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Production of genuine multimode entanglement in circular waveguides with long-range coupling
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Starting with a product initial state, squeezed (squeezed coherent) state in one of the modes, and vacuum in the
rest, we report that a circular waveguide comprising modes coupled with varying coupling strength is capable of
producing genuine multimode entanglement (GME), quantified via the generalized geometric measure (GGM).
We demonstrate that, for a fixed coupling and squeezing strength, the GME content of the resulting state increases
as the range of couplings between the waveguides increases, although the GGM collapses and revives with the
variation of coupling strength and time. The advantage of long-range coupling can be emphasized by measuring
the area under the GGM curve, which clearly illustrates growing trends of GME with the increasing range of
couplings. Moreover, long-range couplings help in generating a higher GGM for a fixed coupling strength. We
analytically determine the exact expression of GGM for systems involving an arbitrary number of modes, when
all the modes interact with each other equally. The entire analysis is performed in the phase-space formalism.
We manifest the constructive effect of disorder in the coupling parameter, which promises a steady production
of GME, independent of the coupling strength.
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I. INTRODUCTION

Continuous variable systems, characterized by position and
momentum quadratures [1], are one of the potential plat-
forms for the experimental realization of a wide range of
quantum information processing tasks. Notable ones include
quantum communication protocols [2–4] with or without
security [5,6], quantum cloning machine [7], and the prepa-
ration of cluster states [8] essential for building a one-way
quantum computer [9]. One of the key resources required
to design these quantum protocols is multimode entangle-
ment [10]. Therefore, the generation of entanglement in
physical substrates [11–13], its detection [14–19] and quan-
tification [20–22] have attracted a lot of attention.

Coupled optical waveguides in a one-dimensional ar-
ray turn out to be an efficient method to manipulate
light [23–27] or to simulate quantum spin models via op-
tics [28,29]. Thus they have emerged as suitable candidates
for performing continuous time random walks [30,31], Bloch
oscillation [32–35], Anderson localization [36], quantum
computation [37–39], optical simulation [40], and generation
of entangled states [41].

Various studies utilized different linear waveguide array
models to detect continuous variable entanglement via the
van Loock and Furusawa inequalities [17,42] and to quantify
entanglement between two modes using logarithmic negativ-
ity [43–45]. More recently, the transfer of quantum states of
light between modes in circular waveguide arrays has also
been explored [46].

A majority of these works are based on Hamiltonians
involving couplings only between neighboring modes, pop-
ularly known as nearest-neighbor (NN) couplings, although
non-nearest-neighbor coupling is essential in some situations.
For instance, in quantum information processing and quan-
tum computation with optical waveguides, it is necessary

to fabricate compact waveguide circuits to reduce the foot-
prints of such circuits [47]. When the separation between the
waveguides in such circuits would keep on decreasing, or
when the waveguide is long, the higher-order couplings must
be taken into account. The benefits of non-nearest-neighbor
couplings have been shown in molecular excitation trans-
fer [48], the study of Bloch oscillations in photonic waveguide
lattices [32–35], the dynamics of biomolecules [49] and poly-
mer chains [50]. Moreover, long-range (LR) couplings play
a vital role in localization [51], simulations [52], and quan-
tum walks in waveguide systems. More importantly, such
LR couplings can be simulated and manipulated in labo-
ratories with several physical systems including photonic
waveguides [53–59] (cf. [60,61]), trapped ions [62,63], and
so on.

Here, we provide a technique that uses circular waveguide
arrays, with long-range couplings, to produce genuine multi-
mode entangled (GME) states from product ones. We point
out that our work is significant since most of the earlier re-
search works relating to continuous variable (CV) multimode
entanglement involve the use of bulk optical elements, which
are large and inherently sensitive to decoherence resulting
in a reduction of entanglement content. In this article, we
focus on integrated photonic waveguides which can be fab-
ricated using femtosecond laser techniques [47,64–66] and
nanofabrication methods [67,68], having minimal decoher-
ence [30,69]. These platforms guarantee a very low loss factor
and are interferometrically stable, scalable, and less sus-
ceptible to decoherence, thereby ensuring robustness against
noise.

In continuous variable systems, a majority of the previous
works analyzed whether genuine multimode entanglement
creation was successful or not [44,45], through the application
of the van Loock Furusawa inequalities [17], for systems with
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up to five modes [42], even though multimode entangled states
are crucial for several quantum information protocols [70–75].
Going beyond detecting entanglement, we quantify genuine
multimode entanglement by computing the generalized ge-
ometric measure (GGM) [76–81] for CV Gaussian system
by using phase-space formalism [82], and explicitly show
how long-range interactions are beneficial for generating gen-
uine multimode entanglement. In particular, the multimode
entangled state is generated using waveguides organized cir-
cularly and coupled with varying coupling strengths, where
a squeezed state of light is given as input in one mode and
vacuum impinges on the other modes. Note that it does not
require nonlinear processes which are relatively more difficult
to work with. We first observe that irrespective of the range
of couplings, GGM collapses and revives with the variation of
the coupling constant and time. By exploiting the symmetry
of the system, we analytically arrive at the compact form of
GGM when the dynamics are driven by the LR couplings
having equal strengths. We illustrate that the time-varying
GME content can be higher for the LR model than that of
the NN model, for a fixed coupling and squeezing strength,
although the maximum GGM produced with NN coupling
coincides with the one generated by waveguides having LR
couplings. Note that the enhancement of entanglement with
LR interactions as compared to the NN ones aligns with the
expected outcome based on the area law of entanglement
entropy although the trends and maximal GGM cannot be
explained via entanglement area law. Most of the studies on
entanglement area law of modes having both short- and long-
range interactions are for finite-dimensional systems which is
not the case in the current study (see [83,84] for violations
of the area-law). Moreover, we provide a method to compute
the GME in such systems, which is not restricted with regard
to the number of involved modes and is scalable to an arbi-
trarily high number of modes when all-to-all interactions are
implemented.

We also show that if disorder is introduced in the couplings,
the oscillations in the generated quenched averaged GGM
decrease at the expense of the maximum GGM content. It
indicates that the generation of a nonoscillating genuine mul-
timode entanglement can only be accomplished when there
are some imperfections in the coupling strength that naturally
arise during the implementation of the waveguide system.
Additionally, the quenched average GGM increases with the
increase of the range of couplings involved in the evolution
process. Based on the period of oscillation of GGM with re-
spect to the coupling strength, it is possible to obtain a bound
on the disorder strength which can lead to oscillation-free
GGM.

Our paper has the following structure. Section II provides
a brief overview of the theoretical model for a circular array
of linear waveguides, including the Hamiltonian and the input
state. In Sec. III, we explain the benefits of taking long-range
couplings for creating genuine multimode entanglement in
four, five, and six modes. We analyze the scaling of the block
entropy of entanglement in Sec. III C 1, which supports the
computation of the GGM in Secs. III C 2 and III C 3 using
long-range interactions in systems comprising an arbitrary
number of modes. Section IV explores the impact of disorder

FIG. 1. Circular waveguide setup for the generation of gen-
uine multimode entanglement between eight optical modes. The
dark circle represents the mode in which the squeezed state
|ψs〉 is given as input, whereas the light circles denote the vac-
uum |0〉 modes. The dark green curved lines correspond to the
nearest-neighbor (NN) coupling. Long-range couplings are shown
as follows: next-nearest-neighbor (NNN) with light yellow straight
lines and next-to-next-nearest-neighbor (NNNN) coupling as very
light dashed blue lines. For a waveguide with a large number of
modes, higher levels of long-range coupling have to be incorporated.
The coupling strengths of the NN and long-range couplings, in gen-
eral, can be different.

present in the coupling strength on multimode entanglement.
Finally, we conclude in Sec. V.

II. DESIGN OF THE WAVEGUIDE SETUP

Let us first introduce the model which describes the evo-
lution of the product input state to a genuinely multimode
entangled state. The system comprises N identical waveguides
arranged in a circular configuration and coupled to each other,
with varying coupling strength (for a schematic description
of the system, see Fig. 1 for N = 8). The Hamiltonian that
governs the couplings of the N modes within the system is
represented by

Ĥ =
[ N

2 ]−1∑
i=1

h̄J ′
i

N∑
j=1

(â†
j â j+i + H.c.)

+ 1

1 + 1
2 (1 + (−1)N )

h̄J ′
[ N

2 ]

N∑
j=1

(â†
j â j+[ N

2 ] + H.c.), (1)

where an increasing i indicates an increasing range of cou-
plings. Here N + j ≡ j(mod N ), â j and â†

j are the respective
bosonic annihilation and creation operators for the jth mode,
H.c. stands for the Hermitian conjugate, J ′

i denotes the
coupling strength or coupling constants between waveguide
modes with J ′

1 = J ′ and J ′
i = niJ ′ for i � 2, and we consider

h̄ = 1. Thus J ′ represents the strength of the nearest-neighbor
(NN) coupling. The long-range coupling is introduced by
making ni > 0 for i � 2. We must note that ni �= 0, if and
only if n j �= 0 ∀ j < i, with the condition 0 < ni � 2 [85]. The
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second term in Eq. (1) takes care of the longest range of
couplings between modes.

The Hamiltonian under consideration leads to the genera-
tion of genuine multimode entanglement in any experimental
setup capable of simulating the proposed evolution, even with
the help of bulk optical elements. In our study, we utilize
evanescently coupled waveguides that are fabricated using the
femtosecond laser direct-writing method, as demonstrated in
Ref. [66]. It should be noted, however, that with an increase
in the number of modes, implementation of the protocol
through bulk optical elements would increase the scope of
decoherence. On the other hand, waveguide setups provide de-
coherence resistance and interferometric stability [30,47] even
for arbitrary sizes and thus also provide scalability. Further-
more, higher-order couplings have already been engineered
in such setups [85], thereby making them suitable candidates
for the efficient realization of the proposed scheme involving
long-range interactions for entanglement generation.

Note 1. The time evolution operator corresponding to the
Hamiltonian in Eq. (1) is given by exp(−iĤt ). Therefore,
upon evolution, the final state of the waveguide system con-
tains terms of the form J ′t . We relabel such parameters as J ,
representing the coupling strength or the coupling parameter
and the range of the couplings is tuned with ni. Thus, the
variation with respect to J also represents the variation in time.
Moreover, note that t = zμ/c, where μ is the refractive index
for the waveguide mode, which relates the time duration t to
the propagation distance z.

In order to create a genuine multimode entangled state
from a fully product state, we study the dynamics induced
by the aforementioned couplings to identify the optimal con-
figuration of the waveguide system. In particular, one of the
modes, say, the first mode, is chosen to be a single-mode
squeezed state, |ψs〉 = exp[ 1

2 (ξ ∗â2
j − ξ â†2

j )] |0〉 with j being
the input site, the squeezing parameter is ξ = seiθ , where s is
the squeezing strength and θ represents the squeezing angle.
The rest of the modes are in the vacuum state, |0〉, i.e., the
N-mode initial state takes the form as

|ψ〉in = |ψs〉 ⊗ |0〉⊗N−1. (2)

The covariance matrix corresponding to the above initial state
has the form

�i = 1

2

[(
cosh 2s + cos θ sinh 2s sin θ sinh 2s

sin θ sinh 2s cosh 2s − cos θ sinh 2s

)

⊕ I⊕N−1

]
, (3)

where I = diag(1, 1) is the 2 × 2 identity matrix. Note that
due to the periodicity present in the model, the position of the
mode in which the input squeezed state is taken cannot alter
the multimode entanglement content of the final state.

The symplectic formalism is used to analyze the evolution
of the Gaussian input state and to characterize its entangle-
ment (see Appendix A for details of the analytical formalism).
The covariance matrix corresponding to the initial state of the
system is denoted as �in. The final state of the system, upon
evolution, is characterized by � f = SH�inST

H , where SH is the
symplectic transformation of the waveguide Hamiltonian, as

defined in Appendix A, for which the generalized geometric
measure is computed (see Appendix B for the computation
of GGM for a pure CV Gaussian state). In Appendix C, we
present the simplest model involving a state with three modes
propagating through circularly coupled waveguide modes that
have only the nearest-neighbor coupling. It is important to
emphasize here that such treatment provides the possibility to
address this problem involving an arbitrary number of modes.

Remark 1. Instead of the squeezed state, if one considers
a coherent state as the input, such a generation of multimode
entanglement is not possible. This can be explained by con-
sidering the covariance matrix of the coherent state, which is
nothing but 1

2I. Thus, in this scenario, the input covariance
matrix reduces to �i = 1

2I
⊕N and the final state of the system

is denoted by a covariance matrix proportional to the identity
matrix. Thus, starting from a product state, we again end
up with a product state after evolution and the entanglement
generation cannot occur.

Remark 2. With a squeezed coherent state as input in one
of the modes (and vacuum in the rest) of Eq. (2), the entan-
glement generated among the N modes is the same as that
obtained via an input squeezed state.

III. ADVANTAGE OF LONG-RANGE COUPLING
IN ENTANGLEMENT CREATION

In typical waveguide systems studied in the literature, only
the NN couplings are considered, while higher-order cou-
plings lead to bosonic Hamiltonians with LR couplings as
in Eq. (1) which will be the main focus of this work. The
motivation behind such consideration is the fact that in sev-
eral physical systems, especially quantum spin models, LR
couplings have been shown to typically create highly multi-
mode entangled states, which serve as resources for quantum
information processing tasks.

Before going into the results concerning circular waveg-
uides with an arbitrary number of modes, let us first
investigate the situation involving a small number of modes.
Such analysis can also illustrate the benefit of LR couplings
for producing genuine multimode entanglement (quantified
by the generalized geometric measure), with the addition of
higher-order couplings one by one.

A. Circular waveguide with four modes

Let us consider a four-mode circular arrangement of
waveguides, where, in addition to the NN coupling, the next-
nearest-neighbor (NNN) coupling is also introduced. Before
considering the situation with both NN and NNN couplings,
let us first concentrate on the dynamics of multimode entan-
glement in the model with only NN coupling.

1. Waveguide with nearest-neighbor couplings

Let us consider the Hamiltonian for the four-mode waveg-
uide system given in Eq. (1) with N = 4 by setting ni = 0
(for i � 2) which simulates only the NN couplings. By tak-
ing the initial state of the system as |ψs〉

⊗ |0〉⊗3 whose
corresponding covariance matrix is given by Eq. (3), GGM
is determined by finding the symplectic eigenvalues of the
reduced covariance matrices (i) single mode: �i

f with i =
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FIG. 2. Generation of genuine multimode entanglement in a four-mode circularly coupled waveguide setup. (a). Variation of GGM, G int
4

(ordinate) against the coupling strength J (abscissa) for nearest-neighbor NN (dashed line) and next-nearest-neighbor NNN (solid lines)
coupling with n = 1, i.e., NNN coupling strength is the same as that of the NN coupling. The squeezing strength of the initial state is taken to
be s = 0.5 [dark (blue)] and s = 1.0 [light (orange)]. (b). GNNN

4 (ordinate) is plotted against the ratio of the NNN and NN coupling strengths,
n (abscissa). Here the increase of J (J = 0.5, J = 1.0, J = 2.0, and J = 4.0) is represented from dark to light lines. The initial squeezing
strength is set to s = 1.0. The vertical line at n = 1 indicates that all the curves corresponding to a different value of J attains their common
maximum at that point. All the axes are dimensionless.

1, . . . , 4 and (ii) two-mode �
1 j
f with 2 � j � 4. It is observed

that for each such reduced covariance matrix, there is only
one symplectic eigenvalue which is not equal to 1/2. We
represent such symplectic eigenvalues of the bipartitions as
v = {νi, . . . , ν1 j, . . . , }. Therefore, GGM reduces to

G int
4 = GNN

4 = 1 − max
v

[
2

1 + 2νk

]
, (4)

where the superscript “int” represents the maximum LR cou-
pling considered, while the subscript is for the total number of
modes, and k runs over the elements of the set v.

Notice first that the above formalism holds for any number
of modes and range of couplings (e.g., NN, NNN, etc.) as we
will show in the succeeding section.

In the four-mode scenario, we find that the GGM is
not affected by the squeezing angle, θ . Additionally, as the
squeezing strength increases, so does GGM, and it is periodic
with respect to J , with the period being π

2 [see Fig. 2(a)].
In this scenario, it is important to note that the νk values are
dependent on both J and s.

2. Model with next-nearest-neighbor couplings

The Hamiltonian for simulating both the NN and the NNN
couplings in a four-waveguide system can be obtained from
Eq. (1) by setting N = 4, J1 = J , and J2 = n2J1 = nJ . The
method for calculating GGM is similar to that for the nearest-
neighbor case and it is dependent on s, J , and n. The strength
of the next nearest-neighbor coupling can be greater than
(n > 1), equal to (n = 1), or less than (n < 1) that of the NN
coupling. Let us now analyze the behavior of the genuine
multimode entanglement with time and compare it with the
scenario involving only NN couplings. To study it, we com-
pute GNNN

4 . The juxtaposition of GNN
4 and GNNN

4 reveals the
following facts.

(1) Like with NN couplings, GNNN
4 increases with s and is

π
2 periodic with J .

(2) On the other hand, with nonvanishing n, we find that
GNNN

4 � GNN
4 for a fixed value of J , although they coincide at

the point where both of them reach their maximum as well as
when they both are minimum.

(3) Our analytical results reveal that all the symplectic
eigenvalues of the reduced subsystems are sine and cosine
functions of the Hamiltonian parameters, thereby leading to
the oscillatory nature of GGM with respect to n and J . More-
over, in terms of n, the next-nearest-neighbor coupling reads
J2 = nJ . For a fixed value of J , the NNN coupling parameter
is a function of n which furthermore enters into the evolution
operator exp(−iĤt ) = f (J, n). Therefore, the periodic behav-
ior of GGM with n is also due to the unitary evolution, similar
to the oscillatory nature of G with J . Figure 2(b) shows that
GGM varies periodically with n as well.

(4) Studying the variation of GGM (at a fixed J, N ,
and s) with n helps to demonstrate the fact that the opti-
mum generation of genuine multimode entanglement occurs
when nearest-neighbor and long-range couplings have equal
strength, i.e., n = 1, regardless of the coupling parameter J .
Notably, from Fig. 2(b), we can observe that the curves exhibit
periodic behavior with the variation of n for certain values of
J . By using Fig. 2(b), we want to emphasize that regardless of
the chosen value of J , GGM consistently reaches its maximum
at n = 1 although different values of J show different trends
in GGM. As a consequence, it is concluded that all-to-all
interactions with equal strength furnish the best possible pro-
duction of genuine multimode entanglement. In other words,
the enhancement of genuine multimode entanglement through
LR over NN coupling is more pronounced when all the modes
interact with each other equally.

Note 2. Five-mode circular waveguide system. The GGM
for the five-mode waveguide exhibits qualitatively similar
properties to G int

4 . By taking the same kind of initial state, i.e.,
by choosing |ψs〉 ⊗ |0〉⊗4, which evolves according to Ĥ in
Eq. (1) with J1 = J2 = J , no periodicity in GGM with J is
observed for the nearest-neighbor case, while GNNN

5 exhibits a
period of 2π

5 . It is important to mention here that for N = 5,
we can only consider up to next-nearest-neighbor couplings
and also, we need to consider only the single-mode and two-
mode reduced subsystems to estimate G int

5 , similar to the case
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FIG. 3. Circularly coupled waveguide involving six-modes. The
genuine six-mode entanglement G int

6 (ordinate) against the coupling
strength J (abscissa) for s = 1.0 comprising NN coupling [(purple)
solid line], NNN coupling [(green) dotted line], and NNNN coupling
[(blue) dashed line] having equal coupling strength. All axes are
dimensionless.

for the four-mode system. Therefore, N = 4 and N = 5 offer
qualitatively similar insights. There, however, exists the sym-
metry n ⇐⇒ 1/n and J ⇐⇒ J/n (with the NN couplings
interchanged with the NNN couplings) which would highly
simplify the exact calculations for GGM, when N = 5.

B. Six-mode circular waveguide

We now proceed to carry out the investigation when the
waveguide arrangement comprises six modes, thereby in-
corporating a higher level of long-range coupling like the
next-to-next-nearest-neighbor (NNNN) coupling. It is inter-
esting to find out whether LR couplings are indeed responsible
for creating genuine multimode entanglement even in the
presence of weak coupling strengths. The Hamiltonian for
the evolution, in this case, can be realized according to
Eq. (1) with N = 6 and J1 = J , J2 = J1 = J and J3 = n3J1 =
nJ , where the same strength of coupling for NN and NNN
couplings is considered based on the observations for the
four-mode waveguides. Interestingly, the maximum GGM in
the NNNN coupling case is again obtained when the coupling
strength is equal to that of the short-range couplings, NN, and
NNN. Again GGM oscillates with J , irrespective of short-
and long-range couplings, although, unlike the four-mode
scenario, the pattern of GGM changes with the introduction
of LR couplings. In particular, GGM vanishes with NNNN
and NNN couplings when J is a multiple of 2π

6 , which is not
the case for NN couplings and the maximal value of GGM is
obtained more frequently with respect to J in the presence
of both LR couplings as compared to that of the NN cou-
pling. Akin to the four- and five-mode waveguide scenarios,
GNNNN

6 � GNNN
6 � GNN

6 (see Fig. 3), although the maximum
value of GGM cannot be increased by the LR couplings for a
fixed J value.

We observe that LR couplings with low coupling strength
can indeed create more GGM than in the NN case, as is
illustrated in Fig. 3 for 0 � J � 1.

The results of circular waveguide setups with four-, five-,
and six-modes strongly indicate that incorporating long-range
couplings is beneficial and that the same coupling strength

for all kinds of coupling provides the best genuine multimode
entanglement.

The constructive impact of long-range interactions is also
evident from Figs. 2(a) and 3, from which it is clear that
the area under GGM curve corresponding to LR couplings
is higher than that in the presence of only NN coupling. This
indicates that long-range interactions can help to create higher
content of genuine multimode entanglement on average, over
a given period of time, compared to the Hamiltonian with NN
coupling.

C. GME produced with N-mode circular waveguide

Motivated by the results obtained in the previous sub-
sections, we compute the production of genuine multimode
entanglement in arbitrary modes, say, N-modes arranged in
a circle. The Hamiltonian for the same pertains to an N-
mode circularly coupled waveguide system, with its input
state being specified by |ψ〉12... N

in = |ψs〉 ⊗ |0〉⊗N−1. Since the
studies in the previous subsections display the preferable role
of equal short- and long-range coupling strengths, we take all
the modes to be interacting equally with each other.

1. Block entropy of entanglement

In order to gain some insight into the creation of genuine
multimode entanglement in systems comprising all-to-all LR
couplings, let us first study the behavior of the Renyi-2 en-
tanglement entropy of the reduced subsystems of an N-mode
state. Instead of quantifying the multimode entanglement ge-
ometrically, we compare the block entropy of entanglement
produced through dynamics with the nearest-neighbor cou-
pling as well as with the long-range couplings. In particular,
we look into the scaling of the entropy [86] for the reduced
density matrices of the final state, |ψ〉12...N

f , with respect to the
number of subsystems comprising the reduced state. Note that
we need to consider [N/2] number of reduced density matrices
for an N-mode system which are ρ2, ρ23,..., ρ23...[N/2] where
ρ23...i = tr1,i+1,...,N |ψ〉12...N

f 〈ψ |12...N
f .

For a fixed system size, we compute the Renyi-2 block
entropy defined as [87,88]

S(ρL ) = − ln
[
Tr

(
ρ2

L

)]
, (5)

by varying the block size L, where ρL = TrL̄|ψ〉12...N
f 〈ψ |12...N

f ,
with L̄ being the rest of the modes which are not included
in the block, L. In the covariance matrix formalism, it can
be simplified to S(ρ) = 1

2 ln(22L det �L ) where det �L is the
determinant of the covariance matrix corresponding to an L-
mode state ρ23...L [89].

Block entropy in NN model versus LR model. In the case
of NN coupling [see Fig. 4(a)], it can be observed that S(ρL )
increases with L for a while, and then saturates with L which
increases with J . Since we are dealing with a one-dimensional
system, this indicates that the area law, i.e., constant entangle-
ment with L, is obeyed at high block sizes. Moreover, when
J � 1, the block entanglement entropy saturates to different
values, which again increases with J while the saturation
value of S(ρL ) is the same for all coupling strengths with
J > 1. On the other hand, for long-range couplings with all
coupling strengths being equal, as depicted in Fig. 4(b), S(ρL )
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FIG. 4. Block entanglement entropy, S(ρL ) versus the reduced
system size, L, when the initial squeezing strength is fixed to s = 1.0.
(a) The coupling is considered to be nearest-neighbor (NN) while in
(b) couplings among all the modes are long-range. Here N = 40, i.e.,
40 circularly waveguide modes are coupled. From dark to light, the
lines represent J = 0.1, J = 0.5, J = 1.0, J = 10.0, J = 15.0, and
J = 20.0, respectively. All axes are dimensionless.

always increases monotonically with L, thereby indicating
the violation of the area law in this system and its behavior
does not follow any order with respect to J , contrary to the
NN-coupling regime. The violation of the area law introduces
a non-flat structure of the block entanglement entropy at large
L.

Remark. In Fig. 4, we investigate the behavior of entan-
glement entropy S(ρL ) for varying partition sizes L up to the
system size N/2. We restrict our analysis to L � N/2 due to
the circular arrangement of waveguides, and a similar behav-
ior emerges for L � N/2. Furthermore, the nonmonotone in
the slope with respect to J arises from the interplay between
the nearest-neighbor coupling and the long-range couplings.
Note that here we are not concerned with the physical signif-
icance of the system following the area law. We aim to point
out the difference in dynamics between the nearest-neighbor
and long-range couplings and to gauge the subsystem which
primarily contributes to the GGM, which we shall do now.

Shedding light on the computation of GGM via block
entropy. We recall that 22L det �L = 1 for a pure Gaussian
state while it is greater than unity for a Gaussian mixed state.

Thus, in the case of LR couplings, the increase in S(ρL ) indi-
cates that the reduced subsystems involving a larger number
of modes tend towards more mixed states. It has also been
established that the symplectic eigenvalues of pure Gaussian
states are all equal to 1/2 while they are greater for mixed
states [89]. Since the reduced subsystems of larger length have
less purity, the symplectic eigenvalues of the single-mode
reduced state contribute to GGM (since we take the maximum
of 2

1+2ν
) as shown in Sec. III C, thereby shedding light on the

computation of GGM.
It is worth noting that the interaction strengths, Js, exhibit

an increasing trend starting from a block of size L = 1, which
corresponds to the contribution from the 2 :rest bipartition
although the calculation of block entropy does not adhere
to any specific order in the case of all-to-all interaction.
Consequently, the subsequent eigenvalues derived from this
bipartition are responsible for GGM. In the case of discrete
systems, such studies have been performed [90,91], and we
provide a similar analysis for CV systems. This is significant
when the number of modes is large since, without the knowl-
edge of the contributing bipartition, analytical calculations
would involve finding the eigenvalues of a large number of
reduced density matrices, namely, [

(N
1

) + (N
2

) + · · · + ( N
[N/2]

)
].

Furthermore, with the increase in the dimension of the re-
duced systems, it becomes analytically intractable to estimate
their eigenvalues. The proof that the contribution to the gen-
uine multimode entanglement comes from the single-mode
reduced state thus helps in calculating the exact GGM pro-
duced in a system containing an arbitrary number of modes.

2. Exact analysis of GGM in N-mode waveguide system

Let us now derive the exact expression for GGM in this
situation. Since the definition of GGM involves the Schmidt
coefficients in an arbitrary number of bipartitions, the com-
putation of GGM is hard for systems involving an arbitrary
number of modes, unless some symmetry present in the sys-
tem is identified. Previous configurations with four-, five-, and
six-modes indicate that there is a symmetry under permutation
of the modes in the evolved state, |ψ〉12... N

f , due to the circular
configuration. As a consequence of this symmetry, there is
only an (N − 1) number of different bipartitions that require
to be considered. For an even number of modes i.e., N = 2m,
the contributing bipartitions, pertaining to a given number of
submodes, can be divided into two sets - one set which in-
volves the mode in which the squeezed input state is taken and
another set that does not include the mode with the squeezed
input state. Without loss of generality, if we start with a state
in which the input state is plugged in the first mode, the
bipartitions among the modes under study are 1 : rest, 2 : rest,
12 : rest, 23 : rest, · · · , 12 . . . [N/2] − 1 : rest, 23 . . . [N/2] :
rest and 12 . . . [N/2] : rest, while if N = 2m + 1, we must
consider 23 . . . [N/2] + 1 : rest, as an additional bipartition
(here “rest′′ in i : rest denotes all the modes except i). We
observe that the smallest symplectic eigenvalue in 2 : rest
bipartition ultimately leads to GGM, given by

ν =
√

1
4 f1(N ) − 2 sinh2 s[ f2(N ) cos (JN ) + cos (2JN )] + f3(N ) cosh 2s

N2
, (6)
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where f1(N ) = (N4 − 4N2 + 12), f2(N ) = (N2 − 4), and
f3(N ) = (N2 − 3). The expression of GGM then takes the
form as

GLR
N = 1 − 2

2ν + 1
, for N � 4. (7)

It can be observed that the contributing eigenvalue ν and
thus GGM is a function of cos(JN ) and cos(2JN ). Therefore,
a period in J equaling 2π

N causes the eigenvalue and hence
GGM to repeat its magnitude. Based on this observation, it
becomes evident that GGM possesses a period of 2π

N for N
number of modes.

Note 3. The problem of calculating GGM for an arbitrary
number of modes is exactly solvable when we consider all-
to-all interactions with equal interaction strength. In such a
scenario, the Hamiltonian matrix becomes highly symmetric,
Hp,q = J (1 − δp,q) (where δ represents the Kronecker delta
function), with vanishing diagonal entries and all off-diagonal
entries being equal to J , thereby simplifying the analytical
solution. To derive Eq. (6), we apply the all-to-all interaction
assumption to mode number N ranging from 4 to 10 and ob-
serve a recursion relation for the eigenvalue corresponding to
the 2 : rest bipartition which contributes to GGM throughout
the entire time evolution. In the computation of GGM, the
symplectic eigenvalues of the 2 : rest bipartition only mat-
ter which can be justified through numerical simulations. To
ensure the validity of the recursion relation, we verify its
applicability for N = 11, . . . , 15 modes and subsequently ex-
tend it to arbitrary N modes.

Remark. While it is possible to solve the problem ana-
lytically for a general n and N = 3, . . . , 6, it becomes more
challenging when n �= 1 and for large N. As argued previously
with n = 1, the Hamiltonian becomes highly symmetric, and
hence the GGM can be studied analytically with certain as-
sumption of bipartition. The Hamiltonian for n �= 1 loses
the particular symmetry that has been employed to calculate
GGM. Moreover, for such values of n, the bipartition that con-
tributes to GGM varies for different numbers of total modes,
as suggested by our numerical simulations. This additional
complexity makes it more difficult to obtain solutions when
the eigenvalues of the relevant bipartitions cannot be obtained
analytically as the system size increases. Consequently, the
still symmetric nature of the Hamiltonian does not necessarily
facilitate a straightforward analytical solution when consider-
ing generic values of the parameter n.

3. Effect of increasing modal number N on GGM

We established that an interacting Hamiltonian with long-
range couplings can allow the creation of genuine multimode
entanglement between an arbitrary number of modes. The
magnitude of the correlations created, however, depends on
the squeezing strength s of the input state. Arbitrarily high
squeezing cannot be created experimentally, and thus it is
interesting to study the variation of GGM against the mode
number N . For this purpose, we define the average of GLR

N
over a single period of the coupling parameter as 〈GLR

N 〉2π/N =
N
2π

∫ 2π

0 GLR
N dJ to make it independent of J . This quantity also

gives an insight into how much GGM can be created, on av-
erage, over a period J = 2π

N . Figure 5 illustrates the variation

FIG. 5. 〈GLR
N 〉 2π

N
(ordinate) against the number of modes N (ab-

scissa), when long-range coupling among all the modes with equal
coupling strength is applied. The integration is performed a period
of 2π

N Here s = 1.0, the squeezing parameter of the initial state,
|ψs〉 ⊗ |0〉⊗N−1. Both axes are dimensionless.

of the average GGM against the total number of modes N .
We observe that with an increase in N , the GGM created falls
monotonically. The distribution of multimode entanglement
among a larger number of modes results in a reduction in the
overall content of multimode entanglement. Hence, it can be
noted that this decrease in multimode entanglement is due to
a finite amount of GME (multimode entanglement) that can
be shared among an expanding number of modes, leading to
its diminishing nature. Note, however, that for a large number
of involved modes, it can be made to increase by increasing
the squeezing strength s of the input state although the exper-
imental application of very high s values is challenging.

IV. CREATION OF CONSTANT GGM IN WAVEGUIDES
WITH DISORDER

Due to the periodic nature of multimode entanglement as
described in the preceding section, the method can be argued
to have a limitation. In particular, since it collapses and revives
with the variation of the coupling strength J , we may end up
with almost vanishing entanglement among the modes for cer-
tain values of J . Note that, since J contains an implicit factor
of time (t), this implies that the genuine multimode entan-
glement oscillates with time, thereby creating entanglement
that can be used only at certain instants. A natural question at
this point is how one can circumvent this feature. We indeed
show that a stable (oscillation-free) multimode entangled state
can be produced when the system has some imperfections.
Given the experimental challenges in implementing couplings
of a fixed strength, it is quite natural to consider that J does
not remain constant but oscillates around the desired value.
Typically, the disorder in system parameters is responsible
for the detrimental effect on the system properties, although
there are certain instances in which imperfections can enhance
physical characteristics [92–99] like magnetization and entan-
glement in the modes [98,100,101]. We will illustrate here
other aspects of the disordered model.

To simulate such behavior, we consider a disordered
model, in which J comes from a Gaussian distribution of
mean Jm and standard deviation σ . Here, Jm is the desired
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FIG. 6. Quenched averaged genuine multimode entanglement in circular waveguides coupled with disordered coupling strength. (a) The
variation of the four-mode quenched GGM, 〈GLR

4 〉G, (ordinate) with respect to the mean coupling strength Jm (ordinate). Dark to light lines
represents σ = 0.0, 0.3, 0.5, and 1.0 respectively. (b) The breached GGM, �2G, given in Eq. (8) (ordinate) with the number of modes, N
(abscissa). Again, dark to light lines represents σ = 0.0, 0.3, 0.5, and 1.0 respectively. All axes are dimensionless.

coupling strength to be tuned, and a higher σ indicates a
larger oscillation around the value Jm, thereby measuring the
strength of the disorder. We assume that the timescale taken by
the disordered coupling strength to attain its equilibrium value
is much larger than the implementation time, which allows
us to define the quenched average GGM over the Gaussian
distribution as〈

GLR
N

〉
G = 1√

2πσ

∫ +∞

−∞
GLR

N exp

(
− (J − Jm)2

2σ 2

)
dJ.

It is observed that 〈GLR
N 〉G oscillates with respect to Jm with

the same period 2π/N , albeit the amplitude of the oscilla-
tions decreases with increasing σ , as shown for a four-mode
disordered waveguide setup in Fig. 6(a). The presence of dis-
order in J thus indeed leads to a smoother behavior in GGM.
When the standard deviation σ of the disorder covers at least
one period of oscillation in J , GGM becomes more or less
independent of Jm. This is because GGM in the presence of
equal all-to-all coupling is periodic and has a nonzero average
value. Thus its quenched average value over an entire period
is constant and independent of Jm. It is important to note that
this independence is only achieved beyond a certain threshold
value of σ ∼ 1/N . Thus, for large values of N and small disor-
der, the relation σ ∼ 1/N is sufficient to completely eliminate
the dependence on Jm. Therefore, our findings manifest that
although 〈GLR

N 〉G decreases in comparison to the maximum
GGM achieved in the ordered model, a constant GGM with
lower oscillations can only be obtained when the evolution
occurs according to the disordered model.

Quantification of disorder-rendered GGM stability

The decreasing oscillations in the quenched average GGM
can be quantified by the standard deviation of 〈GLR

N 〉G, which
is defined as

�2G = 〈〈
GLR

N

〉2
G

〉
2π/N − 〈〈

GLR
N

〉
G

〉2
2π/N , (8)

where the average is taken with respect to Jm over a full cycle.
We call this quantity as the breached GGM, whose low value
implies the generation of stable quenched genuine multimode
entanglement. We find that this is indeed the case, i.e., the
presence of disorder reduces the oscillations in the quenched
average accumulated GGM. Moreover, �2G decreases with

the increase of N , as illustrated in Fig. 6(b). Our studies
demonstrate that the oscillations in the quenched average
GGM disappear with the increase of the disorder strength and
the number of modes, although the increase of the system
size has a destructive effect on the creation of GGM like the
ordered system.

V. CONCLUSION

Entangled continuous variable (CV) systems are of funda-
mental importance in realizing a host of quantum information
protocols. Additionally, it has been demonstrated that entan-
gled CV systems provide a key route for resolving issues
with other photonic devices, such as challenges with Bell-state
measurements. Therefore, designing a scheme to generate
multimode-entangled states is of paramount interest.

We demonstrated that multiple circularly coupled inter-
acting optical waveguide modes have the potential to create
highly genuine multimode-entangled states. Specifically, the
interacting circular waveguide can create a genuinely mul-
timode entangled (GME) state, the entanglement being
measured by using generalized geometric measure (GGM),
from a squeezed or squeezed coherent state in a single mode
that is product with vacuum states in the other modes. We
point out that we considered an experimentally feasible con-
figuration for our study. The waveguide arrays proposed in
this work can be fabricated using direct femtosecond laser in-
scription. Waveguide configurations are appropriate because,
unlike bulk optical elements, the propagation losses in these
systems can be quite low. Additionally, the parametric down-
conversion process can be used to generate the squeezed state
that we considered as the input.

We analyzed the impact of different ranges of coupling on
the generation of a GME state from the product initial state.
We illustrated how the incorporation of long-range couplings
constructively affects the process. Specifically, long-range
couplings help in generating higher genuine multimode entan-
glement for a fixed strength of coupling constant, compared
to the circular waveguide setup with only nearest-neighbor
coupling, even though the maximum value of GGM remains
constant for both long-range and nearest-neighbor couplings.
When the order of the long-range coupling is such that all
the modes interact equally with each other, we analytically
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found the GGM, which varies periodically with the coupling
strength. We noticed that GGM content can be increased with
an increase in the squeezing strength in the input modes.
The benefit of LR couplings can be argued through the area
under the GGM curve, which clearly shows a higher value for
LR couplings, than that for waveguide modes coupled with
short-range couplings. We noted, however, that the genuine
multimode entanglement generated decreases with an increase
in the number of interacting modes, thereby indicating a
complementary relation between system size and range of
couplings.

One of the drawbacks of generating multimode entangle-
ment via such a setup is that its magnitude oscillates with time
and thus is unsuitable for utilization in protocols that require
states with a certain value of entanglement. To circumvent
this unwanted characteristic, we showed that the presence of
disorder in the coupling between the modes of the waveguides
can be useful. Starting from a product state, when the system
evolves according to the circular waveguide Hamiltonian in
which mode-couplings are chosen randomly from a Gaussian
distribution of a fixed mean and standard deviation, with a
higher standard deviation representing greater disorder in the
setup, we calculated the quenched average GGM. Our results
indicated that for a sufficient strength of disorder, the mul-
timode entanglement ceases to oscillate and saturates to a
fixed quenched average value. Although the quenched average
GGM can never reach the maximum possible value, which can
be achieved in the absence of disorder, its constant magnitude
can help in its utilization in information processing tasks. In
summary, our results of the disordered model used in the evo-
lution operator are an addition to the generic physical systems,
and possibly the first in photonic waveguides, which report the
beneficial effect of disorder for generating genuine multimode
entanglement.

Apart from the generation of genuine multimode entan-
glement, we showed that such a process is able to create
entanglement in each bipartition. For nearest-neighbor cou-
pling, the block entropy increases with the increase of the
block length for a while and then saturates, while in the case
of long-range coupling, it keeps increasing. The observation
is also in good agreement with the way GGM expression is
obtained in the presence of long-range coupling.

Looking at the possibility of realizing waveguide setups
in laboratories, our method opens up the possibility of build-
ing quantum devices that require multimode entanglement.
Although we concentrated on photonic waveguides, our find-
ings also apply to the coupled-cavity arrays and microring
resonator devices [102].
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APPENDIX A: PRIMER ON CV SYSTEMS

A continuous variable system is characterized by quadra-
ture variables, such as X̂ and P̂, which are canonically
conjugate with each other [1,21]. Such observables possess
an infinite spectrum and their eigenstates constitute the basis
for the infinite-dimensional Hilbert space. For an N-mode
system, the Hamiltonian comprises 2N parameters, {X̂k, P̂k}
(with k = 1, 2, . . . , N), and is defined as

Ĥ = 1

2

N∑
k=1

(
X̂ 2

k + P̂2
k

) =
N∑

k=1

(
â†

k âk + 1

2

)
, (A1)

where â†
k and âk are the creation and annihilation operators,

respectively, for the mode k and are given in terms of the
quadrature variables as

âk = X̂k + iP̂k√
2

, and â†
k = X̂k − iP̂k√

2
, (A2)

with i = √−1. The creation and annihilation operators corre-
sponding to a given mode satisfy the bosonic commutation
relation, [â†

k, âk] = −1. We can define a quadrature vector,
R̂ = (X̂1, P̂1, . . . , X̂N , P̂N )T , to rewrite the commutation rela-
tion more succinctly as

[R̂k, R̂l ] = iMkl with M =
N⊕
j=1

� j . (A3)

Here, M represents the N -mode symplectic form, and � j , for
a single mode, is given by

� j =
(

0 1
−1 0

)
∀ j. (A4)

Out of the plethora of CV quantum states, Gaussian states con-
stitute the most widely studied class of states [103,104]. Such
states are the ground and thermal states of Hamiltonians which
are at most quadratic functions of the quadrature variables. As
the name suggests, Gaussian states can be completely char-
acterized by their first and second moments, encapsulated,
respectively, by the displacement vector d and the covariance
matrix �, in the following way:

dk = 〈R̂k〉ρ, (A5)

�kl = 1
2 〈R̂kR̂l + R̂l R̂k〉ρ − 〈R̂k〉ρ〈R̂l〉ρ. (A6)

Here, ρ denotes the N-mode Gaussian state under consid-
eration and � is a real, symmetric, and positive definite
2N-dimensional square matrix. Gaussian dynamics are sim-
ilarly affected by second-order Hamiltonians. For analytical
simplicity, we can resort to the symplectic formalism. Given
any N-mode quadratic Hamiltonian Ĥ which can be writ-
ten as Ĥ = 1

2 ξ̂ †H ξ̂ with ξ̂ = (â1, â2, . . . , âN , â†
1, . . . , â†

N )T ,
we can construct its corresponding symplectic matrix SH

as [89,105,106]

SH = T †L† exp −iKHLT, (A7)

where K, L, and T are 2N × 2N matrices given by

K =
(
IN ON

ON −IN

)
, (A8)
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L = 1√
2

(
IN iIN

IN −iIN

)
, (A9)

Tjk = δk,2 j−1 + δk+2N,2 j . (A10)

Here, IN is the N-dimensional identity and ON is the null
matrix. Thereafter, the evolution of the Gaussian state in terms
of its displacement vector and covariance matrix is defined
as [89]

ρ ′ = e−iĤtρeiĤt ≡ d′ = SH d, (A11)

�′ = SH�ST
H . (A12)

APPENDIX B: GENUINE MULTIMODE ENTANGLEMENT
FOR CV SYSTEMS

In the discrete variable regime, a pure multipartite state
|ψ〉1,2,...,N is said to be genuinely entangled if it has a
nonvanishing value of the generalized geometric measure
(GGM) [76,77] defined as follows:

G(|ψ〉1,2,...,N ) = 1 − max
|φ〉∈S

|〈φ|ψ〉1,2,...,N |2, (B1)

where |φ〉 is an N-party pure state which is not genuinely
entangled, and the Fubini study metric is used as the distance
measure [107,108]. A simpler canonical form of GGM was
derived [79] which reads as

G(|ψ〉1,2,...,N ) = 1 − max[λA:B|A ∪ B = {1, . . . , N},
A ∩ B = ∅], (B2)

where λA:B is the maximum eigenvalue of the reduced density
matrix in the A : B split of the state |ψ〉1,2,...,N . The maximiza-
tion is performed over all such possible bipartitions.

In the case of pure CV Gaussian systems, the genuine
multimode entanglement is quantified using a similar mea-
sure [82], defined as

G(|ψ〉1,2,...,N ) = 1 − maxPm

[
m∏

i=1

2

1 + 2νi

][N/2]

m=1

, (B3)

where Pm represents all the m-mode reduced states corre-
sponding to the N-mode pure state |ψ〉1,2,...,N and νi stand for
the symplectic eigenvalues of the mth reduced state. The num-
ber of such bipartitions considered is [N/2] with [x] denoting
the integer part of x.

APPENDIX C: GGM FOR THE THREE-MODE
WAVEGUIDE

The simplest Hamiltonian corresponding to Eq. (1) is for
the three-mode circular waveguide consisting of only nearest-
neighbor (NN) coupling

Ĥ = h̄J (â†
1â2 + â†

2â3 + â†
3â1 + H.c.), (C1)

where we considered the coupling strength as J1 = J and h̄ =
1. The symplectic eigenvalues corresponding to the evolved
three-mode input state, |ψ〉in = |ψs〉 ⊗ |0〉⊗2 are given by

v1 =
∣∣∣∣ 1

18
i
√

16 sinh2 s(cos 3J + 2 cos 6J ) − 24 cosh 2s − 57

∣∣∣∣, (C2)

and v2 = v3 =
∣∣∣∣ 1

18
i
√

8 sinh2 s(5 cos 3J + cos 6J ) − 24 cosh 2s − 57

∣∣∣∣, (C3)

where vi represents the symplectic eigenvalue of the single-
mode reduced states corresponding to the i : jk bipartition
(for j, k �= i and i, j, k = 1, 2, 3). The GGM, in this case,
exhibits periodic behavior with variation in J at a period

of 2π/3. As the initial squeezing strength of the input state
increases, so does GGM. For s = 1.0, Gmax

3 ≈ 0.2 at J ≈ 0.7.
In this setup, no long-range coupling is possible due to the
periodic nature of the waveguide Hamiltonian.
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