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Qumode transfer between continuous- and discrete-variable devices
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Transferring quantum information between different types of quantum hardware is crucial for integrated
quantum technology. In particular, converting information between continuous variable (CV) and discrete
variable (DV) devices enables many applications in quantum networking, quantum sensing, quantum machine
learning, and quantum computing. This paper addresses the transfer of CV-encoded information between CV and
DV devices. We present a resource-efficient method for encoding CV states and implementing CV gates on DV
devices, as well as two measurement-based protocols for transferring CV states between CV and DV devices.
The success probability of the transfer protocols depends on the measurement outcome and can be increased to
near-deterministic values by adding ancillary qubits to the DV devices.
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I. INTRODUCTION

In the past decade, there has been a major focus on de-
veloping quantum technology that holds immense potential
for revolutionizing communication, sensing, and computing
domains. A wide variety of platforms, including supercon-
ducting circuits, microwave cavities, optical systems, trapped
ions, atoms, spins, and others, have been used to process
quantum information [1,2]. In these systems, information
is encoded in a set of quantum states that can be discrete
(qubits and qudits) or continuous (qumodes). Depending on
the specific area of application, both types of encoding have
their advantages and disadvantages. For the development of
integrated quantum technology, it is essential to have the ca-
pability to transfer information between all types of quantum
devices. While effort has previously been devoted to pro-
cessing logical qubits encoded on continuous variable (CV)
devices [3–6], we consider an alternative perspective here:
encoding and processing CV information on discrete variable
(DV) devices. We present a method to encode CV information
into DV devices, along with two measurement-based trans-
fer protocols to convert information between CV and DV
devices.

The ability to develop hybrid DV-CV technology and
convert encoded information between platforms is crucial
for building complex systems, such as the quantum inter-
net [7] and quantum sensor networks [8]. For instance,
while superconducting chips are better for data processing,
optical devices are currently the best for long-distance com-
munication and are easily scalable. Various hybrid DV-CV
methods have recently been proposed for quantum telepor-
tation [9–11], entanglement distillation [12], and quantum
computing [13,14]. In addition, methods to encode qubits in
CV devices, such as cat states [3–6] and GKP states [15],
have also been proposed to increase qubit resilience to errors.
Furthermore, significant effort has been put into developing
methods to entangle DV and CV qubits [16–18] and to convert
DV and CV qubits from one to the other via teleportation
protocols [19–21].

Aside from the possibility of encoding qubits, CV devices
have the ability to process information encoded in the contin-
uous bases formed by the eigenvectors of the field quadrature
operators, known also as qumode encoding. CV quantum
computing [22,23] is universal [24], meaning that any unitary
transformation generated by a polynomial function of the
quadrature operators can be decomposed into a finite number
of gates drawn from a finite set of gates. Recent advancements
in photonic chips [25,26] and the availability of CV quantum
software, such as STRAWBERRY FIELDS [27], indicate that this
is an active and rapidly evolving research area. A significant
amount of effort has been devoted to the development of quan-
tum CV algorithms. Currently, CV algorithms address a wide
range of problems, such as scalar field simulations [28,29],
spin simulations [30], attractive Bose-Hubbard simulations
[31], partial differential equations [32], quantum approximate
optimization algorithm [33], Grover’s search [34], and the
Deutsch-Jozsa problem [35]. There is also growing interest in
employing CV systems in quantum machine learning (QML)
methods [36,37].

In this paper, we address the encoding of qumodes in DV
devices and the conversion of qumodes between CV and DV
devices. A qumode is a quantum state expressed in an infinite
basis set. Therefore, transferring qumodes to a finite qubit
device is generally an ill-posed problem. However, for most
practical purposes, we can impose a boson occupation cutoff,
Nb, such that the contribution of states with more than Nb

bosons is negligible. One simple way to encode such a trun-
cated qumode to a DV device is by mapping the boson number
states with n < Nb to the DV computational basis states. How-
ever, this direct encoding may have limited usefulness because
information encoded in this way cannot be easily processed
on the DV device. This is because information encoded in
qumodes is generally processed by employing gates that are
functions of the quadrature operators, and these gates have a
dense matrix representation in the Fock basis. Consequently,
implementing CV gates on a DV device requires a lengthy
decomposition [on the order of O(4nq ), where nq is the size of
DV register] into elementary single-qubit and two-qubit gates
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FIG. 1. CV-DV transfer protocol, described in Sec. IV B. The CV
state |φC〉 is transferred into the DV state |χD〉.

[38–42]. To achieve effective encoding of qumodes onto DV
devices, we not only need to map the qumode’s state onto a
DV device but also efficiently implement CV gates on DV
devices (i.e., by employing only a small number of elementary
gates).

Continuous variable computation can be achieved using
purely DV systems when the information to be processed can
be encoded in states that can be truncated with controlled
accuracy in boson number basis during evolution [43]. To
encode qumodes on DV devices, we take advantage of the
properties of their wave function at large argument and use
the Nyquist-Shannon expansion of functions with support on
finite intervals [44] to represent them in a discrete quadrature
basis. We will call the qumodes mapped onto DV systems in
this way discrete qumodes. This encoding has high accuracy
[41], and allows for a straightforward, polynomial scaling
implementation of CV gates on DV devices.

We present two transfer protocols: one for transferring CV
qumodes to their corresponding discrete representation on DV
devices and another for transferring discrete DV qumodes
to CV devices. Both protocols are modifications of the one-
qubit CV teleportation protocol described in Refs. [23,45].
They involve entangling the two systems, measuring the first
system, and manipulating the second system using opera-
tions that depend on the measurement outcome, as shown
diagrammatically in Figs. 1 and 4. The transfer protocols are
nondeterministic and require postselection since the probabil-
ity of success, defined in Sec. IV, depends on the measurement
outcome and is smaller than one. However, the probability of
success can be increased by using an ancillary DV register.
We call our protocols near-deterministic because the proba-
bility of success can be brought exponentially close to one by
increasing the number of ancilla qubits. For example, we find
that a CV state with a boson number cutoff Nb = 100 can be
transferred with an accuracy of O(10−7) on a DV register of
eight qubits with a success probability of 0.99 (0.999) using an
ancillary register of 13 (20) qubits. After transfer, the ancillary
register can be discarded. Furthermore, the transfer protocols
presented here might find immediate or near-future applica-
tions when used in the nondeterministic regime for qumodes
with cutoff Nb < 20, since in this case, the total number of
required DV qubits is ∼4 − 6.

The transfer protocols introduced here hold the poten-
tial to facilitate the development of CV-DV hybrid hardware
for processing CV-encoded information. We believe that our
method for converting qumodes between CV and DV devices
offers a broad spectrum of potential applications. For instance,
quantum sensor networks could benefit from processing data

collected by sensors with CV encoding on superconduct-
ing QPUs. Qubit-based QML algorithms can increase their
expressivity by including CV data encoding. The quantum
tomography of CV states [46] can be reduced to an equivalent
qubit system tomography problem. Transferring DV states to
CV registers opens possibilities for non-Gaussian state prepa-
ration and the implementation of non-Gaussian operations
on CV platforms. Unique measurement-based quantum algo-
rithms [47–50] that use hybrid CD-DV cluster states might be
developed, which could be particularly useful for simulating
field theories. Nevertheless, further investigation is needed to
assess these potential applications.

This paper is organized as follows: In Sec. II, we define
the qumode and briefly introduce the gates required for CV
quantum computing. In Sec. III, we introduce the discrete
representation of qumodes on qubit devices. In Sec. IV, we
present the protocols that transfer qumodes between CV and
DV devices. In Sec. V, we show how to use an ancillary
qubit register to increase the success probability of the transfer
protocols. Finally, in Sec. VI, we present a summary of our
results and the conclusions.

II. CV STATES AND CV QUANTUM COMPUTING

Qumodes are vectors belonging to the Hilbert space of
square integrable functions, L2(R). The observables associ-
ated with qumodes are generated by the quadrature operators.
We denote the quadrature operators by X and P because they
are equivalent to the position and the momentum operators
of a harmonic oscillator, respectively, obeying the canonical
commutation relations [X, P] = i. The eigenvectors {|x〉} of X
(X |x〉 = x|x〉) and the eigenvectors {|p〉} of P (P|p〉 = p|p〉),
constitute continuous basis sets and are connected by the
Fourier transform

|p〉 = 1√
2π

∫ ∞

−∞
dxeipx|x〉. (1)

Aside from continuous basis sets, L2(R) also admits denu-
merable bases, like the ones formed by boson number states,
also known as Fock states. The Fock states are eigenvectors of
the harmonic oscillator Hamiltonian and of the boson number
operator a†a, where

a = (
√

μX + iP/
√

μ)/
√

2, (2)

and μ is the boson mass. For example, in optical devices
the bosons are the photons, while in other platforms, like
trapped ion devices, the bosons can be the vibrational modes
(phonons) [51].

CV computation employs operators with continuous spec-
tra to process the data encoded in qumode states. It has been
shown [24] that the evolution of any Hamiltonian that is a
polynomial function of X and P can be simulated using only
a small number of gate types. For example, a sufficient set
of gates for universal computation consists of [23] (i) lo-
cal Gaussian gates, such as the displacement gate e−iηX , the
PHASE gate e−iηX 2

, and the Fourier transform ei π
4 e−i π

4 (P2+X 2 ),
(ii) a nonlocal Gaussian gate that couples two different modes,
like the controlled-PHASE (CPHASE) gate e−iηXi⊗Xj , and (iii)
one local non-Gaussian gate, such as the cubic phase gate
e−iηX 3

. This example of a universal set of gates is not unique;
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equivalent alternatives can be considered. In optical systems,
Gaussian gates can be relatively easily implemented using
displacement, squeezing, phase shift, and beam splitter oper-
ations. However, the implementation of non-Gaussian gates is
much more difficult [52].

III. DISCRETE REPRESENTATION OF QUMODES

The representation of bosonic states on qubit hardware has
been discussed in previous works [41,53–55], with a focus
on fermion-boson and scalar field quantum simulations. In
this paper, we briefly present the main ideas, emphasizing
the points that are most relevant for CV computations, and
qumode transfer protocols.

In this paper, we do not consider the direct encoding of
Fock states to computational DV states. While this encoding
efficiently represents states, we are not aware of any resource-
efficient way to implement typical CV gates on DV devices
using this encoding [41].

A. Nyquist-Shannon expansion of qumodes

Let us start by assuming that a cutoff Nb can be cho-
sen such that the contribution of states with more than Nb

bosons with mass μ is negligible to the qumode state, i.e.,
|φ〉 ≈ ∑Nb

n=0 cn|n〉, where |n〉 is the n boson Fock state. As
can be seen from Eq. (2), the definition of boson operators
is not unique; the bosons are defined up to a mass factor
μ. Bosons with different masses are related by a squeezing
operation. For a given qumode, the cutoff Nb depends on the
boson mass μ. The smaller Nb, the better the accuracy of the
discrete representation of qumodes which will be introduced
in Sec. III B. Keeping the boson mass as a tunable parameter
can be useful for optimizing quantum algorithms and compu-
tational resources, as discussed in Ref. [41]. However, for the
purpose of this paper, the boson mass μ is a fixed parameter.

The qumode’s wave function φ(x) decreases exponentially
fast to zero as the magnitude of its argument, |x|, increases,
since the Fock states’ wave functions (Hermite-Gaussian
functions) decrease exponentially fast to zero with increasing
|x|. The same is true for the wave function’s Fourier trans-
form; namely, φ̂(p) decreases exponentially fast to zero as
the magnitude of its argument, |p|, increases. Therefore, for
a desired accuracy ε, we can define a parameter Lε > 0, as
the minimum value such that the weight of φ(x) outside the
interval [− Lε√

μ
, Lε√

μ
] and the weight of φ̂(p) outside the interval

[−Lε
√

μ, Lε
√

μ] are smaller or equal to ε, i.e.,(∫ − Lε√
μ

−∞
|φ(x)|2dx +

∫ ∞

Lε√
μ

|φ(x)|2dx

) 1
2

� ε and (3)

(∫ −Lε
√

μ

−∞
|φ̂(p)|2d p +

∫ ∞

Lε
√

μ

|φ̂(p)|2d p

) 1
2

� ε. (4)

We call the intervals [− Lε√
μ
, Lε√

μ
] and [−Lε

√
μ, Lε

√
μ] the ε-

support intervals of the functions φ(x) and φ̂(p), respectively,
since the functions are ε negligible for arguments outside
those intervals. The error ε decreases exponentially with in-
creasing the support window parameter Lε , as analytical and
numerical investigations reveal [41].

The Nyquist-Shannon sampling theorem [44] states that
a function with limited support in the Fourier space can be
written as an infinite sum, with the sum terms proportional to
the function sampled on a grid. In our case, the wave function
is almost limited (i.e., limited up to an error ε) in both x and
p variables. As a consequence, as discussed below, the wave
function can be written up to an error ε as a finite sum, with the
terms proportional to the function sampled on a finite interval.

First, the Fourier transformed wave function φ̂(p) is
negligible (ε small) outside the interval [−Lε

√
μ, Lε

√
μ]. Ac-

cording to Nyquist-Shannon sampling theorem, this implies
that the wave function φ(x) can be approximated by a discrete
sampling such that

φ(x) =
∞∑

j=−∞
φ(y j )u(x − y j ) + O(ε), (5)

where

y j = ( j + δ)�x, (6)

�x = π

Lε
√

μ
, (7)

u(x) = sinc

(
x

�x

)
≡ sin

(
π x

�x

)
π x

�x

. (8)

In Eq. (5), the term O(ε) denotes a small quantity with magni-
tude of the order ε, and is a consequence of the small weight
of φ̂(p) outside the widow [−Lε

√
μ, Lε

√
μ]. In Eq. (6), δ ∈ R

is an arbitrary number, signifying that the Nyquist-Shannon
expansions remains valid if the sampling grid is shifted by an
arbitrary amount, as explained in Appendix A. In Eq. (7), the
discretization interval �x is inversely proportional to the to
the ε-support interval in the Fourier space.

Second, according to Eq. (3), the wave function φ(x) is ε

small when |x| > Lε√
μ

. Thus, the summation terms in Eq. (5)
corresponding to the function sampled outside the interval
[− Lε√

μ
, Lε√

μ
] can be neglected with an O(ε) error. The summa-

tion in Eq. (5) can be truncated to a finite sum with Nε terms
and written as

φ(x) =
Nε−1∑
j=0

φ(x j + δx�x )u(x − x j − δx�x ) + O(ε), (9)

with

x j =
(

j − Nε − 1

2

)
�x, (10)

and arbitrary −0.5 < δx � 0.5. The number of sampling
points Nε is chosen as the minimum number for which the
sampling points {x j + δx�x} j∈{0,...,Nε−1} cover the entire sam-
pling interval [− Lε√

μ
, Lε√

μ
], which implies

x0 + δx�x − �x =
(

−Nε + 1

2
+ δx

)
�x < − Lε√

μ
, (11)

xNε−1 + δx�x + �x =
(

Nε + 1

2
+ δx

)
�x >

Lε√
μ

. (12)
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Equations (7), (11), and (12) yield the relation between the
sampling interval parameter Lε and Nε ,

Lε =
√

πNε

2
, (13)

which is valid for all choices of |δx| � 0.5. Note that the error
term in Eq. (9) is larger than the one in Eq. (5) since it involves
additional truncation approximation, although in both cases
we denoted it as O(ε). However, it is still of the order ε.

A similar reasoning can be used to expand the wave
function’s Fourier transform φ̂(p) by sampling it on the
Nε points {pm + δp�p}m∈{0,...,Nε−1} covering the interval
[−Lε

√
μ, Lε

√
μ],

φ̂(p) =
Nε−1∑
m=0

φ̂(pm + δp�p)v(p − pm − δp�p) + O(ε), (14)

where

�p = π
√

μ

Lε

= μ�x, (15)

v(p) = sinc

(
p

�p

)
, (16)

pm =
(

m − Nx − 1

2

)
�p, (17)

and −0.5 < δp � 0.5 is an arbitrary shift.
The sampling sets {φ(x j + δx�x )} j∈{0,...,Nε−1} and {φ̂(pm +

δp�p)}m∈{0,...,Nε−1} are connected by shifted finite Fourier
transforms, as follows:

√
�pφ̂(pm + δp�p) = 1√

Nε

Nε−1∑
j=0

√
�xφ(x j + δx�x )e−i 2π

Nε
(m− Nε−1

2 +δp)( j− Nε−1
2 +δx ) + O(ε), (18)

√
�xφ(x j + δx�x ) = 1√

Nε

Nε−1∑
m=0

√
�pφ̂(pm + δp�p)ei 2π

Nε
(m− Nε−1

2 +δp)( j− Nε−1
2 +δx ) + O(ε). (19)

Equations (18) and (19) can be derived by directly calculating
the Fourier transforms of Eq. (9) and the inverse Fourier trans-
form of Eq. (14), respectively. Note that the Fourier transform
of the sinc function is the rectangular function, see Eq. (B1)
in Appendix B.

B. Finite Hilbert space representation

For a given cutoff Nb, we construct a finite Hilbert space
of dimension Nx, where Nx is the number of sampling points
necessary to discretize φNb (x), the Fock wave function of order
Nb, with a desired accuracy ε. Thus, Nx is given by

L =
√

πNx

2
, (20)

where L ≡ Lε (Nb) is the sampling interval parameter for
φNb (x) [see Eq. (13)]. For any ε < 1 the number of dis-
cretization points Nx > Nb, as can be found by inspecting the
properties of Fock state wave functions.

The finite Hilbert space is constructed by considering the
basis {| j〉} with j ∈ {0, 1, . . . , Nx − 1} and defining the dis-
crete position operator X̄ as

X̄ | j〉 = x j | j〉, (21)

where x j is given by Eq. (10) with Nε and Lε replaced by Nx

and L, respectively. We also define the discrete momentum
operator P̄ as

P̄ = μF̄ X̄ F̄−1, (22)

where F̄ represents the centered discrete Fourier Transform,
defined by Eq. (C2) in Appendix C [see also Eq. (23)]. The

vectors {|m〉p}, with m ∈ {0, 1, . . . , Nx − 1},

|m〉p ≡ F̄ |m〉 = 1√
Nx

Nx−1∑
j=0

ei 2π
Nx (m− Nx−1

2 )( j− Nx−1
2 )| j〉 (23)

are eigenvectors of P̄,

P̄|m〉p = pm|m〉p, with pm =
(

m − Nx − 1

2

)
�p, (24)

where

�p = π
√

μ

L
= μ�x. (25)

The ε-support intervals for the Fock wave function of order
Nb include the ε-support intervals of all smaller order Fock
wave functions, since the support interval parameter Lε (n)
monotonically increases with the Fock state order n [54]).
This implies that, for Nx discretization points, the discretiza-
tion errors of all n < Nb Fock states are smaller than O(ε).
Then, for all n < Nb, the vectors defined by

|̃n〉 ≡
√

�x

Nx−1∑
j=0

φn(x j )| j〉 = √
�p

Nx−1∑
m=0

φ̂n(pm)|m〉p + O(ε),

(26)

where φn(x) is the n-Fock state’s wave function, satisfy

X̄ |̃n〉 = 1√
2μ

(
√

n| ˜n − 1〉 + √
n + 1| ˜n + 1〉) + O(ε), (27)

P̄|ñ〉 = −i

√
μ

2
(
√

n| ˜n − 1〉 − √
n + 1| ˜n + 1〉) + O(ε). (28)

Equations (27) and (28) can be obtained by employ-
ing Eqs. (21) and (24) and the following properties of
the Hermit-Gaussian functions: xφn(x) = 1√

2μ
[
√

nφn−1(x) +
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√
n + 1φn+1(x)] and pφ̂n(p) = −i

√
μ

2 [
√

nφ̂n−1(p) − √
n + 1

φ̂n+1(p)], respectively.
Employing Eqs. (27) and (28), it can be shown that the

vectors {|̃n〉}n<Nb are, up to an error of order O(ε), the
eigenvectors of the discrete harmonic oscillator, i.e.,

Hh |̃n〉 = μ

(
n + 1

2

)
|̃n〉 + O(ε), (29)

where

Hh = 1

2
P̄2 + μ2

2
X̄ 2. (30)

Analogously, it can be shown that

(X̄ P̄ − P̄X̄ )|̃n〉 = i|̃n〉 + O(ε), (31)

for n < Nb.
In other words, on the Nb-dimensional subspace defined by

the projector Q̄b,

Q̄b =
Nb−1∑
n=0

|n̄〉〈n̄|, (32)

where {|n̄〉}n are the eigenvectors of the discrete harmonic
oscillator defined by Eq. (30), the discrete position and
momentum operators obey [up to an error term O(ε)] the
canonical commutation relation, i.e.,

[X̄ , P̄]Q̄b = iQ̄b + O(ε). (33)

Let

Qb =
Nb−1∑
n=0

|n〉〈n|, (34)

with |n〉 being the nth Fock state of the CV Hilbert space,
denoting the projector on the subspace with the number of
bosons below Nb. As can be seen from Eqs. (27) and (28),
the operators X̄ and P̄ acts on the subspace projected by Q̄b

as the operators X and, respectively, P acts on the subspace
of the continuous Hilbert space defined by the projector Qb.
There is an isomorphism between the CV subspace defined by
the projector Qb and the subspace of the finite Hilbert space
defined by Q̄b (for illustration, see Fig. 2 in Ref. [41]). A
CV wave function characterizing a qumode with less than Nb

bosons can be encoded with O(ε) error on the discrete system
of size Nx as follows:

|φC〉 =
∫

φ(x)|x〉Cdx ←→ |φD〉 =
√

�x

Nx−1∑
j=0

φ(x j )| j〉D.

(35)

Furthermore, a CV operator O(X, P) generated by X and P
that acts on and yields states in the subspace defined by the
projector Qb can be mapped to the operator Ō(X̄ , P̄) which
acts on the discrete space, by replacing X and P with X̄ and
P̄, respectively,

O(X, P)Qb ←→ Ō(X̄ , P̄)Q̄b when O(X, P)Qb

= QbO(X, P)Qb + O(ε). (36)

By inspecting Eq. (9), it is clear that the information en-
coded in the DV state |φD〉, as described by Eq. (35), is

sufficient to reproduce [up to an error O(ε)] the CV wave
function φ(x) for all values of x. In fact, φ(x) at a particular
x can be directly measured in the DV basis {| j〉} by applying
the grid shift operator Tδ,0 before the measurement,

Tδ,0

⎡⎣√�x

Nx−1∑
j=0

φ(x j )| j〉
⎤⎦ =

√
�x

Nx−1∑
j=0

φ(x j + δ�x )| j〉

+ O(ε), (37)

where δ = (x−xl )
�x

and xl is the grid point closest to x. The grid
shift operator Tδ,0 is a product of a shifted Fourier transform
with an inverse shifted Fourier transform and is defined in
Eq. (C7) in Appendix C.

C. Finite Hilbert space encoding on qubits

The Nx basis states {| j〉}, with integer j ∈ {0, ..., Nx − 1}
are represented on nq = log2(Nx ) qubits in a binary encoding

| j〉 = | j0〉| j1〉...
∣∣ jnq−1

〉
, (38)

where jq ∈ {0, 1}, such that

j =
nq−1∑
q=0

jq2nq−1−q. (39)

The discrete position operator is expressed as

X̄ = −�x

nq−1∑
q=0

2nq−1−q
σ z

q

2
, (40)

where σ z
q = |0〉〈0|q − |1〉〈1|q is the Pauli σ z acting on the

qubit q. The operator X̄ satisfies Eq. (21), as can be directly
checked.

The implementation of the discrete momentum operator P̄
is achieved by using Eq. (22), along with the implementation
of the centered discrete quantum Fourier transform described
in Appendix C 1.

The gates required for universal CV quantum computa-
tion can be implemented on qubits by replacing X and P
with X̄ and P̄, respectively, as mentioned in Sec. III B. In
Appendix D, we present the explicit implementation on qubits
of the universal set of gates introduced in Sec. II. The number
of elementary single-qubit and two-qubit gates required for
this implementation scales polynomially with the size of the
DV device. This is one of the main advantages of our encoding
scheme: the CV gates can be resource-efficiently implemented
on qubit hardware.

Additionally, in Appendix E, we provide an implementa-
tion of the discrete squeezing operator:

S̄(r) = ei r
2 (X̄ P̄+P̄X̄ ). (41)

The discrete squeezing operator will be used in Secs.V A and
V B to discard or add ancillary qubits to the DV device to
increase the transfer protocol success probability. For that, we
will use the following property of S̄(r):

S̄(r)
√

�x

Nx−1∑
j=0

φ(x j )| j〉 =
√

�xer

Nx−1∑
j=0

φ(x je
r )| j〉 + O(ε),

(42)
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valid when both the initial and the squeezed qumode have
negligible weight on the subspace with more than Nb bosons.

D. Qumode representation errors

Detailed analytical and numerical investigations of the
errors encountered during the construction of the finite rep-
resentation of the continuous Hilbert space are presented
in Ref. [41]. For a fixed error ε, we find numerically that
the number of discretization points Nx is approximately pro-
portional to the cutoff Nb (Nx ≈ c1 + c2Nb, where c1 and
c2 are dependent on ε). We find that the ratio Nb/Nx falls
within the range of [0.3, 0.7] when the error is in the range
of [10−5, 10−3]. For a given cutoff Nb, the error ε de-
creases exponentially as the number of discretization points
increases, because the support interval parameter L ∝ √

Nx

and ε decreases exponentially with increasing L. To give some
examples, we find numerically that DV devices with nq = 6
and 7 qubits can represent qumodes with cutoffs of Nb = 30
and 70, respectively, with an accuracy of ε = 10−4.

The construction of the finite representation for a cutoff Nb

and the error analysis discussed so far, assume that the cutoff
Nb can be chosen such that the contribution of Fock states
with more than Nb bosons is negligible. However, the errors
introduced by the truncation in the Fock basis also need to be
considered. This error can be quantified by

ωNb = ||(1 − Qb)|φ〉|| =
√√√√ ∞∑

n=Nb

|〈n|φ〉|2, (43)

where Qb is the projector on the subspace with less than Nb

bosons [see Eq. (34)].
For a desired error of order ε in the qumode discrete repre-

sentation, the cutoff Nb should be chosen so ωNb ≈ ε, and the
number of discretization points Nx should be chosen so the
Fock state of order Nb is discretized with an error of order ε.

A relevant question for managing computational resources
is how the number of required qubits scales with the error ε.
Depending on the behavior of the qumode boson distribution
at large n, there are two cases to be discussed:

(i) The qumode boson truncation error ωNb decreases faster
than exponentially with increasing Nb. In this case, for a
choice of Nb large enough, ωNb becomes negligible, and the
error will be dominated by the quadrature (i.e., position and
momentum) discretization error of the Fock states with or-
ders smaller than Nb. As previously discussed, these errors
decrease exponentially with an increase in the number of
discretization points, i.e., the required number of qubits scales
as nq = log2 Nx ∝ log2[log(ε−1)].

Note that this case includes coherent states, displaced num-
ber states, and squeezed states, albeit for large displacements
or strong squeezing the cutoff Nb is large. For these states, the
probability of having n bosons is bounded by Pn ∝ Cn

n! [56],
where C is independent on n and determined by the displace-
ment parameter or, respectively, the squeeze parameter. By
employing the Stirling formula n! ≈ √

2πn(e/n)n, one can
see that for n � eC the boson distribution and ωNb decrease
faster than exponentially with increasing n.

(ii) The qumode boson truncation error ωNb decreases
slower then exponentially with increasing Nb. In this case,

the dominant error will be ε(Nb) ≈ ωNb . The number of qubits
scales as nq = log2 Nx ∝ log2[Nb(ε)], where Nb(ε) is obtained
by solving the equation ε = ωNb . This case includes the situa-
tions where the qumode’s wave function in the {|x〉} basis, or
{|p〉} basis, decreases slower than exponentially with increas-
ing |x|, or |p|, respectively.

In practice, for both cases, the accuracy of the approxima-
tion can be controlled by increasing the number of qubits until
the results are converged within the desired error.

IV. TRANSFER PROTOCOLS

In this section, we introduce two transfer protocols. Both
protocols are modifications of the one-qubit CV teleportation
protocol described in Refs. [23,45].

The goal of the first protocol is to transfer a CV qumode

|φC〉 =
∫

φ(x)|x〉Cdx =
∫ Nx−1∑

j=0

φ(x j )u(x − x j )|x〉Cdx

+ err(Nx ) (44)

to its discrete representation:

|φD〉 =
√

�x

Nx−1∑
j=0

φ(x j )| j〉D. (45)

Note that in Eq. (44), unlike in the previous sections, we
denote the error term arising from the qumode discretization
as err(Nx ). In the following, we will use ε to denote the error
of the transfer protocols.

We measure the protocol fidelity by

FD = |〈χD|φD〉|, where |χD〉 = T CD(|φC〉), (46)

and T CD represents the transfer channel taking a CV state to
a DV device.

The goal of the second transport protocol is to take the
DV state described by Eq. (45) to the corresponding CV state
described by Eq. (44). The fidelity for this protocol is

FC = |〈χC |φC〉|, where |χC〉 = T DC(|φD〉), (47)

and T DC represents the transfer channel taking a DV state to
a CV device.

The transfer protocols involve measurement operations
and the resulting fidelity is dependent on the measure-
ment outcome. We consider the transfer successful if the
fidelity is larger than a desired threshold value. As described
in Secs. IV B and IV C, the success of the protocols is
conditioned on the measurement outcome, and for certain
outcomes, the transfer fails. To quantify the success of the
protocols, we define the transfer probability of success as the
probability that the measurement outcome belongs to the set
of measurements that yield a successful transfer. As can be
inferred from the above definition, the transfer probability of
success is dependent on the chosen fidelity threshold.

In the following, we will denote by Lε the parameter that
determines the ε-support intervals for the qumode’s wave
function [defined by Eqs. (3) and (4)]. We will also have the
parameter L = √

πNx/2 [as in Eq. (20)], determined by the
number of qumode discretization points Nx. As discussed in
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the next sections, for both transfer protocols, to achieve a
significant probability of success with a desired error ε, Nx

needs to be chosen large enough so L � Lε . In this case, the
term err(Nx ) in Eq. (44) will be much smaller than ε (since
err decreases fast with increasing L) and, since it is not the
dominant error, it will be neglected in the following analysis
of the transfer protocol.

A. Coupling between continuous-variable
and discrete-variable devices

To implement the transfer protocols, we assume that the
unitary

e−iηX⊗X̄ , (48)

coupling the CV and DV devices can be implemented. Since X̄
is a linear combination of σ z

q operators [see Eq. (40)], this can
be achieved if the unitary e−iηX⊗σ z

q coupling the qumode and
the qubit q can be realized for all q ∈ {0, 1, . . . , nq − 1}. For
example, this type of mode-qubit coupling can be achieved by
considering the evolution under the interaction Hamiltonian
Hint ∝ (a† + a)σ x

q sandwiched between two qubit Hadamard
gates:

e−iηX⊗σ z
q = Hqe−iηX⊗σ x

q Hq. (49)

This kind of interaction is realized, for instance, in systems
with transmons coupled to a microwave cavity [57] or in sys-
tems with an electromagnetic mode coupled to qubits [58–60].

B. Qumode transfer from CV device to DV device

The CV-DV transfer protocol, diagrammatically presented
in Fig. 1, consists of the following steps:

(1) By applying a Hadamard gate to every qubit, the DV
system is prepared into the state

1√
Nx

Nx−1∑
j=0

| j〉D. (50)

The initial joint CV-DV system’s state is

|χCD〉 = 1√
Nx

∫ Nx−1∑
j=0

φ(x)|x〉C | j〉Ddx. (51)

(2) The entangling operator e−iμX⊗X̄ is applied. The state
becomes

e−iμX⊗X̄ |χCD〉 = 1√
Nx

∫ Nx−1∑
j=0

e−iμxx j φ(x)|x〉C | j〉Ddx. (52)

(3) The CV system is measured in the momentum basis
by employing a homodyne measurement. Let’s denote the
measurement result by pmeas. After the measurement, the DV
state becomes

|χD0〉 = 1√
Pr(pmeas)

1√
2πNx

∫ Nx−1∑
j=0

e−ix(μx j+pmeas )φ(x)| j〉Ddx

= 1√
Pr(pmeas)

1√
Nx

Nx−1∑
j=0

φ̂(μx j + pmeas)| j〉D, (53)

while the probability to measure the value pmeas is

Pr(pmeas) = 1

Nx

Nx−1∑
j=0

|φ̂(μx j + pmeas)|2. (54)

(4) The gate e−i
n�p
μ

P̄ is applied to the DV device,

|χD1〉 = e−i
n�p
μ

P̄|χD0〉

= 1√
Pr(pmeas)

1√
Nx

Nx−1∑
j=0

φ̂[μx j + (n + δp)�p]

× |( j + n)modNx
〉D, (55)

where the integer n and the shift parameter −0.5 < δp � 0.5
are defined such that pmeas = (n + δp)�p. Here kmodNx =:
k − Nx� k

Nx
�, with � � being the integer floor function, denotes

kmoduloNx and takes integer values between 0 and Nx − 1.
(5) For the final step the shifted Fourier transform [see

Eq. (C1) in Appendix C],

F̄0,δp = 1√
Nx

Nx−1∑
l, j=0

ei 2π
Nx (l− Nx−1

2 )( j− Nx−1
2 +δp)|l〉D〈 j|D, (56)

is applied to the DV state. The transferred state is

T CD(|φC〉) ≡ |χD〉 = F̄0,δp |χD1〉 =
Nx−1∑
j=0

ξ j | j〉D, (57)

where

ξ j = 1

Nx
√

Pr(pmeas)

Nx−1∑
l=0

φ̂(μxl+n + δp�p)

× ei 2π
Nx ( j− Nx−1

2 )[(l+n)modNx − Nx−1
2 +δp]. (58)

As can be seen from Eq. (58) the transfer protocol fidelity
depends on the value of pmeas = (n + δp)�p. We will show
that for the values of pmeas for which

φ̂(μx j+n + δp�p) = φ̂(μx( j+n)modNx
+ δp�p) + O(ε) for all

× j ∈ {0, ..., Nx − 1}, (59)

the transfer protocol has a small error O(ε).
First, we determine pmeas for which Eq. (59) is true. There

are three cases to be discussed:
(i) When j + n = ( j + n)modNx , Eq. (59) is obviously

satisfied.
(ii) For positive n, when j + n � Nx, the modulo sum ( j +

n)modNx = j + n − Nx. On the left-hand side of Eq. (59), we
have φ̂(μx j+n + δp�p) = O(ε) since μx j+n + δp�p > Lε

√
μ

is outside the ε-support interval of the φ̂ function. The re-
quirement that the right-hand side of Eq. (59) φ̂(μx( j+n)modNx

+
δp�p) = O(ε) implies μx j+n−Nx + δp�p < −Lε

√
μ. This is

equivalent to ( j + n − Nx − Nx−1
2 + δp)�p < −Lε

√
μ for j =

Nx − 1 and, by employing Eq. (20), implies (n + δp)�p <

−Lε
√

μ + L
√

μ + �p

2 .
(iii) For negative n, when j + n < 0, the modulo

sum ( j + n)modNx = j + n + Nx. The left-hand side of
Eq. (59) φ̂(μx j+n + δp�p) = O(ε) since the argument
μx j+n + δp�p < −Lε

√
μ is outside the ε-support interval of
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the φ̂ function. The requirement that the right-hand side of
Eq. (59) φ̂(μx( j+n)modNx

+ δp�p) = O(ε) implies μx j+n+Nx +
δp�p > Lε

√
μ. This is equivalent to ( j + n + Nx − Nx−1

2 +
δp)�p > Lε

√
μ for j = 0 which implies (n + δp)�p >

Lε
√

μ − L
√

μ − �p

2 .
Considering (1)–(3), we can conclude that Eq. (59) is sat-

isfied when

|pmeas| < L
√

μ − Lε

√
μ + �p

2
. (60)

Second, we calculate the probability to measure pmeas

when pmeas satisfies Eq. (60). In Eq. (54), the argument
μx j + pmeas of the wave function φ̂(p) takes values in the
interval [−L

√
μ − 1

2�p + pmeas, L
√

μ + 1
2�p + pmeas] when

the summation index j runs from 0 to Nx − 1. The summation
terms for which μx j + pmeas takes value outside the ε-support
interval [−Lε

√
μ, Lε

√
μ] are negligibly small [of order O(ε)]

and, therefore, their contribution to the sum is negligible.
In another words, as long as [−Lε

√
μ, Lε

√
μ] ⊂ [−L

√
μ −

1
2�p + pmeas, L

√
μ + 1

2�p + pmeas] [which is equivalent to
Eq. (60)], all the non-negligible terms are included in the
summation. In this case, the sum is independent of the value
of pmeas, i.e.,

Pr(pmeas) = 1

Nx

Nx−1∑
j=0

|φ̂(μx j )|2 + O(ε) = 1

Nx�p
+ O(ε) for

× |pmeas| < L
√

μ − Lε

√
μ + �p

2
. (61)

The last equality in Eq. (61) results from the normalization
of φ̂(p) when Eq. (14) and the orthogonality properties of the
sinc functions [Eq. (B3)] are employed.

Finally, for pmeas satisfying Eq. (60), Eqs. (18), (58), (59)
and (61) imply

ξ j =
√

�xφ(x j ) + O(ε). (62)

Equations (57) and (62) imply that

T CD(|φC〉) = |φD〉 + O(ε) for |pmeas| < L
√

μ

− Lε

√
μ + �p

2
. (63)

Hence, for pmeas in the interval range given by Eq. (60), the
CV-DV transfer operation has a small error O(ε).

The protocol probability of success, defined as the proba-
bility of having a measurement outcome such that the fidelity
is larger than 1 − ε, is given by

PCD(ε) =
∫

d pmeasPr(pmeas)

∣∣∣∣
FD>1−ε

, (64)

where the fidelity FD is defined by Eq. (46). According to
Eqs. (61) and (63), we have

PCD(ε) ≈ PCD[O(ε)] =
∫ (L−Lε )

√
μ+ �p

2

−(L−Lε )
√

μ− �p
2

Pr(pmeas)d pmeas

= L − Lε

L
+ 1

Nx

=
√

Nx − Lε

√
2/π√

Nx
+ 1

Nx
. (65)

FIG. 2. CV-DV transfer protocol of n = 0, n = 31, and n = 62
Fock states (Hermite-Gaussian functions) to a nq = 7 qubit device.
(a) The momentum distribution |φ̂n(p)|2 of the Fock states. Here L =√

π2nq

2 and Lε (n) is defined by the Eqs. (3) and (4) for ε = 10−4.
Lε increases with increasing the order n of the Fock state. (b) The
probability to measure the pmeas. (c) The transfer fidelity FD versus
pmeas. The fidelity FD � 1 − O(ε) when pmeas ∈ [−L

√
μ + Lε

√
μ −

�p

2 , L
√

μ − Lε

√
μ + �p

2 ].

Note that a high probability of success requires L � Lε , which
implies that the wave function discretization error err(Nx ) �
ε [see Eq. (44)]. This justifies the omission of terms of order
err(Nx ) in our description of the transfer protocols.

Equation (65) shows that the probability of a successful
transfer protocol increases with increasing the number of dis-
cretization points:

PCD(ε)
Nx→∞−−−→ 1. (66)

Considering that the number of the discretization points in-
creases exponentially with the number of qubits (Nx = 2nq ),
Eq. (65) implies that the probability of failure decreases expo-
nentially with increasing the number of qubits:

1 − PCD(ε) = Lε

√
2

π
2− nq

2 − 2−nq . (67)

Since the support window parameter Lε increases as ε

decreases [see Eqs. (3) and (4)], for fixed nq, the probability of
having a successful transfer protocol, PCD(ε), decreases with
decreasing the protocol error. For fixed PCD, Eq. (67) implies
that the number of necessary qubits scales with the error as
nq ∝ log2(Lε ). When the qumode’s wave function decrease
exponentially fast with increasing |x| and ε ∝ e−cLε (which
is a good approximation for Fock states, as the numerical
calculations presented in Fig. 3(b) and in Ref. [41] show),
nq ∝ log2[ln(ε−1)].

It is useful to investigate the transfer of the Fock states
{φn(x)}n, since our discretization method requires the qumode
to be truncated in the Fock states basis. In Fig. 2, we illustrate
the transfer of the Fock states of order n = 0, n = 31 and
n = 62 to a DV device with nq = 7 qubits. As can be seen
from Fig. 2(a), for a fixed ε, the support interval parameter Lε
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FIG. 3. (a) The support interval parameter Lε (dimensionless)
defined by Eqs. (3) and (4) versus the Fock state order n for different
values of the error ε. Numerical fitting yields Lε ∝ √

2n + c1 + c2,
where c1 and c2 are constants of the order of unity and depend on
ε. (b) Lε versus the error ε (logarithmic scale) for Fock state with
n = 0, 31, 62, 100, and 151. Numerical fitting finds that the error
decreases exponentially with increasing Lε , i.e.„ ε ∝ e−cLε where
c ≈ 10. (c) Probability PCD [see Eq. (64)] for high fidelity transfer
(ε = 10−4) versus n for DV devices with different numbers of qubits.
PCD decreases with increasing n since Lε increases with increasing n.
PCD increases with increasing nq since L increases with increasing nq.
(d) Probability PCD versus ε (logarithmic scale) for Fock state with
n = 0, 31, 62, 100, and 151 for a DV device with nq = 10 qubits.

increases with increasing n. Consequently, the range of pmeas

for high-fidelity transfer is decreasing with increasing n, see
Figs. 2(b) and 2(c). In Fig. 3, we investigate the probability
of achieving high fidelity transfer. The dependence of Lε on
the Fock state order n is illustrated in Fig. 3(a), while its
dependence on the error ε is illustrated in Fig. 3(b). The
behavior of PCD(ε, n) as a function of n for fixed ε and as
a function of ε for fixed n is shown in Figs. 3(c) and 3(d),
respectively.

The transfer fidelity and probability of success monoton-
ically decrease with increasing n. Consequently, the transfer
fidelity and probability of success for a qumode with a cutoff
Nb are always better than those corresponding to the transfer
of the Fock state of order Nb. In other words, for a qumode
with a cutoff Nb, a successful transfer protocol is guaranteed
with the resources necessary for the transfer of the Fock state
of order Nb.

As can be inferred from Fig. 3(c), even when the num-
ber of qubits of the DV device is small, (i.e., nq = 4, 5, 6),
the transfer protocol can be implemented with significant
probability [e.g., PCD(ε = 10−4) > 0.1], for CV states with
boson cutoff Nb < 20. Presumably, this will make the ex-
perimental implementation of the transfer protocol feasible
with present or near-future technology. On the other hand,
for a near-deterministic protocol, a high success probability
is desired. In this case, the number of required qubits is of the
order of 20. For example, for PCD = 0.99 (PCD = 0.999) and
qumode states with a cutoff Nb = 100, the necessary number

FIG. 4. DV-CV transfer protocol, described in Sec. IV C. The DV
state |φD〉 is transferred into the CV state |χC〉.

of qubits nq >≈ 21 (nq >≈ 28) when the required precision
is O(10−7).

The number of qubits needed for near-deterministic trans-
fer protocol is larger than the number of qubits required for
accurately representing the qumode on qubits. For instance,
in the previous paragraph, we found that the transfer of a
Fock state with n = 100 requires ≈21 qubits for a probability
of success PCD ≈ 0.99. However, this state can be repre-
sented with an accuracy of O(10−25) [41] on just eight qubits,
meaning that an ancillary register of ≈13 qubits was used to
increase the transfer success probability. In Sec. V A, we will
show how to discard the ancillary register after the transfer
protocol is complete.

C. Qumode transfer from DV device to CV device

The DV-CV transfer protocol, diagrammatically presented
in Fig. 4, consists of the following steps:

(1) The CV state is prepared into∫
g(x)|x〉Cdx, (68)

with
∫ |g(x)|2dx = 1. The joint DV-CV initial wave function

reads

|χDC〉 =
√

�x

∫ Nx−1∑
j=0

g(x)φ(x j )|x〉C | j〉Ddx. (69)

The protocol success depends on the initial state of the CV
device defined by the wave function g(x). At the end of this
section, we will discuss the choice of g(x) and provide two
examples.

(2) The entangling operator e−iμX⊗X̄ is applied:

e−iμX⊗X̄ |χDC〉 =
√

�x

∫
g(x)

Nx−1∑
j=0

φ(x j )e
−iμxx j |x〉C | j〉Ddx.

(70)

(3) The DV system in measured in the discrete momentum
basis. Let us denote the measured value pm. According to
Eq. (17), pm = (m − Nx−1

2 )�p, with m ∈ {0, ..., Nx − 1}. The
CV state after the measurement is

|χC0〉 =
√

�p

Pr(pm)

∫
g(x)φ̂aper(μx + pm)|x〉Cdx, (71)
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where√
�pφ̂aper(μx + pm) = 1√

Nx

Nx−1∑
j=0

√
�xφ(x j )e

−ix j (μx+pm ),

(72)

and Pr(pm) is the probability to measure pm:

Pr(pm) = �p

∫
|g(x)φ̂aper(μx + pm)|2dx. (73)

The function φ̂aper(p) is antiperiodic since 2L
√

μx j = 2π ( j −
Nx
2 + 1

2 ) and Nx = 2nq is an even number. Employing Eq. (18),
we have

φ̂aper(p) = −φ̂aper (p + 2L
√

μ), (74)

φ̂aper(p) = φ̂(p) when p ∈ [−L
√

μ, L
√

μ]. (75)

(4) The operator e−i pm
μ

P is applied to the CV system

|χC1〉 = e−i pm
μ

P|χC0〉

=
√

�p

Pr(pm)

∫
g(x)φ̂aper(μx + pm)

∣∣∣∣x + pm

μ

〉
C

dx.

(76)

(5) The continuous Fourier transform Fμ, defined as

Fμ =
√

μ

2π

∫
dx
∫

dyeiμxy|x〉〈y|, (77)

that can be implemented using phase shift and squeezing op-
erations, is applied to the CV system. The CV state becomes

T DC(|φD〉) ≡ |χC〉 = Fμ|χC1〉 =
∫

ξ (x)|x〉Cdx, (78)

where

ξ (x) =
√

�p

Pr(pm)

1√
2πμ

∫
g

(
k − pm

μ

)
φ̂aper(k)eikxdk. (79)

By employing the antiperiodicity property of φ̂aper(p), it
can be shown that (see Appendix F)

ξ (x)e−ixpm = 1√
Pr(pm)

√
�p

Nx

∞∑
j=−∞

φ(x j )e
−ix j pm ĝ[μ(x j − x)].

(80)

Here

ĝ(t ) = 1√
2π

∫
g(k)e−ikt dk, (81)

is the Fourier transform of g(x). The probability to measure
pm can be written as (see Appendix F)

Pr(pm) = �p

Nxμ

∞∑
i, j=−∞

φ∗(xi )φ(x j )e
−i(xi−x j )pm

×
∫

ĝ∗(z + μxi )ĝ(z + μx j )dz. (82)

The protocol probability of success, defined as the proba-
bility of having a measurement outcome such that the fidelity

is larger than 1 − ε, is given by

PDC(ε) =
Nx−1∑
m=0

Pr(pm)

∣∣∣∣
FC>1−ε

, (83)

where FC is defined by Eq. (47).
By inspecting Eq. (80), it can be seen that ξ (x)e−ixpm

is, up to a normalization factor, the convolution of the set
{φ(x j )e−ix j pm} j with the function ĝ(μx). The next goal is to
find appropriate choices of ĝ(μx) such that ξ (x) ≈ φ(x). We
present two examples below.

1. Rectangular initial CV state

If the Fourier transform of φ(x)e−ixpm had support on the fi-
nite interval p ∈ [−L

√
μ, L

√
μ] and ĝ(μx) were proportional

to the sinc function u(x) defined by Eq. (8), the Nyquist-
Shannon theorem and Eq. (80) would imply ξ (x) = φ(x).
Therefore, our first choice of g(x) is the rectangular function

g(x) =
⎧⎨⎩ μ

1
4√

2L
for x ∈ [− L√

μ
, L√

μ

]
0 for |x| > L√

μ
,

(84)

because for this choice we have [see Eq. (B1) in Appendix B]

ĝ(μx) = 1√
�p

u(x). (85)

The orthogonality property of the sinc functions described
by Eq. (B3) (Appendix B), together with Eq. (82), yields a
probability to measure pm that is independent of pm:

Pr(pm) = �p

Nx

∞∑
i=−∞

|φ(xi )|2 �x

�p
= 1

Nx
. (86)

The Fourier transform of φ(x)e−ixpm is φ̂(p + pm). Since
the ε-support interval of φ̂(p) is [−Lε

√
μ, Lε

√
μ], φ̂(p +

pm) has negligible [i.e., O(ε)] support outside the interval
[−L

√
μ, L

√
μ], as long as

|pm| � L
√

μ − Lε

√
μ. (87)

In this case, the DV state can be transferred with O(ε)
precision to the CV register, i.e.,

ξ (x) = φ(x) + O(ε) when |pm| � L
√

μ − Lε

√
μ. (88)

Equations (83) and (88) imply

PDC(ε) ≈ PDC[(O(ε)] = L − Lε

L
=

√
Nx − Lε

√
2/π√

Nx
. (89)

For illustration, in Fig. 5 we show (rectangle symbols)
the probability Pr(pm) and the fidelity FC versus pm for the
transfer of the Fock states with n = 0, n = 10, and n = 31
from a nq = 8 qubit device to a CV device.

Note that, apart from the small term �p

2 and the fact that
pm is discrete, Eq. (87) is similar to Eq. (60), which gives
the condition for high-fidelity CV-DV transfer protocol. Up
to the small 1

Nx
term, we also have PDC(ε) ≈ PCD(ε), as can

be seen by comparing Eqs. (65) and (89). Practically, the de-
pendence of DV-CV transfer protocol on the number of qubits
and accuracy is the same as the corresponding dependence of
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FIG. 5. Transfer of n = 0 (full symbols), n = 10 (shaded sym-
bols) and n = 31 (open symbols) Fock states from a nq = 8 qubit
device to a CV device initially prepared with rectangular (rectangle
symbols) and Gaussian (circle symbols) wave functions. The Gaus-
sian wave function has σ = 0.5 L√

μ
[see Eq. (90)]. The dotted lines

are for visual guidance. (a) Probability to measure pm. While for a
rectangular CV initial state, Pr(pm ) is constant [see Eq. (86)], it has
a Gaussian shape for a Gaussian CV initial state, with a width that
increases with increasing n. (b) Transfer fidelity [Eq. (47)] versus
pm. For a rectangular CV initial state, the fidelity FC � 1 − O(ε)
when |pm| � L

√
μ − Lε

√
μ. Compared to the rectangular case, for a

Gaussian CV initial state the fidelity is smaller and decreases faster
with increasing pm and n.

CV-DV transfer protocol discussed in Sec. IV B and illustrated
in Fig. 3 for the Fock states.

2. Gaussian initial CV state

A rectangular initial state of the CV device ensures a high-
fidelity transfer protocol and a probability of success that
approaches one exponentially fast as the number of qubits
increases, similar to the CV-DV transfer protocol. However,
preparing rectangular CV states might be challenging in prac-
tice, since a rectangular state is non-Gaussian. Here we show
that the DV-CV transfer protocol works and can be brought to
the near-deterministic regime for alternative initial CV wave
functions, which can be easily prepared, in practice, but at
the cost of increasing the number of required qubits in the
DV device, namely, we address the DV-CV transfer when the
initial CV state is a Gaussian function,

g(x) = π− 1
4

1√
σ

e− x2

2σ2 , (90)

with variance σ 2.
For this choice of g(x), Eq. (80) yields

ξ (x)e−ixpm = π− 1
4
√

�pσ

∞∑
j=−∞

φ(x j )e
−ix j pm e− μ2σ2

2 (x−x j )2

.

(91)

FIG. 6. DV-CV transfer of Fock states when the initial CV states
is a Gaussian with σ = 0.5 L√

μ
. (a) Probability PDC(ε) [see Eq. (83)]

versus n for ε = 0.01 (full symbols) and ε = 0.001 (shaded symbols)
when nq = 7, 8 and 9. (b) PDC(ε) versus the number of qubits nq, for
the transfer of Fock states with n = 0, 10, and 31 when ε = 0.01
and ε = 0.001. PDC decreases as n increases and increases as nq

increases.

By inspecting Eq. (91), we expect that

σ � 1

μ�x
= L√

μ
(92)

is required for a smooth convolution. On the other hand, a
value of σ that is too small will average out the variation of
φ(x)e−ixpm along the grid points. It is expected that as the
variation of φ(x) and the value of pm increase, the protocol
fidelity will decrease. This has been confirmed by numeri-
cal calculations. We also have found numerically that σ ∈
[0.5 L√

μ
, 0.6 L√

μ
] yields the best protocol fidelity (not shown).

In Figs. 5(a) and 5(b), we show (circles) the probability to
measure pm and, respectively, the fidelity for the transfer of
Fock states with n = 0, n = 10, and n = 31 from an eight-
qubit device to a CV device initially prepared in a Gaussian

FIG. 7. One qubit discard. The coefficients of the basis vectors
{| j〉D} sown in the shaded region are negligible [≈ O(ε)]. First, a CX
gate is applied to the first two qubits (qubit 0 and the control qubit
1). Second, an X gate is applied to the qubit 1. As a result, all basis
vectors with nonzero coefficients will have the qubit 0 in the state
|1〉. The 0 qubit is unentangled and can be discarded. The remaining
state is described by Eq. (96).
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state with σ = 0.5 L√
μ

. The probability to measure pm has a
Gaussian shape with a width that increases as n increases.
Compared to the rectangular initial CV state, the fidelity is
smaller and decreases faster with increasing |pm| and n.

The transfer probability of success is shown in Fig. 6 for
Fock states. PDC(ε) for fixed ε decreases with increasing n
and increases with increasing the number of qubits in the DV
register.

Similar to the rectangular case, the accuracy and success
probability can be increased by increasing nq. However, for
the same level of accuracy, the number of qubits required is
greater for the Gaussian case than for the rectangular case. We
have not thoroughly investigated the dependence of the trans-
fer fidelity and success probability on the number of qubits for
Gaussian initial CV states because a Gaussian initial CV state
is not the only practical choice for DV-CV transfer protocol,
and probably not the best one either. In a future study, we
plan to investigate DV-CV transfer protocol for various initial
states, such as variational available states or states consisting
of a sum of displaced Gaussians.

V. ANCILLARY QUBITS FOR NEAR-DETERMINISTIC
TRANSFER PROTOCOL

As discussed in Sec. IV B, a high success probability and
high fidelity CV-DV transfer protocol requires a number of
qubits significantly larger than the one necessary for an accu-
rate discrete representation of the qumode. After the transfer,
many coefficients of the discrete qumode state in the basis
{| j〉D} j with j ∈ {0, . . . , Nx − 1} are negligible. In Sec. V A,
we show how to downsize the DV register to the minimum
number of qubits required for the discrete representation of
the qumode with the desired accuracy.

Similarly, for a high success probability and high fidelity
DV-CV transfer protocol, the DV register should have a num-
ber of qubits significantly larger than the one necessary for the
representation of the qumode to be transferred. In Sec. V B,

we show how to add ancillary qubits to the DV register in or-
der to increase the success probability of the transfer protocol.

A. Qubit discard after CV-DV transfer

To achieve high-fidelity, near-deterministic CV-DV trans-
fer, a DV register with a large number of qubits needs to be
used. However, not all qubits are necessary to represent the
qumode after the transfer. Here, we present a method for dis-
carding unnecessary qubits. We will begin with the procedure
for discarding one qubit.

As described in Sec. IV B, after a successful high-fidelity
transfer protocol, the DV state is

|φD〉 =
√

�x

Nx−1∑
j=0

φ(x j )| j〉D + O(ε), (93)

with x j = ( j − Nx−1
2 )�x and �x =

√
2π

Nxμ
. The goal of this

procedure is to obtain the state

∣∣φ′
D

〉 = √
�′

x

N ′
x−1∑
j=0

φ(x′
j )| j〉D + O(ε) (94)

on a DV device with n′
q = nq − 1 qubits, where N ′

x = Nx/2,

and x′
j = ( j − N ′

x−1
2 )�′

x, with �′
x = √

2�x.
A number of qubits larger than the one required for the

qumode discrete representation implies that the number of the
discretization points Nx is large enough such that L√

2
� Lε ,

with Lε defined by Eqs. (3) and (4) and L defined by Eq. (20).
The coefficients φ(x j ) = O(ε) for j ∈ {0, . . . , 1

4 Nx − 1} and
j ∈ { 3

4 Nx, . . . , Nx − 1} because, for these values of j, x j is
outside the ε-support window of function φ(x), [− Lε√

μ
, Lε√

μ
].

In our encoding, as defined by Eq. (38), the qubits defining
the basis states are counted from left to right, i.e., | j〉D =
| j0, j1, . . . , jnq−1〉. The first part of the procedure, as illus-
trated in Fig. 7, consists of applying a CX gate to the qubits 1
and 0 (with 1 being the control qubit), followed by an X gate
to qubit 1,

√
�x

Nx−1∑
j=0

φ(x j )| j0, j1, . . . , jnq−1〉 CX10−−→
√

�x

Nx−1∑
j=0

φ(x j )
∣∣ j0 ⊕ j1, j1, . . . , jnq−1

〉
X1−−→

√
�x

Nx−1∑
j=0

φ(x j )
∣∣ j0 ⊕ j1, j1 ⊕ 1, . . . , jnq−1

〉 = |1〉 ⊗
√

�x

3Nx
4 −1∑

j= Nx
4

φ(x j )
∣∣ j1 ⊕ 1, . . . , jnq−1

〉+ O(ε)

= |1〉 ⊗
√

�x

N ′
x−1∑
j=0

φ(x̃ j )
∣∣ j0, j1, . . . , jnq−2

〉+ O(ε), (95)

where x̃ j = ( j − N ′
x−1
2 )�x = x′

j/
√

2 and ⊕ denotes modulo 2 summation. After these two transformations, the qubit 0 becomes
unentangled and is discarded.

After discarding the qubit, the DV state on nq − 1 qubits is

|φ1〉 =
√

�x

N ′
x−1∑
j=0

φ(x̃ j )| j〉D + O(ε). (96)
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FIG. 8. Hermit-Gaussian (Fock) wave function, φ0(x), of order
n = 0. (a) The black circles are sampled on a grid with the dis-

cretization distance �x =
√

2π

Nx
, where Nx = 128, corresponding to

nq = 7 qubits and μ = 1. The red squares are sampled on a grid

with �′
x =

√
2π

N ′
x
, where N ′

x = 64, corresponding to nq = 6 qubits

and μ = 1. (b) The value of the discretized qumode coefficients in
the nq = 6 qubits basis {| j〉D} j∈{0,...,63}, before (black circles) and
after (red squares) the squeezing operation described by Eq. (97) is
applied.

However, this is not exactly the state we target, since the
sampling points {x̃ j} are on a grid with the discretization
interval �x, as illustrated with black-circle symbols in Fig. 8
for the n = 0 Fock state. We want the sampling points for
the target state to be on a grid with the discretization interval
�′

x = √
2�x, illustrated with red-square symbols in Fig. 8.

The second part of the procedure consists of applying a
squeezing gate with the squeeze factor r = ln 2/2. According
to Eq. (42), the state becomes

S̄

(
1

2
ln 2

)
|φ1〉 = √

�′
x

N ′
x−1∑
j=0

φ(x′
j )| j〉D + O(ε)

= |φ′
D〉 + O(ε), (97)

which, up to O(ε) error, is just the qumode representation on
nq − 1 qubits, as described by Eq. (94).

Note that, even before applying the squeezing operation,
the qumode representation on the reduced qubit register de-
scribed by Eq. (96) is valid. However, it corresponds to a
discretization for mass μ′ bosons, where μ′ = 2μ. In this
representation, the discrete position and momentum opera-
tors should be defined as in Eqs. (21) and (22), but with
μ′ replacing μ. It is important to note that the μ-boson and
μ′-boson number distributions of the qumode are different.
The representation with the lowest number of bosons cutoff is
more accurate. A more detailed discussion about the relation
between the boson mass and the representation accuracy is
presented in Ref. [41].

The one-qubit discarding procedure described above can
be repeated to discard more qubits. The number of qubits

that can be discarded is equal to the maximum integer r that
satisfies L√

2r � Lε .

B. Qubit padding before DV-CV transfer

The success probability of DV-CV transfer protocol in-
creases with increasing size of the DV register. The procedure
to add a qubit to the DV register consists of the same steps as
the qubit discarding procedure presented in Sec. V A, but in
reverse order.

The nq-qubit initial DV state is

|φD〉 =
√

�x

Nx−1∑
j=0

φ(x j )| j〉D. (98)

The nq + 1-qubit target DV state is

|φ′
D〉 = √

�′
x

N ′
x−1∑
j=0

φ(x′
j )| j〉D + O(ε), (99)

with N ′
x = 2Nx, �′

x = �x√
2
, and x′

j = ( j − N ′
x−1
2 )�′

x.
The first step of the padding procedure is squeezing with

the squeeze factor r = − ln 2/2. According to Eq. (42), the
state becomes

|φ1〉 ≡ S̄

(
− 1

2
ln 2

)
|φD〉 =

√
�x√

2

Nx−1∑
j=0

φ

(
x j√

2

)
| j〉D + O(ε)

= √
�′

x

3N ′
x

4 −1∑
j= N ′

x
4

φ(x′
j )| j〉D + O(ε). (100)

Next, a qubit prepared in state |1〉 is added to the left of the
register, i.e., |φ1〉 −→ |1〉 ⊗ |φ1〉. According to the encoding
convention defined by Eq. (38), this new qubit will be in
position 0. Next, the steps shown in Fig. 7 are followed in
reverse order, i.e., an X1 gate is applied to the qubit in position
1, followed by a CX10 gate applied to the qubits in positions
1 and 0. This procedure yields the target state |φ′

D〉 described
by Eq. (99), up to an error given by the weight of φ(x) outside
the interval [−Nx�x

2 , Nx�x
2 ].

To increase the transfer protocol success probability to the
desired value, the procedure described above can be repeated
to add more qubits.

VI. CONCLUSIONS

Qumodes are bosonic quantum states that encode informa-
tion in the continuous basis formed by the eigenvectors of the
quadrature operators. We introduce a discrete representation
of the qumodes on the finite Hilbert space of DV devices,
along with the implementation of the quadrature operators
and the implementation of a universal set of CV gates on DV
devices. We construct the discrete qumode representation by
employing the Nyquist-Shannon expansion theorem, which
is applicable to qumode wave functions that have negligible
weight at large arguments. The errors associated with this
representation decrease exponentially with increasing the size
of the finite Hilbert space when the qumode can be truncated
in the boson number basis.
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We present two protocols for transferring qumodes be-
tween CV and DV devices. The first protocol transfers a CV
qumode to its discrete representation on a DV device. The
protocol has high fidelity when the measurement outcome
is confined to a specific interval. The probability of achiev-
ing high-fidelity transfer approaches one exponentially as the
number of qubits in the DV register increases.

The second protocol transfers a discrete DV qumode to a
CV device. The fidelity of the protocol depends on the mea-
surement outcome. If the initial CV device is prepared with
a rectangular wave function, the dependence of the transfer
fidelity and success probability on the number of DV qubits
is practically the same as that of the CV-DV transfer protocol.
For instance, in this case, the success probability approaches
one exponentially as the number of qubits in the DV device
increases. However, we find that even with alternative initial
CV states, which may be easier to prepare experimentally,
the DV-CV transfer protocol can be implemented with high
fidelity and high success probability, albeit requiring more DV
qubits.

The transfer protocols can be driven to the near-
deterministic regime by increasing the number of DV qubits.
This can be achieved by using ancillary registers that can
be discarded after the protocol is completed. We introduce
procedures for discarding qubits after CV-DV transfer and
for adding qubits before DV-CV transfer. These procedures
consist of single-qubit gates, CNOT gates, and squeezing
operations.

Alternative methods for transferring qumodes between CV
and DV devices may also be possible. For instance, a protocol
for transferring Fock states below the cutoff between the CV
and DV devices, along with a unitary transformation from
the Fock basis to the discrete quadrature basis on the DV
device, will be effective if the practical implementation of
these protocols is feasible. To the best of our knowledge, there
are no practical proposals in the literature for the implemen-
tation of such protocols. The number of gates necessary for
the transformation between Fock and quadrature bases on a
DV device scales as O(4nq ) (unless more efficient approximate
unitaries can be found via variational methods). However, the
transfer of the Fock states between the CV and DV devices
appears even more challenging to implement. For example,
the Fock states can be transferred using a SWAP algorithm
or by a measurement-based protocol similar to the one used
here, where instead of the quadrature variables X and P, the
number operator and the phase operator are used as conjugate
variables [61]. Apparently, the most difficult problem is the
implementation of the phase operator [62–64] and the trans-
formation from the number basis to phase state basis on CV
devices.

The work presented in this paper demonstrates the potential
of hybrid CV-DV quantum hardware for processing CV-
encoded information, opening research directions for hybrid
CV-DV systems and creating opportunities for developing
integrated quantum technology. We envision a wide range of
applications for this study. For example, CV-encoded data
from optical or cavity sensors can be transferred to qubit
QPUs and analyzed with QML methods that could be chal-
lenging to implement on CV devices. Non-Gaussian states
can be transferred from a DV device to a CV device, and

non-Gaussian gates can be realized by teleporting qubit gates
implemented on DV devices to CV devices by developing
protocols similar with the ones described in Refs. [23,65].
This would provide an efficient alternative to preparing CV
states and gates directly, which typically requires nontrivial
optimal pulse control [66]. Hybrid CV-DV cluster states can
be employed for quantum computation. The quantum tomog-
raphy of CV states can be reduced to an equivalent qubit
system tomography problem, by transferring the CV states
to DV devices. These are a few examples illustrating how
CV-DV hybrid quantum hardware, with the proposed transfer
protocols, could make quantum information processing more
efficient. We believe that this paper will enable the develop-
ment of another class of quantum algorithms using CV-DV
hybrid hardware in various fields such as quantum computing,
quantum networking, quantum sensing, quantum tomography,
and QML.
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APPENDIX A: NYQUIST-SHANNON EXPANSION
WITH SHIFTED GRID SAMPLING

Here we show that the Nyquist-Shannon expansion for
band-limited function remains valid if the sampling grid is
shifted by an arbitrary amount.

Let f (x) be a band-limited function, i.e., f̂ (p) = 0 for
|p| > L, where f̂ (p) is the Fourier transform of f (x) and L
is a positive real number. The Nyquist-Shannon theorem [44]
implies

f (x) =
∞∑

i=−∞
f (xi )u(x − xi ), (A1)

where xi = i�x. The grid interval �x and the function u(x)
are defined by Eqs. (7) and (8), respectively, with L ≡ Lε and
μ = 1.

Now, let us define the function h(x) as follows:

h(x) := f (x + δ), (A2)

where δ is an arbitrary real number. Its Fourier transform,

ĥ(p) = 1√
2π

∫
dx f (x + δ)e−ipx = eipδ f̂ (p), (A3)
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has support on the interval [−L, L], similar to f̂ (p). The
Nyquist-Shannon theorem applied to h(x) implies that

h(x) =
∞∑

i=−∞
h(xi )u(x − xi ). (A4)

Equation (A4) is equivalent to

f (x + δ) =
∞∑

i=−∞
f (xi + δ)u(x − xi ). (A5)

By changing the variable x + δ −→ x in Eq. (A5), we get

f (x) =
∞∑

i=−∞
f (xi + δ)u(x − xi − δ). (A6)

The band-limited function f (x) can be expressed as an infinite
sum with the sum terms proportional to the function sampled
on the grid points {i�x + δ}i∈Z. The parameter δ is a real
arbitrary number.

APPENDIX B: SOME PROPERTIES
OF THE SINC FUNCTIONS

Here we present two properties of the sinc functions em-
ployed in the Nyquist-Shannon expansion of band-limited
functions that are useful to our study.

The Fourier transform of a sinc function is a rectangular
function. Thus,∫ ∞

−∞
u(x − x j )e

−ipxdx = e−ipx j R(p)�x, (B1)

where R(p)

R(p) =
{

1 for p ∈ [−L
√

μ, L
√

μ]

0 for |p| > L
√

μ,
(B2)

as can be directly checked.
The sinc functions u(x − x j ) defined by Eq. (8) obey the

orthogonality relation:∫
u(x − x j )u(x − xl )dx = �xδ jl . (B3)

Equation (B3) can be obtained by employing the Parseval-
Plancherel theorem and Eq. (B1).

APPENDIX C: SHIFTED FINITE FOURIER TRANSFORM

As described by Eqs. (9) and (14), the Nyquist-Shannon
theorem implies that, when a boson cutoff can be imposed,
the wave function φ(x) and its Fourier transform φ̂(p) can
be expressed as finite sums. The sum terms are proportional
to φ(x) sampled at the grid points {x j + δx} j∈{0,...,Nx−1} and to
φ̂(p) sampled at the grid points {pm + δp}m∈{0,...,Nx−1}, respec-
tively. The Nyquist-Shannon expansion is valid for any grid
shift parameters −0.5 < δx, δp � 0.5. The function sampled
at the position grid points and the function’s Fourier trans-
form sampled at the momentum grid points are connected via
shifted discrete Fourier transforms, as described by Eqs. (18)
and (19).

To represent the qumode on a DV device, in Sec. III B we
construct a finite Hilbert space of dimension Nx by defining a

basis {| j〉} j∈{0,...,Nx−1} and the action of the discrete quadrature
operators in this basis. On this finite Hilbert space, the shifted
Fourier transform is defined as follows:

F̄δx,δp = 1√
Nx

Nx−1∑
k, j=0

ei 2π
Nx ( j− Nx−1

2 +δx )(k− Nx−1
2 +δp)| j〉〈k|. (C1)

The explicit implementation of the shifted Fourier transform
on qubits is given in Appendix C 1.

When both shift parameters are zero, i.e., δx = δp = 0, we
obtained the centered discrete Fourier transform:

F̄ ≡ F̄0,0 = 1√
Nx

Nx−1∑
k, j=0

ei 2π
Nx ( j− Nx−1

2 )(k− Nx−1
2 )| j〉〈k|. (C2)

The centered Fourier transform is used to define the dis-
crete momentum operator in Eq. (22). Note that the discrete
momentum operator defined in this way obeys the parity
symmetry-related equations

μF−1X̄F = −P̄, (C3)

1

μ
F−1P̄F = X̄ , (C4)

1

μ
F P̄F−1 = −X̄ , (C5)

similar to the equations satisfied by the continuous operator P
[23].

Employing Eq. (9), we can write

φ(xi + δx1�x ) =
Nx−1∑
j=0

φ(x j + δx2�x )

× u[xi − x j + (δx1 − δx2)�x] + O(ε),
(C6)

The sets {φ(xi + δx1)}i and {φ(x j + δx2)} j are connected by
the operator F̄δx1,δpF̄−1

δx2,δp
. This implies that

Tδx1,δx2 ≡ F̄δx1,δpF̄−1
δx2,δp

=
Nx−1∑
i, j=0

u[xi − x j + (δx1 − δx2)�x]|i〉〈 j| + O(ε) (C7)

when acting on the subspace defined by the cutoff Nb.
In particular, the operator Tδx,0 acting on a discrete qumode

yields

Tδx,0

⎡⎣√�x

Nx−1∑
j=0

φ(x j )| j〉
⎤⎦ =

√
�x

Nx−1∑
j=0

φ(x j + δx�x )| j〉

+ O(ε), (C8)

and provides access to the wave-function values on shifted
grid points by employing measurements in the DV device
computational basis.

1. Implementation of shifted discrete
Fourier transform on qubits

The shifted discrete Fourier transform reduces to the
implementation of the standard quantum Fourier transform
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sandwiched between single-qubit Rz rotations. To show this,
we write Eq. (C1) as

F̄δx,δp = eiA(δx,δy )

[
Nx−1∑
k=0

e−ikB(δp)|k〉〈k|
]

QFT

×
⎡⎣Nx−1∑

j=0

e−i jB(δx )| j〉〈 j|
⎤⎦, (C9)

with

A(δx, δp) = 2π

Nx

(
Nx − 1

2
− δx

)(
Nx − 1

2
− δp

)
, (C10)

B(δ) = 2π

Nx

(
Nx − 1

2
− δ

)
, (C11)

and

QFT = 1√
Nx

Nx−1∑
k, j=0

ei 2π
Nx

jk| j〉〈k|. (C12)

The first term in Eq. (C9) is a phase factor. The third term in
Eq. (C9) is the standard Qquantum Fourier transform and its
implementation is described in Ref. [67]. The main computa-
tional cost for its implementation is given by the nq(nq − 1)/2
two-qubit CNOT gates.

The second and the fourth terms are diagonal opera-
tors. Their implementation requires only single-qubit rotation
gates. For example, considering the encoding of our basis
vectors on qubits, described by Eq. (39), we can write

Nx−1∑
k=0

e−ikB(δ)|k〉〈k| =
∑

k0,...,knq−1=0,1

e−i
∑nq−1

q=0 kq2nq−1−qB(δ)|k0, . . . , knq−1〉〈k0, . . . , knq−1|

=
nq−1∏
q=0

(|0〉〈0|q + e−i2nq−1−qB(δ)|1〉〈1|q ) = e−i B(δ)
2 (Nx−1)

nq−1∏
q=0

Rz
q

[
−2nq−1−q B(δ)

2

]
, (C13)

where the Rz
q(θ ) rotation acting on qubit q is

Rz
q(θ ) = e−i θ

2 σ z
q = e−i θ

2 |0〉〈0| + ei θ
2 |1〉〈1|. (C14)

APPENDIX D: IMPLEMENTATION
OF CV GATES ON QUBIT DEVICES

The CV gates are mapped on DV devices by replacing the
quadrature operators X and P with their discrete counterparts,
X̄ and P̄, respectively. Here we present the explicit implemen-
tation of a set of gates which is sufficient for CV universal
quantum computation.

By using Eq. (40), we get

e−iηX̄ =
nq−1∏
q=0

Rz
q(−2nq−1−q�xη), (D1)

with Rz
q defined by Eq. (C14).

Analogously,

e−iηX̄ 2 = e−iη�2
x

N2
x −1
12

nq−1∏
p=0

p−1∏
q=0

ZZpq(ηνpq), (D2)

where

ZZpq(ν) = e−iνσ z
pσ

z
q , (D3)

νpq = 22nq−3−p−q�2
x . (D4)

The two-qubit gateZZpq acts on qubits p and q and can be
decomposed into two CNOT gates and one Rz gate [68]. The
gate e−iηX̄ 2

consists of nq(nq − 1) CNOT gates.
The cubic-phase gate reduces to

e−iηX̄ 3 =
nq−1∏
p=0

p−1∏
q=0

q−1∏
r=0

ZZZpqr (ημpqr )
nq−1∏
s=0

Rz
s(ηλs), (D5)

where

ZZZpqr (μ) = e−iμσ z
pσ

z
q σ z

r , (D6)

μpqr = − 23nq−4−p−q−r�3
x, (D7)

λs = − 2nq−3−s(22nq−2−2s + 22nq − 1)�3
x . (D8)

The three-qubit gate ZZZpqr can be decomposed into four
CNOT gates and one Rz gate [68], and hence e−iηX̄ 3

consists
of 2

3 nq(nq + 1)(nq + 2) CNOT gates.
Equation (22) implies that any gate G(P̄) function of the

momentum operator P̄, can be written as G(μX̄ ) sandwiched
between two centered quantum Fourier transform:

G(P̄) = F̄G(μX̄ )F̄−1. (D9)

In particular, we can write

e−iηP̄2 = F̄e−iημ2X̄ 2F̄−1. (D10)

The implementation of the gate e−iηP̄2
reduces to the imple-

mentation of the e−iημ2X̄ 2
gate described by Eq. (D2), and

the implementation of the centered quantum Fourier gate de-
scribed by Eq. (C9) with δx = δp = 0.

The CPHASE gate couples two different modes. On a DV de-
vice, each mode is represented on a separate nq qubit register.
The CPHASE gate coupling mode i and mode j is implemented
as

e−iηX̄i⊗X̄ j =
nq−1∏
p=0

nq−1∏
q=0

ZZpi;q j (ην ′
pq), (D11)

where

ZZpi;q j (ν) = e−iνσ z
piσ

z
q j , (D12)

ν ′
pq = 22nq−4−p−q�2

x . (D13)
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(a) (b)

FIG. 9. (a) The error of the standard decomposition of the
squeezing operator, ||err|| versus r

√
r, calculated by imposing a bo-

son occupation cutoff equal to 50. The norm ||err|| ≡ max jk |err jk |,
where err jk is the ( j, k) matrix element of the operator err defined by
Eq. (E11). (b) Coefficients a and b defining the exact decomposition
of the squeezing operator described by Eq. (E12), determined by
solving numerically Eq. (E13).

The ZZpi;q j gate acts on qubit p belonging to the qubit register
allocated for mode i and on qubit q belonging to the qubit
register allocated for mode j. This gate consists of n2

qZZ gates
or 2n2

q CNOT gates.

APPENDIX E: SQUEEZING OPERATOR

We pay particular attention to the implementation of the
squeezing operator [56]

S(r) = ei r
2 (XP+PX ) (E1)

on a DV device. The discrete squeezing operator,

S̄(r) = ei r
2 (X̄ P̄+P̄X̄ ), (E2)

is used in the process of adding and discarding ancilla qubits
to the DV device, as described in Sec. V.

The squeezing operator action on the quadrature operators
is described by

S(r)†XS(r) = Xe−r, (E3)

S(r)†PS(r) = Per . (E4)

Equation (E3) implies

S(r)†|x〉 = e
r
2 |erx〉, (E5)

which is equivalent to

|χ〉 = S(r)|φ〉 ⇒ χ (x) = e
r
2 φ(xer ). (E6)

Since squeezing can increase the number of bosons by a
large amount, when mapping squeezing operations onto a DV
device, it is always important to check whether the number of
discretization points Nx is large enough to accurately repre-
sent squeezed states. Assuming we have chosen an Nx large
enough, the state |χ〉 given by Eq. (E6) will be represented on
a DV device as follows:

|χ〉 = √
� jer

Nx−1∑
j=0

φ(x je
r )| j〉. (E7)

This implies that

S̄(r)
√

� j

Nx−1∑
j=0

φ(x j )| j〉 = √
� jer

Nx−1∑
j=0

φ(x je
r )| j〉. (E8)

1. Implementation of the squeezing operator

While in CV devices the squeezing operation is imple-
mented directly by using different experimental methods
[69–72], such as optical parametric down-conversion, for ex-
ample [71], the implementation of the discrete squeezing
operator requires decomposition into gates that can be imple-
mented on DV devices.

Any gate which is a polynomial function of X and P can be
obtained from a universal set of gates, such as the one given by
Eqs. (D1), (D2), (D5), (D10), and (D11) by using the operator
relation [24]

e−iθAe−iθBeiθAeiθB = eθ2[A,B] + O(θ3). (E9)

In particular, since

[X 2, P2] = 2i(XP + PX ), (E10)

the squeezing operator can be written as

S(r) = e
r
4 [iX 2,−iP2] = e−i

√
r

2 X 2
ei

√
r

2 P2
ei

√
r

2 X 2
e−i

√
r

2 P2 + err, (E11)

where err = O(r
√

r). For illustration, in Fig. 9(a) we plot ||err|| versus r
√

r. The result has been obtained by employing
numerical calculations.

However, there is a better way to implement the squeezing operator. As described in the second part of this section, we have
found that S(r) can be exactly decomposed into a product of exponentials of X 2 and P2. That is, we have

S(r) =
{

e−i a(r)
2 X 2

ei a(r)
2 P2

ei b(r)
2 X 2

e−i b(r)
2 P2

e−i a(r)
2 X 2

ei a(r)
2 P2

for r � 0
e−i a(|r|)

2 P2
ei a(|r|)

2 X 2
ei b(|r|)

2 P2
e−i b(|r|

2 X 2
e−i a(|r|)

2 P2
ei a(|r|)

2 X 2
for r < 0,

(E12)
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where the real coefficients a(r) and b(r) satisfy the system of equations⎧⎪⎪⎨⎪⎪⎩
a[a2(b2+1)−2ab+b2+2]−b

st(a,b) = 0

r−
[a4 (b2+1)−2a3b+a2 (b2+2)+b2] cot−1

(
a4−2(a2+2)ab+4a2+(a4+3a2+1)b2+2√

[a4−2(a2+2)ab+4a2+(a4+3a2+1)b2+2]2−4

)
√

[(a2+2)2−2(a2+2)ab+(a4+3a2+1)b2][(a2+2)ab+(a2+4)a2+(a4+3a2+1)b2−2]

st(a,b) = 0.

(E13)

We solved Eq. (E13) numerically. The denominator st(a, b) =√
[a4 − 2(a2 + 2)ab + 4a2 + (a4 + 3a2 + 1)b2 + 2]2 − 4

was included to stabilize the root finding. The coefficients
a(r) and b(r) are plotted in Fig. 9(b).

Finally, to implement the discrete squeezing operator de-
fined by Eq. (41), we replace X and P in Eq. (E12) with
X̄ and P̄, respectively, and then use Eqs. (D2) and (D10) to
implement the exponentials of X̄ 2 and P̄2.

We will end this section by sketching the derivation of
Eqs. (E12) and (E13). We start with the Baker-Campbell-
Hausdorff formula [73],

eZ = eAeB, (E14)

where Z = A + B + 1
2 [A, B] + 1

12 [A, [A, B]] − 1
12 [B, [A, B]]

+ · · · . The · · · notation indicates terms proportional to all
possible higher-order commutators of A and B. Note that the
set formed by the operators

h = 1

4
[X 2, P2], e = i

2
X 2 and , f = − i

2
P2 (E15)

is closed under the commutation operation, i.e.,

[h, e] = 2e, [h, f ] = −2 f , and [e, f ] = h. (E16)

The closure property described by Eq. (E16) and the Baker-
Campbell-Hausdorff formula imply that any product of the
exponentials of h, e, and f can be written as the exponential
of a linear combination of h, e, and f . For example, we can
write

e−aee−a f ebeeb f e−cee−c f = ex(a,b,c)e+y(a,b,c) f +z(a,b,c)h, (E17)

where a, b, and c are real numbers and x, y, and z are real
functions to be determined. Equations (E12) and (E13) for
r � 0 are derived by solving x(a, b, c) = y(a, b, c) = 0 and
z(a, b, c) = r. To find the solution, we notice that the com-
mutation relations given by Eq. (E16) are the same as the
commutation relations of the generators of the special linear
group SL2(R) [74]. These generators have a simple 2 × 2 real
matrix representation:

h =
(

1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
. (E18)

Using Eq. (E18) in Eq. (E17), we obtain a = c, together with
the nonlinear equations Eq. (E13). The r < 0 case follows
from the observation that the commutation relations described
by Eq. (E16) are preserved by the transformation

(h, e, f ) ←→ (−h, f , e), (E19)

which implies that the second line in Eq. (E12) can be ob-
tained by replacing (r, X 2, P2) with (−r, P2, X 2) in the first
line of Eq. (E12).

APPENDIX F: EXPLICIT CALCULATION OF THE
MEASUREMENT PROBABILITY AND WAVE FUNCTION

OF DV-CV TRANSFER PROTOCOL

The DV-CV transfer protocol described in Sec. IV C takes
a DV state described by Eq. (45) to a CV state described by
Eq. (78) with

ξ (x) =
√

�p

Pr(pm)

1√
2πμ

∫
g

(
k − pm

μ

)
φ̂aper(k)eikxdk (F1)

=
√

�p

Pr(pm)

√
μ

2π

∫
φaper(t )ĝ(μt − μx)e−i(t−x)pm dt . (F2)

In Eq. (F2),

ĝ(t ) = 1√
2π

∫
dkg(k)e−ikt (F3)

and

φaper(t ) = 1√
2π

∫
dzφ̂aper(z)eitz

= 1√
2π

∞∑
j=−∞

∫ −L
√

μ+2( j+1)L
√

μ

−L
√

μ+2 jL
√

μ

φ̂aper(z)eitz

= 1√
2π

∞∑
j=−∞

e2i jtL
√

μ(−1) j
∫ L

√
μ

−L
√

μ

φ̂(z)eitzdz

= φ(t )
∞∑

j=−∞
ei j(2L

√
μt+π ) + err(Nx )

= π

L
√

μ
φ(t )

∞∑
j=−∞

δ

(
t − (2 j + 1)π

2L
√

μ

)
+ err(Nx )

= �xφ(t )
∞∑

j=−∞
δ

[
t −

(
j + 1

2

)
�x

]
+ err(Nx ).

(F4)

In Eq. (F4), we used the antiperiodicity of the φ̂aper(z) func-
tion described by Eqs. (74) and (75), the Poisson summation
formula

∞∑
j=−∞

ei j(T x+π ) = 2π

T

∞∑
j=−∞

δ

(
x − π (2 j + 1)

T

)
, (F5)

and

1√
2π

∫ L
√

μ

−L
√

μ

φ̂(z)eitzdz = φ(t ) + err(Nx ), (F6)

where err(Nx ) is of the order of the wave function φ̂(z) weight
outside the interval [−L

√
μ, L

√
μ].
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By employing Eq. (F4) in Eq. (F2), the teleported wave
function reads

ξ (x) = 1√
Pr(pm)

√
�p

Nx

∞∑
j=−∞

φ(x j )ĝ[μ(x j − x)]e−i(x j−x)pm

+ err(Nx ). (F7)

Similarly, the probability to measure pm given by Eq. (73)
reads

Pr(pm) = �p

∫
dz|h(z)|2, (F8)

where

h(z) = 1√
2π

∫
φaper(t )ĝ(z + μt )e−it pm dt

= �x√
2π

∞∑
j=−∞

φ(x j )ĝ(z + μx j )e
−ix j pm + err(Nx ). (F9)

Equation (F9) implies

Pr(pm) = �p

Nxμ

∞∑
i, j=−∞

φ∗(xi )φ(x j )e
−i(xi−x j )pm

×
∫

ĝ∗(z + μxi )ĝ(z + μx j )dz + err(Nx ). (F10)
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