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In this article we present a benchmark for resource characterization in the process of controlled quantum
state reconstruction and secret sharing for general three-qubit states. This is achieved by providing a closed
expression for the reconstruction fidelity, which relies on the genuine tripartite correlation and the bipartite
channel between the dealer and the reconstructor characterized by the respective correlation parameters. We
formulate the idea of quantum advantage in approximate state reconstruction as surpassing the classical limit set
at 2

3 . This article introduces new interoperability between teleportation and state reconstruction. This is detailed
through a case-by-case analysis of relevant correlation matrices. We reformulate the idea of quantum secret
sharing by setting up additional constraints on the teleportation capacity of the bipartite channels between dealer
and shareholders by ensuring that, individually, the shareholders cannot reconstruct the secret. We believe that
this will give us an ideal picture of how quantum secret sharing should be.
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I. INTRODUCTION

With the advent of quantum information theory, sending
and sharing quantum [1–7] as well as classical [8–13] infor-
mation using quantum resources has become a significant area
of study. During the transmission, security of the message be-
comes a key consideration and has to be taken care of to set up
quantum networks [14–21] in the longer run. Secret sharing is
a procedure that allows secure distribution of a secret message
into multiple n parts so that a certain number k of parts can be
used to get back the original message and forbids any subset
smaller than k from obtaining useful information about it.
Quantum secret sharing (QSS) [22–36] is the extension of this
idea where we use a quantum resource (usually a multiparty
entangled state) to distribute the secret [26–28]. The secret
itself can be classical or quantum in nature and of any size.
In this article we are interested in sharing of a qubit with
two parties such that when both parties cooperate, they can
reconstruct it at one of the locations. Here we refer to this
process as controlled state reconstruction (CSR). Controlled
state reconstruction is a slightly broader term than the secret
sharing in the sense that it need not account for the security
aspects that come with secret sharing. The security here is
defined by the condition that no shareholders can reveal the
secret without the help of the other shareholders. This pro-
cess has been termed controlled quantum teleportation (CQT)
since it is analogous to teleporting a qubit from an initial
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location (dealer) to a final location (reconstructor) with
the help of a third party (assistant) acting as the control
qubit [37–39]. It has been shown that a witness operator
can be constructed to estimate the power of the controller in
CQT [40].

In this paper we differentiate between the two scenarios
by using the term quantum secret sharing specifically when
security is a requirement (i.e., individual shareholders do not
have enough information about the secret) and controlled state
reconstruction as the general term for transmitting quantum
information from one location to another with the help of an
assistant. Most of our work focuses on CSR; however, at the
end, we investigate some intricacies that accompany QSS.

We consider the simple setting where a dealer (say, Alice)
aims to share an unknown qubit with two shareholders (say,
Bob and Charlie). At the start of the protocol, one of the share-
holders decides to be the reconstructor (Charlie, for example),
which makes the other one (Bob, in this case) the assistant.
Perfect reconstruction of the state after sharing has already
been shown using the Greenberger-Horne-Zeilinger (GHZ)
state as the resource [22]. We study approximate controlled
reconstruction of the state using general tripartite entangled
states. Hence, if we are using a resource which does not allow
perfect reconstruction, we want the final qubit to be as close as
possible to the original qubit. By quantum advantage we refer
to a situation where the reconstruction fidelity is better than
what can be achieved classically without having any shared
quantum resource.

Our first finding is the classical limit of controlled re-
construction, which happens to be 2

3 . This matches the
classical limit of teleportation fidelity of a bipartite two-qubit
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channel [2]. Subsequently, we find an expression for the
reconstruction fidelity in terms of the Bloch parameters of the
resource state, which then enables us to find conditions under
which a three-qubit state will have quantum advantage in the
process of CSR or CQT. It turns out that the reconstruction
fidelity is dependent on two significant parameters: One is
the correlation tensor between three parties and the other
is the correlation matrix of the dealer-reconstructor pair. It is
intriguing to note that this fidelity does not depend on the cor-
relation matrix of the assistant-reconstructor pair. In a sense,
this fidelity just quantifies how much quantum information
from the initial state is transferred to the final location. There
can be situations with quantum advantage despite the absence
of tripartite correlation. This leads us to believe that this
fidelity does not originate solely from CSR. Rather, there is
also a contribution of the teleportation capacity of the bipartite
channel between the dealer and the reconstructor. We not only
prove this but consider several cases based on the correlation
matrices that appear in our expression. This helps us analyze
the interoperability between the reconstruction fidelity and
the teleportation fidelity for three-qubit resources in a holistic
manner. In the latter part of our article we develop this idea
further to introduce QSS in a different but meaningful way.
This paves the way to distinguish QSS from CSR or CQT. For
a QSS protocol to be successful, we make sure that neither
of the shareholders has useful information about the secret by
enforcing additional constraints on the teleportation capacities
of the dealer to the shareholders’ channels. We also specify the
states that can be used as resources for successful QSS.

In Sec. II we obtain the classical limit of this fidelity
without using any quantum channel to share the state. In
Sec. III we give an expression for the maximum possible
reconstruction fidelity using the parameters of the resource
state. This lets us quantify the quantum advantage that an
arbitrary three-qubit resource can provide in reconstruction. In
the same section we discuss a potential relationship between
(two-party) quantum teleportation and (three-party) state re-
construction. In Sec. IV we give criteria to discern QSS from
CSR by adding additional constraints that need to be satisfied
for QSS. We summarize in Sec. V.

II. CLASSICAL LIMIT OF CONTROLLED STATE
RECONSTRUCTION

We define the classical limit as the expected fidelity score
obtained if only classical channels are used to share a qubit.
This will allow us to define the threshold above which a quan-
tum advantage can be claimed. Here we consider a three-party
scheme where Alice is the dealer, Bob is the assistant, and
Charlie is the reconstructor. Let |q〉 denote Alice’s qubit which
is to be shared. She can measure in some basis (say, |↑〉 and
|↓〉), which would be agreed upon by the parties beforehand.
Then this measurement result can be encoded into a single
classical bit s (say, 0 for |↑〉 and 1 for |↓〉). This can be split
into two shares s1 and s2 such that s1 ⊕ s2 = s. It can be shown
that (for a given s) it would be optimal for Alice to choose
the appropriate s1 and s2 from a uniform distribution (see
the Appendix). Alice transmits the respective bits to Bob and
Charlie through classical channels. During the reconstruction
phase, Bob and Charlie cooperate to find s, which they can

use to construct the corresponding quantum state |s〉 (again,
|↑〉 for s = 0 and |↓〉 for s = 1) which is an approximation of
Alice’s original quantum state |q〉, which we represent as

|q〉 = cos
θ

2
|↑〉 + eiφ sin

θ

2
|↓〉 . (1)

Since the final state |s〉 is eventually dependent only on Alice’s
measurement, we can say |s〉 is |↑〉 with probability cos2 θ

2
and |↓〉 with probability sin2 θ

2 . Now calculating the fidelity
between the two-qubit states,

F (q, s) = ‖〈q|s〉‖2

= Pr(s = 0)‖〈q|↑〉‖2 + Pr(s = 1)‖〈q|↓〉‖2

= 1 − 1
2 sin2 θ. (2)

Taking the expectation fidelity over all states |q〉 on the Bloch
sphere,

F = 〈F (q, s)〉

= 1

4π

∫ π

θ=0

∫ 2π

φ=0
sin θ dθ dφ

(
1 − 1

2
sin2 θ

)

= 1

2
(2) − 1

4

(
4

3

)
= 2

3
. (3)

Hence the fidelity for reconstruction is Fc = 2
3 .

This is the value of the classical limit of the reconstruction
fidelity of the state shared by the dealer. If one is able to
achieve a fidelity more than this with the help of a shared
quantum resource (in this case, a tripartite entangled state),
we say that there is a quantum advantage. Note that in [41]
this calculation was done for a similar scenario and arrived at
the same value, i.e., 2

3 .

III. APPROXIMATE CONTROLLED RECONSTRUCTION
AND QUANTUM ADVANTAGE

We start with a three-qubit resource state ρABC in the space
HA ⊗ HB ⊗ HC . We can write it in parametric form as

ρABC = 1

8

(
I⊗3 +

3∑
i=1

aiσi ⊗ I⊗2

+
3∑

j=1

I ⊗ b jσ j ⊗ I +
3∑

k=1

I⊗2 ⊗ ckσk

+
3∑

i, j=1

qi jσi ⊗ σ j ⊗ I +
3∑

i,k=1

rikσi ⊗ I ⊗ σk

+
3∑

j,k=1

s jkI ⊗ σ j ⊗ σk +
3∑

i, j,k=1

ti jkσi ⊗ σ j ⊗ σk

)
.

(4)

Here ai, b j , and ck are local Bloch vectors and the cor-
relation matrices are given by Q = {qi j} = Tr[ρABC (σi ⊗
σ j ⊗ I )], R = {rik} = Tr[ρABC (σi ⊗ I ⊗ σk )], and S = {s jk} =
Tr[ρABC (I ⊗ σ j ⊗ σk )], which are of order 3 × 3. Here τ =
ti jk = Tr[ρABC (σi ⊗ σ j ⊗ σk )] is the correlation tensor.
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Now we find the reconstruction fidelity of the state shared
in terms of the Bloch parameters of the three-qubit resource
state ρABC . The qubit § on Alice’s side, parametrized by the
Bloch vector φ, is given by

ρ§ = 1

2

(
I +

∑
i

φiσi

)
. (5)

In the standard scheme, measurement takes place at two
phases of the protocol: first, on Alice’s side of the shared
qubit § along with Alice’s share of the resource A, with
projectors Pl = |�l〉〈�l | (l = 0, 1, 2, 3), and second, on
Bob’s qubit, with projectors Px = |x〉〈x| (x = +,−). Here
the Bell states are given as |�3

(0)〉 = 1√
2
(|01〉 ± |10〉) and

|�2
(1)〉 = 1√

2
(|00〉 ± |11〉) and the Hadamard states are |x±〉 =

1√
2
(|0〉 ± |1〉), respectively. The Bell state projectors can be

written in the form

Pl = 1

4

(
I⊗2 +

∑
i j

ti jσi ⊗ σ j

)
. (6)

The coefficients ti j form a correlation matrix Tl

(l = 0, 1, 2, 3 for different projectors). These are given
by T0 = diag(−1,−1,−1), T1 = diag(−1,+1,+1),
T2 = diag(+1,−1,+1), and T3 = diag(+1,+1,−1). The
set of Hadamard projectors on Bob’s side is given by
Px = 1

2 (I + x · σ ), with x = (±1, 0, 0).
Now we find the output state of Charlie’s qubit, af-

ter the two measurements followed by applying appropriate
unitaries:

pα
α = Tr123[(Pl ⊗ Px ⊗ Uα )(ρ§ ⊗ ρABC )(Pl ⊗ Px ⊗ U †
α )].

(7)

The trace is taken over the original qubit, Alice’s share, and
Bob’s share. The α acts as a multi-index for the pair (l, x).
Here pα = Tr[(Pl ⊗ Px ⊗ I )(ρ§ ⊗ ρABC )] is the probability of
getting the measurement corresponding to the combination
(Pl , Px ). Finally, Uα is the unitary operator chosen to recon-
struct (a close approximation of) the state at Charlie’s side.
Substituting the expressions for the states and the projection
operators, we obtain


α = 1

16pα

[(
1 + 1

2

∑
i

(Tl )iiAiφi +
∑

i

Biφi

+ 1

2

∑
i, j

(Tl )iiQi jφix j

)
I +

∑
jk

� jk

( ∑
j

Cj +
∑

i j

Si jxi

+ 1

2

∑
i j

(Tl )iiRi jφi + 1

2

∑
i jm

(Tl )mmtmi jxiφm

)
σk

]
. (8)

Here {�α} are rotations in R3 obtained from the unitaries
{Uα}, given by the relation

Uα n̂σU †
α = (�†n̂)σ =

∑
i j

�i jniσ j . (9)

Now the expected fidelity of reconstruction, i.e., the closeness
of Charlie’s qubit to the original state, is given by the follow-
ing integral over the Bloch sphere with uniform distribution

M:

F =
∮

dM(φ)
∑

α

pαTr(
αρ§). (10)

After substituting expressions from Eqs. (8) and (5), omitting
the terms that do not contribute to the integral, and using the
relation ∮

〈φ,Y φ〉dM(φ) = 1

3
Tr(Y ), (11)

the integral in (10) reduces to

F = 1

16

∑
α

{
1 + B · x + 1

3
Tr(�†

αR†Tl )

+ 1

3
Tr[�†

α (τλμνxμ)†Tl ]

}
. (12)

This is summed up over all α, i.e., all the (l, x) possibilities of
the two measurements. Note that

∑
α B · x = ∑

l

∑
x B · x =

0. Let T be the matrix formed by the elements {∑ j ti jkx j}, or
in tensor notation

T = τλμνxμ, (13)

for x = (+1, 0, 0). Then, for x = (−1, 0, 0) we have
τλμνxμ = −T . Thus, the summation can be split into two,
based on x,

F = 1

2
+ 1

16

1

3

∑
l

Tr[T †
l (R + T )�(l,+)]

+ 1

16

1

3

∑
l

Tr[T †
l (R − T )�(l,−)]. (14)

Here we have expanded the multi-index α back in the pair
form (l, x). Now we want to choose the rotations to maximize
F . As −T †

l is also a rotation, the �α’s can be chosen indepen-
dently to maximize each term. We take �′ to be the rotation
that maximizes the terms corresponding to T †

l (R − T ) and �′′

for the terms corresponding to T †
l (R + T ). Now this expres-

sion is independent of l ,

Fmax = max
�′,�′′

1
2

{
1 − 1

6 Tr[(R + T )�] − 1
6 Tr[(R − T )�′]

}
,

(15)
where the maximum is taken over all rotations �′ and �′′.
Since �′ and �′′ can be independent of each other, we get the
maximum as

Fmax = 1
2

{
1 + 1

6 Tr[
√

(R + T )†(R + T )]

+ 1
6 Tr[

√
(R − T )†(R − T )]

}
. (16)

A tripartite resource state 
 is useful for reconstruction of
the state only when Fmax > 2

3 , or when ϑ (
) > 1, where we
define ϑ (
) as

ϑ (
) := 1
2 (‖R + T ‖1 + ‖R − T ‖1) (17)

such that Fmax = 1
2 [1 + 1

3ϑ (
)] and ‖ · ‖1 denotes the trace

norm of a matrix, given by ‖Z‖1 = Tr
√

Z†Z . Hereon, we shall
simply use F to denote the fidelity possible in the optimal case
(which was denoted by Fmax until this point). Since R shows
up in the expression, we conclude that the reconstruction of
the state is not entirely because of the controlled reconstruc-
tion capability. There can be a situation when T = O (O
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TABLE I. Expression of ϑ (ρ ) for different settings of (dealer, assistant, reconstructor).

Setting No. Setting Expression for ϑ (ρ )

1 (Alice, Bob, Charlie) ϑAC (ρ ) = 1
2 (‖R + TAC‖1 + ‖R − TAC‖1)

2 (Charlie, Bob, Alice) ϑAC (ρ ) = 1
2 (‖R + TAC‖1 + ‖R − TAC‖1)

3 (Alice, Charlie, Bob) ϑAB(ρ ) = 1
2 (‖Q + TAB‖1 + ‖Q − TAB‖1)

4 (Bob, Charlie, Alice) ϑAB(ρ ) = 1
2 (‖Q + TAB‖1 + ‖Q − TAB‖1)

5 (Bob, Alice, Charlie) ϑBC (ρ ) = 1
2 (‖S + TBC‖1 + ‖S − TBC‖1)

6 (Charlie, Alice, Bob) ϑBC (ρ ) = 1
2 (‖S + TBC‖1 + ‖S − TBC‖1)

denotes the null matrix), but the value of F is greater than
2
3 . Here, as there is no tripartite correlation1, Bob’s involve-
ment seems inconsequential. In a sense, this fidelity quantifies
the information that can be retrieved as a result of this pro-
cess. Hence, the CSR fidelity has contributions from both the
reconstruction capacity of the three-qubit resource and the
teleportation capacity of the two-qubit channel between the
dealer and receiver.

Here the dealer-reconstructor subsystem of the resource
ρABC [from Eq. (4)] is given by

ρAC = TrB(ρABC )

= 1

4

(
I⊗2+

∑
i

aiσi ⊗ I+
∑

k

I ⊗ ckσk+
∑

ik

rikσi ⊗ σk

)
.

(18)

Using the result from [2], we can write the teleportation fi-
delity of ρAC as

F ′
AC = 1

2

(
1 + 1

3 Tr
√

R†R
)
. (19)

This analysis is for the case when Alice is the dealer and the
final qubit is being reconstructed at Charlie’s end with the
assistance of Bob. However, there can be other cases with
the same resource state when the roles are interchanged. This
gives us an ordered triplet of (dealer, assistant, reconstructor),
which we call the setting.

For some resource states like the GHZ state, all six set-
tings are equivalent due to its symmetry. However, this cannot
be generalized, as F for all the settings need not be the
same. We thus need to define three different T matrices
TAB = {Tr[ρABC (σi ⊗ σ j ⊗ σx )]}i j , TAC = {Tr[ρABC (σi ⊗ σx ⊗
σ j )]}i j , and TBC = {Tr[ρABC (σx ⊗ σi ⊗ σ j )]}i j . Here the sub-
scripts denote the subsystems that contribute to the matrix. For
example, in TAB the matrix indices correspond to the first and
second subsystems of the three-qubit resource, as seen above.
We can hence rewrite Eq. (17) for the six settings, as shown in
Table I. As the table shows, the expression varies only based
on the assistant and is symmetric in swapping the dealer and

1In later sections of this paper, the term tripartite correlation or
correlation tensor is sometimes used to talk about the matrix T . It
is important to note that although it is derived from the tensor τ of
order 3, T itself has order 2, and hence is described by a matrix [the
reader can refer to Eq. (13) for clarification]. Regardless, we can use
this terminology for simplicity, since T does capture a part of the
tripartite correlation.

reconstructor. This symmetry is shared with the expression for
fidelity of teleportation [2].

For simplicity, we will henceforth use the setting (Alice,
Bob, Charlie) by default and follow the representation in
Eq. (17), i.e., T = TAC and ϑ (
) = ϑAC (
), unless specified
otherwise. We have seen that the correlation matrix S is not
present in Eq. (17). It is important to note that this does not
rule out the role of Bob in the reconstruction of the state. It
only tells us that the prior correlation between Bob and Char-
lie does not affect reconstruction fidelity. The only factors in
determining it are the genuine correlation between Alice, Bob,
and Charlie, captured by T , and the correlation matrix be-
tween the dealer and the reconstructor, denoted by R. Hence,
we study different cases based on R and T which give an
overview of how this score captures both state reconstructing
fidelity and the teleportation fidelity of the channel between
the source and the reconstructor. These also present us with
some conditions on quantum advantage in terms of R and T .

A. Case 1: R �= O and T �= O

This is the most general scenario when both R and T can
take any value. In this case, it is not evident whether the
fidelity score is entirely because of the state reconstruction
capacity of the entire three-qubit state or due to the telepor-
tation capacity of the dealer-reconstructor channel, or both.
Consequently, we cannot pinpoint the main reason behind the
quantum advantage. One way to address this situation is to
look into the teleportation fidelity of the dealer-reconstructor
subsystem. If the teleportation fidelity is at most 2

3 and the
reconstruction fidelity is greater than 2

3 , then we can conjec-
ture that there is a quantum advantage because of the state
reconstruction resource. We discuss different cases with the
help of the following examples.

Example 1. As the first simple case we consider the GHZ
state |GHZ〉 = 1√

2
(|000〉 + |111〉). The matrices R and T for

the GHZ state can be found after writing the corresponding
density state in its Bloch form

R =
⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠, T =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠.

This gives

ϑ (ρW ) = 3, Fmax = 1, (20)

which is expected since it is already known that the GHZ state
is used for perfect reconstruction. Note that the teleportation
fidelity [from Eq. (19)] for the dealer-reconstructor subsystem
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of this state is F ′ = 1
2 (1 + 1

3 ) = 2
3 . This clearly gives us a case

with a quantum advantage arising from the state reconstruc-
tion ability of three-qubit resource states.

Example 2. In a case where both of the fidelities F ′ and
F are greater than 2

3 , we cannot be sure whether the quantum
advantage in the reconstruction fidelity F is entirely because
of the state reconstruction resource. The W state, known to
exhibit a different nature of entanglement from the GHZ
state [42], is given by |W 〉 = 1√

3
(|001〉 + |010〉 + |100〉). The

R and T for the W state, from its Bloch representation of
ρW = |W 〉 〈W |, are

R =
⎛
⎝ 2

3 0 0
0 2

3 0
0 0 − 1

3

⎞
⎠, T =

⎛
⎝0 0 2

3
0 0 0
2
3 0 0

⎞
⎠,

which gives

ϑ (ρW ) = 7
3 , Fmax = 8

9 ≈ 0.89. (21)

We see that Fmax �= 1, which is expected since it is already
known that W states cannot be used for perfect controlled
reconstruction [43], but ϑ (ρW ) > 1 (equivalently, Fmax > 2

3 ).
In this case, the subsystem-teleportation fidelity for the dealer-
reconstructor channel is found to be F ′ = 1

2 (1 + 5
9 ) = 7

9 .
Since in this case F ′ > 2

3 , we cannot claim that the quantum
advantage here is due to genuine tripartite entanglement.

Example 3. Next we consider another example where
we show the existence of a state within the paradigm of
R �= O and T �= O, for which the reconstruction fidelity
is greater than 2

3 , whereas the teleportation fidelity of the
dealer-reconstructor subsystem is less than or equal to 2

3 . This
is a clear example of a state (other than the well-known GHZ
state) for which quantum advantage is because of tripartite
controlled reconstruction. In this context, let us consider a
generalized W class of states. These states can be expressed
as [44,45]

|ψW 〉 = λ0 |000〉 + λ1 |100〉 + λ2 |101〉 + λ3 |110〉 , (22)

where λi ∈ R, λi � 0, and
∑

i λ
2
i = 1. For ρW̃ = |ψW 〉 〈ψW |,

the matrices of interest are

RW̃ = 2

⎛
⎝ λ0λ2 0 λ0λ1

0 −λ0λ2 0
−λ1λ2 0 1

2 − λ2
1 − λ2

3

⎞
⎠,

TW̃ = 2

⎛
⎝ 0 0 λ0λ3

0 0 0
−λ2λ3 0 −λ1λ3

⎞
⎠.

In Fig. 1 we plot the teleportation fidelity of the dealer-
reconstructor subsystem [given by Eq. (19)] against the
reconstruction fidelity [given by Eq. (17)] of these states,
denoted by F ′ and F , respectively. The figure represents the
entire set of W states (irrespective of R and T ), with the orange
region depicting states with F ′ � 2

3 , which is of interest, and
correspondingly, the blue region has states with F ′ > 2

3 . This
tells us that states in the orange region are depicting quantum
advantage not because of the teleportation channel, while it
is still inconclusive for the blue region. Since these are all
pure states, F � 2

3 . Not all of these states satisfy R �= O and
T �= O, but one state that falls in this paradigm has been

FIG. 1. Comparison of the reconstruction fidelity and subsystem-
teleportation fidelity for 4 × 106 pure state resources uniformly
sampled from the entire W class.

marked in the figure as an example of quantum advantage,
as it lies in the orange region. This state is described by
the parameters λ0 = λ1 = 0.7, λ2 ≈ 0.09, and λ3 ≈ 0.11. The
standard W state has also been marked, which lies in the blue
region, as expected from the discussion in Example 2.

B. Case 2: R = O and T �= O

In this case, since the correlation matrix R = O, it can be
said with certainty that there is no direct correlation between
the dealer and the reconstructor. This means there will be
no teleportation capacity of the channel between them and
hence it will not affect the total reconstruction fidelity. In other
words, if there is a quantum advantage in this region, we can
surely claim that this is because of the tripartite controlled re-
construction capacity. However, the converse is not true. There
can be states with R �= O for which there is no correlation
between the dealer and the reconstructor. In other words, there
can be quantum states whose quantum advantage arises solely
from the T component of correlation even when R �= O.

Theorem 1. If R = O and T �= O, the observed quantum
advantage is only because of tripartite state reconstruction.

Proof. Putting R = O in the expression for subsystem-
teleportation fidelity [from Eq. (19)] gives F ′ = 1

2 . Hence, no
quantum information can flow from dealer to reconstructor
through teleportation alone. Then the contribution to the
reconstruction fidelity has to come from the tripartite
channel. �

Example. Consider the following states:

|γ±〉 = |000〉 ± |100〉 ± |110〉 + |111〉
2

.

Both these states fall into Case 1 but if we take their equal
mixture ργ = 1

2 (|γ−〉 〈γ−| + |γ+〉 〈γ+|), R is found to be O.
Moreover, we get F = 3

4 > 2
3 , giving us a quantum advantage.

Since R = O and teleportation cannot contribute to the final
fidelity, we infer that this advantage arises purely from the
tripartite state reconstruction.
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C. Case 3: R �= O and T = O

If in Eq. (17) R �= O but T = O, it can be said that there
is no tripartite correlation and hence there is no involvement
of Bob. So, in principle, there is no question of controlled
reconstruction in this case. In such a case, if the reconstruction
fidelity is greater than 2

3 , that is purely because of the telepor-
tation capacity of the subsystem. However, the converse is not
true as there can be tripartite states with T �= O but not having
genuine quantum correlation.

Theorem 2. If R �= O and T = O, then the quantum
advantage in the reconstruction is entirely because of the
teleportation capacity of the subsystem between the dealer and
the reconstructor.

Proof. Putting T = O in Eq. (17), we get the expression

ϑ (ρABC ) = ‖R‖1. (23)

The expression in Eq. (19) now matches with the expression
for reconstruction fidelity given by

Fmax = 1
2

[
1 + 1

3ϑ (ρABC )
] = 1

2

(
1 + 1

3‖R‖1
)
.

Hence, it can be concluded that quantum advantage in this
case is solely because of the teleportation channel between
the dealer and the reconstructor. �

Example. Consider the following states:

|δ±〉 = |000〉 ± |100〉 ± |110〉 + |111〉
2

.

Both of these have R �= O �= T , but when their equal mixture
is considered, for the mixed state ρδ we find T = O, where
ρδ = 1

2 (|δ−〉 〈δ−| + |δ+〉 〈δ+|). In this case as well, we get
F = 3

4 > 2
3 . However, since T is O, we argue that this fidelity

arises solely from the teleportation capacity of the channel be-
tween the sender and the reconstructor and hence the quantum
advantage.

D. Case 4: R = O and T = O

Here ϑ (ρ) = 0, giving us Fmax = 1
2 , which is no better

than a random guess. In this case, there cannot be any quantum
advantage because there is no flow of information from the
dealer to the reconstructor.

IV. QUANTUM SECRET SHARING

For any secret-sharing protocol to be successful, neither
of the shareholders should have useful information about the
secret on their own. In other words, Charlie should not be able
to reconstruct the secret without Bob’s involvement and vice
versa. In this context, we use the term useful information as
the amount of extra information that can be obtained over the
classical limit of the respective channels. One quantification
can be the teleportation capability of the bipartite channels
between the dealer and the shareholders. If this is more than 2

3 ,
then there is an information gain through the bipartite channel
compared to what can be achieved classically. This enforces
additional conditions on the resource to ensure the protocol
is secure against dishonest parties. The maximum expected
fidelity that Bob can obtain on his own accord is equivalent
to the teleportation capacity of subsystem ρAB of the resource

FIG. 2. Conditions for secret sharing (A denotes dealer, B assis-
tant, and C reconstructor).

since Charlie is not involved. The state ρAB is given by

ρAB = TrC (ρABC )

= 1

4

(
I⊗2 +

∑
i

aiσi ⊗ I +
∑

j

I ⊗ b jσ j

+
∑

i j

qi jσi ⊗ σ j

)
.

The teleportation capacity of this bipartite resource, i.e., the
maximum expected share of Bob without involving Charlie,
is

F ′
AB = 1

2

(
1 + 1

3 Tr
√

Q†Q
)
. (24)

We have already seen the expression of F ′
AC for Charlie’s case

in Eq. (19). Since we know that a state is useful for quantum
teleportation when F ′ > 2

3 [2], we want

F ′
AB � 2

3 , F ′
AC � 2

3

⇒ Tr
√

Q†Q � 1, Tr
√

R†R � 1. (25)

These constraints, along with ϑ (ρ) > 1 (or, equivalently, F >
2
3 ), together form the three conditions for successful QSS (see
Fig. 2). This ensures that the secret is faithfully reconstructed.
Additionally, it accounts for dishonest recipients (either Bob
or Charlie), as this ensures that the information they can
retrieve from the quantum resource, without faithfully coop-
erating, does not exceed the information that can be obtained
classically even in the absence of the quantum channel. Thus,
we are able to provide a way to characterize the states useful
for secret sharing more precisely.

Example. Consider the following states:

|β±〉 = |000〉 + |100〉 + |101〉 ± |110〉
2

.

The equal mixture of |β+〉 〈β+| and |β−〉 〈β−| gives
Tr

√
Q†Q = 1

2 = Tr
√

R†R and still gives F > 2
3 , fulfilling all

three conditions. This example demonstrates successful secret
sharing, in addition to the well-known GHZ state. This is
contrary to the belief that only the GHZ state is useful for
secret sharing.
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V. CONCLUSION

In this article we have given an expression for the max-
imum expected CSR fidelity for general three-qubit states
in terms of their Bloch parameters. This fidelity has con-
tributions from both the tripartite correlation tensor and the
correlation matrix between the dealer-reconstructor subsys-
tem. We reported a quantum advantage in the reconstruction
of the state over its classical limit 2

3 . Different cases, in terms
of the involved correlation matrices, were then investigated
with respect to the CSR fidelity. We provided examples where
the advantage is only because of the teleportation capacity
of the subsystem and those where the advantage is mainly
because of the state reconstruction capacity of the tripartite
resource. We also discussed cases which are ambiguous when
it comes to the cause of the quantum advantage. Our results
revealed interoperability between quantum teleportation and
CSR. This also led to avenues of research related to the in-
teroperability that can exist in different quantum information
processing tasks. We extended our analysis by outlining addi-
tional conditions that must be satisfied to ensure the protocol
is secure by preventing any dishonest participant from having
a quantum advantage. These conditions distinguish CSR from
QSS in a true sense. Further work can be done in this context,
analyzing the interference of eavesdroppers and how they can
be detected. From a resource point of view, we were able
to characterize the states that provide quantum advantage in
CSR. In addition, we were able to identify the states that can
be used as resources for QSS.
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APPENDIX: CASE OF A DISHONEST PARTY
IN THE CLASSICAL SCENARIO

Here we wish to see what happens in the case if one
of the receiving parties (either Bob or Charlie) is dishonest.
Since information from both the parties is required to re-
construct the qubit, the honest one can keep a check on the
dishonest one. However, we also have to take a look at what
might happen in the case where the dishonest person wants
to guess the shared qubit based on what information they
have.

Before we move on, let us look at the possible distri-
butions of the values s1 and s2. Let si ← {p0, p1} denote
that si takes the value 0 with probability p0 and 1 with
probability p1. Now if we have s1 ← {p, 1 − p}, then either
s2 ← {p, 1 − p} (if s = 0) or s2 ← {1 − p, p} (if s = 1). In
either case, both distributions are dependent on each other,
and once one of the bits is sampled, the other bit is known with
certainty.

Since the distributions are symmetric, without loss of gen-
erality, we can take Bob* as the dishonest party. He knows
s1 but has no knowledge of s2 without communicating with
Charlie. So he has to guess the bit s; we denote his guess of the
bit by s′, which is either the same as his bit s1 or the negation
of it.

The first case is for s′ = s1, or, equivalently, Bob* guesses
s2 = 0. Let s2 ← {p, 1 − p}. The fidelity between the original
qubit and the one reconstructed by Bob can be expressed as
(F g is used to denote fidelity with the guess)

F g(q, s′) = Pr(s = s′)F (q, s) + Pr(s �= s′)F (q,¬s)

= Pr(s2 = 0)[Pr(s = 0)‖〈q|↑〉‖2 + Pr(s = 1)‖〈q|↓〉‖2] + Pr(s2 = 1)[Pr(¬s = 0)‖〈q|↑〉‖2 + Pr(¬s = 1)‖〈q|↓〉‖2]

= (p)

(
cos2 θ

2
cos2 θ

2
+ sin2 θ

2
sin2 θ

2

)
+ (1 − p)

(
sin2 θ

2
cos2 θ

2
+ cos2 θ

2
sin2 θ

2

)

= p

(
1 − 1

2
sin2 θ

)
+ 1

2
(1 − p) sin2 θ = p cos2 θ + 1

2
sin2 θ.

Hence the expected guess fidelity in this case is

F ′g = 〈F g(q, s′)〉 = 1

4π

∫ π

θ=0

∫ 2π

φ=0
sin θ dθ dφ

(
p cos2 θ + 1

2
sin2 θ

)
= 1

4π
2π

(
4

3
− 2

3
p

)
= 2 − p

3
.

We want Bob*’s guess to be no better than a random one, or, equivalently, we want

F ′g � 1

2
⇒ 2 − p

3
� 1

2
⇒ p � 1

2
. (A1)

The second case is for s′ = ¬s1, or, equivalently, Bob* guesses s2 = 1. In this case,

F g(q, s′) = Pr(s2 = 1)F (q, s) + Pr(s2 = 0)F (q,¬s) = (1 − p) cos2 θ + 1

2
sin2 θ

and F ′g = 〈F g(q, s′)〉 = 1 + p

3
.
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Enforcing the same condition as last time,

F ′g � 1

2
⇒ 1 + p

3
� 1

2
⇒ p � 1

2
. (A2)

Both conditions will be satisfied if we set p = 1
2 . Hence, Alice can prevent either party from cheating if the uniform distribution

is used to sample one of the bits.
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