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Escaping local minima with quantum circuit coherent cooling
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Quantum cooling has demonstrated its potential in quantum computing, which can reduce the number of
control channels needed for external signals. Recent progress also supports the possibility of maintaining
quantum coherence in large-scale systems. The limitations of classical algorithms trapped in the local minima of
cost functions could be overcome using this scheme. According to this, we propose a hybrid quantum-classical
algorithm for finding the global minima. Our approach utilizes quantum coherent cooling to facilitate coordi-
native tunneling through energy barriers if the classical algorithm gets stuck. The encoded Hamiltonian system
represents the cost function, and a quantum coherent bath in the ground state serves as a heat sink to absorb
energy from the system. Our proposed scheme can be implemented in the circuit quantum electrodynamics
system using a quantum cavity. The provided numerical evidence demonstrates the quantum advantage in solving
spin-glass problems.
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I. INTRODUCTION

Optimization problems are prevalent in many areas, where
the global minima of cost functions represent the optimal
solutions. Classical algorithms are usually able to quickly
identify local minima but get trapped due to the complexity
of the cost function. As a result, they are inefficient at finding
the global minima. This bottleneck is widely recognized in
various fields, including computational physics and machine
learning.

We propose a hybrid quantum-classical algorithm to ad-
dress this bottleneck. The entire algorithm functions as a
heterogeneous cooling process to minimize the value of the
cost function that encodes the given problem. The classi-
cal optimization is employed to find local minima, while
the quantum cooling helps to escape the local minima by
tunneling through energy barriers [1]. By alternating be-
tween classical optimization and quantum cooling, one can
ultimately reach the global minimum. (See Fig. 1 for a visual-
ization of this process.)

In the classical part of the algorithm, well-established clas-
sical techniques, such as Monte Carlo or gradient descent, are
used to identify a local minimum of the cost function with
minor computational resources. In the quantum part of the
algorithm, the quantum icebox algorithm (QIA) performs the
quantum cooling, which has been shown to achieve quantum
advantage in the unsorted search problem [2]. The framework
of the QIA is as follows. The cost function is encoded in
a Hamiltonian system [3,4], which is initialized in the state
corresponding to the local minimum. A quantum bath has
a trivial and easy-to-prepare ground state that is initialized
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within it. The system and the bath are coupled and maintain
coherence, which facilitates coordinative quantum tunneling
over high-energy barriers. The system will evolve to escape
the local minimum and transition to a lower value. These two
parts are complementary in order to prevent the algorithm
from getting stuck.

Other hybrid quantum-classical algorithms [5–15] also
combine classical and quantum methods as a compromise
in the noisy intermediate-scale quantum (NISQ) era [16,17],
such as the variational quantum algorithm (VQA). In the
VQA, classical algorithms optimize the quantum gate
parameters to reduce the number of quantum operations
during the coherence time [18]. However, this approach faces
challenges such as the barren plateau [9,19] and the need to
avoid local minima. In our scheme, the classical algorithm
only needs to optimize the initial state and find local minima,
which is less problematic. Furthermore, control channels are
not required during the QIA, which helps to minimize noise
from external sources.

II. HETEROGENEOUS COOLING ALGORITHM

We specifically target a category of problems where the
cost function involves n Boolean variables [20,21], such as the
Boolean satisfiability problem and independent sets [22,23].
In physical terms, these cost functions represent Hamiltonians
of (pseudo)spins [24,25]. The configuration space for these
problems consists of binary strings of zeros and ones (or ±1
for spins), with each string representing a state ψs. Local
minima for this class of problems are defined as states where
neighboring states within one Hamming distance have higher
cost function values (or energies). The Hamming distance
is calculated by counting the number of different bits be-
tween two binary strings [26]. To solve these problems, our
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FIG. 1. Proposed heterogeneous cooling process.

hybrid quantum-classical algorithm operates as follows (see
also Fig. 1).

(1) Use arbitrary configuration ψs0 as the initial condi-
tion to find out one of the local minima ψs1 with classical
algorithms.

(2) Prepare the quantum state ψs1 in the computational
basis, denoted by |ψs1〉, and execute the QIA. Following quan-
tum evolution, we obtain an entangled state |�〉. We then
proceed to measure the problem system in the computational
basis, resulting in the random selection of a configuration
denoted by ψs2.

(3) Use the configuration ψs2 as the initial condition to
identify a different local minimum, represented by ψs3, using
classical algorithms.

(4) If 〈ψs3|Hs|ψs3〉 � 〈ψs1|Hs|ψs1〉, then we update the ini-
tial configuration from ψs1 to ψs3. In any case, we repeat the
process starting from step 2.

(5) Stop the iteration if 〈ψs1|Hs|ψs1〉 is sufficiently small
and no further update to ψs1 is available.

This hybrid quantum-classical algorithm is robust to noise
and errors. The long Hamming distance tunneling is divided
into several shorter Hamming distance tunnelings among local
minima, making it suitable for qubits with limited coherence
time. Furthermore, it can identify errors in step 4 and correct
them through multiple rounds of optimization. These proper-
ties make it feasible to apply them practically and implement
them experimentally.

With the assistance of classical algorithms, it can effi-
ciently reduce local energy. This hybrid algorithm achieves
quantum acceleration in step 2 by utilizing the quantum bath
for efficient global cooling. We can also implement con-
tinuous quantum error correction [27,28] or insert discrete
quantum error correction [29,30] in step 2 to suppress errors.
We will demonstrate that using the quantum bath leads to
higher cooling efficiency.

III. COHERENT COOLING WITH CAVITY

Since classical algorithms are well established, let us now
focus on the quantum component. We will compare the cool-
ing efficiency of the quantum coherence bath with that of the
classical bath to demonstrate the quantum advantage, particu-
larly in the context of spin glasses. Spin glasses are typically
challenging to cool down because they often have numerous
local minima. Our numerical calculations demonstrate that
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FIG. 2. Time evolution of the system cooled by the quantum
bath (solid line) or the classical bath (dashed line). The number
of qubits is ns = 11 (2−ns = 4.9 × 10−4). The interaction strength
is λ = 0.2h̄ωb. The initial state of the problem system is the high-
energy local minimum. (a) Probability of the ground state of the
problem system (global minimum). (b) Total probability of states of
the problem system with lower on-site energy than the initial state.

the quantum coherence bath has a faster cooling speed and
a higher success rate in comparison to the classical bath (see
Fig. 2).

To achieve cooling, ancilla interacting qubits are com-
monly used as the quantum bath [2,31–33]. However, this
approach often requires at least twice the number of qubits
[2,31], and maintaining entanglement among a large number
of qubits is difficult in the NISQ era [16,17]. As an alternative,
we use a coherent cavity as the quantum bath, which is more
feasible than using hundreds of qubits. The cavity is typically
used in experiments to propagate interactions [34,35] or mea-
sure states [36] and can take the form of a laser cavity [37,38],
inductor-capacitor (LC) oscillator [36], or nanomechanical
resonator [39].

Our discussion focuses on the circuit quantum electro-
dynamics systems [36], although our algorithm can also be
applied to other systems. The basic setup is depicted in Fig. 3,
where the cavity in the superconductor circuit can be modeled
as an LC oscillator. The angular frequency of the oscillator is
given by ωb = 1/

√
LC, where L is the inductance and C is

the capacitance. The quantum cavity acts as the bath and its
Hamiltonian is

Hb = h̄ωb(b̂†b̂ + 1
2 ), (1)

where b̂† is the creator of the harmonic mode of the bath.

FIG. 3. Setup of our system. The coupled qubits encode the cost
function and the quantum cavity serves as the bath.
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The qubits in Josephson junctions store the problem data,
and their interactions are established through circuit connec-
tions. The Hamiltonian encoding the problem of ns qubits is
given by [40–44]

Hs =
ns−1∑
m=0

J (1)
m σ̂ z

m +
∑

〈m,m′〉
J (2)

m,m′ σ̂
z
mσ̂ z

m′ , (2)

which describes a spin glass that is difficult to cool down.
The on-site energy is denoted by J (1)

m , while J (2)
m,m′ represents

the interaction between two qubits. This interaction can be
spatially nonlocal, making the optimization problem more
challenging. To facilitate quantum transitions, J (1)

m and J (2)
m,m′

are multiples of ωb/2. The occurrence of integer multiple gaps
is common when encoding discrete mathematical problems,
including nondeterministic polynomial problems [3]. It also
helps to suppress overflow errors caused by unencoded energy
levels.

The interaction between the qubits and the cavity in the
lumped-element circuit without spatial dependence is given
by [36,45–48]

Hλ = λ(b̂† − b̂)
ns−1∑
m=0

(σ̂+
m − σ̂−

m ), (3)

where λ is the interaction strength proportional to the ca-
pacitance. The interconnected capacitor introduces additional
on-site capacitance, which can be absorbed in the parameters
of Hs and Hb. Our scheme involves that 〈Hλ〉 is comparable
to 〈Hs〉, resulting in acceleration and novel phenomena be-
yond the perturbation approach, including the rotating-wave
approximation [49–51].

The cooling process is governed by the fixed total Hamil-
tonian H = Hs + Hb + Hλ with little additional control. The
circuit diagram is available in Appendix A. The total parity
conservation exp[iπ (b†b + 0.5

∑ns−1
m=0 σ̂ z

m)] can slightly sim-
plify the numerical simulation.

The initial state of the bath is its ground state [52,53], and
the initial state of the problem system is set to be one of the
high-energy local minima of Hs in the σz basis. Subsequently,
the interaction Hλ is turned on and the state evolves according
to the Schrödinger equation. The energy of the system is
absorbed by the bath through quantum tunneling, leading to
the transfer of the system’s state to other local minima with
lower energy.

For comparison, we treat the cavity as a classical system by
defining the generalized momentum Q̂b = i

√
h̄ωbC/2(b̂† − b̂)

and the generalized position �̂b = √
h̄/2ωbC(b̂† + b̂) [36].

If the decoherence is strong, we can treat them as classical
variables Q and � [54–57]. The Hamiltonians for the bath in
Eq. (1) and the interaction in Eq. (3) can be rewritten as

Hb = Q2
b

2Cb
+ �2

b

2Lb
(4)

and

Hλ =
√

2

h̄ωbCb
λQb

ns−1∑
m=0

σ̂ y
m, (5)

respectively. With the canonical equations ∂Qb/∂t =
∂〈H〉/∂�b and ∂�b/∂t = ∂〈H〉/∂Qb [58], we derive the
total dynamical equations as

ih̄
∂|ψs〉
∂t

=
⎛
⎝Hs +

√
2

h̄ωbCb
λQb

ns−1∑
m=0

σ̂ y
m

⎞
⎠|ψs〉, (6)

∂Qb

∂t
= −�b

Lb
, (7)

∂�b

∂t
= Qb

Cb
+

√
2

h̄ωbCb
λ

ns−1∑
m=0

〈
σ̂ y

m

〉
. (8)

Note that Qb = �b = 0 is the fixed point if all the qubits
are aligned in the σz direction. The classical bath can be
treated as a classical probability ensemble. For a fair com-
parison, the initial state of Qb and �b is set to have the
same probability distribution as the quantum ground state,
which is ρc = e−(φ2

b+q2
b )/π with qb = Qb/

√
2h̄ωbCb and φb =

�b
√

ωbCb/2h̄ [55,56]. The expectation value is considered
as the average of all the independent evolution paths, i.e.,
A = ∫∫

a × ρcdqbdφb, where a is the observable for one ini-
tial condition and A is the expectation value.

No entanglement exists between the classical bath and the
system, and the initial state of the bath ρc can be regarded
as a mixed state. Throughout the evolution, the formation of
entanglement is prohibited, and the total system remains in
the product state |ψs〉 ⊗ |Q,�〉. Moreover, some high-energy
paths of the classical bath are also not allowed, even though
they could help the problem system surmount barriers. The
numerical results depicted in Fig. 2 demonstrate that the clas-
sical bath performs worse than its quantum counterpart.

We simulate a problem system with two local minima using
Eq. (2). The initial state of the problem system is at the
higher local minimum, while the bath is in its ground state.
The Hamming distance between the local minima is �ns/2�,
which increases the problem complexity. Cooling with the
quantum bath does not always outperform the classical bath,
but quantum resonance can strongly accelerate cooling when
λ is tuned suitably [59]. Figure 2 shows the probability Pg

of the ground state changing over time. Cooling with the
classical bath exhibits a modest increase over time, while the
curve for the quantum bath shows a sharp increase due to
quantum coherent enhancement. It indicates that the QIA has
an advantage in escaping local minima.

This quantum acceleration is related to the entanglement
and correlation numerically calculated in Appendix B. In the
continuous-variable system, we also find a similar quantum
acceleration (see Appendix C).

IV. ACCELERATION BY QUANTUM WALKS EFFECT

The eigenstates of the spin-glass problem system Hs

are represented by a hypercube whose vertices correspond to
the eigenstates in the σz basis as shown in Fig. 4(a). When
the interaction is turned on, the wave function diffuses in
the hypercube. As depicted in Fig. 4(b), the diffusion during
quantum cooling is complex with peaks at the diffusion fronts,
enabling faster reaching of the answers similar to diffusion
in quantum walks (QWs) [59–62]. On the other hand, the
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FIG. 4. (a) Hypercube where each vertex represents an eigenstate
of the spin glass. The system is initially at the light red point, which
is one of the local minima. The time evolution of the probability
distribution is shown as the problem system is cooled by (b) the
quantum bath and (c) the classical bath. Here h is the Hamming
distance from the initial state; the value at each h is the addition
of probabilities of different states with the same h. (d) Probability
distribution of the quantum bath (solid line) and the classical bath
(dashed line) at t = 6/ωb. The parameters used in the numerical
computation are the same as those in Fig. 2.

diffusion during classical cooling is weaker and the prob-
ability distribution decreases monotonically with Hamming
distance like the classical random walk (RW). These obser-
vations are depicted in Fig. 4(c).

Diffusion also occurs in the bath, leading to its state be-
ing driven away from its energy minimum. Better cooling
performance is achieved when the bath is excited to higher-
energy states with greater probability and speed. Figure 4(d)
shows that the diffusion of the quantum bath is stronger with
two peaks at the diffusion fronts, similar to the QW. On the
other hand, the diffusion of the classical bath is weaker with
monotonically decreasing fronts, as shown in Fig. 4(d). The
classical bath diffuses very little without quantum coherence.

The diffusion in quantum cooling is similar to the QW,
as shown by the numerical results. To further illustrate
this similarity, we consider a one-qubit system with Hs =
h̄ωsσ̂z/2 and ωs = ωb = ω. It is the Jaynes-Cummings model
of nonrotating-wave form [36]. There are analytical results in
the regime that one of the parameters λ, h̄ωs, or h̄ωb is much
smaller than the others [63]. The nonperturbative resonant
regime λ ∼ h̄ωs = h̄ωb has rare analytical results. When the
interaction is strong enough, an effective QW is observed in
the dynamics. For a small time interval �t [64], its unitary
evolution is (see Appendix D for derivation)

U = e−iH�t/h̄ = e−iH0�t/h̄UpUH + O(�t3), (9)

where the on-site energy is H0 = Hs + Hb. For a typical
Hadamard walk in a one-dimensional space with a coin qubit,
its unitary operation of each iteration is UQW = UpUH, where
UH is the Hadamard gate to the coin qubit and Up = e−σ̂ ′

z�x∂/∂x

4 6 8 10 12
3

4

5

6

FIG. 5. Average running time T plotted vs the size of Hilbert
space Ns. Each point represents a graph in samples. The solid line
represents the regression line, which has a gradient of approximately
0.16. The error bars represent the standard deviation from the regres-
sion line, primarily resulting from the fluctuation of different graphs.

is the conditional walking operator controlled by the coin
qubit. Therefore, in comparison, our system has an additional
punishment term e−iH0�t/h̄ that may disturb the phase [59].
However, this punishment term disappears when the eigen-
states of H0 involved in the evolution are degenerate. This is
exactly the case that we have studied where Hs and Hb are
in resonance with matching energy gaps. It is well known
that the average walking distance of the RW is proportional
to the square root of time �x ∼ √

t , while that of the QW
is proportional to the time �x ∼ t [61,65]. The constructive
interference makes the QW diffuse faster than the RW. It is
also known that the entanglement between the coin qubit and
the walking space is strong.

For the QW with multiple coin qubits, the situation is more
complex (see Appendix D). The analytical results always
require nonlocal operation, such as Grover’s coin [66,67].
However, in our physical model, all the interactions are two-
local. The numerical results in Fig. 4 suggests that the QW
still contributes in this complex case.

The quantum advancement of escaping local minima can
be quantitatively approach. The numerical simulation of time
complexity can be seen in Fig. 5, where the size of the Hilbert
space is Ns = 2ns . The time required for the QIA to transi-
tion between local minima is approximately O(N0.16

s ) when
solving specific local interaction problems (further details in
Appendix E). There are O(nO(1)

s ) energy levels for the de-
generate Hamiltonian, which is proportional to the number
of iterations and calls of the classical algorithm. So the total
time complexity is about O(N0.16

s nO(1)
s ). In addition, there are

connections to each qubit, so the total space complexity is
O(n2

s ).

V. DISCUSSIONS

The concept of using a cavity for cooling has similarities
to the quantum-circuit refrigerator (QCR) [68–70], which uti-
lizes an open cavity to cool a system. However, the QCR
exhibits strong dissipation in the cavity and some schemes uti-
lize a dissipative qubit as the bath [71,72]. Although an open
bath can introduce steady energy loss, the lack of quantum
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coherence may hinder the cooling process. Recent research
suggests that the non-Markovian baths could improve the
performance of a quantum refrigerator [73,74]. In Appendix F
we show that the dissipation in the quantum bath will slow
down the cooling speed.

In conclusion, we proposed a hybrid quantum-classical
algorithm of coherent cooling to address the issue of local
minima. It encodes the cost function in a superconductor cir-
cuit cooled by a quantum cavity, which outperforms a classical
cavity due to the coordinative tunneling effect. Our results
suggest that the faster diffusion of the QW over the classical
RW is the underlying physics of this quantum speedup. While
we have focused on discrete-variable problems, our scheme
can be extended to continuous-variable problems. This hybrid
algorithm is expected to streamline the control and reduce
noise in quantum computing experiments.
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APPENDIX A: SUPERCONDUCTOR CIRCUIT
OF COHERENT COOLING

Superconductor circuits can be utilized to physically im-
plement the quantum icebox algorithm, and we can use the
simplest charge qubits of Josephson junction as an example
as shown in Fig. 6. Other types of qubits require slight mod-
ifications. For phase qubits, an additional injected current is
needed for each qubit. For flux qubits, the on-site capacitors
are replaced by inductors and the interconnected capacitors
are replaced by mutual inductors [42,75,76]. The on-site en-
ergy J (1)

m can be tuned by the parallel capacitance of each
qubit, while the interaction J (2)

m,m′ depends on the connectivity
and coupling strength of the circuit matrix. The ZZ interaction
is usually achieved by effective indirect interaction [40,42,77].
If the coherence of long-distance interaction is poor, indi-
rect interaction can be used to improve it [34,35,78–82]. The
crosstalk can be suppressed by a thick insulating layer made
of high dielectric constant materials [80].

The design shown in Fig. 6 is inspired by the matrix cir-
cuit, a design commonly used in classical circuits for devices
like screens, keyboards, and memories. The information is
encoded in the intersections of the rows and columns, and
only two circuit layers are needed. IBM has already realized
the multilayer chip of the quantum computer, while there are
tens of layers used in modern classical CPUs.

APPENDIX B: INFLUENCE OF STRONG INTERACTION

For quantum acceleration, strong interaction is required
to overcome localization, which typically occurs in low-
symmetry quantum systems and suppresses the propagation
of wave functions [83,84].

FIG. 6. Superconductor circuit of coherence cooling with the
cavity. The long curve on the top is the cavity modeled by the LC
oscillator. The symbol with a cross inside the square is the Joseph-
son junction, which constitutes the qubit with the parallel capacitor.
There is no connection of each intersection between wires without a
dot.

We begin by examining the eigenstates of the total Hamil-
tonian H = Hs + Hb + Hλ. In the absence of interaction
(Hλ = 0), the eigenstates are product states of the system
and bath. The system is fully localized at the vertex of the
hypercube in the σz basis, with no nearby probability dis-
tribution. If localization decreases, probability distribution
appears nearby, and the peak of probability Pmax decreases as
the probability is shared with other states. Thus, localization
strength can be determined by Pmax of eigenstates with low en-
ergy, shown in Fig. 7(a). Weak interaction λ results in highly
localized eigenstates [84], as seen on the left-hand side of
Fig. 7(a), where the wave function is unable to reach the whole
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FIG. 7. (a) Localization strength of ten low-energy eigenstates
distinguished by different colors. Also shown is the time-dependent
evolution of (b) the ground-state probability of the problem sys-
tem, (c) the entanglement entropy, and (d) the correlation of joint
probability. The interaction strength is λ = 0.2h̄ωb (solid line) and
λ = 0.15h̄ωb (dashed line).
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Hilbert space, preventing solution discovery. On the other
hand, strong interaction causes delocalization [59,85,86], as
shown on the right-hand side of Fig. 7(a), with sufficient
probability distribution around the ground state.

Furthermore, the degree of localization can also im-
pact the strength of revivals. Revivals typically occur in
(pseudo)integrable systems, where the state after evolution
partially returns to its initial state. When the interaction is
weak, only a few states are involved, resulting in strong re-
vivals, as illustrated by the dashed line in Fig. 7(b). On the
other hand, when the interaction is comparable to the on-site
energy, more states are involved, leading to a rich energy
spectrum of the initial state and weaker revivals, as shown by
the solid line in Fig. 7(b).

We use the entanglement entropy and correlation to further
investigate the quantum coherence between the quantum bath
and the problem system. The entanglement entropy is given
by

S = −Tr(ρslnρs), (B1)

where ρs = Trb(ρ) is the reduced density matrix of the prob-
lem system. The entanglement entropy is shown in Fig. 7(c).
The correlation can be described by the joint probability de-
fined as [87]

C = 〈P̂sg(Î − P̂bg)〉 − 〈P̂sg〉〈Î − P̂bg〉
= −〈P̂sgP̂bg〉 + 〈P̂sg〉〈P̂bg〉. (B2)

Figure 7(d) shows the correlation.
When the interaction between the problem system and

the bath is weak 〈Hλ〉 
 〈H0〉, the bath’s influence can be
considered a perturbation. Thus, the composed system can be
approximated as a product state of the problem system and the
bath, and the rotating-wave approximation (RWA) holds to a
large extent. Both the entanglement entropy and correlation
are small, as shown by the dashed lines in Fig. 7. In this
scenario, the localization is strong, but the cooling efficiency
is low [84].

As the interaction strength becomes comparable to the on-
site energy 〈Hλ〉 ∼ 〈H0〉, the composed system undergoes a
phase transition [88] and the wave function becomes delocal-
ized and ergodic [85,86]. The product state approximation of
the problem system and the bath is no longer valid. The entan-
glement and correlation between them increase significantly,
as depicted by the solid lines in Fig. 7, while the entanglement
between the system and the classical bath is absent.

In the extremely strong coupling regime, the interaction Hλ

dominates the dynamics. Despite the strong entanglement and
correlation, the information from the system with H ≈ Hλ is
limited. Consequently, the cooling effect will vanish, leading
to a low success rate.

APPENDIX C: COOLING THE CONTINUOUS SYSTEM

The problems associated with continuous dynamical vari-
ables can also be encoded in the Hamiltonian, for example,
by mapping the variables to the generalized positions �s of
Josephson junctions. The cost function for such a problem can

FIG. 8. (a) System energy as a function of �; the red point
indicates the initial state. (b) Time evolution of the total probability of
the states which have lower on-site energy than the initial state. The
solid line is for cooling using the quantum bath, while the dashed line
is cooling using the classical bath. Also shown is the time evolution
of the probability distribution of the system with (c) the quantum
bath and (d) the classical bath (red for high values and blue for low).

be encoded in a Hamiltonian as

Hs = (�̂s − �ex)2

2Ls
− EJ cos

2π�̂s

�0
, (C1)

where �ex is the external magnetic flux, �0 is the quantum
magnetic flux, Ls is the inductance, and EJ is the Josephson
energy. These parameters can all be tuned [89]. The goal is
to find the global minimum on �s, with the shape of the cost
function shown in Fig. 8(a). The initial state is set at the higher
local minimum.

The system-bath interaction can arise via the capacitor con-
nection. This interaction can be described by the Hamiltonian

Hλ = − Q̂sQ̂b

Cλ

, (C2)

where Cλ is the effective capacitance of the connection. The
influence of the on-site capacitance has already been included
in the parameters of Hs and Hb.

The cooling process with the quantum bath satisfies the
Schrödinger equation. The cooling process using the classical
bath satisfies the equations

ih̄
∂|ψs〉
∂t

=
(

Hs − Qb

Cλ

Q̂s

)
|ψs〉, (C3)

∂Qb

∂t
= −�b

Lb
, (C4)

∂�b

∂t
= Qb

Cb
− 〈Q̂s〉

Cλ

. (C5)

Comparing the time evolutions in Fig. 8(b), it is observed
that the quantum bath yields better cooling efficiency than
the classical bath in the continuous-variable scenario. The
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quantum cooling displays characteristic quantum oscillations,
while classical cooling is smoother. Figure 8(c) illustrates the
coherent diffusion of quantum cooling through coordinative
tunneling in the position space, displaying strong coherent
enhancement at the wave function’s fronts. Figure 8(d) shows
the smoother incoherent diffusion of classical cooling, with
the strongest component trapped in the higher local minimum.

APPENDIX D: QUANTUM WALK EFFECT
IN THE COHERENT COOLING

Governed by the Schrödinger equation, the time evolution
of the composed Hamiltonian can be divided into small steps

e−iHt/h̄ =
t/�t∏
n=1

e−iH�t/h̄. (D1)

The unitary operator for each step, U = e−iH�t/h̄ for the
Hamiltonian in Eq. (9), can be approximated as [64]

U = exp

(
−i

ω

2
σ̂z�t − iω

(
q̂2

b + φ̂2
b

)
�t + i2

λ

h̄
σ̂yq̂b�t

)

≈ exp
(
−i

ω

2
σ̂z�t − iω

(
q̂2

b + φ̂2
b

)
�t

)
exp

(
i2

λ

h̄
σ̂yq̂b�t

)

× exp

(
−1

2

[
−i

ω

2
σ̂z�t, i2

λ

h̄
σ̂yq̂b�t

])

× exp

(
−1

2

[
−iω

(
q̂2

b + φ̂2
b

)
�t, i2

λ

h̄
σ̂yq̂b�t

])

= exp−i ω
2 σ̂z�t−iω(q̂2

b+φ̂2
b )�t expi2 λ

h̄ σ̂yqt expi λ
h̄ ωσ̂x q̂b�t2

× exp−iω λ
h̄ σ̂yφ̂b�t2

≈ exp
(
−i

ω

2
σ̂z�t − iω

(
q̂2

b + φ̂2
b

)
�t

)

× exp

(
i
λ

h̄
(2�t σ̂y + ω�t2σ̂x )q̂b

)

× exp

(
−iω

λ

h̄
σ̂yφ̂b�t2

)
, (D2)

where we have omitted all the O(�t3) terms. The dimen-
sionless operator is q̂b = −i∂/∂φb. Note that the angle of
rotation axis between Up and UH of the coin qubit is π/4 in the
Hadamard walk. In the time interval �t = 2/ω, this condition
will be satisfied with

U = exp

(
−i

H0�t

h̄

)
exp

(
−2

√
2λ

h̄ω

σ̂y + σ̂x√
2

∂

∂φb

)

× exp

(
−i

4λ

h̄ω
σ̂yφ̂b

)
. (D3)

Then the rotation axis between the last two terms is also
π/4. To simplify the comparison with the Hadamard walk,
we make the following transformations:

σ̂z = σ̂ ′
x,

σ̂x = σ̂ ′
z − σ̂ ′

x√
2

,

σ̂y = σ̂ ′
z + σ̂ ′

x√
2

. (D4)

Then the operation becomes

U = exp

(
−i

H0�t

h̄

)
exp

(
−σ̂ ′

z

2
√

2λ

h̄ω

∂

∂φb

)

× exp

(
i
4λ

h̄ω

σ̂ ′
z + σ̂ ′

x√
2

φ̂b

)
. (D5)

When 4λφb/h̄ω = (2n + 1)π , namely, �φb = πbh̄ω/2λ, the
last term is the Hadamard gate. Moreover, the displace-
ment of conditional translation is �φb = 2

√
2λ/h̄ω, so

self-consistency requires λ = √
π/25/4h̄ω. In summary, the

unitary operation is

U = exp

(
−i

H0�t

h̄

)
UpUH. (D6)

Except for the term exp(−i H0�t
h̄ ), this is just the standard

Hadamard walk.
In the case of a spin glass with multiqubits, the operation

is

U = exp

(
−i

H0�t

h̄

)
UpU

⊗ns
H , (D7)

where the Hadamard gates require ωbλ�φb�t2/h̄ = 2π . The
conditional walker is more complex such that

Up = exp

[
i
λ

h̄

(
ns∑

m=1

�t σ̂ y
m +

ns∑
m=1

J (1)
m �t2σ̂ x

m

+
∑

〈m,m′〉
J (2)

m,m′�t2
(
σ̂ x

mσ̂ z
m′ + σ̂ z

mσ̂ x
m′

)⎞⎠ ∂

∂φb

⎤
⎦. (D8)

APPENDIX E: TIME COMPLEXITY

In this Appendix we attempt to evaluate the time complex-
ity of our algorithm. Our algorithm is general and applicable
to many optimization problems. However, in order to gain
informative results with limited computational resources, we
need to narrow our focus to a specific set of problems. These
optimization problems are constructed in the following man-
ner. All qubits are first connected in a one-dimensional chain
to make them inseparable. We then connect each qubit to
another randomly selected qubit. The number of links for each
qubit ranges from 2 to ns + 2, with an average of 2 − 0.5/ns

links per qubit. Ferromagnetic interaction exists only between
two connected qubits with equal strength. As a result, there are
two global minima |0〉⊗ns and |1〉⊗ns . Finally, we add on-site
energy to certain qubits. The two ground states will split: One
becomes a local minimum with high energy and the other
remains a global minimum.

For a system with ns qubits, it can correspond to a graph.
As there are O(2n2

s ) different graphs, the configuration space is
extremely large. It is difficult to traverse all of the graphs. As a
compromise, we sample 100 graphs following the mentioned
rule for each value of ns and consider them as typical.

If the problem system reaches the global minimum, we
consider the cooling process successful, which can be de-
scribed by the characteristic time τ and the success rate Pr .
The characteristic time τ refers to the speed at which the
dynamics reaches equilibrium. The success rate τ is the total
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FIG. 9. (a) Time-dependent total probability of states that have
lower on-site energy than the initial state. Different colors represent
different graphs. The size of the problem system is ns = 11. (b) Fit-
ting curves of (a) with just two adjustable parameters.

probability at the global minimum when the dynamics reaches
equilibrium. To extract the characteristic time and success
rate, we fit the numerical results with the function

Psε ≈ Pr f

(
t

τ

)
, (E1)

where the function has the properties that limx→+∞ f (x) = 1
and limx→0 f (x)/x2 = const. Using the fitting function can
suppress the poisoning of the results caused by accidental
narrow peaks and outliers. Here we have chosen the fitting
function to be f (x) = 1 − J0(x), where J0(x) is the zeroth-
order Bessel function of the first kind. The fitting performance
is shown in Fig. 9. Since there are only two free parameters,
the fitting may not be perfect. Other fitting functions are tried,
yielding parameters of similar magnitude.

Now we will begin analyzing the time complexity. The
average running time can be defined as

T = τ

Pr − 1
Ns

, (E2)

where τ is the characteristic time of the dynamics and Pr

is the success rate. The T is approximately proportional to
the runtime required to achieve a given success rate. If Pr is
smaller, more attempts and measurements will be required. If
the interaction is exceedingly strong, the system will rapidly
become ergodic. However, there is no calculation associated
with this type of probability increment. So we subtract the
background probability of such a wild guess, which is 1/Ns =
2−ns . The average running time against the system’s size is
shown in Fig. 5. The best and worst cases are not shown
because they are difficult to sample with a large value of
ns. For the average case in samples, the regression yields a
gradient of approximately 0.16. The time complexity for each
successful cooling is O(N0.16

s ).
The encoding Hamiltonian is highly degenerate with

O(nO(1)
s ) energy levels. The maximum number of iterations

required to reach the lowest-energy levels is also bounded
by O(nO(1)

s ). Specifically, it is O(n3
s ) for solving the maximal

independent set problem with the two-local Hamiltonian.
In summary, the total average time complexity is approxi-

mately O(N0.16
s log3

2Ns) = O(1.12ns n3
s ). The time complexity

of the classical algorithm is approximately O(1.19ns nO(1)
s )

[90].

0 5 10 15
0

0.1

0.2

0.3

FIG. 10. Ground-state probability of the problem system with
different decoherence strength κ of the bath. The other parameters
are ns = 5 and λ = 0.6h̄ωb.

APPENDIX F: DECOHERENCE WITH THE MARKOV
MASTER EQUATION

In the main text we discussed cooling with a coherent
quantum bath using the Schrödinger equation. However, the
experiment always faces decoherence, such as the thermal
bath, which has been shown to easily reach local minima [91].
Now we investigate the ability to reach the global minimum
and treat the cooling with the Markov master equation [92,93]

dρ

dt
= − i

h̄
[H, ρ] − κ

h̄
(b†bρ + ρb†b − 2bρb†), (F1)

where κ represents the decoherence strength of the bath.
In Fig. 10 we compare the cooling processes with different
values of κ . The case with κ = 0 corresponds to the case
discussed in the main text.

The numerical results indicate that the cooling process
without decoherence is faster in the early stage. Although
decoherence can extract energy from the bath irreversibly,
it can disrupt the quantum acceleration by suppressing the
off-diagonal terms of the density matrix ρ. This transition
between quantum states requires these off-diagonal terms, and
the presence of decoherence can hinder quantum tunneling.

At the late cooling stage, the cooling process reaches sat-
uration. Even a small amount of decoherence can decrease
the revival from quantum oscillation [83,94]. Strong decoher-
ence, on the other hand, can entirely suppress the quantum
transition.

We consider a simple case to demonstrate the effect of
decoherence on quantum acceleration, where both the prob-
lem system and the bath are two-level systems [73,74]. The
states |σz, nb〉 are redefined as |2〉 ≡ |1, 0〉, |1〉 ≡ | − 1, 1〉,
and |0〉 ≡ | − 1, 0〉. Equation (F1) in the RWA can then be
written as

dρ22

dt
= λ

h̄
(iρ12 − iρ21), (F2)

dρ12

dt
= λ

h̄
(iρ22 − iρ11) − κ

h̄
ρ12, (F3)

dρ11

dt
= λ

h̄
(−iρ12 + iρ21) − 2

κ

h̄
ρ11, (F4)

dρ00

dt
= 2

κ

h̄
ρ11, (F5)
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where ρ
†
12 = ρ21. The initial condition is ρ22 = 1 and other

elements of the density matrix are zero. The solution is

ρ22 = e−κt/h̄

(
1 + cos 2�t

2

λ2

h̄2�2

−cos 2�t

4

κ2

h̄2�2
+ sin 2�t

4

κ

h̄�

)
, (F6)

where h̄� =
√

λ2 − κ2/4 and Psg = 1 − ρ22 = ρ11 + ρ00. It
is a damped oscillator with the decoherence κ slowing down
the oscillation angular frequency from λ/h̄ to �. As a result,
the quantum transition between |2〉 and |1〉 is also slowed
down.

When the decoherence is small κ 
 λ, the system is in
the underdamped regime with oscillations. The probability of
being in the ground state is approximately given by

Psg ≈ 1 − e−κt/h̄

(
1 + cos 2λt

h̄

2
+ κ

2λ
sin

2λt

h̄

)
. (F7)

In the early stage t 
 h̄/λ, Eq. (F7) can be simplified to

Psg ≈ sin2 λt

h̄
− λ2κ

2h̄3 t3. (F8)

The last term is due to decoherence, and its negativity implies
that it leads to deceleration.

When κ � λ, the system is in the overdamped regime
without oscillations and the ground state probability is given
by

Psg ≈ 1 − e−(2λ2/h̄κ )t , (F9)

which indicates that stronger decoherence leads to slower
cooling. In this regime, the bath is almost frozen in its ground
state and the dynamics is essentially static.

For multiqubits, as depicted in Fig. 10, there is also
exponential behavior observed in the presence of strong
dissipation, similar to Eq. (F9). Therefore, to ensure reason-
able quantum acceleration, the decoherence strength should
not greatly exceed the tunneling strength during quantum
computing.
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and C. Silberhorn, Decoherence and disorder in quantum walks:
From ballistic spread to localization, Phys. Rev. Lett. 106,
180403 (2011).

[84] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium:
Many-body localization, thermalization, and entanglement,
Rev. Mod. Phys. 91, 021001 (2019).

[85] A. C. Potter, R. Vasseur, and S. A. Parameswaran, Universal
properties of many-body delocalization transitions, Phys. Rev.
X 5, 031033 (2015).
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