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Annealing for prediction of grand canonical crystal structures:
Implementation of n-body atomic interactions
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We propose an annealing scheme usable on modern Ising machines for crystal structures prediction (CSP)
by taking into account the general n-body atomic interactions and in particular three-body interactions which
are necessary to simulate covalent bonds. The crystal structure is represented by discretizing a unit cell and
placing binary variables which express the existence or nonexistence of an atom on every grid point. The re-
sulting quadratic unconstrained binary optimization (QUBO) or higher-order unconstrained binary optimization
(HUBO) problems implement the CSP problem and is solved using simulated and quantum annealing. Using
the example of Lennard-Jones clusters we show that it is not necessary to include the target atom number in the
formulation allowing for simultaneous optimization of both the particle density and the configuration and argue
that this is advantageous for use on annealing machines as it reduces the total amount of interactions. We further
provide a scheme that allows for reduction of higher-order interaction terms that is inspired by the underlying
physics. We show for a covalently bonded monolayer MoS, crystal that we can simultaneously optimize for the
particle density as well as the crystal structure using simulated annealing. We also show that we reproduce ground
states of the interatomic potential with high probability that are not represented on the initial discretization of

the unit cell.
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I. INTRODUCTION

Crystal structure prediction (CSP) from chemical com-
position alone is still one of the most difficult problems
in materials science, even for the simplest structures [1].
The reason why this problem is still a challenge is that the
variation of possible structures grows exponentially as the
number of atoms increases, making an exhaustive search for
the most stable structure, i.e., finding the global minimum on
the Born-Oppenheimer surface, unfeasible even with today’s
supercomputers. For a small number of atoms, a brute force
approach is possible, but reliably finding global optima for
larger systems is out of reach of current computers.

Various approaches to develop searching algorithms that
approximate solutions to the CSP have been developed [2],
e.g., random search [3-6], simulated annealing (SA) [7-9],
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minima hopping [10,11], evolutionary algorithm [12-15], and
particle swarm optimization [16,17]. Various software suites
such as USPEX [13-15], CALYPSO [16,17], and CRYSPY [18]
that implement these algorithms continue to be developed
and improve upon these algorithms. However, all of these
approaches have one thing in common: As the system size
increases, they become easily trapped by locally stable solu-
tions, and to escape from these becomes a nontrivial problem.
To address this, approaches incorporating experimental data
such as x-ray diffraction patterns into the optimization process
have been developed [19-21], e.g., the data assimilation tech-
nique which has been successfully applied to crystal structure
and amorphous structure prediction [22-24].

In recent years, the use of quantum computers has attracted
a great deal of attention as a means of searching for globally
optimal solutions [25-30]. Quantum computers are character-
ized by their ability to escape from locally stable solutions
and accelerate the search for globally optimal solutions by
utilizing the quantum tunneling effect [27,31]. Quantum an-
nealing (QA) machines [25,32-35] and gate-based quantum
computers are the two main current architectures in develop-
ment. Exhaustive structure search using gate-based quantum
computers has been reported recently [36,37]. In the method
described in Ref. [37], space is divided into meshes, and the
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presence or absence of atoms on each mesh is represented as
a {0,1} digital number, allowing the crystal structure to be
encoded onto qubits as a bit sequence. On the qubits, various
atomic coordination structures can be prepared at once by
using the quantum superposition states on the qubits. The idea
is to perform exhaustive structural optimization by applying a
probabilistic imaginary-time evolution technique reported in
Ref. [30].

In this paper, we report a method to perform exhaustive
structural optimization using QA. In particular, we discuss
how to reformulate structural optimization as a quadratic un-
constrained binary optimization problem (QUBO) or higher-
order unconstrained binary optimization (HUBO). We provide
a scheme for implementing an empirical three-body inter-
atomic potential on QA hardware, and we provide a detailed
analysis of preliminary SA and QA results. In particular we
argue that providing more physical information in the form of
penalty terms does not necessarily speed up the computation.

The remainder of the paper is structured as followed. In
Sec. II we present the HUBO formulation for the CSP. In
Sec. III we introduce the methods and general parameters
used for optimization. In Sec. IV we outline the parameters
for a Lennard-Jones cluster of krypton atoms for which we
optimized both structure and density using SA and QA. In
Sec. V we present a covalently bonded MoS; crystal modeled
by a Stillinger-Weber potential for which we optimized again
the structure and density using SA. We then close with the
conclusions in Sec. VI.

II. HIGHER-ORDER UNCONSTRAINED BINARY
OPTIMIZATION FORMULATION

In this section we discuss the construction of our HUBO. In
Sec. IT A we discuss the notation of our unit-cell discretization
and the encoding into a HUBO of the CSP. In Sec. IIB we
discuss the penalty terms we use and finally in Sec. [IC we
discuss a physically motivated scheme to reduce the interac-
tion terms of interaction terms of order higher than quadratic.

A. Crystal structures prediction problem encoding
and Hamiltonian

Consider a unit cell that is spanned by a given basis {d;}
with periodic boundary conditions along a chosen set of basis
vectors and a set of atom species S. We look at a set of N
lattice points X in this unit cell generated by partitioning each
basis vectors into g+ 1 points and forming the correspond-
ing lattice. The lattice points have the form ), %a,- where
ki € {0, ..., G;} with G; = g if we have no periodic boundary
conditions along d; and G; = g — 1 otherwise. Consider a set
b}, of binary variables that we define such that if b} = 1 there is
an atom of species s € S on x € X. Assume that we have a set
of potential functions V""" (xy, ..., x) for a configuration
of atoms of species s; on x; for m € {1,..., M}. As is usual
for interatomic potential functions we assume that it does not
depend on the order in which the argument, species pairs are
supplied, i.e.,

3 3 So(1)seees So(m
‘/;:1] ,,,, bm(-xls"-vxm)EVm o ¢ )(x6(1)9--~1x0(m))7 (l)

for any permutation o. Assuming that we have no periodic
boundary conditions, we define our Hamiltonian as
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where the prime indicates that the x; € X should be chosen
such that x; # x; for any pair i, j (the species are chosen
freely). Defined as such, finding the optimal nuclear structure
on the lattice X corresponds to finding an optimal binary string
that minimizes this Hamiltonian, as energy contributions only
arise if all binary variables involved in an interaction are 1,
i.e., all atoms involved in the interaction are present.
Generalizing this to the case with periodic boundary con-
ditions requires a careful consideration of the self-interactions
of atoms with their periodic images and a fitting definition of
the Hamiltonian. This is done in detail in the Appendix A.

B. Penalty terms

Equation (2) allows us to calculate the cohesive energy
of a given configuration (see Appendix B). Thus, for well-
constructed interatomic potentials that accurately model a
wide range of configurations of a material, Eq. (2) not only
gives the optimal configuration, but by simultaneously finding
the optimal amount of binary variables that should have the
value 1 we optimize for the optimal density of atoms in the
unit cell.

It is possible to a priori fix a target atom number in the unit
cell by adding a penalty term such as

2
P (Z b — CS> (3)
xeX
to the Hamiltonian for an appropriately large positive P and
all s € S, where C; is the target particle number for species s
atoms. We call this an absolute penalty term.

Equivalently, knowing the chemical formula [e.g.,
Al(SO4);] but not the optimal density, a penalty term
such as

2
P (Z by = o Y b§2> 4
xeX xeX
ensures that the ratios of atoms are respected, where c;, s,
is the target ratio (in the above example cs o = 1/4). This
penalty term allows for finding the optimal density in the
range that the ratio is respected. We call this a relative penalty
term.

C. Reduction of interaction terms

Interatomic potentials will usually include a cutoff dis-
tance. To reduce pairwise interaction terms, it is crucial to
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choose the right penalty terms because an absolute penalty
term will introduce interactions between any pair of binary
variables for the same species, even if their pairwise distance
is higher than the cutoff distance. Similarly, relative penalty
terms introduce pairwise interactions between any pair of
binary variables of the two involved species. Choosing the
wrong penalty terms can make the difference between having
a sparse or fully connected graph of pairwise interactions.
Ideally, no penalty terms would be introduced, but this is
dependent on the quality of the chosen potential.

The number of interaction terms for the cubic or higher-
order terms in the HUBO will be orders of magnitudes higher
than for the pair interactions. Often, alongside the total num-
ber of spins, the density of the interaction graph is the main
bottleneck for modern annealing machines [35,38] and as
such it is crucial to devise schemes that reduce the interaction
number beyond just applying a cutoff. To this end we use the
“deduc-reduc” method from Ref. [39]. In particular, we make
the assumption that if the pairwise interaction between two
binary variables is higher than a user-set threshold 7', then any
higher-order interaction containing this pair can safely be set
to zero without influencing the ground state. At the same time
we replace any pairwise interaction J;; by min(J;;, T'). The in-
tuition behind this is that for the interatomic potentials we use
in this work, the pairwise interaction rapidly increases if the
atoms are too close, and thus the ground state does not contain
atoms on the two involved locations and we do not need to
evaluate the higher-order terms. This is a simplification that
does not lose any generality with respect to the ground state
of the HUBO and which in particular also does not require any
a priori knowledge like atomic radii of the involved species.

III. METHODS

We find optimal binary strings for the HUBO problems
using SA and QA. In this section we outline the notation,
parameters, and settings we used for the optimization.

A. Simulated annealing
Simulated annealing is a classic algorithm for optimizing
cost functions with several local minima [40]. We assume
some basic knowledge of the algorithm and will only discuss
the specifics of our implementation. We use a geometric cool-
ing schedule

Tmin
Tmax

X /Nsteps
T()C) = Tmax< ) , XE€ [07 jvsteps]v (5)
where Ty, and Thyax are the minimum and maximum tempera-
ture. The number of steps Neps is the number of Monte Carlo
steps per spin to perform.

Choosing the right neighborhood for a configuration in SA
(i.e., defining legal transitions of the Markov chain) is crucial
and generally one aims to have a smooth energy landscape
with not too rugged local minima [41-43]. Traditionally, SA
for HUBOs performs single bit flips. As this is equivalent to
removing or adding an atom from the configuration, especially
in the presence of penalty terms, this can be a costly operation.
Thus, for each step in the schedule we loop over every binary
variable and attempt to flip it and then we loop over every

opposite valued pair in the current configuration and attempt
to exchange their values. This latter flip moves an existing
atom to a random location and does not break penalty terms
such as the absolute penalty (3) or relative penalty (4), thus
ensuring a smoother energy landscape. So when we speak of
Monte Carlo steps per spin we mean that we attempt N|S| +
(NlS‘) spin flips where N|S| is the (unreduced) binary variable

2
number.

B. Quantum annealing

We also assume familiarity with the basic concepts of
quantum annealing [25,27]. We use the Advantage system
available through the D-Wave leap cloud service [44]. Our
HUBO and QUBO problems are very densely connected and
if the cutoff of the potential function is large enough or
the system small enough, the problem might even be fully
connected. Embedding these onto the Pegasus architecture
of the Advantage system [35] requires us to calculate a mi-
nor embedding [45—47]. Instead of manually calculating an
embedding best fit for our problem, we use the standard imple-
mentation for clique embedding in the D-Wave Ocean SDK.
This procedure can lead to results with broken chains which
require a fitting unembedding. While there is evidence that
designing a problem specific unembedding algorithm [48] can
be advantageous we choose the simple majority vote which
sets the binary value of a chain to the one that occurs most
often on the chain.

C. Benchmarking

For benchmarking the various optimization schemes for the
HUBO and QUBO formulation we use the time to solution
(TTS) [49,50] given by

In(1 — p,) _ In (0.01)
In[l —Pgs(x)]  In[l — Pgs(o)]’

where 7 is the running annealing time as measured on the local
machine and Pgs(7) is the probability of the corresponding
algorithm to return the ground state with a running time of 7.
The time-to-solution can be understood as the average time it
takes to get the ground state with probability p, which we set
to 0.99.

TTIS(t) =t (6)

IV. KRYPTON SYSTEM

In this section we introduce a Lennard-Jones cluster system
consisting of krypton atoms in Sec. IV A and the related SA
and QA results in Sec. IV B.

A. Setup

For the calculation of the potential functions we rely on
the Open Knowledgebase of Interatomic Models (OpenKIM)
[51]. In particular we look at a three-dimensional cubic unit
cell of side length 5.653 A with the Lennard-Jones potential
parameters due to Bernades for krypton [51-55] and periodic
boundary conditions along all three basis vectors. We look
for the ground state configuration of krypton atoms in this
unit cell discretized into an equipartitioned lattice of size
g, which is equal to the face-centered cubic configuration
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FIG. 1. The target fcc configuration of the krypton system with
krypton atoms in pink (graphics due to Vesta). The solid atoms on the
origin and the three incident face centers are the locations encoded
in the HUBO while the remaining transparent ones are copies due to
the periodic boundary conditions and not part of X.

and can be seen in Fig. 1. The energy of the fcc config-
uration is —0.431 eV and for any interaction value J;; we
take min(J;;, 1 eV). While for the SA calculations this is not
strictly necessary, it helps for the QA calculations because the
energy range is normalized to be between 0 and 1 on D-Wave
machines, thus upper bounding the energy ensures that the
physically interesting energy range takes up a larger portion of
the renormalized energy range. We simply refer to this system
as the krypton system. We perform SA calculations without
any penalty terms and with an absolute number penalty term
setting Cx, = 4, we call the former grand canonical and the
latter microcanonical. As the unit cell is smaller than the
cutoff distance of the potential, even the grand canonical cal-
culation QUBO is fully connected. We use a penalty strength
of P =1, and vary the temperature from 10~ to 10~*. The
various probabilities correspond to the measured probability
across 1000 annealing runs.

Since the systems are fully connected, for the QA calcula-
tions, we simplify the QUBO by fixing the binary variable for
the origin to be one and removing any binary variable that had
an interaction with the origin of more than 1 eV. This corre-
sponds in essence to removing the translational invariance of
the problem. Furthermore, we use pausing [56,57]. We use a
base length of the schedule of 20 us and we pause for 3 us.
We consider the success probability, i.e., the ratio of obtained
ground states over 40 000 annealing runs, plotted against the
pause location s, € (0, 1) so that the dimensionless time in
the annealing schedule goes from O to s, at (17s,) us until
(17s,) us + 3 us and then goes to one linearly until 20 us. We
use a chain strength of 1.28. These parameters were heuristi-
cally found to provide reasonable results.

B. Results and discussions

In Fig. 2 we plot the TTS against various grid spacings g
for SA calculations for the grand and microcanonical system.
We performed SA until we found the ground state fcc con-
figuration with a probability of more than 90% and take the
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FIG. 2. The SA time to solution results for the krypton system
with a penalty term in blue crosses and without in orange plus
symbols plotted against various grid granularities g. The solid line
corresponds to a fit of the measured points to a[N + (1;’)], where
a = 21.015 is the fitting parameter.

minimum TTS across the schedule steps as the data point for
g. This takes at most 30 schedule steps for both systems and it
is apparent that both systems have comparable performance.
In particular note the fit to the function N + (1;]) which is
the scaling of the number of flips the SA algorithm attempts
with the spin number N. There are two main mechanisms that
increase the required TTS. The first is that, as we attempt more
spin flips per schedule step with increasing g, SA requires
more time per schedule step to perform the increasing amount
of flips. The second is that with increasing g the atoms have
more fine-grained displacement possibilities so that there are
more local minima of the QUBO problem with energies closer
to the actual ground state leading to an increased time to
escape the local minima to find the ground state.

If the global minimum were harder to find due to increasing
amounts of local minima, we would expect an increasing
number of required schedule steps with increasing g. What
we see is that the fit a[N + (1;')] with a constant a = 21.015
reconstructs the data well for g > 12 for both systems. Thus
there is no significant scaling ~TTS(t)/[N + (})] of the
required scheduled steps with g for the microcanonical and
the grand canonical system. Furthermore, in Fig. 3 we show
a representative energy histogram for the grand canonical
calculations with three Monte Carlo steps per spin for g €
{12, 14, 16, 18, 20}. Despite not putting any particle number
restrictions the annealing process, even for this low amount
of schedule steps, only returns solutions with the correct
atom density and in fact all returned energies are lower than
the first-excited state energy corresponding to an fcc con-
figuration with an atom taken out (see Appendix C), a state
we call fce-1. Using the Broyden—Fletcher—Goldfarb—Shanno
(BFGS) algorithm [58—61] to converge to a local minimum
off the grid X we confirmed that all states with four atoms
converge to the ground state meaning that the TTS of the com-
bination of annealing combined with BFGS is considerably
lower than that of only annealing.

We also confirmed these tendencies on the D-Wave Ad-
vantage 4.1 system available on D-Wave Leap. We performed
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FIG. 3. The histogram for the residual energy of the krypton
system after running SA for three Monte Carlo steps per spin g €
{12, 14, 16, 18, 20} [colored from light red (gray) to dark purple
(gray)] together with their average residual energy, i.e., energy above
the ground state, (H). This is the full histogram, no results have been
cut.

calculations only for the g = 4 system since the minor em-
bedding for the g = 6 system had chain lengths of up to 20
spins which proved too hard to optimize. In Fig. 4 we plot
the pause location s, against the success probability for the
grand and microcanonical system for just QA with pausing
and without pausing and a schedule length of 18.9 ps and
quantum annealing with pausing followed by BFGS. The
penalty strength in the microcanonical calculations is 0.05
as it provided the best ground-state probability. First we see
that pausing improves the performance as for both systems
the probabilities without pausing are around 0.001 and with
pausing the maximum probabilities for the grand canonical

: N s " oy o SN O o B W oy
10~ 3
IS ]
E s s Grand canonical
2 10 3 Microcanonical
a, =
3 ] /\/
i BV 4 CYARRRNEY "RV REAF AN "
I I I I I
0.0 0.2 0.4 0.6 0.8

Pause location sp

FIG. 4. Ground-state probabilities for the g = 4 krypton system
using the D-Wave Advantage 4.1 system with various pause loca-
tions s, ranging from 0.01 to 0.8. In blue (dark gray) the grand
canonical calculation and in orange (light gray) the microcanonical
with a penalty strength of 0.05. The dashed lines correspond to the
ground-state probability after applying BFGS on the results from the
solid lines and the dotted line to the probability of running annealing
with no pauses and an annealing time of 18.9 us.

system are 0.0067 at s, = 0.45 and 0.005 425 at s, = 0.34 for
the microcanonical one. Since there are no same-density local
minima, performing BFGS optimization on the results with
pausing, is equivalent to looking at the results that have the
correct density. We see that for QA + BFGS calculations both
systems have success probabilities between 0.15 and 0.22 with
the grand canonical consistently having a higher probability.

Without pausing QA has a TTS of around 0.9 x 10° us
comparable with the microcanonical system TTS for SA in the
g = 4 case (see Fig. 2). With pausing we find a TTS of 13 700
and 16931 us, respectively, for the grand and microcanonical
system providing comparable times to the grand canonical SA
calculations albeit the QA calculations are a bit slower. Thus
we find no indications of a quantum speedup. Possible reasons
for this result may include the embedding of full connectivity
on the sparse hardware graph and noise effects. We leave it
for future research to analyze this problem with a wider set of
parameters and using more intricate embedding techniques.

Note though, that while the SA + BFGS algorithm did not
provide any other minima than the global one, QA + BFGS
returns the fcc-1 configuration with probabilities between 0.3
and 0.33 across all pause locations s, for the grand canonical
system and 0.21 and 0.25 for the microcanonical system. Thus
while we might not expect a quantum speedup there might be
an advantage due to the higher breadth of results returned by
QA compared with SA allowing a wider exploration of the
potential-energy landscape.

Summarizing, we see that also for QA, at least in this very
simple system, there are no performance costs in leaving out
the penalty and in fact we can expect performance increases
confirming the tendencies found in SA.

V. MoS,; SYSTEM

In this section we introduce a MoS; system governed by
the three-body Stillinger-Weber potential in Sec. V A and the
related SA results in Sec. V B.

A. Setup

For the second system we consider the Stillinger-Weber
potential [62,63] which is a simple three-body potential that
reflects covalent bond dynamics. We use the parametrization
for hexagonal monolayer molybdenum-disulfide due to Wen
et al. [64-67]. We do this on the supercell consisting of
a 2 x 2 lattice of hexagonal lattice unit cells with a single
unit cell having a lattice constant of 3.20 A and thickness
of 3.19 A. Thus the lattice vectors for our system are d; =
(3.2 A, —V/3x32 A,0), =32 A, —v/3x32 A,0),
a3 = (0,0,3.19 A) We build the lattice by partitioning both
d; and @, into g = 6 equal parts each and applying periodic
boundary conditions and partitioning d; into three equal parts
without periodic boundary conditions. Thus the amount of
required bits scales like 6g2, where the additional two come
from the amount of species. The target ground state is the 2 H
configuration (see Fig. 5) and has an energy of —55.5283 eV.
The first excited state that we expect to see is the 1 T config-
uration, with the same amount of atoms and an energy that is
1.4755 eV above the ground state (see Appendix C). We refer
to this system as the MoS, system.
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FIG. 5. The target 2 H ground-state configuration of the MoS,
system with sulfur in yellow and molybdenum in violet (graphics
due to Vesta). The bottom six sulfur atoms on the boundary, two at
(@ + @,)/2 and four molybdenum atoms with z coordinate given by
ds/2 are the locations encoded in the HUBO (nontransparent atoms).
The remaining ten sulfur atoms (transparent) are copies due to the
periodic boundary conditions and not part of X .

We use our deduc-reduc with a threshold of 10 eV which in
this particular case reduced the amount of nonzero three-body
interaction terms by 18.8% (from 1573728 to 1277267) in
the g = 6 system. Any lower threshold seemed to impact the
ground-state configuration on our SA calculations. There is no
general-use scheme known to the authors, that would allow us
to quadratize this HUBO so as to make it runnable on any
modern Ising machine [68—70] and so while our deduc-reduc
step reduces the interactions it can only be a first step in
conjunction with other approaches yet to be found and we
perform no QA for this system.

We perform SA for the system with both absolute penalty
terms (Cymo = 4, Cs = 8) and relative penalty terms (Cyvo.s =
1/2). For simplicity we call the former the absolute system
and the latter the relative system. Grand canonical calculations
as in the krypton system without penalty terms do not work for
this potential, as it is more favorable to produce configurations
with a single atom species rather than a MoS, mix, so we
limit our analysis to the relative and absolute system and
recall that the former retains the function of simultaneously
optimizing for the atom density. The number of pairwise inter-
action terms without interactions increases by 1.2% using the
absolute penalty (from 21420 to 21708) and by 8.4% using
the relative penalty (23 220), underlining again the importance
of finding potentials that can be used without penalties to
reduce the number of pairwise interactions necessary. In fact,
since this potential is parametrized for hexagonal MoS, we
cannot expect it to yield accurate results for nonhexagonal
configurations. This is a problem that does not pertain to the
parametrization but the Stillinger-Weber potential in general.
Since this one of the simplest three-body potentials we use it
anyway for this proof-of-concept calculation.

We use a penalty strength of P = 10 and a temperature
range of 10 to 0.1 for SA. The various probabilities correspond
to the measured probability across 1000 annealing runs.

B. Results and discussions

The MoS, system proves harder to optimize than the
krypton system. In Fig. 6 the ground-state probabilities for

0.4 Penalty
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1 1
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- - - e e s =
1 | 1 | 1
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Schedule steps

FIG. 6. Plot in solid lines of the ground-state probability for SA
for the MoS, system with schedule steps going from 2 to 500 for both
relative penalties and absolute penalties [blue (dark gray) and orange
(light gray), respectively]. The scale for the probability is to the left.
In dashed lines the average residual energy with the corresponding
scale to the right.

schedule steps going from 2 to 500 are plotted. As opposed
to the krypton system where even for g = 20 we need only
30 schedule steps to reach a ground-state probability of above
0.9 we see that it hovers around 0.4 for the absolute penalty
and around 0.15 for the relative penalty at 500 schedule steps.
In particular note that here the used penalty terms have an
effect on the ground-state probability, and that supplying more
information (in form of the absolute penalty) leads to higher
ground-state probabilities. As expected the ground-state prob-
ability increases with increasing amount of schedule steps but
the slope does not offset the increase in calculation length
and so the TTS turns out to be minimized for a number
of schedule steps in the single digits for both system. In
Fig. 6 the average residual energies are plotted and we see
that both systems seem to converge to an average residual
energy that is well above the target 0 eV. To understand
this, consider the energy histogram in Fig. 7 for the resulting
states of only SA (top) and SA followed by BFGS with the
same potential (bottom) after 500 schedule steps. First, note
that despite not fixing an absolute number of atoms in the
relative penalty, we find the correct density of Mo4Sg in 42.8%
of the configurations (in dark purple in Fig. 7) and that the
average residual energy for the states with the correct density
is 2.3826 eV while it is 10.6117 eV for the states with the
wrong density (in red) so that the relative penalty calculations
allow for simultaneous optimization of the atom density and
the optimal configuration. The probability to obtain either 2 H
or 1 T configurations is 42% for the absolute penalty system
and 18.9% for the relative penalty system. To understand the
physical nature of the remaining local minima, which form
the majority of found states, we performed BFGS on all the
resulting states from SA. While the probability for 2 H and
1 T rose to 42.8% and 20.9% for the absolute penalty and
relative penalty system, respectively, we see that most states
converge to a local minimum that has an energy below that of
2 H. First, for the relative penalty system we see that 57.2% of
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FIG. 7. Histogram of the residual energy for the MoS, system
with SA with 500 schedule steps (top) and SA + BFGS (bottom)
applied to the MoS, system with the absolute number penalty Eq. (3)
in light red (light gray) and the relative number penalty Eq. (4) in
dark purple (dark gray) for results with suboptimal density and red
(gray) for the optimal density. Found local minima are marked by
a dotted line and the shaded area to the left (see Appendix C for
the configurations). This is not the full histogram, i.e., there are
configurations with energies higher than 10 eV.

all observed configurations have 5 molybdenum atoms and 10
sulfur and form configurations that have an energy that is more
than 2.5 eV lower than that of 2 H. In Fig. 7 we only shade the
region as the BFGS algorithm does not converge well for these
configurations so that we do not get well formed peaks but
rather a distribution in the shaded area. The next lower state is
a state we call orthorhombic (see Appendix C for an image of
both the orthorhombic and an example MosS( configuration)
and has an energy that is 0.9313 eV lower than that of 2 H.
We find this configuration with a probability of 21.8% for
the relative penalty system and 57.2% for the absolute penalty
system.

Using the Vienna ab initio simulation package [71-73]
with the projector augmented-wave method [74,75] we find
that the energy of the 2 H configuration is in fact the lowest
of the four found local minima, followed by the 1 T, the
orthorhombic and finally the MosS;( configurations. The fact
that this order is not represented is due to the fact that the
Stillinger-Weber potential is parametrized to model hexago-
nally ordered MoS; configurations and thus does not correctly
model other configurations. The potential is not fit to provide
new physical insights in our application and these results
should be taken merely as a proof of concept.

Noteworthy about these results is that, despite the or-
thorhombic and locally optimal MosS|y states not being
representable on the discretization of the unit cell, the com-
bination of SA and BFGS managed to find these states in
a majority of attempts. This is a strong indication that if
we are able to provide a fitting potential or directly a fitting
HUBO we can find a wide array of globally and locally
optimal configurations even if they are not part of the initial
discretization. Thus, in particular it might suffice to have
rougher discretizations with spin numbers that fit onto current

quantum hardware instead of trying to be fine grained enough
to represent all possible local minima.

VI. CONCLUSIONS

In this paper we have presented an annealing scheme for
crystal structure prediction based on n-body atomic interac-
tions. We discretized a given unit cell with a lattice and placed
binary variables on the lattice points to express the existence
or nonexistence of an atom at every grid point. In particular
this is done for three-body atomic interactions which is the
minimum order necessary for covalent crystals. We solved
the resulting HUBOs using SA and QA giving insights into
the crystal structure. We have shown that a grand canonical
calculation without penalty terms allows for the simultaneous
optimization of both the nuclear structure as well as the par-
ticle density inside the unit cell. Furthermore, we have also
shown evidence that the difficulty of solving the nuclear struc-
ture problem does not necessarily scale with the mesh size.
These results show that it might not always be advantageous
to put all the available information into the QUBO to speed
up calculations in particular as this also increases the amount
of total interaction terms the reduction of which is crucial
for embedding problems into modern hardware with limited
graphs.

We also considered a molybdenum-disulfide monolayer
system modeled by a three-body Stillinger—Weber-type po-
tential. Using our interaction number reduction scheme we
reduced the amount of cubic interactions by 18.8% while
maintaining physical accuracy to the extent of the used poten-
tial. We have shown that the potential contained unphysical
ground states that are due to the limited transferability of the
potential outside the context of hexagonal monolayer MoS,.
While these results do not provide physical insights, we show
that our algorithm reproduces the ground state of the system
even if they are not representable on the chosen discretization
of the unit cell in the annealing step of the algorithm. Thus,
while we could only optimize the roughest discretization for
the krypton system on the D-Wave quantum annealer, this
could be a hint that rougher discretizations, that are easier
to embed onto quantum annealers, are enough for the local
optimization algorithm to find a wide array of ground-state
and locally optimal configurations.

An immediate future research question is to choose a more
fitting potential to construct a HUBO that accurately models
a wide array of covalent crystal configurations to test the
performance with rough unit-cell meshes on larger unit cells.

Another research direction is to investigate the nature of
returned local minima by QA and to confirm the tendency
we found where QA provided a more varied insight into the
energy than SA which tended to favor only ground states.

Note added. Recently, we have become aware of a similar
proposal for the construction of the QUBO [76] for ionic
crystals. That paper does not address higher-order optimiza-
tion problems and thus does not address covalent bonds and
did not consider the grand canonical case, their focus is on
classical computation and providing guarantees that ground
truths to the crystal structure prediction problem are found
using their algorithm. They have similar findings with respect
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to the reproducibility of the ground state even if it is not
contained in the initial discretization.
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APPENDIX A: PERIODIC BOUNDARY CONDITION
IMPLEMENTATIONS

Recall that we work with charge neutral atoms and short-
range (i.e., integrable) interatomic potentials with cutoffs.
Usually in such cases to calculate interaction terms with pe-
riodic boundary conditions, the minimum image convention is
employed, in which the simulation cell is chosen such that for
any set of interacting atoms only one image of the involved
atoms should be within the cutoff distance of each other, so
there is a unique choice of which atoms interact [78]. This
requires the unit cell to be at least twice the size of the cutoff
distance. As we cannot choose the cutoff distance and the size
of the required qubit number scales exponentially with the unit
cell size we cannot use the minimum image convention.

In this section we derive the direct sum formula for an
m-body potential with periodic boundary conditions and then
show how to calculate the coefficients in the HUBO.

The energy of an infinite system due to an m-body potential
V,, with atoms located on x;, xs, ... € R3is given as

%ZZ S Vb em). (AD

i1eN eN ineN
T

Note that this includes the case where the atoms are of dif-
ferent species, for which the actual parametrized form of V,,
would change depending on the input and the case where we
have periodic boundary conditions only on a subset of basis
vectors. We use the word atom on a location to mean an
atom of a specific species on a given location to simplify the
notation from Eq. (2) from the main text.

Assume now that the infinite system is generated by atoms
on a unit cell on locations xy, x, .. ., xy replicated following
a set of lattice vectors L so that Eq. (A1) becomes

1 ' . _
] Z Z Vin(xiy + 11, .00, x5, + 1), (A2)
Q€[N fiy,...fime L
where we write [N]:={l,...,N} and the prime on the

sum indicates that if i = j then 7; # 7i;, i.e., we exclude

interactions with two or more atoms on the same location.
This sum can be interpreted as the interaction terms of the unit
cell given on x| + 7, with the surrounding supercell generated
by the other lattice vectors. We thus define the energy of a
single unit cell by setting 7i; = 0 as

1 !
— D 2 Vnlu Xy i, ), (A3)

" iE[N]" i, fimEL

where the prime condition on the sum is the same as before
with #; replaced by zero. For example for the two-body po-
tential given by ¢;q;/|r; — r;|, where g; and q; are the charges
of the atoms on x; and x;, we recover the well-known formula
[77]

1 ~  qig
P IDIP Dt (Ad)

i€[N] je[N] el

to calculate Coulomb interactions with periodic boundary
conditions. For the case with potentials of various order gov-
erning the system, e.g., Stillinger-Weber with a two- and
three-body part, we take the sum over m to obtain the total
energy of a unit cell with periodic boundary conditions given
as

E({xl,xz, . ,XN})

/
= Z % Z Z Vm(x,-l,xiz + ﬁz, cees Xy, +fim),

me[M] " i€[N1" iy, ...,im€L

(A5)

where M is the highest-order potential involved.

Let us now come to the calculation of the HUBO coeffi-
cients so that the sum over binary variables in Eq. (2) from the
main text reproduces Eq. (AS). Consider a set of lattice points
{x1,...,x,} C X and associate to each point a species so that
we consider an atom of species s; on x|, where {sy, 52, ..., Sy}
is such that s; € S, i € [m]. We define the HUBO coefficients

Z % Z Z Ve(iy, Xy + i, . %i, +7ie), - (A6)

Le[M] 7 jem]t fia,....fic€ L
t=m [m]Ci

where for simplicity we leave out the explicit writing of the
species and the condition [m] C i on the second summation
ensures that every index is contained in i. This condition is
needed to ensure that we only consider potential contributions
that require all the atoms and not only a subset which would
be part of a different HUBO coefficient.

To see that Eq. (A6) is the correct way to define the HUBO
coefficients, we need to show that the sum in Eq. (2) from
the main text reproduces Eq. (AS). Let us consider a subset
{yi,...,yv} =Y C X and a set {sy, ..., sy} of species such
that bjl =1 for i € [N] and b} = 0 otherwise. The sum in
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Eq. (2) from the main text then resolves to

’
Z ZH;']' '''''''''' ; ’xr,;,: Z Z Z%Z Z Vz(le,sz—}-}_’iz,...,xj‘[+7113)

(AT)
me[M]e[NT" melM1 e[y CeIM] 7" jit ... €L
ez icj
1 ’ q _
=> E DD DT Vil xg, + Xy, i), (A8)
Le[M] me[M] [N jeff Ay, g €L
mst icj
[
where the prime on the sum is in reference to the j in- the unit cell. Now,
dex, i.e., if jr = jp then 7y # iip. Now use that the sums
Y iciny 2 jeit ic; can be written as the sum over all £-element F(SC) = F(SC\ {xjh)
multisets with elements from [/N] that have exactly m distinct 1 "
elements, i.e., in an abuse of notation we can write = 7 Z Ve(zi, 22, -+ .5 20) (Al4)
© Z1,..,20€SC
Jke[l]:z=x;
Z Z = Z 1j has m distinct elements » (A9) 1 4
eIV el jelNY =——— > Vit .2 (AlS)
e (¢-n 22020 €SC
where 1 is the indicator function. Finally, since j has £ ele- so that
ments we have
Y Fu(SC) = Fu(SC\ {x;})
j€lm]
Z lj has m distinct elements = 1 (A10) e
me[M] 1 '
<t - oy 47 L5
m (ﬂ— 1)‘ Z Z Vg(xll,x,z—{—nz,...,xll—i-ng),

and thus Eq. (A8) can be written as

/
Z% Z Z Ve(xj,, xj, + i, ..., xj, +Tig),

CelM] 77 [N fia.nniic€L
(A11)

and we recovered Eq. (AS).

There is an efficient way to calculate Eq. (A6) when you
have access to an oracle that calculates the total energy as is,
for example, the case in the OpenKIM API. This oracle for
atoms on some locations Y = yy, ..., yy € R returns

B i= Y Vel Yoo i) (A12)
_IeINY
i <lp<-<lIy
1 4
=0 D VeGis Yior - Vi) (A13)
" ie[NT

where again we leave out the explicit mention of the species
on the potential, use that the potential is constant under permu-
tation of arguments and the double prime indicates that no two
indices i, i should be the same in the summation [this is to
simplify the notation from Eq. (A1)]. Recall that the potentials
that we use have a hard cutoff. To calculate H;!i" construct
a supercell by adding copies of the configuration in the unit
cell around the unit cell in the directions in which we have
periodic boundary conditions up until the atoms in the unit
cell have no nonzero interaction with the newly copied unit
cells. As an example, for the MoS, system this means that we
create a 5 x 5 cell of unit cells with the copied configurations.
Call this set SC and their elements y;, y2, ..., ¥|sc| and note
that the set £ of lattice vectors is given by the basis vectors of

ielm] fiz,....figeL

(Al6)

where we used again that the potential is constant under
permutation of arguments. The configuration energy with pe-
riodic boundary conditions Eq. (AS) is thus obtained by

1
EWC) =} 5 Y [F(SC) = F(SC\ {x;h]. - (A17)

te[M] — jelm]

We can now calculate the linear HUBO coefficients in
Eq. (A6) as

1 /
Hi=) o D Viwx+in,...x+iie) (AlS)

te[M] ¢! fip,...,fig€L
= E({x}). (A19)
Now, for quadratic terms we find
Hy' = E({x1, x2}) — E(a}) — E(fx2}), (A20)

X1,X2

which is easily seen by looking at the second sum in Eq. (A6)
which considers any multiset of indices that contains the en-
tirety of the original set, i.e., here {1, 2} and by subtracting the
single atom energies on the right-hand side, we subtract those
contributions that arise from the summands in which only a
single index, either 1 or 2 is present. It is now clear how to

generalize this:
> oy

Y C{xp,eenXin}

(A21)

H o = E(rn, o)) —

yeeesXim

where on the right-hand side we write Hy" for the coeffi-
cient with atoms on positions given by Y and the appropriate
species set sy.
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FIG. 8. Kr; configuration that corresponds to an fcc configura-
tion with a single atom taken out and which has a residual energy of
0.2029 eV.

We close this Appendix with a remark on nonparametrized
potentials in which you do not have access to the n-body
potential part separately so that the oracle (A22) looks like

l "
FO) =30 20 D0 VoG Yiss oo i)

(A22)
LelM] 77 je[N]
In this case we have
F(SC) = F(SC\ {x;})
1 i
D I D
te[M] ie[m)t! fp,....ii el
X (xj,xi2+fi2,...,xil +ﬁe), (A23)

and thus it is not clear whether there exists an efficient algo-
rithm to calculate E(UC) with such an oracle.

APPENDIX B: COHESIVE ENERGY

When doing grand canonical calculations we need to en-
sure that the energies with different numbers of atoms are
comparable. We use the notion of cohesive energy for this,
which is usually defined as the difference in energy between

T L

P

(@ (b)

FIG. 9. Local minima of the MoS, system marked with a dotted
line in Fig. 7 from the main text. From left to right, (a) an example
MosS, configuration with a residual energy of —6.2161 eV, (b) the
orthorhombic state with a residual energy of —0.9313 eV, and (c) the
1 T configuration of MoS,, 1.4755¢eV.

the atoms in a specific configuration and the energy of all the
involved atoms at an infinite pairwise distance. In our case this
means that we compare the energy of a configuration on the
lattice with the regular lattice constant a and the energy with
a — oo. For these energy calculations we use interatomic
potentials with a hard cutoff and thus the energy of the atoms
with an infinite pairwise distance is zero while it is nonzero
for the regular lattice constant. Thus the cohesive energy in
our case is calculated by Eq. (2) from the main text as claimed
in the main text.

APPENDIX C: LOCAL MINIMA

We give an overview of the local minima indicated by
dotted lines in the histograms Figs. 3 and 7 in the main text.
The local minima for the krypton system are given in Fig. 8
and for the MoS, system in Fig. 9.
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