QAOA for
a given gate-error probability pgate. In particular, we apply
Richardson extrapolation as described in Ref. [61]. For a
specific value of pgate we consider the average-case approx-
imation ratio outputted at the end of the algorithm when
applied to six-vertex complete graphs. This is averaged over
100 randomized graph instances to produce a mean average-
case approximation ratio.

Once we have collected the data for the average-case ap-
proximation ratio for each graph, we consider what these
values are at a different gate-error probability, c × pgate. From
the data at c = 1 and c = 3, we can extrapolate (according to
the formula in Ref. [61]), and produce a hopefully improved
average-case approximation ratio. This procedure is repeated
for all randomized graphs separately, after which we average
the results to produce a mean error-mitigated average-case
approximation ratio.
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FIG. 9. Final layer average-case approximation ratio α as a func-
tion of the gate-error probability pgate, both with and without error
mitigation. The data were acquired in noisy simulations of six-vertex
complete graphs. The error bars show the standard error in the mean
average-case approximation ratio.

We produce curves of the mean average-case approx-
imation ratio against the gate-error probability both with
and without error mitigation. These are depicted in Fig. 9.
The data shows that applying error mitigation, even if it
is just to second-order, we can improve, on average, the
outputted average-case approximation ratio by Dynamic-
ADAPT-QAOA. Additionally, extending this technique to
other versions of QAOA should be analogous. However, there
is one important subtlety regarding the use of error mitigation
to “improve” an algorithm’s solution accuracy. In a practical
setting, say in the context of Max-Cut, the important output is
the final distribution of bit strings corresponding to partitions
of the graph’s vertices. The average-case approximation ratio
is simply used as measure of the algorithm’s average-case
solution quality. Hence, although error mitigation, as applied
above, can lead to improvements in the average-case approx-
imation ratio as a performance measure of solution quality,
it does not actually alter the average-case solution quality of
the output bit strings which define the partition of vertices. In
other words, it is not clear what practical advantage such a
technique could offer.
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