
PHYSICAL REVIEW A 109, 032409 (2024)

Twisty-puzzle-inspired approach to Clifford synthesis

Ning Bao1,2,* and Gavin S. Hartnett 3,†

1Northeastern University, Boston, Massachusetts 02115, USA
2Brookhaven National Laboratory, Upton, New York 11973, USA

3RAND Corporation, Santa Monica, California 90401, USA

(Received 21 November 2023; accepted 7 February 2024; published 11 March 2024)

The problem of decomposing an arbitrary Clifford element into a sequence of Clifford gates is known as
Clifford synthesis. Drawing inspiration from similarities between this and the famous Rubik’s cube twisty
puzzle, we develop a machine learning approach for Clifford synthesis based on learning an approximation
to the distance to the identity. This approach is probabilistic and computationally intensive. However, when
a decomposition is successfully found, it often involves fewer gates than the decomposition methods used in
the Qiskit decomposition protocol, which uses a combination of several well-known Clifford decomposition
schemes. Additionally, our approach is much more flexible than existing algorithms in that arbitrary gate sets,
device topologies, and gate fidelities may be incorporated, thus allowing for the approach to be tailored to a
specific device.

DOI: 10.1103/PhysRevA.109.032409

I. INTRODUCTION

The field of quantum computing has seen significant
progress over the past three decades. Algorithms for factoring
[1], quantum simulation [2], and solving linear systems [3]
hold great promise for the ability of quantum computers to
revolutionize mathematics and physics.

Many of these algorithms, however, require very large
numbers of qubits and quantum gates to outperform classical
computers with modern memories and processing speed. The
largest among the current generation of quantum computers
have a few hundred qubits, with typical two-qubit entangling
gate error rates around 1% [4,5]. Although these devices are
too small and noisy to execute the most powerful quantum
algorithms, when augmented with error mitigation and re-
silience methods, they have nevertheless been sufficient to
demonstrate quantum supremacy [6,7], the ability of quantum
computers on carefully chosen problem to outperform any ex-
istent (and hopefully any, full-stop) classical competitor, thus
providing experimental proof of principle of the short-term re-
turns for quantum algorithms. While the problems considered
for these quantum supremacy demonstrations were largely
selected for their computational complexity properties and not
for their importance to science or mathematics more broadly,
the point remains that genuine quantum advantage has been
demonstrated, and will eventually extend to problems of more
practical interest.

In this current noisy intermediate-scale quantum (NISQ)
era of quantum computing [8], quantum circuit compilation,
or the streamlining of quantum circuits down to their shortest
and most resource-efficient form, is of paramount importance.

*n.bao@northeastern.edu
†hartnett@rand.org

Consequently, relatively microscopic optimizations that im-
prove the actual performance of circuits executed on real
devices, but which are irrelevant in the complexity-theoretic,
big-O sense, are quite important for finding novel quantum al-
gorithms that can demonstrate near-term quantum advantage.

Human intuition for quantum circuit optimization, how-
ever, is quite poor at scaling as system sizes become larger and
more complex. It is therefore a natural question to ask whether
machine-learning techniques can do better in this regard.
While human designers may be constrained by classical pro-
gramming intuition or by lamppost effects overemphasizing
existing algorithmic approaches, it is possible that machines
will not share one or both of these particular limitations in the
context of quantum circuit design. Indeed, work in this area
already exists, in the work of [9] for reinforcement learning
(RL) approaches to quantum control [10], approaches to opti-
mization of single qubit gates, and [11] for unitary synthesis
using seed synthesis techniques.

In this work, we will focus on the specific problem of
Clifford circuit optimization, as opposed to that of a generic
quantum circuit. There has been much work done on this in
the past (see, for example, [12–15]), though this work has
not settled on optimal Clifford circuit implementations of a
given Clifford unitary for an arbitrary number of qubits n.
(However, optimal synthesis algorithms have been obtained
for n = 2, 3, 4, 5, 6 in, for example, [15].) We will seek to
find more efficient Clifford circuits for given Clifford unitaries
than those that the existing methods are able to generate.

In some sense, the Clifford problem is highly analogous
to solving a generalized Rubiks cube or Twisty puzzle there
are well-defined sets of operations (or moves), a clear notion
of success, and a finite group structure. Despite this, obvious
loss functions such as the number of matched faces on the
Rubik’s cube or the trace distance for Clifford unitaries do not
provide useful learning signals for machine-learning-based

2469-9926/2024/109(3)/032409(10) 032409-1 ©2024 American Physical Society

https://orcid.org/0000-0002-6814-1809
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.032409&domain=pdf&date_stamp=2024-03-11
https://doi.org/10.1103/PhysRevA.109.032409


NING BAO AND GAVIN S. HARTNETT PHYSICAL REVIEW A 109, 032409 (2024)

approaches. For example, in the course of solving the Rubik’s
problem, it is typical to make apparently destructive moves
that seem to undo previous progress in order to reach the
solution. In the context of the Rubik’s cube problem, recent
work has demonstrated how to use deep learning to develop
useful heuristics, or guidance functions, which can be used
to identify a sequence of steps that will solve the cube from
a general scrambled state [16–19]. We will adapt some of
these techniques for the Clifford synthesis problem. Ours is
not the first work on unitary synthesis to draw inspiration from
the analogy with the Rubik’s cube. Reference [14] developed
an exhaustive computational approach capable of finding op-
timal synthesis for Cliffords which scales to n = 6 qubits,
and [20] adapted the DeepCubeA approach for solving the
Rubik’s cube [19] for the problem of synthesizing topological
Fibonacci anyons.

Our approach will be twofold; first, we will introduce a
graph structure in which edges representing certain single
Clifford gates connect pairs of vertices representing Clifford
unitaries that are related by those gates (this graph is known as
the Cayley graph). We will simply argue that a Dijkstra search
[21] on this graph would be sufficient to find the optimal
Clifford implementation for each unitary, with appropriate
adjustment of the edge weights. The obvious limitation to this
approach, e.g., the size of the graph at hand, will also be dis-
cussed, with some comments on how it could be ameliorated.

The second approach will use a learned guidance func-
tion to find relatively short Clifford circuit implementations
of the given unitary. We find that when this approach suc-
ceeds at finding a decomposition, it often beats or matches
existing, nonoptimized heuristic approaches in terms of the
gate count (and thus, circuit depth). However, this approach
is probabilistic in nature and is not guaranteed to succeed,
and thus is best thought of as a way to occasionally improve
upon the decomposition furnished by existing approaches. We
have made a Python implementation of this second approach
publicly available [22].

Lastly, it should be noted that deterministic solutions exist
for synthesis or approximate synthesis of any quantum circuit,
in the manner of Solovay-Kitaev [23], Dawson-Nielson [24],
and Kliuchnikov [25]. There has also been recent work on uni-
tary gate synthesis of non-Clifford gates, as in [26]. Slightly
further afield, there is work relating complexity to geometry,
as in [27].

II. RUBIK’S CUBE

We begin with a brief review of the Rubik’s cube and its
group-theoretic structure, as used in [16–18]. The standard
Rubik’s cube is a 3 × 3 × 3 cube with six faces and 6 × 9 =
54 “facets.” Each facet is assigned one of six colors, with nine
facets of each color. By rotating the faces of the cube, the
positions of these facets may be changed, and the goal is to
apply moves to the cube so that each face consists of facets of
a single color.

It is convenient to adopt the convention that the orientation
of the cube is held fixed as the faces are rotated—for example,
that the center facet facing the user is always white. Within
this convention, the distinct cube configurations, or states, can
be enumerated by assigning each noncenter facet a number 1

through 48 and considering permutations of these numbers.
Importantly, not all permutations correspond to valid cube
states reachable from the solved state through allowed moves.
Each move may be associated with a particular permutation,
and the set of valid cube states consists of all possible com-
positions of these. There is thus a one-to-one correspondence
between the set of all valid cube states and the subgroup of
the symmetric group S48 (the group of all permutations of
48 elements) generated by the move set permutations. This
subgroup is termed the Rubik’s group and is denoted GRubik’s.
The solved cube is associated with the identity permutation e.
In this group-theoretic description, the problem of solving
the Rubik’s cube amounts to identifying a sequence of per-
mutation moves x1, x2, . . . , xK which compose to give the
inverse of current state x, i.e., x(x1x2, . . . , xK ) = e. Each of
the permutation moves must lie in the move set, the allowed
moves of the cube. The two commonly used move sets are the
half-turn metric, which allows rotations of a face by 90◦, 180◦,
or 270◦, and the quarter-turn metric, which allows rotations by
90◦ or 270◦ only.

The Rubik’s group is huge, containing 43 252
003 274 489 856 000 distinct elements. Despite this, it has
been proven that any two cube states may be connected
through a short sequence of moves. The “God’s number” �God

is defined as the maximum of the minimal number of moves
needed to connect any two states. The value of the God’s
number depends on the move set: it is 20 using the half-turn
metric and 26 using the quarter-turn metric [28,29].

From an algorithmic standpoint, it is useful to describe the
Rubik’s cube problem as a graph traversal problem, where
the graph in question is the Cayley graph. The nodes in this
graph correspond to the cube states (group elements), and two
nodes are connected by a directed edge if and only if there
is a move in the move set connecting them. The graph will
be undirected if the inverse of every move in the move set
is also in the move set (as is the case for both the half-turn
and quarter-turn metrics). Moreover, the graph is regular, with
the degree of each node given by the size of the move set.
The problem is then, given an arbitrary starting node, find a
path (preferably a geodesic) from that node to the solved state
node. The God’s number corresponds to the maximum length
geodesic between the solved state node and any other node. It
turns out that this is equivalent to the diameter of the Rubik’s
graph (the largest geodesic distance between any two nodes).

III. CLIFFORD SYNTHESIS

The Clifford group is the normalizer of the Pauli group.
In this work, we use the notation Cl(n) to denote the finite-
dimensional n-qubit Clifford group with the overall phase,
corresponding to the U (1) center, projected out. Clifford
elements may be represented as tableaus, 2n × (2n + 1)
binary-valued matrices of the form [12]

T =
(

X̃ Z̃ p̃
X Z p

)
, (1)

where X, X̃ , Z, Z̃ are themselves n × n binary matrices con-
strained so that the square part of T , denoted T ′ (i.e., with the
phase bit column omitted), satisfies the symplectic condition,

032409-2



TWISTY-PUZZLE-INSPIRED APPROACH TO CLIFFORD … PHYSICAL REVIEW A 109, 032409 (2024)

(T ′)T �nT ′ = �n, where

�n =
(

0 In

In 0

)
,

In is the n × n identity matrix, and where p̃, p are each length-
n binary vector. The rows of T indicate both the stabilizer
group generators (rows n + 1 to 2n) and the destabilizer
generators (rows 1 to n). The overall phase (±1) of the
(de)stabilizer for a given row in the tableau is encoded via
the phase bit vectors. With this definition, the Clifford group
can be identified with the Cartesian product of the space of
2n × 2n binary symplectic matrices with the space of length
2n binary vectors, Cl(n) = Sp(2n,F2) × F2n

2 , and thus the
size can be seen to grow rapidly (more precisely, doubly
exponentially) with n [15],1

dim(Cl(n)) = 2n2+2n
n∏

i=1

(22i − 1). (2)

The problem of Clifford synthesis is as follows: given an
element of the n-qubit Clifford group Cl(n), find a quantum
circuit with gates drawn from some generating set that will
implement that element. This is also referred to as Clifford
decomposition. The most widely used generating set is the set
of H and S gates for each qubit, as well as the set of all CNOT

gates for every pair of qubits, but of course other generating
sets are possible. There are also two versions of the problem
which differ in how Clifford elements should be represented:
either as 2n × 2n unitary matrices, or as 2n × (2n + 1) binary-
valued tableaus. The former makes clear that this is a special
case of the more general problem of unitary synthesis, while
the latter is convenient because the tableau structure directly
enforces the condition that the unitary be a member of the
Clifford group.

The analogy between Clifford synthesis and the Rubik’s
cube problem can now be established. The group structure is
already evident—problem states are Clifford group elements
which are naturally represented as tableaus. Group compo-
sition corresponds to matrix multiplication (mod 2) of the
2n × 2n square component of the tableaus (with the appro-
priate accounting used to keep track of the phase bits), or as
matrix multiplication if the group elements are represented
as 2n × 2n unitary matrices. The solved state corresponds to
the identity tableau/matrix. For each choice of move set,
the Clifford group can be endowed with a graph, with two
nodes connected by an edge if the corresponding tableaus
are connected via a move from the move set. The move set
corresponds to a set of generating gates, such as the set of all
single-qubit H , S gates as well as two-qubit CNOT gates. (Note
that because S is not Hermitian, this choice of move set will
result in a directed graph.) From a group-theoretic standpoint,
the move set corresponds to a set of generators for the Clifford
group, and the associated graph is the Cayley graph. To facil-
itate comparison with existing Clifford synthesis approaches
implemented in Qiskit [30] we will use the following gate set:

1In Sec. V we present numerical results for a slightly simpler
version of the problem where the phase bits are dropped, in which
case the factor of 22n should be omitted.

all single-qubit X,Y, Z, H, S, S† gates, a CNOT gate for each
ordered pair of qubits, and a SWAP gate for each unordered
pair of qubits. Table I compares how the scale of the Rubik’s
and Clifford problems compare.

Framing Clifford synthesis in this way is useful because
it allows the immediate application of graph traversal algo-
rithms, including general graph algorithms such as Dijkstra
or Bellman-Ford, as well as more specialized algorithms de-
signed for Rubik’s cube problems, which we explore below.
It also allows for notions like the God’s number to be estab-
lished. In this case, the Clifford God’s number is the maximum
length geodesic in the graph connecting the identity tableau
to any other tableau. Using the move set described below
and weighting all gates equally, the God’s number for the
n = 2 Clifford group can be found to be 8 via an exhaustive
computer search.2

Not all gates should be counted equally in circuit synthesis.
Standard circuit identities, such as the decomposition of a
SWAP gate into three alternating CNOTs, should be incorpo-
rated. Additionally, hardware-specific fidelities should also
be incorporated. For example, it is generally the case that a
CNOT, implemented on real NISQ hardware, will have a lower
fidelity than single-qubit gates, but the precise quantification
of this comparison will vary across devices, and even within
a device due to inhomogeneities, as well as with time due
to system fluctuations. Our graph-based approach easily ac-
commodates these issues through an appropriate assignment
of edge weights. As each edge corresponds to an allowed
move, represented by a Clifford gate, a physically motivated
edge weight assignment is based on the relative gate fideli-
ties. The overall (and irrelevant) scale of the weights may
be fixed by setting w = 1 for edges corresponding to some
reference gate g∗, for example a Hadamard gate. The weights
of all other gate-edges can then be taken to be determined by
f (g)w = f (g∗), where f (g) is the fidelity of gate g. In other
words, a weight w gate is equivalent, in terms of fidelity, to w

copies of the reference gate g∗. This weight assignment differs
from previous approaches for Clifford synthesis which aim to
minimize only the number of two-qubit entangling gates, with
no consideration given to single-qubit gates.

IV. LEARNED GUIDANCE FUNCTION

Denote the geodesic distance on the Cayley graph as d (·, ·).
The distance between any tableau T and the identity tableau
Tid, did(T ) := d (T, Tid ), is of special significance: this is the
minimal distance (or equivalently, the weighted number of
gates) required to synthesize the tableau T . It is straightfor-
ward to show that the problem of Clifford synthesis can be
solved in O(M�God) steps given an oracle capable of returning
did(T ), where M denotes the size of the move set and �God

the God’s number. Given an arbitrary tableau, the distance to
the identity for each possible move can be retrieved with M
calls to the oracle. Next, the move that leads to the greatest

2While it is clear that the God’s number and diameter are the
same for regular, unweighted graphs, changing either of these will
differentiate the two concepts, and so we will use the God’s number
as the figure of merit going forward.

032409-3



NING BAO AND GAVIN S. HARTNETT PHYSICAL REVIEW A 109, 032409 (2024)

TABLE I. Analogy between the Rubik’s group and the n-qubit Clifford group Cl(n). The dimension of the Clifford group is obtained
using Eq. (2). The number of moves depends on how the problem is being defined. For the Rubik’s cube, the two common definitions are
the half-turn metric, in which rotations by 90◦, 180◦, and 270◦ are allowed, and the quarter-turn metric, in which only rotations by 90◦ or
270◦ (or equivalently, left and right quarter turns) are allowed. The move set for the Clifford group corresponds to the single-qubit gates
X,Y, Z, H, S, S†, the directional two-qubit CNOT gate, and the symmetric two-qubit SWAP gate. An all-to-all qubit connectivity is assumed. The
features of the Rubik’s cube correspond to all 54 facets, and the features of the tableau are the matrix entries.

Rubik’s Cl(2) Cl(3) Cl(4) Cl(5) Cl(6)

Group dimension 4.3 × 1019 11 520 92 897 280 1.21 × 1013 2.54 × 1019 8.52 × 1026

Num. moves 12/18 15 27 42 60 81
Feature dimension 54 20 42 72 110 156

reduction in distance to the identity will be applied (randomly
breaking ties if they arise). By repeating this greedy strategy
after each move, the identity tableau is guaranteed to be found
after no more than �God moves, resulting in a worst-case time
complexity of O(M�God).

However, in practice, such an oracle will not be available,
and the above algorithm will require that the distances be com-
puted, for example using Djikstra’s shortest path algorithm.
The worst-case time complexity of this is O(|E | + |V | log |V |)
for a graph with vertex set V and edge set E . The move
set graph is M-regular, and so |E | = M|V |, resulting in
O(|V | log |V |). Unfortunately, this scaling is impractical for
even moderately large circuit widths n given the fact that
|V | = dim(Cl(n)) = O(2n2

).3

Although the poor scaling renders the above algorithm
impractical, it does serve to motivate the heuristic approach
we develop here. The central idea is to avoid applying Djik-
stra’s algorithm to a doubly exponentially large graph and
to instead develop an approximation to the distance to the
identity, g(T ) ≈ did(T ). In particular, we will model g as
a neural network. Provided that g(T ) is a sufficiently good
approximation, calls to Djikstra’s algorithm may be replaced
with feed-forward evaluation of g which will require a num-
ber of evaluations which grows only polynomially in n. Of
course, this does not account for the time complexity required
to learn a sufficiently good approximation; the exponential
improvement will come at the cost of the algorithm becoming
probabilistic, as well as the additional complexity of training
g to achieve an approximation of sufficient quality. Following
[16–18], we will refer to g as a learned guidance function as
it will be later used to guide the Clifford synthesis problem.
The function g could equally well be called a heuristic, for
example in the context of A* search and related graph traver-
sal algorithms.

A. Model and training details

We chose to model g : R2n,2n+1 �→ R as a feed-forward
neural network with all-to-all connectivity. (Note that valid
tableaus are binary symplectic matrices, but the neural net-
work does not require the entries to be binary nor the

3Note that this analysis is naive and could likely be improved. In
particular, the regularity of the graph has not been used. Practical
implementations can also make use of the fact that algorithms like
Djikstra do not require the full graph to be stored in memory.

symplectic condition to be satisfied.) In particular, a network
with three hidden layers with dimensions [32, 16, 4] is used.
Each layer is followed by a nonlinear activation (the logistic
sigmoid is used for all but the final layer, which applies the
exponential function). We note that we did not attempt to op-
timize this model architecture using metalearning techniques,
and that doing so may yield additional improvement, at the
cost of the metalearning overhead.

The weights θ of the network will be chosen to encour-
age the guidance function to be a good approximation of
the distance to the identity. This will be accomplished by
minimizing a suitable loss function over a training data set:
θ∗ = argminθ L(θ ). In formulating the loss function, an im-
portant observation is the fact that an ideal guidance function
need not match the distance pointwise, instead it need only
satisfy the weaker condition that it leads to the same ordinal
ranking among the move set,

did(T1) < did(T2) iff g(T1) < g(T2) (3)

for any two tableaus T1, T2 connected by a move (i.e., the
corresponding nodes are connected by an edge in the graph).

In practice we can only hope to learn a guidance function
which satisfies Eq. (3) a fraction of the time. A natural loss
function that penalizes violations is the negative Pearson cor-
relation coefficient averaged over the training data set,

LPearson(θ ) = − 1

NB

NB∑
i=1

rDid,g. (4)

Here NB is the number of batches in the training set and
rDid,g ∈ [−1, 1] is the Pearson correlation coefficient for two
equal length sequences {Did(Ti )}B

i=1, {g(Ti )}B
i=1:

rx,y :=
∑K

i=1(xi − x̄)(yi − ȳ)√∑K
i=1(xi − x̄)2

∑K
i=1(yi − ȳ)2

. (5)

This choice of loss function differs from prior approaches us-
ing learned guidance functions to solve Rubik’s cubes. Those
have instead attempted to solve the more restrictive problem
of directly modeling the distance (i.e., number of moves away
from the solved cube state) rather than the weaker task of
modeling the distance up to a monotonic transformation. Of
course, the main motivation for adopting the current approach
is to avoid the need to calculate the actual distance did; there-
fore, in the above Did represents an efficiently calculable
upper bound for the true distance, which we will discuss
momentarily.

032409-4



TWISTY-PUZZLE-INSPIRED APPROACH TO CLIFFORD … PHYSICAL REVIEW A 109, 032409 (2024)

ALGORITHM 1. Greedy algorithm.

Input: learned guidance function g
Input: initial tableau x ∈ Cl(n)
Output: gate decomposition x = x0 x1 · · · xK−1

i ← 0
y ← x−1

while y 
= IdentityTableau(n) do
xi = argminx′∈MoveSetg(y x′)
y ← y xi

i ← i + 1
end while

The loss function is minimized using a gradient-based
optimization. The training data are generated by randomly
sampling sequences of length-L Clifford gates to generate
tuples of the form (T, D̃id ), where T is the Clifford tableau
formed by the sampled gates and D̃id is both the weighted
number of gates and an upper bound to the distance to the
identity. Each gate is sampled uniformly from the move set,
and the sequence length is sampled uniformly from the range
1 to Lmax, with Lmax a hyperparameter. This process may be
thought of as a random walk on the problem graph. The length
of the generated sequence controls the extent to which the
walk explores the entire Clifford group. Ideally this length
would be at least as large as �God to ensure that the walk
is capable of reaching all tableaus, but unfortunately we are
not aware of any bounds of �God for the Clifford synthesis
problem. Therefore, we considered different scalings of the
length of the walk (size of the generated sequence) with n.
Importantly, note that this random walk will not in general
correspond to uniformly sampling the Clifford group, as, for
example, in [13]. Lastly, the batch size B and number of
batches (epochs) NB are left as training hyperparameters.

B. Algorithms

A learned guidance function enables a straightforward
greedy algorithm, Algorithm 1, Clifford synthesis (dubbed
hillclimbing in [16–18]). Given an arbitrary starting Clifford,
at each step the learned guidance function is evaluated for ev-
ery move in the move set and the move with the smallest value
of the guidance function is made. Ties are broken randomly.

We also considered beam search as a second algorithm for
using the learned guidance function to synthesize Cliffords.
Beam search can be considered both as a generalization of
the greedy algorithm as well as a restriction of breadth-first-
search where at each step only the top-w ranked nodes (ranked
according to their guidance function values) are retained. If
w = 1, then beam search reduces to the greedy algorithm, and
if w is infinite, then breadth-first search is recovered. Algo-
rithm 2 contains pseudocode for a simple implementation of
beam search. Here N (node) denotes the neighborhood of a
node, isSolution(node) returns True if the node is a solution,
False if not, and TopRankedBeams returns the top-w ranked
nodes in the beam according to their guidance function value.
The algorithm as written returns the solution node; the full
decomposition x = x0x1 · · · xK−1 can be recovered using, for
example, linked lists, so that each node can be linked to its
predecessor.

ALGORITHM 2. Beam search algorithm.

Input: beam width parameter w

Input: learned guidance function g
Input: initial tableau x ∈ Cl(n)
Output: gate decomposition x = x0 x1 · · · xK−1

Beam = {x}
Visited = {x}
while |Beam| > 0 do

for node in Beam do
for neighbor in N (node) do

if isSolution(neighbor) then
return neighbor

end if
if neighbor /∈ Visited then

Beam = Beam ∪ {neighbor}
end if

end for
Visited = Visited ∪ N (node)

end for
Beam = TopRankedBeams(Beam, g, w)

end while

V. RESULTS

We considered the Clifford synthesis problem for a range
of circuit widths, n = 3, 4, . . . , 12. In each case a separate
learned guidance function was trained and used to guide the
two graph traversal algorithms considered, namely greedy
search (Algorithm 1) and beam search with a width w = 3
(Algorithm 2). The training details of the guidance function
are as follows.

For each n, the learned guidance function was trained by
minimizing the Pearson correlation loss over a data set of
randomly sampled Clifford tableaus as described in Sec. IV A.
The optimization was carried out using a batch size of
B = 2000 and a fixed number of batches (epochs) NB = 1000.
The Adam optimizer was used [31], with a learning rate 10−3.
We considered two different scalings of the maximum length
of the random walks used to generate the training data, linear:
Lmax = 10 n and log-linear: Lmax = 10 n log2(n) (rounded to
the nearest integer). Also, for computational convenience we
dropped the phase bits, so that each tableau is represented
by a binary-valued symplectic matrix. Without the phase-bits,
tableau composition corresponds to simple matrix multiplica-
tion, which is easily parallelized.4 To facilitate a comparison
between our method and the built-in Qiskit synthesis func-
tionality, in our experiments we used a gate weighting which
corresponds to simply counting the number of CNOT gates:

4Note, however, that the Aaronson-Gottesman theorem allows
Clifford circuits to be simulated more efficiently than matrix multi-
plication. In particular, matrix multiplication scales as O(n2.37) for
an n × n matrix, whereas the simulation algorithm introduced in
[12] only requires O(n2) time. Clearly, there is much room for im-
provement in our implementation, which was mainly guided by the
built-in capabilities of modern deep learning libraries (in particular,
PyTorch).

032409-5



NING BAO AND GAVIN S. HARTNETT PHYSICAL REVIEW A 109, 032409 (2024)

FIG. 1. The fraction of solved instances as a function of CNOT

count for both the beam search algorithm with beam width w = 3
(solid curve) and the built-in Qiskit method (dashed line).

single-qubit gates were given weight 0, CNOT gates were given
weight 1, and SWAP gates were given weight 3.

The quality of the learned guidance function is best judged
by how well it guides graph traversal. There are two key
considerations: first, the fraction of problem instances that
can be successfully decomposed, and second, the weighted
gate count (path length) of the found decomposition. To
evaluate these, both the greedy and beam search algorithms
were applied to Clifford tableaus generated using the same
random-walk procedure used to train the guidance functions,
ensuring that the training and testing distribution over Clif-
ford tableaus were the same. Due to the rapid growth of
the Clifford group, we can expect that the performance will
suffer in the case in which these two distributions differ. As a
baseline for comparison, the built-in Qiskit Clifford synthesis
function synth_clifford_full was also applied to these
same problem instances. At the time of writing, the Qiskit
function incorporates three previously published algorithms
[12–14]).5 To evaluate the greedy algorithm, 20 000 Clifford
tableaus were generated, and the algorithm was terminated if
it failed to reach the identity tableau after 1000 steps.6

5The first algorithm relies on the H-CX-P-CX-P-CX-H-P-CX-P
11-round decomposition (canonical form) proved in [12] (here H,
CX, and P refer to circuit stages consisting of only Hadamard,
Controlled-NOT, and Phase gates, respectively). This decomposition
is asymptotically optimal (optimal up to a constant factor) in terms
of the number of degrees of freedom as well as the number of gates
[32]. The second algorithm relies on the F1 H S F2 decomposition
introduced in [13] (here H again refers to a layer of Hadamard gates,
S is a permutation of the qubits, and Fi are Hadamard-free circuits).
The third algorithm implements the nonoptimal greedy compilation
routine introduced in [14], which relies on template matching and
symbolic peephole optimization.

6Exceptions to this are as follows: in the case of the linearly
scaled beam search algorithm for n � 8, and the log-linearly scaled
beam search algorithm for n � 10, 5000 tableaus were generated and
the algorithm was terminated after 200 steps. In these cases, fewer

TABLE II. Beam search comparison with built-in Qiskit method
(log-linear scaling).

Success �Beam < �Qiskit �Beam � �Qiskit
�Qiskit−�Beam

�Qiskit

n (%) (%) (%) (%)

3 100.0 0 49.0 N/A
4 100.0 52.3 89.4 25.1
5 100.0 60.3 87.5 21.6
6 100.0 64.4 86.1 19.6
7 98.1 65.2 83.3 17.9
8 68.8 62.2 81.1 16.9
9 62.2 58.5 76.6 15.6
10 2.6 17.2 96.9 15.9
11 1.4 6.9 100.0 15.2
12 0.7 0.0 100.0 N/A

Among the two algorithms considered, beam search per-
formed best. Figure 1 depicts a direct comparison between
the guided graph traversal approach using the beam search
algorithm and the built-in Qiskit approach for Clifford sam-
pled using the log-linearly scaled random walk. The guided
graph traversal algorithm is able to solve nearly all problem
instances for n up to 7. For n = 4, 5, 6 the cumulative fraction
of instances solved by the beam search, as a function of CNOT

gates, is greater than or equal to the fraction solved by Qiskit,
indicating that in many cases the beam search decomposi-
tion utilizes fewer gates. For n = 7, 8 the cumulative fraction
solved by beam search is greater than the Qiskit fraction until
a threshold CNOT count is reached, beyond which the beam
search algorithm is unable to find a decomposition. The per-
formance drops off rapidly as n increases further, indicating
that the quality of the guidance function has not kept up with
the growth of the problem complexity.7

Table II contains additional comparative statistics, includ-
ing the overall fraction of problem instances that can be
successfully decomposed (success), the fraction of instances
for which the guided graph traversal results in a decom-
position with fewer CNOT gates than the Qiskit method,
conditioned on a successful decomposition (�method < �Qiskit),
the fraction of instances for which the guided graph traversal
results in a decomposition with fewer or equal CNOT gates
than the Qiskit method, again conditioning on a success-
ful decomposition (�method � �Qiskit), and lastly the fractional
decrease in the number of CNOT gates for problem in-
stances that can be successfully decomposed and result in
a decomposition using fewer gates than the Qiskit method
[(�Qiskit − �method)/�Qiskit]. (The N/A entries correspond to
cases in which none of the problem instances met these con-
ditions, and it should also be noted that the Qiskit method is
provably optimal with respect to CNOT count for n = 3.) When

problem instances were considered and the algorithm was terminated
after a fewer number of steps due to the long run-times.

7The sizable drop in performance in going from n = 9 to n = 10 is
partially attributable to the fact that the beam search algorithm was
terminated prematurely, and that with further iterations the guided
search would have succeeded in finding a decomposition.

032409-6



TWISTY-PUZZLE-INSPIRED APPROACH TO CLIFFORD … PHYSICAL REVIEW A 109, 032409 (2024)

FIG. 2. Fraction of problem instances solved. Left: The cumulative fraction of problem instances solved by the greedy algorithm as a
function of weighted distance, for a range of circuit widths. Center: The analogous plot for the beam search algorithm with beam width w = 3.
Right: The Qiskit method.

the beam search algorithm succeeds in finding a decomposi-
tion with fewer CNOT gates than Qiskit, the average reduction
in CNOT count (equivalent to the weighted path length of
the graph traversal) ranges from 25% for n = 4 to 17% for
n = 8. For n > 8 the algorithm increasingly struggles to find
decompositions.

Figure 2 provides a summary of the results for all the
considered algorithms; Appendix contains further details. As
expected, in all cases the Qiskit approach succeeds in finding
a decomposition. In contrast, the fraction of instances solved
by the guided graph traversal approaches is 100% for the first
few values of n, and then decreases as n grows. The guidance
functions trained on log-linearly scaled random walks signifi-
cantly outperform those trained on the linearly scaled random
walks, and the beam search algorithm outperforms the greedy
algorithm.

VI. DISCUSSION

The problem of Clifford synthesis has many structural sim-
ilarities with the famous Rubik’s cube problem and the more
general family of twisty puzzles. Inspired by recent machine-
learning approaches to solving the Rubik’s cube problem, we
have developed a learned guidance function approach for the
Clifford synthesis problem. The drawbacks to our approach
is that it only succeeds in finding a decomposition on some
fraction of problem instances, requires a computationally in-
tensive training procedure, and in some cases is outperformed
by existing algorithms readily available in Qiskit. However,
when our method is able to find a decomposition, it is often
more economical in terms of CNOT gate count than the de-
compositions produced by existing algorithms. For moderate
numbers of qubits, n = 4, 5, 6, 7, the guided beam search

method outperforms Qiskit for almost all problems (an op-
timal decomposition method exists for n = 3). Our approach
can therefore be used in conjunction with existing approaches
to occasionally find improved decompositions of Clifford ele-
ments. This approach is also much more flexible than existing
approaches in that it supports any universal gate set over the
Clifford group, as well as arbitrary relative weights (or costs)
for each gate. This allows the algorithm to be tailored to a
given device.

Given that the approach developed here was inspired by
approaches used to solve the Rubik’s group, it is interesting
to compare the scale of the two problems in rough terms.
By coincidence, the size of the Clifford group for n = 5 is
comparable to the size of the Rubik’s group; both contain
roughly 1019 elements. The dimensions for n = 6 and 7 are
of the order 1027 and 1035, respectively. Therefore, this work
demonstrates that the learned guidance function approach can
be applied to much larger problem spaces than previously
considered.

There are many ways that our approach could be im-
proved. The overall run-time of the guided graph traversal
could likely be sped up significantly through better software
implementations. Additionally, we have made no attempt to
tune any of the hyperparameters appearing in the approach.
One particularly important hyperparameter is Lmax, the length
of the random walk. In particular, we should have Lmax � �God

to ensure that the support of the training distribution is the
entire Clifford group. However, the God’s number is unknown
for general n, and if the analogous quantity in the Rubik’s
cube problem is to be any guide, it is likely that �God can
only be computed via exhaustive computer scan for relatively
small values of n [28,29]. Absent such exhaustive scans, our
approach would benefit from lower bounds on �God if they

032409-7



NING BAO AND GAVIN S. HARTNETT PHYSICAL REVIEW A 109, 032409 (2024)

FIG. 3. The Pearson correlation loss evaluated at each step in the training process.

could be established. From a more pragmatic perspective, the
decompositions found by our approach could be improved
by applying a simplification pass that applies simple gate
identities to reduce the overall gate count.

It would be desirable to more directly encode known prop-
erties of the Clifford group into the guidance function. For
example, the current approach does not enforce that the input
matrices are binary-valued or that they are symplectic. Nor is
any use made of any cosets of the Clifford group, which could
potentially be used to significantly reduce the search space. It
would also be interesting to incorporate recent work on fully
classifying the Clifford group [33].

Another potential quantum extension to our approach is to
upgrade the random-walk strategy used to a quantum random-
walk strategy. In a quantum random walk, the adjacency
matrix of the graph is taken to be the time-independent Hamil-
tonian guiding the evolution of the quantum state, which is
initially fully localized on the initial vertex of the graph. For
many families of graphs, this would prevent the possibility
of the classical random walk missing the optimal traversal, as
the quantum random walk would sample the potential paths in
superposition, in the manner of Refs. [34,35]. This approach
would potentially require a more complete knowledge of the

FIG. 4. The Pearson correlation loss attained at the end of the
training process for the two different scalings of Lmax.

form of the graph, though it is possible that considering only
a subgraph would yield usable results.

Because much of the success of our approach in this case is
potentially predicated on the discrete structure of the Clifford
group, it is unclear whether this approach will work well in the
continuous Lie group setting for the group U (N ), e.g., for full
unitary synthesis. In that context, perhaps a more holistic and
flexible approach would be appropriate, such as, e.g., using
a large language model to learn the language and syntax of
the languages used for quantum programming. Lastly, we note
that the problem of Clifford synthesis can also be framed as a
simple Markov decision process (MDP). This framing might
be useful for inspiring other algorithmic approaches as well as
for making contact with related problems.

ACKNOWLEDGMENTS

This work grew out of an earlier project in collaboration
with Zachary Fisher. We also thank Edward Parker and Alvin
Moon for their helpful comments on an earlier draft of this
manuscript. We are grateful to Yuanhang Zhang for helpful
discussions, and in particular for bringing our attention to
previous work using deep learning and graph traversal algo-
rithms to solve the Rubik’s cube and his related work for

TABLE III. Beam search comparison with built-in Qiskit method
(linear scaling).

Success �Beam < �Qiskit �Beam � �Qiskit
�Qiskit−�Beam

�Qiskit

n (%) (%) (%) (%)

3 100.0 0 63.7 N/A
4 100.0 42.4 96.2 26.4
5 100.0 48.4 96.1 22.6
6 18.9 25.3 99.5 22.2
7 12.0 22.6 99.5 22.1
8 8.3 14.7 100.0 20.7
9 8.3 9.9 100.0 20.6
10 5.4 8.5 99.6 23.5
11 6.1 7.9 100.0 21.4
12 5.6 9.2 100.0 19.8

032409-8



TWISTY-PUZZLE-INSPIRED APPROACH TO CLIFFORD … PHYSICAL REVIEW A 109, 032409 (2024)

TABLE IV. Greedy comparison with built-in Qiskit method (log-
linear scaling).

Success (%) (%)
�Qiskit−�Greedy

�Qiskit

n (%) (%) (%) (%)

3 100.0 0 38.0 N/A
4 100.0 27.8 57.6 23.9
5 100.0 28.6 50.7 20.3
6 100.0 19.8 34.0 19.0
7 99.1 4.2 9.9 18.1
8 3.4 15.3 96.2 19.6
9 2.6 10.2 98.5 24.4
10 2.1 7.6 97.9 17.4
11 1.1 3.6 100.0 20.1
12 0.7 0.0 100.0 N/A

unitary synthesis. N.B. is supported by the DOE Office of
Science-ASCR, in particular under the grant Novel Quantum
Algorithms from Fast Classical Transforms.

APPENDIX: ADDITIONAL RESULTS

Figure 3 depicts the loss throughout the training procedure
for both the linear and log-linear random walks. In all cases,
the loss quickly converges to a final value that it fluctuates
around due to the random-walk variability. The final value
decreases with an increasing number of qubits n, as shown in
Fig. 4. As n increases, the loss approaches the minimal value
of −1, which would imply perfect correlation between the
true distance to the identity and the learned guidance function.
This could be interpreted as paradoxically implying that the

TABLE V. Greedy comparison with built-in Qiskit method (lin-
ear scaling).

Success �Greedy < �Qiskit �Greedy � �Qiskit
�Qiskit−�Greedy

�Qiskit

n (%) (%) (%) (%)

3 100.0 0 47.5 N/A
4 100.0 18.7 57.3 25.9
5 43.3 24.3 80.6 22.6
6 14.1 16.6 99.5 21.1
7 10.3 16.1 99.4 21.9
8 7.2 8.8 99.9 20.0
9 6.3 7.6 99.8 21.9
10 5.4 7.7 99.7 22.5
11 4.9 5.2 100.0 19.2
12 5.0 5.5 99.4 20.8

problem becomes easier as n grows, which certainly is not the
case. Rather, this phenomenon can be attributed to the rapid
growth of the Clifford group and the fact that the batch size NB

has been kept constant as n varies. This causes the batches to
become more heterogeneous as n grows, and thus the problem
of learning a well-correlated guidance function on the batch
becomes easier.

Section V in the main body of the text contains a detailed
discussion of the results for the beam search graph traversal
algorithm for the log-linear random walk, including Table II,
which contained statistics comparing the algorithm’s perfor-
mance to the Qiskit method. Analogous results for the greedy
graph traversal and the linear random-walk beam search are
detailed in Tables III, IV, and V.

[1] P. W. Shor, Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, SIAM Rev. 41,
303 (1999).

[2] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation,
Rev. Mod. Phys. 86, 153 (2014).

[3] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm
for linear systems of equations, Phys. Rev. Lett. 103, 150502
(2009).

[4] Google Quantum AI, Suppressing quantum errors by scaling a
surface code logical qubit, Nature (London) 614, 676 (2023).

[5] Y. Kim, C. J. Wood, T. J. Yoder, S. T. Merkel, J. M. Gambetta,
K. Temme, and A. Kandala, Scalable error mitigation for noisy
quantum circuits produces competitive expectation values,
Nat. Phys. 19, 752 (2023).

[6] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell
et al., Quantum supremacy using a programmable supercon-
ducting processor, Nature (London) 574, 505 (2019).

[7] A. Morvan, B. Villalonga, X. Mi, S. Mandrá, A. Bengtsson, P.
Klimov, Z. Chen, S. Hong, C. Erickson, I. K. Drozdov et al.,
Phase transition in random circuit sampling, arXiv:2304.11119.

[8] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[9] T. Fösel, M. Y. Niu, F. Marquardt, and L. Li, Quan-
tum circuit optimization with deep reinforcement learning,
arXiv:2103.07585.

[10] L. Moro, M. G. A. Paris, M. Restelli, and E. Prati, Quantum
compiling by deep reinforcement learning, Commun. Phys. 4,
178 (2021).

[11] M. Weiden, E. Younis, J. Kalloor, J. Kubiatowicz, and C. Iancu,
Improving quantum circuit synthesis with machine learning,
arXiv:2306.05622.

[12] S. Aaronson and D. Gottesman, Improved simulation of stabi-
lizer circuits, Phys. Rev. A 70, 052328 (2004).

[13] S. Bravyi and D. Maslov, Hadamard-free circuits expose the
structure of the Clifford group, IEEE Trans. Inf. Theor. 67, 4546
(2021).

[14] S. Bravyi, R. Shaydulin, S. Hu, and D. Maslov, Clifford circuit
optimization with templates and symbolic Pauli gates, Quantum
5, 580 (2021).

[15] S. Bravyi, J. A. Latone, and D. Maslov, 6-qubit optimal Clifford
circuits, npj Quantum Inf. 8, 79 (2022).

[16] C. G. Johnson, Stepwise evolutionary learning using deep
learned guidance functions, in International Conference on
Innovative Techniques and Applications of Artificial Intelligence
(Springer, Cambridge, UK, 2019), pp. 50–62.

032409-9

https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1038/s41567-022-01914-3
https://doi.org/10.1038/s41586-019-1666-5
https://arxiv.org/abs/2304.11119
https://doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/2103.07585
https://doi.org/10.1038/s42005-021-00684-3
https://arxiv.org/abs/2306.05622
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1109/TIT.2021.3081415
https://doi.org/10.22331/q-2021-11-16-580
https://doi.org/10.1038/s41534-022-00583-7


NING BAO AND GAVIN S. HARTNETT PHYSICAL REVIEW A 109, 032409 (2024)

[17] C. G. Johnson, Solving the Rubik’s cube with learned guidance
functions, in Proceedings of the 2018 IEEE Symposium Series
on Computational Intelligence (SSCI) (IEEE, Piscataway, NJ,
2018), pp. 2082–2089.

[18] C. G. Johnson, Solving the Rubik’s cube with stepwise deep
learning, Expert Syst. 38, e12665 (2021).

[19] F. Agostinelli, S. McAleer, A. Shmakov, and P. Baldi, Solving
the Rubik’s cube with deep reinforcement learning and search,
Nat. Mach. Intell. 1, 356 (2019).

[20] Y.-H. Zhang, P.-L. Zheng, Y. Zhang, and D.-L. Deng, Topologi-
cal quantum compiling with reinforcement learning, Phys. Rev.
Lett. 125, 170501 (2020).

[21] E. W. Dijkstra, A note on two problems in connexion with
graphs, Numer. Math. 1, 269 (1959).

[22] https://github.com/gshartnett/rubiks-clifford-synthesis.
[23] A. Y. Kitaev, Quantum computations: Algorithms and error

correction, Russ. Math. Surv. 52, 1191 (1997).
[24] C. M. Dawson and M. A. Nielsen, The Solovay-Kitaev algo-

rithm, arXiv:quant-ph/0505030.
[25] V. Kliuchnikov, Synthesis of unitaries with Clifford+T circuits,

arXiv:1306.3200.
[26] T. Patel, E. Younis, C. Iancu, W. de Jong, and D. Tiwari,

Robust and resource-efficient quantum circuit approximation,
arXiv:2108.12714.

[27] M. A. Nielsen, M. R. Dowling, M. Gu, and A. C. Doherty,
Quantum computation as geometry, Science 311, 1133 (2006).

[28] T. Rokicki, H. Kociemba, M. Davidson, and J. Dethridge, The
diameter of the Rubik’s cube group is twenty, SIAM Rev. 56,
645 (2014).

[29] T. Rokicki, H. Kociemba, M. Davidson, and J. Dethridge, God’s
number is 20, http://cube20.org.

[30] A. Cross, The IBM Q experience and QISKit open-source
quantum computing software, in APS March Meeting Abstracts
(APS, New York, 2018), Vol. 2018, pp. L58–003.

[31] D. P. Kingma and J. Ba, Adam: A method for stochastic opti-
mization, arXiv:1412.6980.

[32] K. N. Patel, I. L. Markov, and J. P. Hayes, Optimal synthesis of
linear reversible circuits, Quantum Inf. Comput. 8, 282 (2008).

[33] D. Grier and L. Schaeffer, The classification of Clifford gates
over qubits, Quantum 6, 734 (2022).

[34] A. M. Childs, E. Farhi, and S. Gutmann, An example of the dif-
ference between quantum and classical random walks, Quant.
Inf. Proc. 1, 35 (2002).

[35] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann,
and D. A. Spielman, Exponential algorithmic speedup by a
quantum walk, in Proceedings of the Thirty-Fifth Annual ACM
Symposium on Theory of Computing (ACM, San Diego, 2003),
pp. 59–68.

032409-10

https://doi.org/10.1111/exsy.12665
https://doi.org/10.1038/s42256-019-0070-z
https://doi.org/10.1103/PhysRevLett.125.170501
https://doi.org/10.1007/BF01386390
https://github.com/gshartnett/rubiks-clifford-synthesis
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://arxiv.org/abs/quant-ph/0505030
https://arxiv.org/abs/1306.3200
https://arxiv.org/abs/2108.12714
https://doi.org/10.1126/science.1121541
https://doi.org/10.1137/140973499
http://cube20.org
https://arxiv.org/abs/1412.6980
https://doi.org/10.26421/QIC8.3-4-4
https://doi.org/10.22331/q-2022-06-13-734
https://doi.org/10.1023/A:1019609420309

