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Challenges of variational quantum optimization with measurement shot noise

Giuseppe Scriva ,1,2,3,* Nikita Astrakhantsev ,4 Sebastiano Pilati ,1,3 and Guglielmo Mazzola 2

1Physics Division, School of Science and Technology, University of Camerino, Via Madonna delle Carceri 9, I-62032 Camerino (MC), Italy
2Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

3INFN Sezione di Perugia, Via A. Pascoli, I-06123 Perugia, Italy
4Department of Physics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

(Received 3 October 2023; accepted 7 February 2024; published 11 March 2024)

Quantum enhanced optimization of classical cost functions is a central theme of quantum computing due
to its high potential value in science and technology. The variational quantum eigensolver (VQE) and the
quantum approximate optimization algorithm (QAOA) are popular variational approaches that are considered
the most viable solutions in the noisy-intermediate scale quantum (NISQ) era. Here, we study the scaling of the
quantum resources, defined as the required number of circuit repetitions, to reach a fixed success probability
as the problem size increases, focusing on the role played by measurement shot noise, which is unavoidable in
realistic implementations. Simple and reproducible problem instances are addressed, namely, the ferromagnetic
and disordered Ising chains. Our results show that: (1) VQE with the standard heuristic Ansatz scales comparably
to direct brute-force search when energy-based optimizers are employed. The performance improves at most
quadratically using a gradient-based optimizer. (2) When the parameters are optimized from random guesses,
also the scaling of QAOA implies problematically long absolute runtimes for large problem sizes. (3) QAOA
becomes practical when supplemented with a physically inspired initialization of the parameters. Our results
suggest that hybrid quantum-classical algorithms should possibly avoid a brute force classical outer loop, but
focus on smart parameters initialization.
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I. INTRODUCTION

Optimization is one of the most anticipated applications
of quantum computers due to its commercial value and
widespread use in scientific and technological applications
[1]. The first argument supporting the benefit of quantum opti-
mization is its ability to search through an exponentially large
computational space, of size N = 2L, using only L qubits.
However, such memory compression alone is not sufficient, as
the solution to a classical combinatorial optimization problem
is represented by a single (or very few) L-bit string. This is
in contrast with quantum algorithms for solving genuinely
quantum mechanics problems, where the source of possible
quantum advantage is easier to rationalize [2]. The quantum
computational resource enabling the search is interference.
The process begins with a simple, easy-to-prepare quantum
state, which undergoes unitary evolution. Ideally, the result
of this evolution is such that, when the state is measured, the
desired bit string is observed with a high probability [3].

It is still unclear whether quantum optimization offers any
advantage over the existing classical methods, such as simu-
lated annealing [4]. Interestingly, optimization with quantum
annealing has been the first application of commercial quan-
tum devices [5,6], which mostly rely on incoherent tunneling
events to escape the cost-function local minima [7]. However,
it is not easy to prove systematic quantum speedups with
analog quantum annealers [8,9], also because quantum Monte
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Carlo algorithms appear to be able to emulate their tunneling
dynamics [10–13]. Yet, considerable effort is still ongoing in
improving the architecture of these machines [14] and their
coherence times [15].

As an alternative quantum optimization strategy, varia-
tional quantum algorithms, usually running on digital quan-
tum devices, have gained attention in the quantum computing
community due to their short-depth circuits [16,17]. In this ap-
proach, a long quantum state evolution is replaced by a series
of short-depth quantum circuits connected through a classi-
cal feedback loop. Variational quantum computation features
parametrized circuits that produce a trial state |ψ (θ)〉. Its
parameters θ are adjusted at every step following an iterative
classical procedure. The goal is to minimize a cost function
C, which corresponds to the expectation value 〈ψθ| Ĥp |ψθ〉 of
the problem Hamiltonian Ĥp, or a closely related measure. At
the end of a successful optimization, |ψ (θ)〉 should be peaked
around the solution of the problem.

The two most popular variational algorithms for optimiza-
tion are the quantum approximate optimization algorithm
(QAOA) [18] and the variational quantum eigensolver (VQE)
[16]. Both of them include a parametrized circuit, a classical
feedback loop, and a measurement stage. The cost function
is evaluated based on the measurement’s outcome, and the
parameters are adjusted to minimize the cost.

Let us also recall that for combinatorial optimization prob-
lems, like Ising spin glasses on general graphs [19], no
polynomial-time algorithm can provably find the global mini-
mum, and the resources to exactly solve these problems scale
exponentially with problem size as ∼2kL. This is the type of
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speedup investigated in this article. While quantum algorithms
are not expected to turn the exponential scaling into a polyno-
mial one, the exponent k might be reduced, thus potentially
realizing a substantial speedup over classical algorithms [7].

The QAOA method has been the subject of intense stud-
ies, including small- and medium-scale hardware experiments
[20–23], numerical studies, and theoretical works [24–31].
Also, VQE optimization has been studied numerically and
experimentally [32–38], and it has been applied to diverse
combinatorial optimization problems from protein folding to
finance [39–42]. However, these previous studies addressed
small problem instances, without properly accounting for
measurement shot noise. In fact, the latter is unavoidable
in physical implementations of practically relevant problem
sizes and it might affect the computational complexity of
these algorithms. To the best of our knowledge, the scaling of
the computational cost for a fixed target success probability,
taking into account the measurement overhead to compute the
cost function C, has not been exhaustively addressed yet.

The paper is organized as follows. In Sec. II, we define
the testbed problems and the quantum circuits. In Sec. III,
we introduce the metric to properly assess the computational
scaling of the VQE and QAOA algorithms in realistic condi-
tions. In Sec. IV A, it is shown that in the presence of quantum
measurement noise, VQE displays a scaling not better than
the direct space enumeration when energy-based optimizers
are used. The situation improves using gradients, computed
with the parameters shift rule (see Sec. IV B), but it remains
scaling-wise impractical. In Sec. IV C, it is shown that, while
showing some scaling improvements, QAOA remains imprac-
tical when a full optimization outer loop is required. In this
case, the traditional energy-based and a gradient-based opti-
mizer show consistent scalings. Finally, in Sec. IV E, we show
that QAOA becomes competitive when the parameters are
initialized to mimic an adiabatic process. In Sec. V, we draw
conclusions and discuss realistic pathways toward quantum
advantage in classical optimization problems.

II. OPTIMIZATION PROBLEMS AND QUANTUM
CIRCUITS

The optimization problems we address correspond to the
Ising models defined over L variables (σ1, . . . , σL ) = σ with
σ j = ±1. Specifically, we consider the one-dimensional con-
nectivity, nearest-neighbor interactions Jj, j+1, and local fields
{h j}L

j=1. The energy of a spin configuration σ reads

E (σ ) = −
L−1∑
j=1

Jj, j+1σ jσ j+1 −
L∑

j=1

h jσ j . (1)

Representing a generic spin configuration σ ∈ {1,−1}L as a
binary string x ∈ {0, 1}L, and writing the energy as E (σ) →
f (x), we write the problem Hamiltonian ĤP as a diagonal
operator

ĤP =
∑

x

f (x)|x〉〈x|, (2)

defined by its diagonal matrix elements f : {0, 1}L → R. The
classical spin variables σ j are promoted to single-qubit Pauli
operators σ̂ z

j .

Most analyses reported in this article consider two prob-
lem Hamiltonians. The first is the ferromagnetic Hamiltonian
defined by uniform couplings Jj, j+1 = J = 1, and a (small)
uniform local field h j = h = −0.05 introduced to break the
degeneracy between the two fully polarized configurations
and obtain a single global minimum. Despite its simplicity,
this model turns out to be hard for most of the considered
algorithms. Its rugged energy surface f (x) is shown in Fig. 1,
where the bitstrings are sorted in the lexicographic order.

The second optimization problem we address is an ensem-
ble of disordered Hamiltonians where the couplings and fields
are sampled from a normal distribution with zero mean and
unit variance: Jj, j+1, h j ∼ N (0, 1). In this case, 30 realiza-
tions of the disorder are simulated for each problem size L.

A. VQE with heuristic circuit

Parametrized quantum circuits [16,17] are the essential in-
gredients of any variational quantum algorithm. These circuits
employ parametrized gates, including the single-qubit rotation
gates, and multiqubit entangling gates such as the CNOT gate.
The set of variational parameters θ is optimized in a classical
outer loop [16] to minimize a target cost function.

The most commonly studied heuristic circuit is made of d
blocks built from a layer of single-qubit rotations UR(θl ) with
l = 1, . . . , d + 1 and an entangling block Uent that covers the
whole qubit register (see Fig. 1). In this article, we consider
the entangling block made of a ladder of CNOT gates with
linear connectivity, such that the qubit q j−1 controls the target
qubit q j , and the latter controls the qubit q j+1, obeying open
boundary conditions. This choice is commonly used as it
mimics the existing sparse qubit connectivity of the quantum
hardware. The layer of single-qubit rotations UR(θl ) acts lo-
cally and it corresponds to a tensor product of single-qubit
rotations:

UR(θl ) =
L⊗

j=1

Ry
(
θ l

j

)
, (3)

where Ry(θ l
j ) = exp (−iθ l

j σ̂
y/2) is a rotation around the y axis

of the Bloch sphere of the qubit qj , and l = 1, . . . , d + 1.
Here, θl denotes an array of L angles. The full unitary circuit
operation is described by

UR−CNOT(θ) = UR(θd+1)

d-times︷ ︸︸ ︷
UentUR(θd ) . . .UentUR(θ1), (4)

and the final parametrized state reads

|ψ (θ)〉 = UR−CNOT(θ)(|0〉⊗L ). (5)

The total number of variational parameters is npar = L(d + 1).
Notice that we do not use symmetries nor prior knowledge of
the optimization problem in building the circuit up.

B. The QAOA circuit

QAOA can be understood as a digitized version of quan-
tum annealing [18] that requires variational optimization of
circuit parameters. These parameters can be seen as the op-
timizable time steps that control the evolution of the state
under the action of the problem and the mixing operators in
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FIG. 1. (a) The energy landscape in the computational basis, where items are sorted in the lexicographical order for a ferromagnetic model
with L = 8. The small uniform field breaks the degeneracy between the “00 . . . 0” and “11 . . . 1” bitstrings, with the latter being the global
minimum. (b) Sketch of RY-CNOT circuits, i.e., a circuit consisting only of y rotations and CNOT gates, used in the VQE and commonly
employed in related literature. (c) Sketch of QAOA circuit featuring the specific problem Hamiltonian. In both cases we only show the gate
decomposition of the first block. The circuit features d blocks, which have the same structure but contain independent variational parameters.

a Trotterized fashion. Notice that the QAOA method precisely
dictates the structure of the quantum circuits, while VQE can
be implemented with any parametrized quantum circuit. In
particular, the classical Hamiltonian (i.e., the cost function)
explicitly appears in the QAOA circuit, while a VQE circuit
may be completely heuristic, with the problem Hamiltonian
informing the whole algorithm only through the evaluation of
the cost function after the wave function collapses.

The unitary operator defining the Ansatz is made of d
blocks, each of them being the product of two unitary op-
erators ÛP = exp (iθ l

PĤP), and ÛM = exp (iθ l
MĤM), with l =

1, . . . , d and where ĤP is the problem Hamiltonian, and

ĤM =
L∑

j=1

σ̂ x
j (6)

is the nondiagonal mixing operator.
The implementation of these unitary operators involves

efficient single-qubit rotations along the x axis, denoted
as Rx(θ ) = exp (iθσ̂ x/2), and two-qubit parametrized gates,
Rzz(θ ) = exp (iθσ̂ z ⊗ σ̂ z/2). The structure of the QAOA
Ansatz implies that all the local σ̂ z ⊗ σ̂ z interactions within
the same block are “evolved” with the same time step θ l

P,
while all the x rotations within the block are parametrized
by the same angle θ l

M (see Fig. 1). The total number of
parameters is npar = 2d , i.e., is independent of the problem
size L, and the full unitary operator reads

UQAOA(θ) =
d-times︷ ︸︸ ︷

ÛM
(
θd

M

)
ÛP

(
θd

P

)
. . . ÛM

(
θ1

M

)
ÛP

(
θ1

P

)
. (7)

The final parametrized state is

|ψ (θ)〉 = UQAOA(θ)

( |0〉 + |1〉√
2

)⊗L

, (8)

where the initial nonentangled state can be obtained from the
state |0〉⊗L by acting with one Hadamard gate on each qubit.

III. RESOURCE COUNTING AND SCALING ANALYSIS

A. Statistical noise in evaluating the cost function

The expectation value of ĤP over the prepared state is given
by the sum of all spin configurations

C̃ = 〈ψθ|ĤP|ψθ〉 =
2L−1∑
x=0

|ψθ (x)|2 f (x). (9)

In a realistic setting, the full sum needs to be necessarily
approximated using a finite sample of configurations

C̃ ≈ 1

M

M∑
i=1

f (xi ), (10)

where xi are sampled from |ψθ (x)|2. The precision of this
estimate is affected by statistical noise induced by the finite
number of quantum measurements M. The error in estimating
C̃ scales as 1/

√
M, following the law of large numbers. We

denote this as quantum measurement noise. This noise is
very different from hardware noise, produced by the qubit’s
imperfection, as it is rooted in the measurement process of
wave functions. Each quantum measurement requires a circuit
repetition.

In numerous studies, Eq. (9) is evaluated exactly, which is
dubbed the state-vector simulation. Instead, in our analysis we
account for the effects of the finite M.

It has been empirically shown that better performances for
optimization problems can be obtained by considering the
conditional value at risk (CVaR) estimator of Ref. [32], in
which the cost function is evaluated by summing only over
the best 25% of observed outcomes f (xi ):

C = 1

M∗

M∗∑
i=1

f (xi ). (11)

Operatively, the M readouts are sorted in nondecreasing order
following their output f (xi ), and only M∗ = M/4 samples
corresponding to the 25% lowest values are retained. The
value C represents the cost function that is optimized at each
iteration. We can also keep track of the current minimum
observed value fmin, which is generally smaller than C. Its
final value is compared with the exact global minimum of
the optimization problem to determine the success rate of the
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algorithm. Notice, however, that also when using CVaR one
needs to draw M samples.

B. Optimal scaling

The time complexity of an optimization algorithm can be
expressed as the number of function calls f (x) necessary to
find the optimum, aiming at a fixed success probability as the
problem sizes increase. Each evaluation of the cost function
requires M circuit repetitions.

The total number of function calls required for a full opti-
mization run is therefore

ncalls = niter × M, (12)

where niter is the number of (classical) optimization steps. The
total runtime of the algorithm is proportional to ncalls. A lower
bound is given by trun = ncalls × d × tgate, where again d is
the circuit depth, expressed as the number of repetitions of
a minimal unit (called block) of quantum gates, and tgate is the
time to execute each block. The value of tgate strongly depends
on the hardware. In the noisy-intermediate scale quantum
(NISQ) era, the gate times can be of order 10 ns (100 MHz)
for superconducting hardware [43], while digital gate time is
predicted to be about 0.1 ms (10 kHz) in the fault-tolerant
regime [44]. These estimates neglect the qubit reset time, the
classical communication, and the measurement time, so they
clearly represent optimistic perspectives.

For each problem size, there exists a trade-off between the
number of iterations niter needed to converge to the global
minimum and the number M of measurements, which controls
the accuracy in evaluating the cost function at each step.
Large errors in C may imply slower convergence since the
cost function landscape is not correctly reproduced, thus neg-
atively affecting the performance of the classical optimization
algorithm.

One of the merits of the present study is the systematic
identification of the minimum number of calls, defined as
n∗

calls, corresponding to the optimal combination of niter and M
for each problem size L, thus enabling a proper scaling anal-
ysis. This concept is similar to the optimal time-to-solution
metric developed in quantum annealing [9]. We point out that
one must have n∗

calls < 2L to avoid quantum disadvantage [45],
without even discussing the values of tgate.

With the definitions given above, Eq. (12) can be used
to compute the number of function calls only in the case of
so-called energy-based optimizers. However, in this article,
we also consider gradient-based methods (see Secs. IV B and
IV D). In this case, one needs to compute a npar-valued array of
energy derivatives at each optimization step. For each param-
eter, two independent circuit runs need to be executed. This
holds both for the parameters shift rule (in this case, when
applicable, the gradients are exact) and the finite difference
method. Therefore, the cost for a single iteration has to be
computed as M = 2nparM̃, where M̃ is the number of shots
per single circuit execution.

IV. RESULTS

A. Impracticality of VQE

Here, we analyze the performance of the VQE method
for the ferromagnetic problem. The circuit simulations are
performed using the open-source QISKIT framework [46]. In
evaluating the algorithm’s efficiency, a run is considered suc-
cessful when the absolute minimum is found at least once
within the niter steps. This procedure is standard in bench-
marking quantum devices, such as quantum annealers, versus
classical optimizers [6,7,9]. The fraction Fsucc of successful
runs is estimated considering 1000 executions starting from
different (random) initializations of the variational parame-
ters. It is crucial to note that, within the VQE heuristic circuit,
there is no a priori method for a smart initialization of the
parameters. Therefore, we initialize the parameters using a
random uniform distribution of θ. Moreover, optimized pa-
rameters are not transferable to different instances.

We first inspect how Fsucc depends on the total number of
function calls ncalls, for different problem sizes L. For each
size L, several choices of shot numbers M and optimization
steps niter are considered. Notice that these two parameters
determine the number of function calls ncalls [see Eq. (12)].
Importantly, this analysis allows us to identify the minimal
number n∗

calls for each target success rate Fsucc and for each
problem size L. This procedure is crucial to correctly assess
the scaling of the computational cost with the problem size.
Chiefly, it allows us to account for the role of measurement
shot noise, which is enhanced for small measurement numbers
M, while larger M imply a correspondingly larger compu-
tational cost for each iteration of the classical optimization
algorithm.

In this section, the classical parameter optimization is per-
formed using the constrained optimization by linear approxi-
mation (COBYLA) optimizer, a widely adopted energy-based
algorithm for QAOA [32,47]. Let us also recall that the CVaR
estimator of Eq. (10) is adopted. The gradient-based method,
which uses the parameters shift rule, is discussed in Sec. IV B.
The performance of the (COBYLA driven) VQE method, with
circuit depths d = 1, 2, is shown in Fig. 2. First, we observe
that, for all choices of M and niter, the value of ncalls required to
reach a target Fsucc is not better than the one corresponding to
random search with replacement, see Fig. 2(a). Furthermore,
as shown in Fig. 2(c), the minimal number of function calls
n∗

calls displays a problematic scaling with the problem size,
closely matching the exponential law n∗

calls ∼ 2kL with k � 1.
This holds for all the thresholds of 0.25 � Fsucc � 0.9 consid-
ered in this study. Notably, VQE circuits with depths d = 1
and d = 2 display comparable scaling, suggesting that simply
increasing the circuit depth does not help.

In Appendix A it is shown that hardware noise, which
we simulate using a custom model in QISKIT [46], does not
significantly affect this scaling.

B. Gradient-based VQE optimization

Next, we consider the VQE algorithm driven by a gradient-
based algorithm, addressing again the ferromagnetic problem.
The gradients are obtained using the parameter shift rule,
which is applicable under certain conditions on the adopted
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FIG. 2. Optimization of the ferromagnetic Ising chain using the VQE Ansatz with depth d = 2. (a and b): Success probability Fsucc as
a function of the total number of function calls ncalls = M × niter , for (a) L = 8 spins and (b) L = 14 spins. Different colors correspond
to the different combinations of measurement-shot number M and classical optimization steps niter . The dashed curve corresponds to the
random search with replacement. The inset of (b) shows an example of the interplay between M and niter . To reach larger Fsucc it is better
to systematically increase M. For Fsucc ≈ 0.8, using M = 512 appears marginally better than M = 1024, which in turn becomes optimal at
Fsucc ≈ 0.9, and so on. Crucially, each setup performs worse than the random search. (c) Minimal number of function calls n∗

calls as a function
of the number of spins L for different Fsucc. Circuits with d = 1 (full symbols) and d = 2 (empty symbols) blocks are considered. The thick
dashed (red) line represents the scaling n∗

calls ∼ 2L corresponding to full enumeration. Thin continuous and dashed lines represent fitting
functions of the form n∗

calls = a 2kL , and the fitting parameters a and k, obtained considering the large L regime, are given in the legend. All the
quantities in this figure and the following are dimensionless.

gate set [48,49]. The n-th component of the gradient is com-
puted as n ∈ (1, . . . , npar ):

∂C̃

∂θn
= 1

2
[〈ψθ+

n
|ĤP|ψθ+

n
〉 − 〈ψθ−

n
|ĤP|ψθ−

n
〉], (13)

where θ±
n = (θ1, . . . , θn ± π/2, . . . , θnpar ). Notice that, in this

case, the cost function is computed as in Eq. (10), rather than
adopting the CVaR estimator.

At each iteration, the parameters θ are updated as

θ′ = θ − η∇C̃(θ), (14)

where η is the learning rate. The value η = 0.1 is chosen, as it
turns out to be reasonably close to optimal from a preliminary
analysis on the problem size L = 6. As before, the optimal
combination of M and niter is found, and the computational
complexity is analyzed by observing the scaling of n∗

calls with
the problem size (see Fig. 3). Interestingly, an approximately
quadratic speedup compared with the COBYLA optimizer is
found.

Concluding this subsection, it is worth mentioning that,
in the context of quantum chemistry problems, a full quan-
tum eigensolver has been introduced [50]. This algorithm
implements gradient descent on the quantum device, avoiding
the classical optimization step. Future work might focus on
adapting this scheme to classical optimization problems.

C. QAOA with random parameters initialization

Here, the performance of QAOA is analyzed using the
(energy-based) COBYLA optimizer. The first tests focus on
the ferromagnetic model. We expect to observe a better per-
formance compared to VQE, because QAOA features the
problem Hamiltonian also in the circuit, not only in the cost
function. To support this intuition, we perform a prelimi-
nary comparison, considering circuits with random variational

parameters, i.e., avoiding any classical optimization iteration.
Specifically, we prepare 1000 different QAOA circuits, and
just as many for VQE, using uniformly distributed parameters,
and sample M = 16 measurements from each of them. The
probability Fsucc of observing the exact solution at least once is
then computed. As shown in Fig. 4, the QAOA Ansatz clearly
outperforms VQE. We attribute this to its higher degree of
localization around the correct solution, even when the param-
eters are random. Notice that in this analysis the choice of the
optimizer is not relevant, allowing us to compare the circuits
independently of the way they are optimized. One might also

FIG. 3. Minimal number of function calls n∗
calls as a function of

the number of spins L for different Fsucc. Thin continuous and dashed
lines represent fitting functions of the form n∗

calls = a 2kL , and the
fitting parameters a and k, obtained by fitting the large L data, are
given in the keys.
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FIG. 4. Success probability Fsucc as a function of the system size
L before the classical optimization, for a fixed shot number M =
16. The QAOA (circles) and VQE (squares) Ansätze have the same
depth d = 2 and randomly chosen parameters. The lines represent
fits, obtained from the large L data, as a guide to the eye.

expect that, since the QAOA circuit features fewer parameters,
it should be easier to optimize as compared to VQE [51].

To exhaustively assess the QAOA performance, we repeat
the procedure described in Sec. IV A, exploring different com-
binations of niter and M. Again, this allows us to identify the
optimal number of function calls n∗

calls for the target cumu-
lative success probability Fsucc and problem size L. For each
choice of niter and M, 1000 circuit executions are performed
starting from random uniformly distributed parameters. No-
tably, for all considered success probabilities Fsucc, the number
of function calls is well described by the exponential scal-
ing law n∗

calls ∼ 2kL, with k � 0.4. This corresponds to an
approximately quadratic speedup as compared to the exact
enumeration. Given that the choice of the classical optimizer
may change the observed scaling, in Appendix B, we also
test the simultaneous perturbation stochastic approximation
(SPSA) algorithm [52]. We find that the SPSA and COBYLA
results are compatible. We further test this finding on a more
challenging system, namely, the disordered Ising model. The
results are shown in Figs. 5(d)–5(f). Also, in this case they
are averaged over 30 realizations of the random couplings
and fields of the problem Hamiltonian. Similarly to the fer-
romagnetic case, we observe a profitable scaling, namely,
k ∈ [0.5, 0.8], to be compared with the full enumeration, cor-
responding to k = 1. However, in this case, extracting the
scaling exponent is more difficult, because ncalls needs to be
increased to reach large Fsucc, leading to prohibitive com-
putational times for large problem sizes. Notably, both for
the ferromagnetic and the disordered problem Hamiltonians,
increasing the circuit depth from d = 2 to 4 does not substan-
tially affect the scaling.

To summarize the above findings, the observed QAOA
scaling exponents are about k � 0.4 for the ferromagnetic
problem, and 0.5 � k � 0.8 for the disordered models, using
the COBYLA optimizer and random parameters initializa-

tion. This scaling is comparable to the one of VQE using
gradients. While better than full enumeration, these scalings
still determine unfeasible runtimes (see discussions in Sec. V)
for problem instances of practical interest, i.e., featuring at
least hundreds of spins.

D. Gradient-based QAOA optimization

Here, we benchmark the scalings of QAOA driven by the
COBYLA optimizer against a gradient-based method. Con-
trary to the case described in Sec. IV B, the QAOA circuit does
not satisfy the assumptions to apply the parameter shift rule
[49]. While there are attempts to extend the parameter shift
rule [53], here we adopt the finite difference approximation.
The nth gradient component is computed as

∂C̃

∂θn
= 1

2ε
[〈ψθ+ε

n
|ĤP|ψθ+ε

n
〉 − 〈ψθ−ε

n
|ĤP|ψθ−ε

n
〉], (15)

where θ±ε
n = (θ1, . . . , θn ± ε, . . . , θnpar ) and ε > 0 is the in-

crement. Small values reduce the finite-difference error, but
they also enhance the random fluctuations due to the finite
number of measurements M̃ used to estimate the expectation
values in Eq. (15). To identify the optimal trade-off regime,
we compare the estimated gradients with the exact results
from state-vector simulations [see Fig. 6(a)]. For the typically
optimal shot numbers M̃ ∈ [2, 16], the error is minimized for
increments close to ε = 0.5. This value is adopted hereafter.

With the above setting, we analyze the scaling of n∗
call with

the problem size L [see Fig. 6(b)]. Any benefit provided by the
gradient turns out to be essentially compensated by its cost in
terms of measurement shots. Recently, the detrimental cost of
gradient estimation has been highlighted addressing the ap-
plication of quantum computers for electronic structure [54].
The overall improvement compared to the scaling obtained
with the COBYLA optimizer is not sizable. Furthermore, it
is worth noticing that even for the larger size considered in
this work, the gradient-based optimization requires larger n∗

call.
This is the second main result of the paper: a naive textbook
implementation of QAOA using random starting parameters
is practically inefficient, even when gradient-based optimizers
are used, despite showing an improved scaling with respect to
random search.

E. QAOA with annealing-inspired parameters initialization

On one hand, the above findings indicate that QAOA is
computationally unfeasible for problem sizes of practical in-
terest. On the other hand, QAOA can be interpreted as a
digitized version of quantum annealing, and previous stud-
ies have shown that the available quantum-annealing devices
can already find solutions of large-scale spin-glass instances
in a reasonable runtime [7] even for problem sizes as large
as L = 512. To solve this apparent conundrum, we perform
QAOA in its adiabatic limit. Formally, this limit is reached
when d → ∞. However, as pointed out in Sec. IV C, doubling
the number of layers does not decisively change the compu-
tational scaling. In fact, the number of parameters increases
with the circuit depth, and more parameters usually require
more optimization iterations.

Still, the analogy with quantum annealing inspires a sys-
tematic way to effectively initialize the parameters. Indeed,
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FIG. 5. Optimization of the ferromagnetic (first row) and the disordered (second row) Ising chains within the QAOA method. (a), (b), (d),
and (e) Success probability Fsucc as a function of the total number of function calls ncalls for (a and d) L = 8 spins and (b and e) L = 14 spins.
The error bars indicate the 25th and the 75th percentiles. Different colors correspond to the different combinations of measurement budgets M
and classical optimization-step counts niter . The dashed curve corresponds to the random search with replacement. (c, f) The optimal number
of function calls n∗

calls as a function of the number of spins L for different Fsucc. Circuits with d = 2 blocks (full symbols) and with d = 4
blocks (empty symbols) are considered. The thick dashed (red) line represents the scaling n∗

calls ∼ 2L corresponding to exact enumeration. Thin
continuous and dashed lines represent fitting functions of the form n∗

calls = a 2kL , and the fitting parameters a and k are obtained by fitting the
large L data and are given in the keys.

FIG. 6. (a) Absolute error |err| in estimating the gradient as a function of the step ε of the finite difference approximation. We compare
results obtained with a different number of shots M. (b) The minimal number of function calls n∗

calls as a function of the number of spins L,
for different success probabilities Fsucc. Circuits with d = 2 blocks are considered, with gradient descent (full symbols) and with COBYLA
optimizer (empty symbols). The thick dashed (red) line represents the scaling n∗

calls ∼ 2L corresponding to exact enumeration. Thin continuous
and dashed lines represent fitting functions of the form n∗

calls = a 2kL , and the fitting parameters a and k, obtained considering the large L data,
are given in the keys.
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FIG. 7. Comparison of the optimizations starting from random (Sec. IV C) and annealing-inspired initializations (linear schedule,
Sec. IV E) for the ferromagnetic model. (a and b) The success probability Psucc as a function of the number of spins L, obtained within QAOA
before (continuous curves) and after (dashed curves) the classical optimization performed for niter steps. The number of shots (a) M = 16 and
(b) M = 32 are considered, chosen so that M � 2L . Note that Psucc, i.e., the probability to sample at least once the global minimum at the
n-th iteration, is equal by definition to Fsucc when niter = 0. (c) The minimal number of function calls n∗

calls as a function of L at fixed success
probabilities Fsucc, starting from the annealing-inspired initialization. Circuits with d = 2 blocks (full symbols) and with d = 4 blocks (empty
symbols) are considered. The thick dashed (red) line represents the scaling n∗

calls ∼ 2L corresponding to exact enumeration. The thin continuous
and dashed lines represent fitting functions of the form n∗

calls = a 2kL , and the fitting parameters a and k, obtained by fitting the large L data, are
given in the key.

in Ref. [27] it was observed that, in state-vector simulations,
the optimal parameters often follow a pattern similar to the
quantum annealing prescription: the parameters controlling
the mixing operator θM decrease, while the parameters con-
trolling the problem operator θP increase with the layer index.
Following this idea, we initialize the parameters using the
simplest discretized linear schedule, as in Ref. [55]:

θ l
M =

(
1 − l

d

)
	t , θ l

P = l

d
	t , (16)

where l ∈ [1, . . . , d]. Notice that in most QAOA literature,
the parameters that control the mixing operators are denoted
with β, while the problem parameters are denoted with γ .

In Ref. [55], this initialization was found effective for
MaxCut problems solved via state-vector simulations, i.e.,
eliminating the measurement shot noise. Here, we show that
this initialization is not only an improvement to the QAOA
textbook strategy, but it is also essential to make the algorithm
practical in realistic conditions where measurement noise
is accounted for. Notice that with the reparametrization in
Eq. (16), the angles θ l

M and θ l
P depend only on one real degree

of freedom 	t . More complex reparametrizations could also
be possible [56].

To guide us in the choice of a suitable value for 	t , we per-
form a reasonably exhaustive search, using eight independent
repetitions of state-vector simulation using L = 4, 6, 8, 10
and depths d = 2, 4, 6, 8. It is found that the value 	t ≈ 0.80
is the most frequent outcome of these optimization runs. No-
tably, a similar optimal value was found in Ref. [55] in the
case of MaxCut instances on a random graph. These com-
bined findings suggest that the quantum-annealing-inspired
initialization is a general and robust procedure. This is further
corroborated by the results for the disordered Hamiltonian,
discussed below.

Hereafter, we first tackle the ferromagnetic problem, using
the above prescription. The performance of the QAOA circuit

with the annealing-inspired parameters is compared to the
ones of the QAOA circuits with the parameters obtained after
the fixed numbers of optimization iterations niter = 20 and
niter = 60, starting from the same smart initialization. Notice
that here the following definition of success probability Psucc

is adopted: M measurements are performed on the prepared
state (with M = 16 or M = 32), and the fraction of successful
executions at a selected niter is recorded. This fraction differs
from Fsucc, which corresponds to the probability of observing
the solution at least once during all optimization iterations, not
only in the final state. The scaling of Psucc with problem size
is shown in Figs. 7(a) and 7(b).

One observes that the QAOA Ansatz with the annealing-
inspired linear initialization is already optimal, for both circuit
depths d = 2 and d = 4. The optimization of the parameters
does not yield better Ansätz to sample from. Two important
observations are due: (1) the scaling exponent k is reduced
compared to the random initialization case, and (2) k de-
creases with the circuit depth, as opposed to the case of
random initialization displayed in Fig. 5(c). In Fig. 7(c), the
scaling of the optimal number of calls n∗

calls is shown, fol-
lowing the procedure already discussed in Secs. IV A and
IV C. This indicates that optimizations started from random
parameters, performed with a finite budget of shots M, are
not able to showcase the higher expressive power of deeper
circuits. These numerical results suggest that, with a deep
enough circuit, the exponent k can be reduced enough to reach
practically useful performances for relevant problem sizes.
This hypothesis is corroborated by the analysis reported at the
end of this subsection.

As anticipated above, here we repeat the numerical exper-
iment using ensembles of disordered Ising chains. It turns
out that the precomputed value of 	t ≈ 0.80 is appropriate,
in most instances, also in this setting. Importantly, in Fig. 8
we show that also in this case the smartly initialized Ansatz
features almost converged parameters; indeed, the success
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FIG. 8. Success probability Psucc as a function of the number of
spins L, starting from random and from annealing-inspired initial-
izations for the disordered Hamiltonian. We compare the success
probability Psucc obtained via QAOA before (continuous curves) and
after (dashed curves) the classical optimization performed for niter

steps.

probability Psucc does not improve when the circuit is further
optimized up to niter = 30 steps. Notice that Psucc, i.e., the
probability to sample at least once the global minimum at the
n-th iteration, is equal by definition to Fsucc when niter = 0.
The random-initialized circuit instead benefits from the opti-
mization run, although it never reaches the success probability
of the linearly initialized Ansatz. This result clearly shows
that it is much better to use a clever parameters initialization
without optimization, instead of randomly initializing the pa-
rameters θ and performing the optimization.

Finally, we try to numerically demonstrate that, with
the annealing-inspired initialization, sufficiently deep QAOA
circuits can reach appealing performances, even without

performing classical parameter optimizations. To this end,
we determine the success probability Fsucc as a function of
the problem size L, for several circuit depths d at fixed shot
numbers M (see Fig. 9). It is found that the performance sys-
tematically and rapidly increases with d , reaching Fsucc � 1
even for the largest considered size L, for sufficiently deep cir-
cuits. This evidence matches the intuition that QAOA reduces
to quantum annealing when d is increased and the circuit
parameters follow the pattern in Eq. (16) (although different
schedules are possible) [30]. Notice that here, the number of
shots is M < 2L for the sizes considered.

V. DISCUSSION

We critically analyze two popular quantum algorithms for
optimization, VQE and QAOA, addressing controllable and
reproducible testbed models, i.e., the ferromagnetic and the
disordered Ising chains. On one hand, our results indicate
that, in the practical regime where the number of measure-
ments M per optimization step is much smaller than the
Hilbert-space dimension 2L, basic optimization strategies fail
to identify suitable circuit parameters. On the other hand,
appealing performances are achieved by deep QAOA circuits
when a smart parameters initialization is adopted, as further
discussed below. To reach the above conclusions, we track
the total number of measurements n∗

calls to reach a fixed target
success probability Fsucc in the presence of measurement shot
noise, and we analyze its scaling with the problem size L. As
expected, we find exponential scalings in the form n∗

calls ∝ 2kL,
and we determine the exponents k considering different se-
tups, including energy-based versus gradient-based classical
optimizers in both VQE and QAOA, different circuit depths
d , as well as random and annealing-inspired parameter initial-
izations in QAOA.

The first result of this article is that VQE shows a very poor
scaling with problem size L. When an energy-based optimizer
is adopted, the scaling is not better than direct enumeration
of the whole computational space, which corresponds to k =
1. Introducing additional noise due to simulated hardware

FIG. 9. Success probability Fsucc as a function of the number of spins L without classical optimization. Using the smart linear initialization,
Fsucc grows when the circuit depth is increased, both for the (a) ferromagnetic model and (b) the disordered problems. In the latter, we consider
30 instances of disorder and the error bars indicate the 25th and the 75th percentiles.
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errors does not significantly affect the scaling compared to
the error-free case. Notice that our results are not in contrast
with existing literature on the use of VQE for classical cost
functions [32–35,39], since these studies report results in the
regimes where M ≈ 2L or ncalls > 2L. We also find that a
gradient-based optimization, which we implement in VQE via
the parameters shift rule, is useful, leading up to a quadratic
speedup compared to the energy-based optimizer COBYLA.

Then we consider QAOA: in contrast to most of the litera-
ture, we keep in consideration that the cost function needs to
be stochastically evaluated, and in realistic conditions one can
afford only M � 2L samples.

We first adopt a textbook version of QAOA, where we
optimize the parameters from scratch, i.e., starting from ran-
dom initial values. While, as expected, the total computation
complexity is exponential, the exponent k is sizeably reduced
compared to the full state enumeration. Notice that the per-
formance degradation with the system size at fixed quantum
resources ncalls is not due here to hardware noise [21], but
to the intrinsic quantum measurement shot noise, a crucial
ingredient which is often overlooked and usually leads to
overoptimistic expectations for quantum algorithms [45,57].
Notice also that our numerical findings are compatible with
Ref. [58], which discusses the query complexity of variational
algorithms but only in the vicinity of the global minimum.

With the energy-based optimizer COBYLA, the QAOA
scaling exponents turn out to be k � 0.4 for the ferromagnetic
problem, and in the range 0.5 < k < 0.8 for the disordered
models; the circuit depth does not significantly affect the
scaling. As opposed to the VQE case, adopting a gradient-
based optimization does not sizeably change k. Furthermore,
a third optimizer, the SPSA algorithm, provides compatible
results. These scaling exponents can be used to estimate the
hypothetical runtimes required to execute the QAOA algo-
rithm on physical quantum devices for realistic problem sizes.
Assuming the best-observed scenario of the ferromagnetic
case, ncalls = 1 × 20.31L, some consequential bounds can be
provided. For example, considering the circuit depth d = 2,
gate execution time tgate = 10 ns for the NISQ era (best case
scenario here), one obtains runtimes of about tens of seconds
for a hypothetical problem size L = 100, and a time much
beyond the age of universe already for L = 500. These quotes
need to be contrasted with tens of milliseconds of total CPU
time of simulated annealing [59], or minutes for exact algo-
rithms [6] for L = 500. To achieve a runtime of order 10 ms
(resp. minutes), for L = 500, QAOA should achieve a scaling
exponent of about k = 0.04 (resp. 0.07). We conclude that
even the best-case scenario observed for the ferromagnetic
model is insufficient to provide practical advantage relatively
to classical methods or at least feasible absolute times.

Our numerical experiments are consistent with a very
recent hardware assessment of QAOA versus quantum anneal-
ing, which shows that a d = 2 QAOA circuit, while better than
random sampling, delivers worse performance than annealing
[22]. However, it should be pointed out that, in that large-
scale experiment, the performance metric cannot be defined in
terms of success probability, since QAOA never provides the
exact solution, nor approximate solutions qualitatively com-
parable with those of simulated or quantum annealing. This is
again consistent with our picture. Moreover, our findings are

FIG. 10. Minimal number of function calls n∗
calls as a function

of the problem size L, for different Fsucc. VQE circuits with d =
2 blocks are considered, both with (empty symbols) and without
(full symbols) simulated hardware errors, addressing ferromagnetic
chains. The thick dashed (red) line represents the scaling n∗

calls ∼ 2L

corresponding to the exact enumeration. Thin continuous and dashed
lines represent fitting functions of the form n∗

calls = a 2kL , and the
fitting parameters a and k, obtained considering the large L data, are
given in the legend.

not in contrast with other previous numerical [24] or experi-
mental QAOA [20] studies, which are either presented in the
ncalls > 2L regime or use a bootstrapping method to initialize
the parameters.

To recover an effective algorithm, it is crucial to use a smart
initialization of the QAOA parameters. In fact, for the sim-
ple testbed models we consider, the parameter values given
by the annealing-inspired schedule turn out to be very close
to the optimal values, such that QAOA provides excellent
success probabilities without the need for further parameter
optimization. Interestingly, the same linear schedule proposed
in Ref. [60] for MaxCut problems, based on noise-free simu-
lations, turns out to be suitable also for our ferromagnetic and
disordered Ising chains in the presence of measurement shot
noise. While one cannot associate a specific scaling exponent
to the smartly initialized QAOA algorithm, as, fortunately, in
this case the scaling does improve with the circuit depth, it is
quite plausible that sufficiently deep circuits can reach feasi-
ble computational times for practically relevant problem sizes.

It is worth remembering that the proposal to use a smart ini-
tialization of the QAOA parameter is not new [27,30,55,56].
However, our findings show that this choice should not only be
considered as a good practice to marginally enhance the algo-
rithm efficiency, but it is the only route to make the algorithm
practical in the presence of shot noise. Indeed, if one performs
(noise-free) state-vector emulations of the optimization run,
good parameters can be recovered anyway, irrespective of the
initialization [27,30,55].

Overall, we suggest that future implementation of QAOA
should at least rethink the use of the outer optimization
loop, focusing in particular on smart parameter initializations.
While in this manuscript we adopt an annealing-inspired
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FIG. 11. Scaling of n∗
calls for various depths d , CVaR sample fractions R, and SPSA proposal lengths W . Three curves (from transparent

to solid) show n∗
calls for Fsucc = {0.25, 0.5, 0.75}, respectively. The colors indicate different depths d = 2 (blue, lowest data), d = 3 (green,

intermediate data), and d = 4 (purple, highest data). The numbers (a, k) in the brackets in the legends give the optimal values of the exponential
fit n∗

calls = a 2kL obtained by fitting the data in the regime L � 8.

initialization, more flexible solutions, suitable for shallower
circuits, are possible. In general, the angle array can be
reparametrized as θ → θ(α), using a smaller number of op-
timizable parameters α. This might allow performing fewer
optimization steps, similar to the Fourier reparametrization
of Ref. [27]. The research concerning preoptimization is very
active. For instance, the QAOA smart initialization has been
studied for the Sherrington-Kirkpatrick model [61] and the
MaxCut problem [29,62,63]. Moreover, the experimental re-
sults achieved in the studies cited above have been analytically
confirmed in Ref. [64]. Note that the issue of shot noise is
well known in VQE for genuine many-body quantum Hamil-
tonians, for example, in chemistry [57]. However, the fact
that it also manifests so severely in the case of a classical
cost function, which can be measured in a single basis, is
important.

We expect our findings to apply in general to variational
quantum algorithms strongly relying on a classical optimiza-
tion loop, but not to other alternatives for quantum-enhanced
optimization on digital hardware, including quantum-powered
sampling [65–67], branch-and-bound algorithm [68], and
quantum walks [69], to name a few proposals. On a method-
ological note, these results demonstrate the importance of
simple and controllable models to analyze the scaling prop-
erties of quantum algorithms in realistic settings.

All data discussed in this article are freely available from
Ref. [70].
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APPENDIX A: VQE WITH HARDWARE ERRORS

In this Appendix, we inspect the possible role of hard-
ware errors. For this, a custom model of hardware noise is
introduced, using the open-source QISKIT API [46]. A realistic
model is obtained, e.g., considering the thermal relaxation due
to the qubit environment. Each qubit is then parametrized by
a thermal relaxation time constant T1 = 50 µs and a dephas-
ing time constant T2 = 70 µs. The performance comparison
against the error-free VQE circuits is shown in Fig. 10. Fer-
romagnetic chains are considered using the CVaR estimator.
It turns out that the scaling of n∗

calls with L is not significantly
affected by this simulated hardware noise.
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APPENDIX B: QAOA WITH SPSA

In this Appendix, we analyze the computational scaling
using an energy-based optimizer alternative to COBYLA,
namely, the SPSA algorithm [52]. This is used to optimize
QAOA circuits of depth in the range 2 � d � 4. The testbed
we consider here is the ferromagnetic Ising chain, correspond-
ing to set Jj, j+1 = +1 in Eq. (1).

In the SPSA algorithm, at each optimization step, a
random uniformly distributed npar parameters shift with a
constrained length is applied: θ → θ + 	θ, with ‖	θ‖ � W .
We consider three values of this maximum norm, namely,
W = {0.01, 0.03, 0.06}. The shift vector is generated as
a random vector on a npar-dimensional unit sphere, nor-
malized to length W . We accept the new parameters if
the cost function decreases. As the cost function, we use
the CVaR with either 25% or 100% of the best-energy
samples.

To obtain n∗
calls, we use a procedure similar to the one

used in Sec. III. We consider optimization with M samples
generated at each SPSA step, and optimize until Fsucc reaches
the target value. We then compute n∗

calls = min (M × niter ).
The initial parameters are uniform random values in the range
θn ∈ (−1.0, 1.0), and the results for n∗

calls are obtained by
averaging over 1000 simulations with random starting points.
The results are presented in Fig. 11.

Notably, we observe that the scaling sizeably worsens as
d increases from 2 to 4. This could be attributed to a more
complex optimization landscape which requires a higher M
or ncalls to approach the global minimum. At the same time,
the Ansatz with d = 2 reaches the k � 0.5 scaling, therefore
it features a quadratic speedup compared with the scaling of
the COBYLA-driven VQE optimization, as also found with
the QAOA algorithm, driven either by COBYLA or by the
gradient-based optimizer.
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