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Experimental verification of the steering ellipsoid zoo via two-qubit states
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The quantum steering ellipsoid visualizes the set of all qubit states that can be steered by measuring
on another correlated qubit in the Bloch picture. Together with local reduced states, it provides a faithful
geometric characterization of the underlying two-qubit state so that almost all nonclassical state features can
be reflected in its geometric properties. Consequently, the various types of quantum ellipsoids with different
geometric properties form an ellipsoid zoo, which, in this paper, is experimentally verified via measurements
on many polarization-path photonic states. By generating two-qubit states with high fidelity, the correspond-
ing ellipsoids are constructed to certify the presence of entanglement, one-way Einstein-Podolsky-Rosen
steering, discord, and steering incompleteness. It is also experimentally verified that the steering ellipsoid
can be reconstructed from using the 12 vertices of the icosahedron as measurement directions. Our results
aid progress in applying the quantum steering ellipsoid to reveal nonclassical features of the multiqubit
system.
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I. INTRODUCTION

If a bipartite quantum state is shared by two spacelike
separated parties, Alice and Bob say, then Bob’s system can be
steered to a specific state by Alice measuring on her part. This
is the celebrated phenomenon of quantum steering that is first
noticed by Schrödinger [1,2] and subsequently generalized
by others in several directions [3–7]. In particular, given a
two-qubit state, Alice’s steerability of Bob is fully captured
by the quantum steering ellipsoid (QSE) which visualizes the
set of all Bob’s possible steered states in the Bloch picture
[7]. Together with Alice’s and Bob’s local states, it provides a
faithful geometric representation of the shared two-qubit state
[7], and thus generalizes the Bloch picture from the single
qubit to two qubits.

The QSE reflects the rich structure of two-qubit states,
which in turn induces a corresponding zoo of QSEs.
Indeed, different geometric properties of the QSE have
been explored to witness the hierarchical quantum cor-
relations, such as Bell nonlocality [8], Einstein-Podolsky-
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Rosen (EPR) steering [9–15], entanglement [7,10,16], and
discord [7,17–19]. Moreover, it also appears to be use-
ful for characterizing quantum coherence of steered states
[20], joint measurement reality [21], quantum phase tran-
sitions [22–24], and monogamy of entanglement in new
ways [16,25–28].

Here, we experimentally verify the steering ellipsoid zoo
via measurements on different photonic qubit states in the
degrees of polarization and path. Specifically, QSEs are con-
structed to certify the presence of entanglement via the nested
tetrahedral condition and genuine one-way EPR steering re-
spectively. The degenerated ellipsoids, including the pancake
and needle, are also generated to witness discord. Further-
more, the subtle problem of whether the complete steering
[7,29] that all decompositions of Bob’s reduced state can
be steered to by Alice’s one single measurement holds is
examined, and the clear distinction between the steering com-
pleteness and incompleteness is drawn via the corresponding
QSEs.

It has been theoretically predicted in [7] and experimen-
tally confirmed in [26] that the set of all steered states for
a two-qubit state forms an ellipsoid. Inspired by the fact
that nine points are generically enough to determine an el-
lipsoid, we present an efficient approach to reconstruct the
QSE by choosing the 12 vertices of the icosahedron as mea-
surement directions. Our experimental results confirm that
it is able to fit the theoretical-predicted QSE with a high
precision.
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II. QUANTUM STEERING ELLIPSOIDS

Any two-qubit state ρAB, shared by Alice and Bob, can be
written in the Pauli operator basis σ ≡ (σx, σy, σz ) as

ρAB = 1

4

(
1A ⊗ 1B + a · σ ⊗ 1B + 1A ⊗ b · σ

+
∑

i, j=x,y,z

Ti jσi ⊗ σ j

)
. (1)

Here 1A and 1B denote identity operators, a and b denote the
Bloch vectors of Alice’s and Bob’s local states, and T ≡ (Ti j )
denotes the spin-correlation matrix. The measurement can
be modeled as a positive operator-valued measure (POVM)
{Ek}, with Hermitian operators Ek satisfying

∑
k Ek = 1 and

Ek � 0 for all k. When a measurement is performed on Al-
ice’s qubit, each measurement outcome is associated to an
element E in a POVM, where there is E = e0(1 + e · σ ) with
0 � e0 � 1 and |e| � 1 in the Pauli operator basis. Corre-
spondingly, Bob’s qubit is steered to

ρE
B = TrA[ρABE ⊗ 1B]

pE
= 1

2

[
1B + (b + T �e) · σ

(1 + a · e)

]
(2)

with probability

pE = Tr[ρABE ⊗ 1B] = e0(1 + a · e). (3)

Considering all Alice’s possible local measurements, it
gives rise to a set of Bob’s steered states, represented by the
set of Bloch vectors

EB|A =
{

b + T T e
1 + a · e

: |e| � 1

}
. (4)

This set is proven to form an ellipsoid in the Bloch picture,
called the quantum steering ellipsoid [5,7]. The subscript B|A
describes Bob’s steering ellipsoid generated by Alice’s local
measurements, which is determined by its center,

cB|A = b − T �a
1 − a2

, (5)

and its orientation matrix

QB|A = 1

1 − a2
(T − ab�)�

(
1 + aa�

1 − a2

)
(T − ab�). (6)

The eigenvalues and corresponding eigenvectors of QB|A de-
termine the squared lengths of the ellipsoid’s semiaxes and
their orientations [7]. Here and elsewhere, we denote x ≡
|x| =

√
x� · x for any vector x.

Similarly, there is a steering ellipsoid EA|B for Alice gen-
erated by Bob’s local measurements. It is worth noting that if
the shared state is not symmetric under Alice and Bob, then
Alice’s ellipsoid is not identical to Bob’s, which is confirmed
in the following experiment on states ρ3, ρ4, ρ5, and ρ8 in
Table I.

III. THE STEERING ELLIPSOID ZOO

The set of Bob’s steered state EB|A (4) covers the whole
Bloch ball if the state is a pure entangled state, i.e.,

TABLE I. A series of two-qubit states used to verify the steer-
ing ellipsoid zoo. |ψ−〉 = (|01〉 − |10〉)/

√
2 in the Werner states

ρ2, |ψ+〉 = (|01〉 + |10〉)/
√

2 in ρ4, ρθ = TrB[ρ1] in ρ3, and |+〉 =
(|0〉 + |1〉)/

√
2 in states ρ5 and ρ7.

ρ1 = |ψ1〉〈ψ1|, |ψ1〉 = cos θ |00〉 + sin θ |11〉, cos θ = √
2/3 .

ρ2 = p|ψ−〉〈ψ−| + (1 − p)1A ⊗ 1B/4, p = 1/2, 1/3, 1/5.

ρ3 = p|ψ1〉〈ψ1| + (1 − p)ρθ ⊗ 1B/2, θ = 0.3, p = 0.55.

ρ4 = (|00〉〈00| + |11〉〈11| + 2|01〉〈01| + 4|ψ+〉〈ψ+|)/8.

ρ5 = (|00〉〈00| + | + 1〉〈+1|)/2.

ρ6 = (|00〉〈00| + |11〉〈11|)/2.

ρ7 = (|00〉〈00| + |11〉〈11| + | + +〉〈+ + |)/3.

ρ8 = (31A ⊗ 1B + σz ⊗ 1B + σx ⊗ σx + σy ⊗ σy )/12.

|ψ1〉 = cos θ |00〉 + sin θ |11〉 with θ ∈ (0, π/2) labeled as ρ1

in Table I, and reduces to a single point for θ = 0, π/2. The
QSE can possibly vary from the three-dimensional ellipsoid
(e.g., all entangled states) to the two-dimensional ellipse (e.g.,
the separable state ρ7 in Table I), and to a straight line (e.g.,
the zero-discord state ρ6 in Table I). These suggest that its
geometric properties have a close connection with the rich
structure of two-qubit states.

The above observations can be strengthened in that, to-
gether with Alice’s and Bob’s local Bloch vectors, the QSE
yields a faithful characterization of the shared two-qubit state,
up to local unitary operations [7]. Thus, it provides a powerful
tool to reveal the nonclassical features underlying the state.
For example, it gives a necessary and sufficient condition
for the presence of entanglement via the nested tetrahedron
condition that a two-qubit state is separable if and only if its
steering ellipsoid fits inside a tetrahedron that itself fits the
Bloch sphere [7]. This is verified on a family of Werner states
[30] ρ2 = p|ψ1〉〈ψ1| + (1 − p)1A ⊗ 1B/4 with θ = π/4 and
a varying p ∈ [0, 1]. It also yields a necessary and sufficient
condition for discord, measuring the difference of two natural
quantum extensions of classical mutual information [31–33],
in the sense that Bob’s ellipsoid becomes a segment of a
diameter if and only if Bob has zero discord [7], which is
experimentally confirmed via the state ρ6 in Table I.

The connections and distinctions among quantum steering,
EPR steering, and complete steering are also investigated in
this paper. Particularly, quantum steering refers to the phe-
nomenon that Alice, by making suitable measurements, can
steer Bob’s system to any desired state in the support of his lo-
cal state [2], and her steerability of Bob is fully characterized
by the steering ellipsoid as per (4) for two-qubit states. EPR
steering describes the nonlocal phenomenon that one party
can remotely prepare the other’s states with entanglement [6],
hence generalizing quantum steering as a kind of quantum
correlation which lies strictly intermediate between Bell non-
locality and entanglement. Indeed, EPR steerability can be
fully determined by the corresponding QSE for a class of two-
qubit states [9,11,12]. Finally, the subtle problem of complete
steering is about whether all decompositions {pk, ρk} of Bob’s
reduced state, i.e., ρB = ∑

k pkρk , can always be steered to
by Alice’s one single measurement such that ρk = ρ

Ek
B and

pk = pE
k satisfying Eqs. (2) and (3) for each outcome k and

a given state ρAB [7,29]. Its characterization and quantifi-
cation have been thoroughly studied in [29] via the QSE.
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FIG. 1. Experimental setup. (a) The entanglement source. An ultraviolet laser pulse (centered at 390 nm) is used to pump a sandwiched
beamlike type-II EPR source, and a true-zeroth-order half waveplate (THWP) is inserted between two 2-mm β-barium-borate crystals that
have the same optic axes. The spatial (LiNbO3) and temporal (YVO4) compensation crystals are employed to make this pair of photons
indistinguishable. One photon is sent through a half waveplate rotated at 45◦ to prepare the maximally entangled state (|00〉 + |11〉)/

√
2. (b–i)

The preparation process of eight states in Table I. Since (c)–(e), (h), and (i) require mixing two states with a certain probability, two attenuation
plates (not drawn in the picture) are inserted into the two light paths, which are further separated by the BS to adjust the relative light intensity.
(k, l) The steering and measurement process. These two operations admit the same light-path configuration and are composed of a rotatable
half waveplate, a rotatable quarter waveplate, a PBS, and two fiber-coupled detectors. All rotatable waveplates are mounted on a motorized
rotation stage. Symbols used in the figure are as follows: HWP, half waveplate; QWP, quarter waveplate; QP, quartz plate; FC, fiber-coupled
detector; FC, spatial compensation crystal; TC, temporal compensation crystal; PBS, polarization beam splitter; PPBS, partial polarization
beam splitters; BS, beam splitter; BBO, barium borate crystals.

Interestingly, all these steering properties are not symmetric
under party permutations, and, as listed in Table I, the state
ρ3 [34] is able to witness one-way EPR steering and the
state ρ5 [7] for one-way complete steering, both of which
also automatically imply the asymmetry of quantum steering.
More details are given in the Appendix.

IV. EXPERIMENTAL SETUP

To experimentally verify the zoo of quantum steering el-
lipsoids and reveal their nonclassical state features discussed
above, we prepare a series of two-qubit states which are
summarized in Table I. In addition to the states explicitly
mentioned in Secs. II and III, we also generate the state ρ7 for
the steering pancake and ρ8 [29] for steering incompleteness
in the ellipse case.

The experimental setup to generate these states in Ta-
ble I is displayed in Fig. 1. First, a maximally entangled
state (|00〉 + |11〉)/

√
2 is generated through the spontaneous

parametric down-conversion (SPDC) process by pumping a
sandwiched beamlike type-II entanglement source [35]. The
fiber couplers are then used to transmit the pair of entan-
gled photons into the state preparation optical path, where
the photon going through the up path is labeled as photon
1 and the photon going through the down path is labeled as
photon 2 in Fig. 1(a). The light gray part of Figs. 1(b)–1(i)
describes the preparation process of eight states listed in Ta-

ble I (see the Appendix for more details about these states
and their experimental preparation). Finally, the steering and
measurement process is shown in the yellow dashed box of
Fig. 1. Alice (Bob) randomly picks up a point on the Bloch
sphere as the measurement direction, and then Bob (Alice)
does tomography on his (her) steered state. After Alice (Bob)
samples all possible points for steering, all Bob’s (Alice’s)
steered states are predicted to form an ellipsoid EB|A as per
Eq. (4) (EA|B).

V. EXPERIMENTAL RESULTS

By preparing states in the degree of polarization and path,
we obtain all two-qubit states in Table I with nearly per-
fect fidelity and high generation rate. We first use quantum
state tomography to estimate the prepared state ρexp from
experimental data and leave the detailed data analysis in the
Appendix. In our experiments, an average fidelity of 0.9926 ±
0.0087 is achieved for these states (see the Appendix), where
the state fidelity is calculated by F = (Tr[

√√
ρexp ρ

√
ρexp ])2

[36]. We then construct the steering ellipsoids, including the
degenerate pancake and needle, to test whether they are en-
tangled, EPR steerable, discordant, and completely steerable.
Each steered state is reconstructed from 5.0 × 104 detection
events via quantum state tomography, and the corresponding
steering ellipsoid, plotted in Fig. 2, is constructed via 1000
measurement points.
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FIG. 2. The zoo of quantum steering ellipsoids. Alice’s (Bob’s) steering ellipsoid EB|A (EA|B) is constructed for all states ρ1−ρ8 in Table I.
Additionally, the degree of entanglement, measured by concurrence, is obtained for these experimentally reconstructed states, while the
theoretical values are given in parentheses. In each quantum steering ellipsoid, the blue dot describes the reduced state ρA or ρB, and two green
points represent the corresponding steered states by one single measurement {E1 = |0〉〈0|, E2 = |1〉〈1|}, except for ρ8 with two orthogonal
projectors ψ1 = cos 3π/16|0〉 + eiπ/10 sin 3π/16|1〉 and ψ2 = sin 3π/16|0〉 − eiπ/10 cos 3π/16|1〉. Abbreviations in this figure are as follows:
Sep., separable; Ent., entangled; Incomp., incomplete steering; Comp., complete steering; Con., concurrence.

As shown in Fig. 2, the steering ellipsoid that coincides
with the whole Bloch ball is constructed for the partially en-
tangled pure state ρ1, and the QSEs corresponding to a series
of Werner states with p1 = 1/2, p2 = 1/3, and p3 = 1/5 are
constructed to further test the nested tetrahedron condition
for entanglement. It is observed that for each p the steering
ellipsoid is nearly centered at the origin with three semiaxes
approximately close to p (see the Appendix), and also con-
firmed that p = 1/3 is the boundary between separability and
entanglement for Werner states because the largest sphere that
can be inscribed inside a tetrahedron inside the unit sphere
has a radius less than 1/3. Furthermore, the ellipsoid for ρ6

becomes a segment of a diameter, thus having zero discord.
To reveal the property of steerability, we first use ρ3 to

construct Alice’s steering ellipsoid that Bob can never have
EPR steerability of Alice and Bob’s ellipsoid that Alice is able
to steer Bob. With respect to the steering completeness which
requires there being a measurement for Alice to steer Bob to
any set of states generated from the state decomposition of
Bob’s local state, it is shown in Fig. 2 via ρ5 and ρ8 that it

is not the case. It is in particular found that the measurement
direction E1 = |0〉〈0| by Alice steers Bob to one end (green
point in Fig. 2) of the needle EB|A while the complementary
measurement direction E2 = |1〉〈1| does not steer Bob to the
other end; however, the reduced state ρB always admits such a
state decomposition of which two states are located on the
surface of the steering ellipsoid. This immediately certifies
the presence of the steering incompleteness, which is also
confirmed via ρ8 with EB|A.

We also present an efficient approach to reconstruct QSEs
for two-qubit states. Following directly from Eqs. (5) and (6)
that nine points generically determine an ellipsoid, we choose
the 12 vertices of an icosahedron as measurement directions to
construct the steering ellipsoid, instead of running all possible
directions. Our method is implemented on the states ρ4, ρ8,
and ρ6, of which the steering ellipsoids are an ellipsoid, el-
lipse, and straight line. As displayed in Fig. 3, the red dots
represent 12 data points sampled from the vertices of an
icosahedron and are fitted as an ellipsoid, an ellipse, or a line,
while the dark gray area describes the QSE predicted by the-
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FIG. 3. Twelve points are enough to determine the quantum
steering ellipsoid. The 12 vertices of an icosahedron are choices for
measurement directions on three states, and the corresponding QSEs
are reconstructed.

ory. In order to test the robustness of our method, we further
perform 50 experiments by randomly rotating the icosahedron
and thus its vertices, and calculate the geometric properties of
QSEs, i.e., the volume for ρ4, area for ρ8, and length for ρ6.
It is found that it is possible to fit the predicted ellipsoids with
high precision (see the Appendix).

VI. DISCUSSION AND CONCLUSION

We have experimentally verified the zoo of quantum steer-
ing ellipsoids by generating eight different states. It is found
that the QSE not only can provide a faithful geometric char-
acterization of the shared two-qubit state, but also reflects
almost all nonclassical features in its geometric properties,
such as entanglement, EPR steering, discord, and steering
incompleteness.

It will be interesting to apply the QSE to reveal other
nonclassical features of the qubit system, such as the steered
coherence [19] and measurement reality [21]. It is also of both
theoretical and experimental interest to investigate the quan-
tum steering ellipsoid in multiple spins to observe quantum
phase transitions [22–24] and in higher-dimensional systems
beyond qubits. Moreover, the efficient approach of using the
vertices of an icosahedron to construct the steering ellipsoids
is expected to be a potential tool in future quantum networks
to characterize quantum correlations without shared reference
frames among distant parties [37].
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APPENDIX

1. The zoo of nonclassical correlations

The state of a quantum system is described by a density
matrix ρ that is a non-negative semidefinite operator with
trace 1. It is essential to retrieve the state information via
quantum measurement that is modeled as a positive operator-
valued measure M = {Ek} with positive elements Mi � 0
satisfying

∑
k Ek = 1. Ideally, performing a measurement M

on state ρ yields a probabilistic distribution, in the sense that
each outcome k associated with a measurement element Ek

happens with probability pk = Tr[ρEk].
Suppose then that a bipartite quantum state ρAB is shared by

two parties, Alice and Bob say. The phenomenon of quantum
steering, first noticed by Schrödinger [1,2], describes that if
Alice performs a measurement on her part, then Bob’s system
can be steered to a specific set of quantum states. Specifically,
Alice’s measurement outcome k steers Bob’s system to

ρk
B = TrA[ρABEk ⊗ I]

pk
(A1)

with

pk = Tr[ρABEk ⊗ I]. (A2)

Thus, collecting Alice’s full outcomes k gives rise to a set of
Bob’s steered states {pk, ρ

k
B} satisfying∑

k

pkρ
k
B = ρB. (A3)

In particular, given a two-qubit state, quantum steering
from Alice to Bob is fully captured by QSE, which visualizes
the set of all Bob’s possible states steered by Alice performing
all possible measurements in the Bloch picture [7]. Together
with Alice’s and Bob’s local states, the QSE provides a faith-
ful geometric representation of the shared two-qubit state, and
thus generalizes the Bloch picture from the single qubit to two
qubits.

Note further from Eq. (A3) that Alice’s one single measure-
ment on the shared ρAB leads to a state-preparation process
of Bob’s local state ρB. Correspondingly, it is interesting to
investigate whether any state decomposition of Bob’s local
state ρB

ρB =
∑

i

piρ
i
B (A4)

can be realized via the measurement process where Alice re-
motely measures a local measurement on the shared bipartite
state ρAB. If it is possible for any given state ρAB, then there is
a basic observation that any state ρi in the decomposition (A4)
must be reachable via quantum steering as Eq. (A1). With
this observation, complete steering describes that, given any
realizable state decomposition of Bob’s local state ρB (A4),
there always exists a measurement for Alice to steer Bob to the
state set {pi, ρ

i
B} satisfying Eqs. (A1) and (A2) [7]. Otherwise,

it is called incomplete steering. It is explicitly shown in [7] that
it is possible to witness incomplete steering in the two-qubit
system, which is experimentally confirmed in this paper.

If Alice measures a set of measurements M j , then Bob will
receive the corresponding state assemblages {pk| j, ρ

k| j
B }. EPR

steering is formulated as a task of entanglement verification
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[6] that amounts to checking if these states are prepared via a
local hidden state (LHS) model in the form

ρ
k| j
B =

∑
λ

p(λ)ρB(λ)p(k| j, λ), (A5)

where the hidden variable λ specifies some classical proba-
bility distribution p(k| j, λ) for Alice’s measurement j with
outcome k. If there is no such LHS model, then EPR steering
from Alice to Bob is demonstrated.

Finally, the definition of quantum discord is detailed. En-
tropy, as a measure of randomness or uncertainty in the
system, is of fundamental and practical interest in statisti-
cal physics and information theory. Analogously, quantum
entropy, measuring the information or uncertainty contained
in the quantum system, also plays a crucial role in the field
of quantum physics and quantum information. One notable
example is the well-known von Neumann entropy:

S(ρ) := Tr[ρ log ρ]. (A6)

Correspondingly, we are able to introduce the quantum mutual
information

I (ρAB) := S(ρA) + S(ρB) − S(ρAB) (A7)

and the conditional quantum entropy

JA(ρAB) := S(ρB) − S(ρB|ρA) (A8)

for the bipartite state ρAB. The conditional entropy JA (A8)
depends on Alice’s local measurement and thus represents
the part of the correlations that can be attributed to classical
correlations. Therefore, it is possible to first maximize J over
the set of all possible (projective) measurements and then
define quantum discord [31]

DA(ρAB) := I (ρAB) − max
{Ek}

J{Ek}(ρAB)

= S(ρA) − S(ρAB) + min
{Ek}

S(ρ|{Ek}) (A9)

to reveal the purely nonclassical correlations independently of
measurement.

2. Experiment details

Here we show the detailed preparation process of two-qubit
states listed in Table I. First, we use a type-II SPDC source to
generate the maximally entangled state:

|φ0〉 = (|HH〉 + |VV 〉)/
√

2 (A10)

where H and V are horizontal and vertical polarizations of
photon 1 and photon 2, which are labeled as 0 and 1 in the
main text, respectively. Then photon pairs are injected into the
optical paths through fibers, where the photon going through
the up path is labeled as photon 1 and the photon going
through the down path is labeled as photon 2. The specific
preparation process of states is shown in the light gray part of
Figs. 1(b)–1(i).

ρ1 is a partial entangled state, which can be produced by
placing a partial polarization beam splitter (PPBS) in the down
paths to split an incident light beam with vertical polarization
in a 50:50 ratio and make horizontal polarized light fully

TABLE II. The fidelities of all the two-qubits states we have
tested, labeled by ρ1 − ρ8. The error bars are determined by Monte
Carlo simulation (50 samples) with the photonic statistic error.

State Fidelity State Fidelity

ρ1 0.97084 ± 0.00058 ρ21 0.99939 ± 0.00005
ρ22 0.99916 ± 0.00005 ρ23 0.99946 ± 0.00004
ρ3 0.99779 ± 0.00012 ρ4 0.98723 ± 0.00014
ρ5 0.99151 ± 0.00046 ρ6 0.99076 ± 0.00052
ρ7 0.99320 ± 0.00070 ρ8 0.99692 ± 0.00010

transparent [shown in Fig. 1(b)]. We can get

ρ1 = |ψ1〉〈ψ1| (A11)

where |ψ1〉 = cos θ |HH〉 + sin θ |VV 〉 and cos θ = √
2/3 .

In the case of the Werner state, ρ2 can be written as the
mixture of two mixed states:

ρ2 = p|ψ−〉〈ψ−| + 1 − p

4
I4

= 1 − p

2
ρ2a + 1 + p

2
ρ2b

(A12)

where ρ2a = (|HH〉〈HH | + |VV 〉〈VV |)/2 and ρ2b =
(|HV 〉〈HV | + |V H〉〈V H | + a|HV 〉〈HV | + a|V H〉〈V H |)/2
with a = −2p

1+p . The experimental state preparation is shown
in Fig. 1(c). Photon 1 does no operation. Photon 2 passes
through the first beam splitter (BS) and divides into two paths.
ρ2a is prepared by decohering the state φ0 completely with a
thick quartz plate in the upper path, and ρ2b is prepared by a
half waveplate (HWP) rotated at 45◦ and quartz plate in the
lower path (the quartz plate is used to decohere the quantum
states with different levels for three Werner states with
p = 1/2, 1/3, and 1/5 respectively). Finally, two attenuation
plates and a BS are used to combine these mixed states in a
certain intensity proportion.

ρ3 can also be written as the mixture of two mixed states:

ρ3 = p|ψθ 〉〈ψθ | + (1 − p)ρA
θ ⊗ I2/2

= 1 + p

2
ρ3a + 1 − p

2
ρ3b (A13)

where ρ3a = cos2 θ |HH〉〈HH |+sin2 θ |VV 〉〈VV | + 2p cos θ

(1+p) sin θ

(|HH〉〈VV | + |VV 〉〈HH |), ρ3b = cos2 θ |HV 〉〈HV | + sin2 θ

|V H〉〈V H |, p = 0.55, and θ = 0.3. In Fig. 1(d), we use
two PPBSs to generate the state ρ31 = (cos2 θ |HH〉 +
sin2 θ |VV 〉). Then we use the BS split beam, photon 2 in
the upper path passes through a quartz plate to partial de-
coherence, and photon 2 in the lower path passes through
an HWP rotated at 45◦ and a thick quartz plate to complete
decoherence. Finally, we use two attenuation plates and a BS
to combine two mixed states in a ratio of 1+p

1−p .
And ρ4 can also be written as the mixture of two mixed

states:

ρ4 = 1
8 (|HH〉〈HH | + |VV 〉〈VV | + 2|HV 〉
× 〈HV | + 4|ψ+〉〈ψ+|)

= 1
4ρ2a + 3

4ρ4a. (A14)
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FIG. 4. The state tomography results of two-qubit states (ρ1−ρ8). In each box, the left two pictures show the real (top) and imaginary
(bottom) parts of the experimental reconstructed density matrix, while the right two pictures show the theoretical density matrix.
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TABLE III. The measured ellipsoid center and semiaxes length for each Werner state. The error bars are determined by Monte Carlo
simulation with photonic statistics.

p x0 y0 z0 s1 s2 s3

EA|B1/2 0.0120(4) −0.0105(4) 0.0054(4) 0.5101(7) 0.5022(7) 0.4914(6)
EB|A1/2 0.0031(4) −0.0039(4) 0.0011(4) 0.5090(5) 0.5015(5) 0.4906(6)
EA|B1/3 0.0135(4) −0.0143(4) 0.0016(5) 0.3465(5) 0.3422(5) 0.3218(5)
EB|A1/3 0.0045(4) −0.0064(3) −0.0025(4) 0.3473(6) 0.3394(5) 0.3196(6)
EA|B1/5 0.0002(4) −0.0047(4) 0.0097(4) 0.2125(7) 0.2098(6) 0.1968(5)
EB|A1/5 0.0072(4) −0.0112(4) −0.0048(4) 0.2134(5) 0.2077(6) 0.1958(7)

It can be generated by mixing the states ρ2a and ρ4a =
2
3 |HV 〉〈HV | + 1

3 |HV 〉〈V H | + 1
3 |V H〉〈HV | + 1

3 |V H〉〈V H |
with a 1 : 3 light intensity ratio [which is shown in Fig. 1(e)].
And ρ4a is generated by using a PPBS, a HWP rotated at 45◦,
and a quartz plate to make partial decoherence.

Figure 1(f) shows the preparation of ρ5:

ρ5 = (|HH〉〈HH | + |+V 〉〈+V |)/2 (A15)

where |+〉 = (|H〉 + |V 〉)/
√

2. The product state is prepared
by selecting photon pairs produced from one β barium borate
crystal by placing a PBS in the down path, while the classical
mixture is achieved by inserting HWP in each path and ran-
domly preparing the two product states with equal probability.

Figure 1(g) shows the preparation of ρ6, which is the same
as ρ2a. Figure 1(h) shows the preparation of ρ7:

ρ7 = (|HH〉〈HH | + |VV 〉〈VV | + |++〉〈++|)/3

= 2
3ρ2a + 1

3 |++〉〈++|. (A16)

The three HWPs’ angles from top to bottom are all rotated at
22.5◦. The maximal mixing state(ρ2a) is generated by a HWP
and a thick quartz plate in the BS’s reflected light path. The
state | + +〉 is generated by a PBS and a 22.5◦ HWP in the
BS’s transmitted path. These two states are combined with a
2 : 1 light intensity ratio.

Figure 1(i) shows the preparation of ρ8:

ρ8 = 1
4

(
I4 + 1

3σz ⊗ I2 + 1
3σx ⊗ σx + 1

3σy ⊗ σy
)

= 1
2ρ8a + 1

2ρ8b. (A17)

By using a PPBS with the transmittance of horizontal
and vertical polarization photons is 2 : 1, we generate

ρ8a = 2
3 |HH〉〈HH | + 1

3 |VV 〉〈VV | and ρ8b = 2
3 |HV 〉〈HV | +

1
3 |V H〉〈V H | + 1

3 |V H〉〈HV | + 1
3 |HV 〉〈V H | respectively and

combine them with same light intensity ratio.

3. Data analysis

To characterize the performance of our state preparations
process, we do full-state tomography of two-qubit states by
using the same device in Fig. 1. Table II shows the detailed
fidelities of two qubits we have tested. Figure 4 shows the
tomographic results for each state.

Table III shows the center and semiaxes length of ellipsoids
for each Werner state (p = 1

2 , 1
3 and 1

5 ) and we can observe
that for each p, the steering ellipsoid is nearly centered at the
origin with three semiaxes approximately close to p.

Table IV shows the results of fitted ellipsoids for states. We
calculate the geometric properties of QSEs in 50 experiments,
i.e., the volume for ρ4, area for ρ8, and length for ρ6. And
we find that the results fit the predicted ellipsoids with high
precision.

TABLE IV. The geometric properties of fitted ellipsoids for states
(plotted in Fig. 3), i.e., the volume for ρ4, area for ρ8, and length
for ρ6. The error bars are determined by experiment data. exp.,
experimental; th, theoretical.

State Eexp
A|B Eexp

A|B E th
A|B E th

A|B

ρ4 0.5133 ± 0.0077 0.5539 ± 0.0060 0.5214 0.5214
ρ8 0.3573 ± 0.0143 0.4535 ± 0.0920 0.3490 0.3927
ρ6 1.99995 ± 0.00004 1.99999 ± 0.00001 2 2
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