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Parrondo’s effect in continuous-time quantum walks
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We present a manifestation of a Parrondo’s effect in a continuous-time quantum walk (CTQW). In our protocol
we consider a CTQW in the presence of a time-dependent transition defect. Our results show that the alternation
between defects, that individually are detrimental to the wavepacket spreading, can paradoxically enhance overall
wavepacket propagation. Our findings pave the way for the exploration of unconventional mechanisms that can
potentially harness the adverse effects of defects to enhance quantum transport.
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I. INTRODUCTION

The standard quantum walk (QW) was originally intro-
duced in 1993 [1] in a discrete-time formulation. Subse-
quently, in 1998, the continuous-time variant of this model
was developed [2]. The QW is a lattice-based model ex-
hibiting several interesting properties [3] when compared
with the classical random walk (CRW). Comparative analy-
sis between the QW with the classical random walk (CRW)
reveals compelling distinctions. First, the spreading of the
QW is quadratically faster than the CRW. Second, the QW
exhibits a non-Gaussian bimodal probability distribution, in
stark contrast to the Gaussian distribution observed in the
CRW between both models. The contrast between QWs and
CRWs is further accentuated when both models spread on
graphs [4]. Recently, the authors of Ref. [5] presented a new
difference between the CRW and the QW: the introduction
of short-range aperiodic jumps amplifies the spreading of
CRWs, while, counterintuitively, it induced an inhibition of
wavepacket spreading of QWs.

The wide versatility of QWs leads this model to serve as a
computational platform for investigating a broad diversity of
phenomena. For instance, with QWs it is possible to explore
topological phases [6,7], soliton-like propagation [8], rogue
waves [9], trojan’s effects [10], the Ramsauer effect [11],
q-Gaussian distributions [12], Anderson localization [13,14],
hyperballistic regimes [15], and multiple transitions between
diffusive, superdiffusive, ballistic, and hyperballistic behav-
ior [16–18]. QWs may also lead to intriguing phenomena
[19] and nonmonotonic effects with decoherence [20]. The
substantial interest in QWs also stems from their numerous
algorithmic applications [21–25] and diverse experimental
implementations [26]. The extensive range of possibilities
offered by QWs underscores the significance of investigating
novel protocols for such model.
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In this work, we undertake a theoretical examination of
a QW on an infinite line with alternating defects. The sub-
sequent sections of this article are structured as follows. In
Sec. II we review articles that are related to our work. In
Sec. III we introduce our quantum protocol. In Sec. IV we
disclose our results and we discuss our findings considering
several measures. In Sec. V we highlight the main differences
between our work and the literature and in Sec. VI we present
final considerations and further perspectives on our work.

II. RELATED WORKS

We now direct our focus toward more specific works
directly relevant to our investigation. The first subsection
is devoted to an in-depth exploration of continuous-time
quantum walks (CTQWs) and discrete-time quantum walks
(DTQWs) with defects. In the second subsection, we review
works that demonstrate the manifestation of the Parrondo’s
effect (PE) within the context of DTQWs, as there is no
realization of such phenomenon in CTQWs, so far.

A. QWs with defects

The exploration of defects in QWs has evolved system-
atically, offering valuable insights into how they shape the
wavepacket dynamics. The work of Childs et al. [4] offered
early insights into how a single defect can disrupt wavepacket
propagation of CTQWs on graphs, laying the groundwork for
further investigations. Zhang et al. [27] observed the localiza-
tion effect in one-dimensional (1D)-CTQWs with single-point
phase defects, contributing to the understanding of defect-
induced phenomena. Keating et al. [28] explored CTQWs
with Cauchy-distributed defects, shedding light on the local-
ization effects associated with specific defect distributions.
Agliari et al. [29] investigated CTQWs with traps placed in
fractal structures, revealing the behavior of wavepackets in
nontrivial environments. Izaac et al. [30] conducted a study on
1D-CTQWs in the presence of multiple defects. Their results
showed the presence of resonance behavior. Benedetti et al.
[31] addressed the utilization of CTQWs as quantum probes
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for characterizing defects and perturbations within network
structures. Li et al. [32] conducted a comprehensive study
on CTQWs with potential defects, as well as DTQWs with
phase defects, considering single and double position defects
on a one-dimensional lattice. Later, Li and Wang [33] analyt-
ically investigated a model that is equivalent to a scattering
transmission of 1D-CTQW with defects. More recently, Teles
and Amorim [34] studied how defects in DTQWs affect the
return probability of a quantum particle. Kiumi and Saito [35]
provided analytical results for two-phase DTQWs with one
defect. All these studies have enriched our comprehension of
defect-induced effects in various QW models.

B. Parrondo’s effect in QWs

The PE is traditionally formulated in terms of a combi-
nation of losing games that can produce a winning game
[36,37]. Over the years such a phenomenon has been observed
in such a wide variety of fields [38–40] that today the PE
can be defined more generally as the emergence of favorable
outcomes from combinations of unfavorable scenarios.

The earliest attempts to establish Parrondian QWs can be
traced to Refs. [41–43]. These works were successful in the
short-time, however they fail to obtain a stable PE in the
long-time. Similar efforts to introduce a Parrondo’s paradox
within QWs did not succeed in the asymptotic limit [44,45].
Nowadays, there are several protocols for obtaining the Par-
rondo’s effect or Parrondo-like effects in DTQWs [46–62]
or related models [40,63–65]. Notably, in Refs. [59–61] the
authors showed scenarios in which the PE in QWs were asso-
ciated with an enhancement in the corresponding coin-space
entanglement between the internal (spin) and external (posi-
tion) degrees of freedom. In Ref. [62] the first experimental
verification of a quantum Parrondo walk within a quantum
optics setup was presented.

III. MODEL

In this section, we describe step by step our quantum
protocol.

A. CTQW

The Hamiltonian governing the dynamics of a CTQW
for a single quantum particle, quantum walker, moving
only between nearest neighbor sites within a uniform one-
dimensional lattice can be expressed as

H0 = ε
∑

j

| j〉〈 j| − γ
∑

j

(| j + 1〉〈 j| + | j − 1〉〈 j|), (1)

where ε represents the constant potential energy, while γ de-
notes the transition rate. This last term will be a constant fixed
during simulations, whereas other constants will be given as a
function of it; so that, without loss of generality, the behavior
remains unchanged for any chosen value in the given relations.
Thus, given an initial state |�(t = 0)〉, the evolution of the
system can be described by the equation

i
∂

∂t
|�(t )〉 = H0|�(t )〉, (2)
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FIG. 1. Relative standard deviation σ/σ0 as a function of β for
γ t = 2000. We use the reference σ0 for the defect-free case. The
dashed line separates the zone in which defects enhances spreading
(above) from the region in which defects reduces spreading (below).
The β1 = −2.5γ and β2 = −3γ are the values used in simulations.

in which we set h̄ = 1. The evolution of the system is assessed
through the calculation of the probability distribution

Pj (t ) = |〈 j|ψ (t )〉|2. (3)

To quantify the rate of spreading during this propagation, we
analyze the standard deviation

σ =
√

j2 − j
2
, (4)

where the expectation value of the power of j, jn, is given by
jn = ∑

j jnPj .

B. Transition defects

The incorporation of transition defects within the lattice
structure can be achieved by altering the transition rates be-
tween lattice sites. Following the approach of Li and Wang
[66], in the context of a particle residing at site j = d with
nearest neighbors, the introduction of a transition defect is
accomplished by the inclusion of the term

Hd = −(|d〉〈d + 1| + |d + 1〉〈d| + |d − 1〉〈d| + |d〉〈d − 1|).
(5)

This term is characterized by an associated transition rate
denoted as β. The resultant modification of the Hamiltonian
can be expressed as

H0 + βHd . (6)

In this study, we consider ε = 0 and d = 0. Li and Wang [66]
observed that for a specific value of β = −0.5γ , the evolution
of σ (t ) surpasses that of the defect-free scenario. We first
extend their results and we show in Fig. 1 that there is a non-
monotonic transition from the regime with defect-weakened
spreading to the regime with defect-enhanced spreading.
When β = −γ , the particle remains confined in site j = d
because the transition rate becomes null β + γ = 0 in Eq. (6)
for neighbors of this point; therefore, the propagation in the
remaining sites is canceled. So that, from this point, symmetry
is observed.
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FIG. 2. Relative standard deviation σ/σ0 as a function of w for
γ t = 2000. The dashed line separates the zone in which defects
enhances spreading (above) from the region in which defects reduces
spreading (below).

C. Protocol for alternation

Following the conventional mechanism of Parrondo’s
game, we implement an alternation between two scenarios
with unfavorable outcomes, that in our model are character-
ized by weak spreading. To achieve this goal, a time-periodic
function with a period of T , denoted as f (t + T ) = f (t ), is
defined such that, for 0 � t � T ,

f (t ) =
{

β2, if t � T
2 ,

β1, if t > T
2 ,

(7)

where the corresponding frequency is w = 2π/T . By select-
ing two distinct transition rates, denoted as β1 and β2, the
Hamiltonian governing this mechanism can be defined as

H = H0 + f (t )Hd . (8)

Consequently, the Hamiltonian takes on the form of Eq. (6)
during intervals of time T/2. Within each of these intervals,
the transition rate different, allowing for a switching between
two distinct modes.

IV. RESULTS AND DISCUSSION

In this section, we present the results and discussion of
our Parrondian QW. Our analysis involves a comprehensive
comparison with the QW in which defects typically have a
detrimental effect on wavepacket spreading (associated with
β1 and β2 as illustrated in Fig. 1). Additionally, we compare
our results with the standard defect-free QW.

Following the model given by the Eq. (8), we alternate
the dynamics with β1 = −2.5γ and β2 = −3γ for a range
of frequencies depicted in Fig. 2. The measures σ and σ0

quantify the wavepacket spreading for scenarios with and
without defects, respectively. The dynamics characterized by
β1 and β2 are selected, both exhibiting σ/σ0 < 1 (reduced
spreading). The results show the emergence of an interesting
zone in which the Parrondo’s paradox is detected. Specifi-
cally, it is possible to observe that the switching between two
regimes with σ/σ0 < 1 (weakened spreading) can lead to the
appearance of a regime with σ/σ0 > 1 (enhanced spreading).
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FIG. 3. Time evolution of the relative standard deviation σ/σ0

for our Parrondian QW (with ωm = 2.71γ ), the defect-free QW, as
well as the QW with defects. The fastest spreading occurs for the
Parrodian QW.

In Fig. 3, we observe that the time evolution for the stan-
dard deviation of the Parrondo case (with frequency wm as
illustrated in Fig. 2) surpasses that of the model with weak
spreading induced by defects (for β1 and β2). Notably, the
Parrondian QW also overcomes the standard deviation for
the setting without defects. Thus, our protocol provides a
QW with alternating defects that can be tuned to exhibit an
enhanced spreading rate compared to the usual QW model.
We also checked that our model is still ballistic. That is, in
contrast to previous investigations [15–18], our accelerated
QW model does not present a hyperballistic scaling.

To gain insights into the spatial distribution of wavepackets
across the N sites at a given instant of time, we calculate
two distributional measures. First, we compute the Shannon
entropy given by

S = −
∑

j

Pj log10 Pj . (9)

Additionally, we evaluate the inverse participation ratio (IPR)
given by

IPR =
⎛
⎝∑

j

P2
j

⎞
⎠

−1

. (10)

Both S and IPR have two well-defined extremes. For a
wavepacket entirely distributed across the N sites: S =
log10 N and IPR = N . On the other hand, for a wavepacket
fully localized S = 0 and IPR = 1.

The results for the Shannon entropy are shown in Fig. 4.
We see that our Parrodian QW (line associated with ωm)
has a wavepacket more distributed across the lattice than the
cases with weak spreading (lines associated with β1 and β2).
However, we observe that the defect-free QW produces more
Shannon entropy than our Parrodian QW, indicating that it is
more delocalized that our model. This behavior is further con-
firmed with the results of the IPR, as presented in Fig. 5. The
weak spreading (for β1 and β2) is nearly localized, in contrast
to the defect-free QW, which is significantly distributed across
the lattice. Between both cases we observe our Parrondian
QW with an intermediate IPR. These results show that both
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FIG. 4. Time evolution of the Shannon entropy S for the same
models and parameters presented in the Fig. 3. The defect-free QW
exhibits the highest values for Shannon entropy.

S and IPR are in agreement and highlight that the Parrondian
QW is accompanied by a wavepacket distributed over fewer
sites across the lattice when compared to the defect-free QW.

To gain deeper insights into the underlying mechanisms of
our Parrondian QW, we conducted a comprehensive analysis
of its associated probability distribution. In Figs. 6(a) and 6(c)
it is evident that the central region of the defect-free QW
distribution has a higher probability of being populated than
the corresponding region of the Parrondian QW distribution.
Such result is in agreement with the insights obtained from
the Shannon entropy and IPR.

The wavepacket spreading is evaluated by the standard
deviation, which is a global measure (assessed for the entire
lattice). Thus, let us analyze a local version of this measure.
To grasp local contributions for the spreading we compute the
relative quadratic deviation (RQD) [67]

RQD( j) = ( j − j)2Pj . (11)

It is evident from Figs. 6(b) and 6(d) that the local contribu-
tions to the global standard deviation are primarily determined
by the peaks at the edges of the probability distribution. Com-
paring the maximum RQD of Parrondo case RQDmp with
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FIG. 5. Time evolution of the IPR for the same models and
parameters presented in the Fig. 3. The IPR of the defect-free QW
presents the highest values.

defect-free case RQDmd , we obtain RQDmp/RQDmd ≈ 4.44,
which is in accordance with the respective ratio of maximum
probabilities Pmp/Pmd ≈ 4.47.

In summary, all the aforementioned insights collectively
indicate that the enhancement of the spreading observed in the
Parrondian QW stems from a reduction in probability within
the central region, resulting in a relative accumulation at the
border of the QW distribution.

V. COMPARISON WITH PREVIOUS
PARRODIAN PHENOMENA IN QWS

In this section, we highlight three crucial points regarding
our work in comparison to prior literature addressing the Par-
rondo effect in QWs [46–62].

First, even though defects have already been introduced in
DTQWs (as shown in Sec. II.A), there is no work that has used
defects to produce a Parrondian QW.

Second, all the aforementioned works focused on the
DTQW, which is a model that has a versatile coin operator.
In contrast, the CTQW lacks a quantum coin, making the
generation of a Parrondo effect a challenging task. Thus, our
protocol is not merely an extension of those employed for
generating Parrondian phenomena in DTQWs.

Third, the usual form of Parrondo’s paradox found in QWs
is characterized by the combination of two unfavorable out-
comes [or losing games, Pt (x) skewed towards x < 0] that
gives rise to a favorable outcome [or winning game, Pt (x)
skewed towards x > 0]. In contrast, we adopt an alternative
perspective where we do not focus on payoff-based analyses
or measures related to the asymmetries in the probability
flux or current. Instead, our emphasis lies on the inherent
transport phenomenon, where we demonstrate that our Par-
rondian CTQW enhances the wavepacket spreading (as shown
in Fig. 3).

VI. FINAL REMARKS

We conducted an investigation into the transport proper-
ties of CTQWs in the presence of time-dependent transition
defects. Our model was formulated to account for alternating
configurations in which these defects traditionally play a role
in reducing the wavepacket dispersion.

Our results reveal the manifestation of a Parrondian effect
in the domain of CTQWs. In our protocol, we show that the
alternating use of two unfavorable setups, where defects de-
celerate wavepacket spreading, can lead to scenarios in which
the wavepacket spreads faster than the defect-free CTQW.

Our findings offer a fresh perspective on how to use
defects, which are usually seen as detrimental, to improve
quantum transport. This approach has the potential to enhance
the efficiency and reliability of quantum transport systems,
making our results promising for future developments in the
field of quantum transport. As comprehensively exemplified
in Sec. I, QWs are connected to a plethora of phenomena
in several domains of research, thus our results can provide
insights about the role of alternating defects in applied fields
[21–25] as well as fundamental areas [6,7].

In future works, we plan to investigate the influence of
temporal switching, incorporating both positive and negative
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FIG. 6. Comparison of probability distribution and relative quadratic deviation between case defect-free QW and Parrondian QW for
γ t = 4000.

correlations, on the manifestation of the PE in CTQWs. As
shown recently [67] negative correlated temporal disorder is
able to produce nontrivial effects in QWs. The investigation
of the effects of chaotic switching [68,69] in our protocol is
also an important research endeavor. We will also modify the
model to enhance the propagation with these alternations, as

well as analyze this dynamic in networks beyond the one-
dimensional case.

ACKNOWLEDGMENT

We acknowledge the FAPEMIG for financial support.

[1] Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random
walks, Phys. Rev. A 48, 1687 (1993).

[2] E. Farhi and S. Gutmann, Quantum computation and decision
trees, Phys. Rev. A 58, 915 (1998).

[3] J. Kempe, Quantum random walks: An introductory overview,
Contemp. Phys. 44, 307 (2003).

[4] A. M. Childs, E. Farhi, and S. Gutmann, An example of
the difference between quantum and classical random walks,
Quantum Info. Proc. 1, 35 (2002).

[5] M. A. Pires and S. M. D. Queirós, Quantum walks with sequen-
tial aperiodic jumps, Phys. Rev. E 102, 012104 (2020).

[6] T. Kitagawa, M. S. Rudner, E. Berg, and E. Demler, Explor-
ing topological phases with quantum walks, Phys. Rev. A 82,
033429 (2010).

[7] J. Wu, W.-W. Zhang, and B. C. Sanders, Topological quantum
walks: Theory and experiments, Front. Phys. 14, 61301 (2019).

[8] J. P. Mendonça, F. A. B. F. de Moura, M. L. Lyra, and
G. M. A. Almeida, Emergent nonlinear phenomena in discrete-
time quantum walks, Phys. Rev. A 101, 062335 (2020).

[9] A. R. C. Buarque, W. S. Dias, F. A. B. F. de Moura, M. L. Lyra,
and G. M. A. Almeida, Rogue waves in discrete-time quantum
walks, Phys. Rev. A 106, 012414 (2022).

[10] H. S. Ghizoni and E. P. M. Amorim, Trojan quantum walks,
Braz. J. Phys. 49, 168 (2019).

[11] H. T. Lam and K. Y. Szeto, Ramsauer effect in a one-
dimensional quantum walk with multiple defects, Phys. Rev. A
92, 012323 (2015).

[12] Y. Shikano, T. Wada, and J. Horikawa, Discrete-time quantum
walk with feed-forward quantum coin, Sci. Rep. 4, 4427 (2014).

[13] S. Derevyanko, Anderson localization of a one-dimensional
quantum walker, Sci. Rep. 8, 1795 (2018).

[14] J. Ghosh, Simulating Anderson localization via a quantum walk
on a one-dimensional lattice of superconducting qubits, Phys.
Rev. A 89, 022309 (2014).

[15] G. Di Molfetta, D. O. Soares-Pinto, and S. M. D. Queirós,
Elephant quantum walk, Phys. Rev. A 97, 062112 (2018).

[16] M. A. Pires, G. Di Molfetta, and S. M. D. Queirós, Multi-
ple transitions between normal and hyperballistic diffusion in
quantum walks with time-dependent jumps, Sci. Rep. 9, 19292
(2019).

[17] C. B. Naves, M. A. Pires, D. O. Soares-Pinto, and S. M. D.
Queirós, Enhancing entanglement with the generalized elephant
quantum walk from localized and delocalized states, Phys. Rev.
A 106, 042408 (2022).

032417-5

https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1023/A:1019609420309
https://doi.org/10.1103/PhysRevE.102.012104
https://doi.org/10.1103/PhysRevA.82.033429
https://doi.org/10.1007/s11467-019-0918-z
https://doi.org/10.1103/PhysRevA.101.062335
https://doi.org/10.1103/PhysRevA.106.012414
https://doi.org/10.1007/s13538-019-00638-9
https://doi.org/10.1103/PhysRevA.92.012323
https://doi.org/10.1038/srep04427
https://doi.org/10.1038/s41598-017-18498-1
https://doi.org/10.1103/PhysRevA.89.022309
https://doi.org/10.1103/PhysRevA.97.062112
https://doi.org/10.1038/s41598-019-55642-5
https://doi.org/10.1103/PhysRevA.106.042408


XIMENES, PIRES, AND VILLAS-BÔAS PHYSICAL REVIEW A 109, 032417 (2024)

[18] C. B. Naves, M. A. Pires, D. O. Soares-Pinto, and S. M. D.
Queirós, Quantum walks in two dimensions: controlling direc-
tional spreading with entangling coins and tunable disordered
step operator, J. Phys. A: Math. Gen. 56, 125301 (2023).

[19] V. Kendon and B. Tregenna, Decoherence can be useful in
quantum walks, Phys. Rev. A 67, 042315 (2003).

[20] A. C. Oliveira, R. Portugal, and R. Donangelo, Decoherence
in two-dimensional quantum walks, Phys. Rev. A 74, 012312
(2006).

[21] A. Ambainis, Quantum walks and their algorithmic applica-
tions, Int. J. Quantum. Inform. 01, 507 (2003).

[22] R. Portugal, Quantum Walks and Search Algorithms (Springer,
New York, 2013).

[23] S. E. Venegas-Andraca, Quantum walks for computer scientists,
Synth. Lect. Quantum Comput. 1, 1 (2008).

[24] S. E. Venegas-Andraca, Quantum walks: a comprehensive re-
view, Quantum Info. Proc. 11, 1015 (2012).

[25] K. Kadian, S. Garhwal, and A. Kumar, Quantum walk and its
application domains: A systematic review, Computer Science
Review 41, 100419 (2021).

[26] J. Wang and K. Manouchehri, Physical Implementation of
Quantum Walks (Springer, New York, 2013).

[27] R. Zhang, P. Xue, and J. Twamley, One-dimensional quantum
walks with single-point phase defects, Phys. Rev. A 89, 042317
(2014).

[28] J. P. Keating, N. Linden, J. C. F. Matthews, and A. Winter,
Localization and its consequences for quantum walk algorithms
and quantum communication, Phys. Rev. A 76, 012315 (2007).

[29] E. Agliari, A. Blumen, and O. Mülken, Quantum-walk approach
to searching on fractal structures, Phys. Rev. A 82, 012305
(2010).

[30] J. A. Izaac, J. B. Wang, and Z. J. Li, Continuous-time quan-
tum walks with defects and disorder, Phys. Rev. A 88, 042334
(2013).

[31] C. Benedetti, M. A. C. Rossi, and M. G. A. Paris,
Continuous-time quantum walks on dynamical percolation
graphs, Europhys. Lett. 124, 60001 (2019).

[32] Z. J. Li, J. A. Izaac, and J. B. Wang, Position-defect-induced
reflection, trapping, transmission, and resonance in quantum
walks, Phys. Rev. A 87, 012314 (2013).

[33] Z.-J. Li and J. Wang, An analytical study of quantum walk
through glued-tree graphs, J. Phys. A: Math. Gen. 48, 355301
(2015).

[34] L. I. da S. Teles and E. P. M. Amorim, Localization in quantum
walks with a single lattice defect: A comparative study, Braz. J.
Phys. 51, 911 (2021).

[35] C. Kiumi and K. Saito, Eigenvalues of two-phase quantum
walks with one defect in one dimension, Quantum Info. Proc.
20, 171 (2021).

[36] J. M. R. Parrondo, How to cheat a bad mathematician, in
EEC HCM Network on Complexity and Chaos (ERBCHRX-
CT940546), ISI, Torino, Italy (1996).

[37] G. P. Harmer and D. Abbott, Losing strategies can win by
Parrondo’s paradox, Nature (London) 402, 864 (1999).

[38] D. Abbott, Asymmetry and disorder: A decade
of Parrondo’s paradox, Fluct. Noise Lett. 09, 129
(2010).

[39] K. H. Cheong, J. M. Koh, and M. C. Jones, Paradoxical survival:
examining the Parrondo effect across biology, BioEssays 41,
1900027 (2019).

[40] J. W. Lai and K. H. Cheong, Parrondo’s paradox from classical
to quantum: A review, Nonlinear Dyn. 100, 849 (2020).

[41] D. A. Meyer and H. Blumer, Parrondo games as lattice gas
automata, J. Stat. Phys. 107, 225 (2002).

[42] D. A. Meyer and H. Blumer, Quantum Parrondo games: biased
and unbiased, Fluct. Noise Lett. 02, L257 (2002).

[43] D. A. Meyer, Noisy quantum parrondo games, in Fluctuations
and Noise in Photonics and Quantum Optics, Vol. 5111 (In-
ternational Society for Optics and Photonics, Bellingham, WA,
2003), pp. 344–350.

[44] A. P. Flitney, Quantum Parrondo’s games using quantum walks,
arXiv:1209.2252.

[45] M. Li, Y.-S. Zhang, and G.-C. Guo, Quantum Parrondo’s games
constructed by quantum random walks, Fluct. Noise Lett. 12,
1350024 (2013).

[46] A. P. Flitney, D. Abbott, and N. F. Johnson, Quantum walks
with history dependence, J. Phys. A: Math. Gen. 37, 7581
(2004).

[47] J. Košík, J. A. Miszczak, and V. Bužek, Quantum Parrondo’s
game with random strategies, J. Mod. Opt. 54, 2275 (2007).

[48] C. M. Chandrashekar and S. Banerjee, Parrondo’s game using a
discrete-time quantum walk, Phys. Lett. A 375, 1553 (2011).

[49] J. Rajendran and C. Benjamin, Playing a true parrondo’s game
with a three-state coin on a quantum walk, Europhys. Lett. 122,
40004 (2018).

[50] J. Rajendran and C. Benjamin, Implementing Parrondo’s para-
dox with two-coin quantum walks, R. Soc. Open Sci. 5, 171599
(2018).

[51] T. Machida and F. A. Grünbaum, Some limit laws for quantum
walks with applications to a version of the Parrondo paradox,
Quantum Info. Proc. 17, 241 (2018).

[52] Z. Walczak and J. H. Bauer, Noise-induced Parrondo’s paradox
in discrete-time quantum walks, Phys. Rev. E 108, 044212
(2023).

[53] Z. Walczak and J. H. Bauer, Parrondo’s paradox in quantum
walks with three coins, Phys. Rev. E 105, 064211 (2022).

[54] Z. Walczak and J. H. Bauer, Parrondo’s paradox in quantum
walks with deterministic aperiodic sequence of coins, Phys.
Rev. E 104, 064209 (2021).

[55] G. Trautmann, C. Groiseau, and S. Wimberger, Parrondo’s
paradox for discrete-time quantum walks in momentum space,
Fluct. Noise Lett. 21, 2250053 (2022).

[56] J. W. Lai and K. H. Cheong, Parrondo effect in quantum coin-
toss simulations, Phys. Rev. E 101, 052212 (2020).

[57] J. W. Lai, J. R. A. Tan, H. Lu, Z. R. Yap, and K. H. Cheong,
Parrondo paradoxical walk using four-sided quantum coins,
Phys. Rev. E 102, 012213 (2020).

[58] A. Mielke, Quantum Parrondo games in low-dimensional
hilbert spaces, arXiv:2306.16845.

[59] M. A. Pires and S. M. D. Queirós, Parrondo’s paradox in quan-
tum walks with time-dependent coin operators, Phys. Rev. E
102, 042124 (2020).

[60] D. K. Panda, B. V. Govind, and C. Benjamin, Generating highly
entangled states via discrete-time quantum walks with Parrondo
sequences, Physica A 608, 128256 (2022).

[61] M. Jan, N. A. Khan, and G. Xianlong, Territories of Parrondo’s
paradox and its entanglement dynamics in quantum walks, Eur.
Phys. J. Plus 138, 65 (2023).

[62] M. Jan, Q.-Q. Wang, X.-Y. Xu, W.-W. Pan, Z. Chen, Y.-J. Han,
C.-F. Li, G.-C. Guo, and D. Abbott, Experimental realization

032417-6

https://doi.org/10.1088/1751-8121/acbd25
https://doi.org/10.1103/PhysRevA.67.042315
https://doi.org/10.1103/PhysRevA.74.012312
https://doi.org/10.1142/S0219749903000383
https://doi.org/10.2200/S00144ED1V01Y200808QMC001
https://doi.org/10.1007/s11128-012-0432-5
https://doi.org/10.1016/j.cosrev.2021.100419
https://doi.org/10.1103/PhysRevA.89.042317
https://doi.org/10.1103/PhysRevA.76.012315
https://doi.org/10.1103/PhysRevA.82.012305
https://doi.org/10.1103/PhysRevA.88.042334
https://doi.org/10.1209/0295-5075/124/60001
https://doi.org/10.1103/PhysRevA.87.012314
https://doi.org/10.1088/1751-8113/48/35/355301
https://doi.org/10.1007/s13538-020-00854-8
https://doi.org/10.1007/s11128-021-03108-x
https://doi.org/10.1038/47220
https://doi.org/10.1142/S0219477510000010
https://doi.org/10.1002/bies.201900027
https://doi.org/10.1007/s11071-020-05496-8
https://doi.org/10.1023/A:1014566822448
https://doi.org/10.1142/S021947750200083X
https://arxiv.org/abs/1209.2252
https://doi.org/10.1142/S0219477513500247
https://doi.org/10.1088/0305-4470/37/30/013
https://doi.org/10.1080/09500340701408722
https://doi.org/10.1016/j.physleta.2011.02.071
https://doi.org/10.1209/0295-5075/122/40004
https://doi.org/10.1098/rsos.171599
https://doi.org/10.1007/s11128-018-2009-4
https://doi.org/10.1103/PhysRevE.108.044212
https://doi.org/10.1103/PhysRevE.105.064211
https://doi.org/10.1103/PhysRevE.104.064209
https://doi.org/10.1142/S0219477522500535
https://doi.org/10.1103/PhysRevE.101.052212
https://doi.org/10.1103/PhysRevE.102.012213
https://arxiv.org/abs/2306.16845
https://doi.org/10.1103/PhysRevE.102.042124
https://doi.org/10.1016/j.physa.2022.128256
https://doi.org/10.1140/epjp/s13360-023-03685-z


PARRONDO’S EFFECT IN CONTINUOUS-TIME QUANTUM … PHYSICAL REVIEW A 109, 032417 (2024)

of Parrondo’s paradox in 1D quantum walks, Adv. Quantum
Technol. 3, 1900127 (2020).

[63] A. P. Flitney, J. Ng, and D. Abbott, Quantum Parrondo’s games,
Physica A 314, 35 (2002).

[64] P. Gawron and J. A. Miszczak, Quantum implementa-
tion of Parrondo’s paradox, Fluct. Noise Lett. 05, L471
(2005).

[65] S. Banerjee, C. M. Chandrashekar, and A. K. Pati, En-
hancement of geometric phase by frustration of decoher-
ence: A Parrondo-like effect, Phys. Rev. A 87, 042119
(2013).

[66] Z.-J. Li and J. Wang, Single-point position and transition de-
fects in continuous time quantum walks, Sci. Rep. 5, 13585
(2015).

[67] M. A. Pires and S. M. D. Queirós, Negative correlations can
play a positive role in disordered quantum walks, Sci. Rep. 11,
4527 (2021).

[68] J. W. Lai and K. H. Cheong, Chaotic switching for quantum
coin Parrondo’s games with application to encryption, Phys.
Rev. Res. 3, L022019 (2021).

[69] A. Panda and C. Benjamin, Order from chaos in quantum walks
on cyclic graphs, Phys. Rev. A 104, 012204 (2021).

032417-7

https://doi.org/10.1002/qute.201900127
https://doi.org/10.1016/S0378-4371(02)01084-1
https://doi.org/10.1142/S0219477505002902
https://doi.org/10.1103/PhysRevA.87.042119
https://doi.org/10.1038/srep13585
https://doi.org/10.1038/s41598-021-84073-4
https://doi.org/10.1103/PhysRevResearch.3.L022019
https://doi.org/10.1103/PhysRevA.104.012204

