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Quantum steganography via coherent- and Fock-state encoding in an optical medium
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Steganography is an alternative to cryptography, where information is protected by secrecy (being disguised
as innocent communication or noise) rather than being scrambled. In this work we develop schemes for
steganographic communication using Fock and coherent states in optical channels based on disguising the
communications as thermal noise, with a fidelity approaching 1. We derive bounds on their efficiency in terms of
the communication rate and the required keyrate in the case of an all-powerful eavesdropper and provide explicit
methods of encoding and error correction for the noiseless channel case.
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I. INTRODUCTION

Covert communication is often associated with military or
espionage applications, but some of the earliest applications
were for personal use. In ancient Egypt, hieroglyphs were
used by royal scribes to send the pharaoh’s messages covertly.
In Roman times, the Caesar cipher, where each letter in a
message was “shifted” by a predetermined amount (akin to
a secret key), was devised [1], this approach being refined
into the Vigenere encoding around the 15th Century [2].
Over time, developments became more mathematically and
technologically advanced. Famously, the use of the Enigma
machine in World War II enabled the Germans to communi-
cate covertly until the cipher was cracked by the Allied effort,
giving them a strategic information advantage for the rest of
the war [3,4].

The Allies were able to replicate, understand, and repro-
duce the technology of the Enigma machine to crack its
cipher; thus the practical application of quantum computers
and quantum information devices, which represent an addi-
tional level of technological sophistication, are evident. The
question we would like to explore is how to leverage quantum
computers and quantum information, a present and future
technological advantage, to communicate covertly in a variety
of situations.

The main scenario we will consider is one where the eaves-
dropper has access to the full contents of the messages being
transmitted, but is made to believe they are innocuous, unlike
in cryptography where the encrypted text is often nonsensi-
cal without a key and so arouses suspicion. This reflects a
difference in the situation: In cryptography, the messages are
often read secretly, while in steganography the eavesdropper is
not secret and maintains everything out in the open. In many
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ways, this is advantageous (consider the wartime example).
If the goal is not to arouse suspicion, it can be markedly
more suspicious and dangerous to send messages of gibberish
through wartime censors than to have a chat with your friend
on the phone about normal topics, only this chat contains some
hidden information. Other examples of steganography are an
invisible watermark that can only be revealed with a procedure
no one would think to do spontaneously [4] or a secret encod-
ing of information in an audio file [5]. Some steganographic
encodings are readable by anyone who thinks to look for them,
relying on the concealment of the covering message, while
others may require a shared secret key between the sender and
receiver, just like many cryptosystems. Steganography can
even be combined with cryptography as they are effectively
independent measures, for example, by using any methods we
describe in this paper to transmit an already cryptographically
encoded message. This will, in general, require more shared
secret key.

A large amount of work has been done on quantum cryp-
tography [6–8]. The field of quantum steganography (and,
broadly, covert communication) is smaller, but also includes
a substantial body of relevant theoretical work. It was recently
shown that over n uses of additive white Gaussian noise
(AWGN), a number of bits proportional to

√
n can be com-

municated covertly [9], which was later generalized in [10].
Furthermore, a number of methods have been devised for
such communications using quantum systems, as in [11–13].
In this paper we will study the encoding of information in
quantum states transmitted over an optical channel in such
a way that it imitates thermal noise. This follows the broad
approach of Brun and Shaw in [14,15] (for qubit channels),
and has been studied for optical channels in [16]. Like the
last work, our work follows the “secrecy” approach typical
of steganography in which the message is protected by the
fact that its existence is concealed. This is as opposed to
the “security” approach of standard cryptography, as well as
methods such as spread spectrum and chaotic communication

2469-9926/2024/109(3)/032401(12) 032401-1 ©2024 American Physical Society

https://orcid.org/0009-0001-5110-7647
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.032401&domain=pdf&date_stamp=2024-03-01
https://doi.org/10.1103/PhysRevA.109.032401


BRUNO AVRITZER AND TODD A. BRUN PHYSICAL REVIEW A 109, 032401 (2024)

that are not generally secret at an information-theoretic stan-
dard [17,18]. Steganography, as studied in this paper, provides
formal guarantees of secrecy based on metrics of fidelity and
trace distance, unlike the aforementioned approaches, while
also functioning in a narrow band. Compared to [16], our
work is experimentally simpler, though its practical perfor-
mance at scale remains to be demonstrated. It also does not
require any assumptions about the ability of the eavesdropper
to detect the noise beyond their expectation of a thermal state,
which enables a potentially greater ability to communicate (as
quantified by the communication rate and rate of secret key
consumption). This current work only treats classical commu-
nication, but it shows the kind of methods that could be used
in future quantum steganographic encodings for entanglement
distribution or quantum communication, perhaps drawing on
techniques similar to those in [19]. In this work, we prove
secrecy by calculating the trace distance or fidelity between
the “innocent” (thermal) state and the average state containing
hidden information. This approach is sufficient to demonstrate
the effectiveness of a steganographic method and is simpler
than the proofs needed to show security in cryptography.

In Secs. II and III we develop the machinery required to
understand the communication process. In Sec. IV we de-
velop and analyze some simple encodings. In Secs. V and VI
we do a more detailed analysis of their implementation and
efficiency. Section VII summarizes the results and discusses
future work.

II. IMPORTANT MEASURES FOR STEGANOGRAPHY

In steganographic protocols, such as those we will pro-
pose in later sections, there is a key trade-off that must be
taken into account: That of the effective communication rate
achievable in the channel as opposed to the similarity of
the targeted “innocent” state with the actual channel state.
In some schemes, such as the Fock encoding we will dis-
cuss later, these can be quantified by just two measures: The
communication rate [which is given by R = 1 + perr ln perr +
(1 − perr ) ln(1 − perr ) for a binary channel with a probabil-
ity perr of mistaking one symbol for another] and the trace
distance between the channel state ρ containing hidden in-
formation, represented by the density operator corresponding
to the state of the channel over which information is being
transmitted, and the “innocent” thermal state ρth. This trace
distance is given by

D(ρ, ρth ) = 1
2 ||ρ − ρth|| (1)

where the above norm is the trace norm. Alternatively, one can
use the state fidelity

F (ρ, ρth ) = [Tr(
√√

ρρth
√

ρ )]2 (2)

as another measure of distance that functions similarly to the
trace norm, although it is not a metric on the set of density
matrices in the formal sense. The trace distance can be used to
directly compute the minimum probability of mistaking ρ for
ρth using a positive operator-valued measurement (POVM),
and is therefore conceptually useful as a representation of
secrecy. However, the fidelity is often easier to calculate and
can be used to bound the trace distance [20] (it also can be

interpreted as a probability of mistaking one state for another
when at least one of the states is pure). In particular, if the
fidelity is 1 (or approaching 1), the trace distance is 0 (or
approaching 0) and the two states cannot be distinguished by
any measurement.

In schemes where additional practical constraints are im-
posed to facilitate communication (for example, reducing the
choice of possible states used in encoding to make distinguish-
ing them easier, as in some of the coherent state protocols
discussed below), we can assume that the sender and receiver
draw on a preshared secret key, unknown to the eavesdropper.
This key could be, for example, a secret string of random
bits. This key usage can be quantified by a secret key rate K ,
the number of bits of secret key consumed per channel use.
The ratio R/K or difference R − K of the rates give additional
measures of the usefulness of the scheme for steganographic
communication.

These measures can help us evaluate the effectiveness of
different potential protocols. On one extreme, if Alice and
Bob simply send the “innocent” state at every time interval
(i.e., with probability 1), the fidelity metric will have its high-
est possible value, which is 1. However, this encoding has no
communication rate, R = 0. On the other hand, if Alice and
Bob use a naive encoding that maps the input bits 0 and 1 to a
fixed pair of orthogonal states, it will generally be impossible
to have good fidelity with the thermal state, and Eve can easily
detect that communication is happening. The goal of a good
steganographic protocol is to encode the message (a string of
input bits) into a sequence of states, such that after averaging
over all possible messages (and also the preshared secret key,
if any), the fidelity with a string of thermal states is close
to 1, but Bob can also retrieve the encoded string with high
probability.

The protocols we will consider deal with cases where the
fidelity (or trace distance) is very close to 1, at least in an
asymptotic sense; the communication rate is nonzero; and the
system can be implemented physically via the transmission of
physically realizable states. The first example we will discuss
is a protocol using coherent states.

III. DISGUISING COHERENT STATES AS THERMAL
NOISE IN A CHANNEL

A coherent state is a state of a quantum oscillator or field
mode. It is defined, for some complex α, as

|α〉 =
∞∑

n=0

αne−|α|2/2

√
n!

|n〉 , (3)

which is the result of acting with the displacement operator
D(α) = eαa†−α∗a on the |0〉 state of a harmonic oscillator. A
thermal state is given for the same type of system by

ρth = 1

Z

∞∑
n=0

e− h̄ω(n+1/2)
kBT |n〉 〈n| , (4)

where

Z =
∞∑

n=0

e− h̄ω(n+1/2)
kBT = 1

2
csch

(
h̄ω

2kBT

)
(5)
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is the partition function.
If we describe the thermal state of a mode in a channel in

terms of the average number of photons transmitted, known as

n̄ = (e
h̄ω

kBT − 1)−1, (6)

we can reformulate the expression for ρth in a simpler way:

ρth = 1

n̄ + 1

∞∑
n=0

(
n̄

n̄ + 1

)n

|n〉 〈n| . (7)

We want to represent this using coherent states over the
phase space described by |α〉 = |reiθ 〉, as in the Glauber
P-Representation [21]

ρth = 1

N

∫
d2αe−c|α|2 |α〉 〈α|

= 1

N

∫ ∞

0
rdr

∫ 2π

0
dθe−cr2 |reiθ 〉 〈reiθ |

= 2π

N

∞∑
n=0

1

n!

∫ ∞

0
r2n+1e−(c+1)r2 |n〉 〈n|

= π

N

∞∑
n=0

1

(c + 1)n+1
|n〉 〈n| , (8)

⇒ π

N (c + 1)n+1
= 1

n̄

(
n̄

n̄ + 1

)n+1

, (9)

⇒ c = 1

n̄
, N = π n̄, (10)

⇒ ρth = 1

π n̄

∫ ∞

0
dr
∫ 2π

0
dθre− r2

n̄ |reiθ 〉 〈reiθ | .
(11)

We can integrate over θ and consider this as a probability

distribution over coherent states |r〉 with p(r) = 2
n̄ re− r2

n̄ , i.e.,
a Rayleigh distribution

Rayleigh

(
r;

√
n̄

2

)
= 2

n̄
re− r2

n̄ . (12)

The median of this distribution is given by r1/2 = √
n̄ ln 2,

which is a convenient point of separation if we want to send
binary messages.

Because the set of coherent states is overcomplete, the
existence of a coherent-state representation is guaranteed. A
related question is how well a set of coherent states with a
set of M randomly chosen radii {r j} and uniformly random
phases can approximate a thermal state. This gives a mixture

ρc = 1

M

M∑
j=1

e−r2
j

∑
n

r2n
j

n!
|n〉 〈n| . (13)

The answer is remarkably simple:

√
F (ρth, ρc) � 1 − n̄

2M
⇒ ||ρth − ρc|| �

√
4n̄

M
− n̄2

M2
,

(14)

where F is the average fidelity
√

F (ρth, ρc) =
Tr(

√
ρ

1/2
th ρcρ

1/2
th ). This is relevant for “Pairwise” protocols

we will discuss later.
Another important bound is on the same kind of setup, but

without averaging over θ . If we instead discretize the circle
over θ , that is, we consider a set of states |α jk〉 = |r je

2π ik
L 〉

for sufficiently large L, we can do at least as well as the
above result. A proof of both these bounds is contained in the
Appendix.

IV. MAPPINGS FOR QUANTUM STEGANOGRAPHY

In this work we consider four main approaches to encoding
information steganographically as states of light: the Fock
state encoding, which requires no shared key; an encoding in
coherent states without shared key; and two other encodings
into coherent states that do require a shared key: The verti-
cal angles encoding and the redefined Rayleigh distribution
encoding.

A. Fock state methods

The scheme for Fock state methods is straightforward and
has one clear advantage: Fock states are more easily distin-
guishable than coherent states, so the communication capacity
is higher, although the problem of realizing an arbitrary Fock
state in an experimental setting is also more challenging than
for coherent states. The protocol we will describe requires
only the preparation of multiphoton Fock states, and may be
done using probabilistic operations such as photon addition.
As such, it can, in principle, be done by using only single-
photon sources, single-photon detectors, and beam splitters,
although when n̄ is high this may become experimentally
difficult due to low observation probability. It should be noted
that, in that regime, the coherent state methods described in
this paper perform more competitively with the Fock state
methods due to the greater ease of distinguishing between
different coherent states at a higher amplitude. This method,
however, requires an encoding system from binary digits to
Fock states which depends on the value of n̄, and is described
in detail in Sec. VI and the Appendix. If we are dealing
with Fock states in a noiseless channel, the problem is one
of translating regular binary strings into binary strings with a
certain number of 1s and 0s determined by n̄. It is worth noting
as an experimental consideration that, in cases where n̄ is low,
the weight of the encoded text will be low on average and a
sophisticated encoding may not be necessary. In cases where
n̄ is very large, that may not be the case, and it would require
us to define different Fock states as encoding the binary 1 or 0,
according to the Boltzmann weights of such Fock states (for
example, we might define all states below a certain value of n
as belonging to 0, and the others to belong to 1). In Sec. VI we
will consider a more intermediate case for communication of
a message of length N bits and derive bounds on its efficiency.

B. Distribution coherent state methods

Since Eq. (14) describes the average fidelity, it makes sense
to examine different approaches to optimize this quantity,
taking into account the nonorthogonality of the coherent states
being measured. In all cases we will draw from distributions
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FIG. 1. A plot of the lower bound on the communication rate for
the vertical angle (key) encoding scheme compared to the “Distribu-
tion” (no key) scheme.

defined by

ρ0(r) = 2

n̄
re− r2

n̄ , 0 < r < r 1
2
,

ρ1(r) = 2

n̄
re− r2

n̄ , r 1
2

< r < ∞, (15)

representing the transmission of 0 and 1 from the sender.
First, we consider the “distribution” case, which does not

require a key, where Alice draws a coherent state randomly
from ρ0 or ρ1 and Bob has to try and guess which distribution
it came from. Bob’s ability to do this is bounded by the
trace distance between the states ρ0 and ρ1. This is difficult
to evaluate, but can be evaluated in terms of the cumulative
distribution function of the Poisson processes

Qn = 2−(n̄+1)
n∑

k=0

(
cr2

1/2

)k
k!

(16)

for a process with λ = (n̄ + 1) ln 2 = cr2
1/2 and Q̃n for λ =

n̄ ln 2, with N 1
2

the median of the Poisson process (a full
derivation is included in the Appendix):

1

2
||ρ0 − ρ1|| = 1

2(n + 1)

∞∑
n=0

(
n̄

n̄ + 1

)n

|1 − 2Qn|

= 2

(
1 + (2QN 1

2
− 1)

(
n̄

n̄ + 1

)N 1
2
+1

− Q̃N 1
2

)
.

(17)

From this we can calculate the probability of error perr and the
communication rate R. Since the Poisson process is discrete,
this curve has some kinks when N increases, as seen in Fig. 1.
When n̄ is large, the states ρ0 and ρ1 are almost orthogonal;
but when n̄ is O(1) or smaller, the two states have significant
overlap and are not perfectly distinguishable. In this case error
correction may be necessary, and matching the thermal state
may still require shared secret key, as discussed in Sec. VI.
We consider two variations of this idea below.

C. Pairwise coherent state methods

A related method is to partition the thermal state as above
and select a finite set of states from each half to send. As

we show above, this finite set approximates the thermal state
very well and can be distinguished more easily from each
other. This method may be easier to implement practically, as
only sampling from a subset of ρth is sufficient, but requires
more secret key than the distribution methods, which will be
quantified in Sec. VI.

D. Vertical angles

In this approach, Alice and Bob choose α0 and α1 ahead
of time to have opposite phases θ , i.e., α0 = r0eiθ and α1 =
r1ei(θ+π ) = −r1eiθ , where θ can be chosen arbitrarily. These
states correspond to the binary 0 or 1 and are drawn from the
distributions ρ0 and ρ1, although since this specific protocol
is more useful for the low-n̄ case, ρ0 will likely be sampled
more often. Knowledge of the two possible states constitutes
a secret key, and the θ correlation helps distinguish the distri-
butions by minimizing the overlap

|〈α0〉α1| = e− |α0−α1 |2
2 = e− |r0+r1 |2

2 .

This is maximized for r0 = 0, r1 = r 1
2

which gives

|〈α0〉α1| � e− r2
1/2
2 = 2− n̄

2 , (18)

⇒ perr = 1
2 (1 − || |α0〉 〈α0| − |α1〉 〈α1| ||)

= 1
2 (1 −

√
1 − | 〈α0|α1〉 |2)

� 1
2 (1 − √

1 − 2−n̄). (19)

The associated communication rate is R = 1 + perr

ln(perr ) + (1 − perr ) ln(1 − perr ) which can be seen in Fig. 1.
We can think of this setup as using a key since Alice and

Bob must have prior information linking the two α values,
in contrast to the aforementioned no-key case. Using this
key allows a greater rate of communication since the overlap
between the coherent states representing 0 and 1 is minimized.
We can see this in Fig. 1.

E. Redefined Rayleigh distributions

The final approach involves simply drawing r0 and r1

from the corresponding distributions, communicating them
over a channel and attempting to determine which distribution
was sampled from based on the channel measurement. This
approach is equivalent to determining the overlap of the dis-
tributions ρ0 and ρ1, where we are once again randomizing θ ,
but the two are not simultaneously diagonal in any basis and
so the optimal measurement to distinguish them is not easy to
find with no key. In this section we consider a specific type of
measurement and attempt to optimize for a variable parameter
mc which will distinguish between the two states ρ0 and ρ1,
although in Sec. VI we will also consider measurements that
saturate the Helstrom bound [22]

perr � 1
2 − 1

2 ||(1 − f )ρ0 − f ρ1|| (20)

when discriminating between two states ρ0 and ρ1 occurring
with probabilities 1 − f and f , respectively.

There is one notable difference between this approach and
the previous one. For easy distinction, we can, without loss
of generality, choose θ = 0 for our analysis and redefine the
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FIG. 2. In this setup, a beam splitter combines the coherent
states denoted by |r〉 and |β〉, with nc and nd denoting detectors
that measure the incidence of photons. The value of the homodyne
measurement is given by m = nc − nd .

distribution ρ̃1 as spanning (−∞,−r1/2] to make it easier to
distinguish from ρ̃0, as this essentially rotates ρ1 about the ori-
gin by π and creates the greatest possible distance between the
means and medians of ρ0 and ρ1 by such an operation, while
not fundamentally changing the nature of any calculations we
will perform.

1. Setup

The coherent-state-based protocols we consider use a bal-
anced homodyne measurement of a state |r〉. This state is
coupled to an oscillator by means of the beam splitter shown
in Fig. 2. If we have the operators a and a†, of which |r〉 is
an eigenket of a, and likewise b and b† for |β〉, once the states
pass through the beam splitter the outcome is characterized
by the new operators c = a+b√

2
and d = a−b√

2
. As such, the

desired observable is given by m = nc − nd = c†c − d†d =
a†b + b†a.

2. Bounds

We can derive bounds using the generalized Markov
inequality

P(X − μ > λ) � Mn(X )

λn
(21)

for even n, where X is a random variable, μ is its mean, and
Mn(X ) is its nth moment.

Applying this to the distributions for r1 and r0, we have for
a cutoff value mc ∈ [2β r̄1, 2β r̄0] that

P(m − m̄1 > λ) � Mn(m1)

λn
,

P(m − m̄0 < λ) � Mn(m0)

λn
, (22)

where here m̄1 and m̄0 refer to the mean expected m values for
each distribution, 2β r̄1 and 2β r̄0, respectively.

There is an explicit formula:

Mn(X ) =
n∑

k=0

(
n

k

)
(−1)n−kE [X k](E [X ])n−k . (23)

We also have the explicit formula for moments of m, under
the approximation b ≈ β (since only the leading order terms
in β matter for sufficiently large real β):

E (mk ) =
∫

p(r)βk 〈r|(a + a†)k|r〉 dr

= 4βk

n̄

∫
dr(re− r2

n̄ )Fk (r), (24)

where

Fk (r) =
⎧⎨
⎩
∑k/2

j=0
k!23 j−k/2

(2 j)!(k/2− j)! r
2 j, k even∑(k−1)/2

j=0
k!23 j− k−3

2

(2 j+1)!( k−1
2 − j)!

r2 j+1, k odd.
(25)

A derivation of the above is obtained by acting with

〈r|D(α)〉 r = e2iβr− β2

2 and equating the Taylor expansions of
both sides to each order in β. This provides a means to evalu-
ate the higher-moment Markov bound

perr = 1

2
[p(m − m̄ > mc − m̄|1) + p(m − m̄ < mc − m̄|0)]

� 1

2

[
Mn(m1)

(mc − m̄1)n
+ Mn(m0)

(mc − m̄0)n

]
. (26)

V. NUMERICAL SIMULATION AND PERFORMANCE

We expect that, for a coherent state, the distribution of m
will be Gaussian [23]. It is straightforward to compute the
mean and variance of m in the case where r is randomly
sampled from the distributions without constraint, rather than
being one of two possibilities:

m̄ = 2β r̄,

r̄0 = 4

n̄

∫ √
n̄ln2

0
r2e− r2

n̄ dr ≈ 0.516
√

n̄,

r̄1 = −4

n̄

∫ −√
n̄ln2

−∞
r2e− r2

n̄ dr ≈ −1.256
√

n̄,

r̄2
0 = 4

n̄

∫ √
n̄ln2

0
r3e− r2

n̄ dr ≈ 0.307n̄,

r̄2
1 = 4

n̄

∫ −√
n̄ln2

−∞
r3e− r2

n̄ dr ≈ 1.693n̄

⇒ 	r2
0 ≈ .041n̄ ; 	r2

1 ≈ 0.131n̄. (27)

In addition,

Var(m) = E (m2) − [E (m)]2

= 4β2	r2 + β2 + r̄2,

Var(m0) = (0.164n̄ + 1)β2 + 0.307n̄,

Var(m1) = (0.524n̄ + 1)β2 + 1.693n̄. (28)

Sampling from a normal distribution with these parameters
is simple, so we can empirically determine the optimal value
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FIG. 3. Two views of the plot of perr as a function of rc = − mc
2β

√
n̄

and n̄. The optimal value of rc is between 0.4 and 0.5.

of mc by simulating the transmission homodyne measurement
procedure directly. The results are displayed in Fig. 3.

The above refers to the case where r is randomly sampled
from the distributions without constraint, rather than being
one of two possibilities. In the second case, where the key
designates one of two specific states to be distinguished be-
tween by homodyne measurement for each transmitted bit
(one state |r0〉 from ρ0 and one |r1〉 from ρ1), the optimal
value calculation for mc ≈ β(r0 + r1) is more straightforward:
It derives from optimizing the accumulated probability

∫ mc

−∞

e
− (m−2βr1 )2

2(r2
1 +β2 )√

r2
1 + β2

− e
− (m−2βr0 )2

2(r2
0 +β2 )√

r2
0 + β2

dm (29)

at mc, and gives the result

perr = 1

4

⎡
⎢⎣2 + erf

⎛
⎜⎝ mc − 2βr0√

2(β2 + r2
0 )

⎞
⎟⎠− erf

⎛
⎜⎝ mc − 2βr1√

2(β2 + r2
1 )

⎞
⎟⎠
⎤
⎥⎦,

(30)

which does not exceed 1/2. We will compare this to the
Helstrom bound once we derive a bound for Fock state com-
munication in Sec. VI, so they can all be seen side-by-side.

VI. PARTICULAR ENCODING METHODS

A. Fock state methods

Continuing from the discussion in Sec. IV, if we denote
any Fock states |n〉 with n � 1 as the binary 1, we must have a
quantity of nz = N

n̄+1 0s and N − nz = Nn̄
n̄+1 1s in the encoded

string, which comes directly from the Fock state representa-
tion of ρth. Thus the problem is one of encoding from the set
of all binary strings of length N to the set of binary strings

with such a ratio, of which there are
(N

nz

)
. It is straightforward

to calculate the channel capacity using such an encoding, as
the number of bits we can encode is simply Nh( 1

n̄+1 ): This
provides evidence for the simplicity of the cases of extreme n̄
as noted in Sec. IV.

We can approach this rate using a “by value” encoding.
Think of an N-bit string as representing an integer w, and
encode this as the wth smallest bit string (by value) that
satisfies the above criteria for the number of 0s and 1s. We can
use a theorem called the “Christmas Stocking Theorem” [24]
to efficiently generate the encoding, going from either the least
or most significant bit. This theorem states that

k−1∑
i=0

(
n + i

i

)
=
(

k + n

k − 1

)
, (31)

which provides a straightforward way of counting down dig-
its. More details and examples are contained in the Appendix.

B. Coherent state methods

We want to emulate the statistics of the thermal state using
coherent states sampled from our distributions ρ1 and ρ0. If
we have an equal number of 0s and 1s in the message, this
is straightforward: We can sample from the distributions and
simply transmit the result. There is a catch, however: Since
the coherent states are not orthogonal, there is a probability
of mistaking ρ1 for ρ0 at the time of measurement, which
produces something similar to a Pauli X error. We can protect
against this by using error correction and encoded keywords;
however, this requires secret key, since the encoded messages
will no longer appear to be sampled from ρth.

For example, if we use a simple three-bit Hamming code,
there are only two codewords (000 and 111) and eight pos-
sible, equally likely bit-strings we would expect to see if
sampling from ρth. We can make these strings appear random
again by doing a bitwise XOR with a random three-bit string,
selected by generating a random number between 0 and 7.
This scrambled codeword will still protect against a bit-flip
error, but it requires that Bob also knows the random number
that was chosen. So such a scheme requires Alice and Bob
to share a secret key in advance. If we wish to cut down
on the amount of secret keys used, we could use a shared
seed for a pseudorandom number generation protocol, such
as the rabbit cipher, which is thought to be cryptographically
secure [25]. However, this would reduce the secrecy below the
information-theoretic level we are assuming up to this point.

1. Distribution method

We can quantify the results of the coherent state encoding.
Supposing that, instead of splitting the coherent distribution
in half radially, we split it so that a fraction of the density
f is on the right and denotes a binary 1, and a fraction 1 −
f on the left denotes the binary 0, we can find the optimal
communication rate in terms of f . The results in Fig. 4 show
that, asymptotically, no secret key is needed for sufficiently
large n̄, when we use an f value closer to 0. Interestingly,
there is a trade-off between the optimal communication rate
in terms of minimizing perr and making the states as easy as
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FIG. 4. The division of (a) the thermal state in terms of r (adapted from [26]) and the associated communication rates for various values
of n̄ and f . In descending order, (b) the plots display the optimized value of the communication rate per bit of secret key and (c) both the
communication rate and (d) rate per bit of key when the quantity to be optimized is simply the communication rate.

possible to disguise. The key rate K required here is given by

K = h( f ) − h[(1 − f )p(0|0) + f p(0|1)]

+ f h[p(0|1)] + (1 − f )h[p(0|0)]

� 0, (32)

where the probabilities p(b|a) refer to the probability that Bob
measures a state he decides is from ρb given that Alice sent a
state from ρa. We will derive expressions for these quantities
below.

2. Pairwise method

We can also consider this approach from the perspective
of using a finite set of states, what we called the “pairwise”
protocol earlier. If we use a set of size M, with f M drawn from
ρ1 and (1 − f )M drawn from ρ0, we should still maintain a
fidelity scaling of F � 1 − n̄

2M , since the overall statistics are
still the same as before.

If we add factors of 1 − f in front of p(1|0) and f in front
of p(0|0) in the expression we previously derived in (30) for
perr under homodyne measurement, with these weightings we
now have

mc ≈ β(r0 + r1) +
β ln

(
1
f − 1

)
2(r0 − r1)

(33)

and

perr = 1

4

⎧⎪⎨
⎪⎩ f

⎡
⎢⎣erf

⎛
⎜⎝ mc − 2βr0√

2β2 + r2
0

⎞
⎟⎠+ 1

⎤
⎥⎦

− (1 − f )

⎡
⎢⎣erf

⎛
⎜⎝ mc − 2βr1√

2β2 + r2
1

⎞
⎟⎠+ 1

⎤
⎥⎦
⎫⎪⎬
⎪⎭. (34)

We see that for f = 1/2 the value of mc reverts to β(r0 + r1).
For optimal generalized (Helstrom) measurements, we

consider the quantity

M = (1 − f ) |α0〉 〈α0| − f |α1〉 〈α1| . (35)

If we orthogonalize the basis using η = 〈α0| |α1〉 ∈ R, we can
express this as

M = (1 − f − f |η2|) |α0〉 〈α0| − f (1 − |η|2) |α⊥
0 〉 〈α⊥

0 |
− f η

√
1 − |η|2 |α0〉 〈α⊥

0 | − f η
√

1 − |η|2 |α⊥
0 〉 〈α0| ,

(36)

with

|α1〉 = η |α0〉 +
√

1 − η2 |α⊥
0 〉 . (37)
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FIG. 5. The communication rate R, key rate K , and quotient
R
K for encoded transmission using homodyne-type (orange) and
Helstrom-type (blue) measurements at a variety of f and n̄ values.

Then we have that in this basis

p(0|0) = Tr(|α0〉 〈α0|v0〉 〈v0|) = | 〈α0|v0〉 |2,
p(0|1) = Tr(|α1〉 〈α1|v0〉 〈v0|) = | 〈α1|v0〉 |2, (38)

where vi is the eigenvector of M corresponding to the αi

eigenspace.
From these quantities we can roughly determine the rate of

this communication method, which is limited by the entropy
difference between the encoded and decoded information

R ≈ h(q) − h(q|xi ), (39)

and the key rate is set by the entropy difference between a sim-
ulated binary symmetric channel and the mutual information
of the actual channel

K = h( f ) − R, (40)

where q = (1 − f )p(0|0) + f p(0|1) =∑i pi p(0|xi ). Then,
we can plot the associated quantities, such as K , R, and R

K , and
we see in Fig. 5 that the ratio is fairly small for the homodyne
measurement case but not for the Helstrom case.

We will also need additional shared secret key to specify
which pair of states is being used for each transmitted bit. To
specify a pair of states, one for each bit value, requires an

FIG. 6. A comparison of the communication rates using the Fock
and coherent state encodings. In the Fock case this results from the
theoretical optimum measurement based on the binary symmetric
channel capacity and in the coherent state from optimal homodyne
measurements and generalized measurements that approach the Hel-
strom bound. In the coherent state cases, the results are derived from
sampling from the constituent distributions since an analytical result
is not as straightforward to obtain.

additional ln[(1 − f )( f )M2] bits of key. The communication
rate, however, remains the same as described above. Note
that the asymptotic communication rate per bit of key can
be demonstrated analytically to exceed 1 by examining the
limiting behavior of the expression for R

K .
Note that the value of n̄ manifests itself in the specific

coherent states that will be drawn from the distributions, rather
than being directly visible in the binary transmitted bits as
in the Fock case. If the message does not contain a roughly
equal number of 1s and 0s, we can use an encoding, such as
the one described in the Appendix, to compensate for that.
However, in that case the message should first be compressed,
which increases the entropy of the transmitted string; and if
need be, a sublinear amount of secret key can be used to make
the message string indistinguishable from a purely random bit
string [27,28].

VII. DISCUSSION AND FUTURE WORK

As we can see in Fig. 6, the Fock state encoding is su-
perior in the noiseless case and also does not require a key.
Moreover, it is straightforward and the encoding has a clean
visual representation based on Pascal’s triangle (as shown in
the Appendix). However, coherent states are more resistant to
noise and are easier to generate in the laboratory, although
they perform noticeably worse under either ideal (Helstrom
limit) or homodyne measurements. In both cases, however,
it is viable to communicate information covertly using the
above-described methods for any channel parameter n̄, and
even in the coherent case the amount of secret key required is
low compared to, for example, a one-time pad.

There are many possible future directions to explore to
build on this work. An interesting problem is that of modeling
noisy channels (for example, one with an existing thermal
noise background) and the transmission of coherent states
through such a channel (which is a well-understood prob-
lem) [21]. Such a study would provide a more thorough
grounding for this work’s study of coherent state methods,
which are suboptimal in the noiseless case we examine.
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Another important problem is that of transmitting quan-
tum information, including entanglement. In this work we
have only considered classical information transmission. It
is unclear what kinds of encodings can be used for quantum
information and how well they preserve the entanglement of
the system, both in the noisy and the noiseless case. Such
a work might also delve into the potential applications of
this communication method to teleportation and superdense
coding protocols, for example, and methods of making those
more secure under the type of schemes covered in this paper.

A final promising area of study could be different key uti-
lization protocols, with the goal of utilizing the inherent noise
protection assumptions of steganography to efficiently scale
the encryption process, and using other quantum communi-
cations as a vehicle for encoding steganographic information.
This aims to get around this work’s requirement that secret key
is needed for nonorthogonal state discrimination by exploiting
the information difference between Alice, Bob, and Eve to
communicate a secret key seed, without compromising the
communication rate derived above.
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APPENDIX

1. Proof of Eq. (14)

We start from the fidelity between

ρc = ρ = 1

M

M∑
j=1

e−r2
j

∑
n

r2n
j

n!
|n〉 〈n| (A1)

and the thermal state ρth:√
F (ρ, ρt h) = Tr

√
ρ

1/2
th ρρ

1/2
th . (A2)

If we define the quantity 	ρ = ρ − ρth, then we know im-
mediately that E (	ρ) = 0 since E (ρ) = ρth. Then since
[ρth, ρ] = 0, we can write

√
F = Tr

(
ρth

√
I + ρ−1

th 	ρ
)
, (A3)

which can be lower-bounded by taking the binomial expan-
sion of the square root. We can then take the ensemble average

E
{
Tr
[
ρth
(
I + 1

2ρ−1
th 	ρ − 1

2 (ρ−1
th 	ρ)2)]}

= 1 − 1
2 Tr
[
ρ−1

th E (	ρ2)
]

= 3
2 − 1

2 Tr
[
ρ−1

th E (ρ2)
]
, (A4)

where here

ρ2 =
⎛
⎝ 1

M

M∑
j=1

e−r2
j

∑
n

r2n
j

n!
|n〉 〈n|

⎞
⎠

2

= 1

M2

∑
jk

ρ jρk . (A5)

We have that the ρ j are independent and that for each one
E (ρ j ) = ρth, so if we consider the cases only where all r j are

equal, which we will call ρ1, we have

E (ρ2) = M2 − M

M
ρ2

th + 1

M
E
(
ρ2

1

)
, (A6)

which makes the result of Eq. (A4)

√
F � 1 + 1

2M
− 1

2M
Tr
[
ρ−1

th E
(
ρ2

1

)]
. (A7)

We can now finally evaluate this trace term

Tr
[
ρ−1

th E
(
ρ2

1

)]
= (n̄ + 1)E

[
e−2r2

∞∑
n=0

(
n̄ + 1

n̄

)n r4n

(2n)!2

]

=
∞∑

n=0

2

(n!)2

(
n̄ + 1

n̄

)n+1 ∫ ∞

0
e−(2+1/n̄)r2

r4ndr

=
∞∑

n=0

(2n)!

(n!)2

n̄ + 1

2n̄ + 1

(
n̄ + 1

n̄(2 + 1/n̄)2

)n

= 1

2π

n̄ + 1

2n̄ + 1

∞∑
n=0

(
n̄ + 1

n̄(2 + 1/n̄)2

)n ∫ 2π

0
(4cos2φ)ndφ

= 1

2π

n̄ + 1

2n̄ + 1

∫ 2π

0

∞∑
n=0

(
(n̄ + 1)4cos2φ

n̄(2 + 1/n̄)2

)n

dφ

= n̄ + 1, (A8)

where we use that

(2n)!

(n!)2
= 1

2π

∫ 2π

0
(4cos2φ)ndφ. (A9)

This makes the final result of Eq. (A4)

√
F � 1 − n̄

2M
(A10)

in the average case.

2. Discretizing the Circle

The second bound is when the circle is discretized
over θ . This encoding gives us that for j = 1 . . . M and
k = 0 . . . L − 1 and N = ML

|α jk〉 = |r je
2π ik

L 〉 =
∑

jk

∞∑
n=0

e−r2
j /2 (r je2π ik/L )n

√
n!

|n〉 . (A11)

Then we have

ρc = 1

N

∑
n,n′

∑
jk

e−r2
j

rn+n′
j√
n!n′!

e2π ik(n−n′ )/L |n〉 〈n′|

= 1

N

∑
n,n′

∑
j

e−r2
j

rn+n′
j√
n!n′!

1 − e2π i(n−n′ )

1 − e2π i(n−n′ )/L
|n〉 〈n′|

= 1

N

∞∑
n=0

∑
j

e−r2
j
r2n

j

n!
|n〉 〈n| (A12)
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since the geometric series sums to δnn′ . We can now evaluate
the fidelity

√
F = Tr

⎛
⎝
√√√√ ∞∑

n=0

1

N (n̄+ 1)

(
n̄

n̄+ 1

)n 1

n!

∑
j

e−r2
j r2n

j |n〉 〈n|
⎞
⎠.

(A13)

This gives the same bound as before:

√
F � 1 − n̄

2N
. (A14)

If we instead consider the distributions ρ1 and ρ0, we can
easily show, at least, that

√
F → 1 as N → ∞ (since the

integrals over the distributions are hard to compute) starting
from Eq. (A4):

√
F = 1 + 1

2N
− 1

2N
Tr
(
ρ−1

th E
[
ρ2

i

])
E [ρi] = 2

n̄

(∫ r1/2

0
r4n+1e−(2+1/n̄)r2

dr

+
∫ −∞

−r1/2

r4n+1e−(2+1/n̄)r2
dr

)

� 2

n̄

∫ ∞

0
r4n+1e−(2+1/n̄)r2

dr

⇒ −n̄ − 1 � Tr
(
ρ−1

th E [ρi]
)
� n̄ + 1

⇒
√

F � 1 − n̄

2N
. (A15)

3. Derivation of Vertical Angle Bound with no Key

We start with the two states, given c = 1 + 1/n̄:

ρ0 = 4

n̄

∫ r1/2

0

∞∑
n=0

e−(1+1/n̄)r2 r2n+1

n!
|n〉 〈n|

= 2−n̄

n̄ + 1

∞∑
n=0

1

cn

(
n∑

k=0

(cr2
1/2)k

k!

)
|n〉 〈n| , (A16)

and

ρ1 = 4

n̄

∫ ∞

r1/2

∞∑
n=0

e−(1+1/n̄)r2 r2n+1

n!
|n〉 〈n|

= 2−n̄

n̄ + 1

∞∑
n=0

1

cn

⎛
⎝ ∞∑

k=n+1

(
cr2

1/2

)k
k!

⎞
⎠ |n〉 〈n| . (A17)

The fidelity between these two states is given by

√
F = Tr

√
ρ0ρ1 = 2

n̄ + 1

∞∑
n=0

(
n̄

n̄ + 1

)n√
Qn(1 − Qn),

(A18)

where Qn = 2−(n̄+1)∑n
k=0

(cr2
1/2 )k

k! is the nth cumulant of the
Poisson process with parameter λ = cr2

1/2.

We can rewrite the trace distance as

1

2
||ρ0 − ρ1|| = 1

n̄ + 1

( N1/2∑
n=0

(
n̄

n̄ + 1

)n

(1 − 2Qn)

+
∞∑

n=N1/2

(
n̄

n̄ + 1

)n

(2Qn − 1)

)
, (A19)

where N1/2 is such that Qn < 1/2 iff n < N1/2.
We take each term in the sum in turn

1

n̄ + 1

⎛
⎝N1/2∑

n=0

(
n̄

n̄ + 1

)n

(1 − 2Qn)

⎞
⎠

=
(

1 −
(

n̄

n̄ + 1

)N1/2+1
)

− 2−n̄

n̄ + 1

N1/2∑
k=0

[(n̄ + 1) ln 2)]k

k!

⎛
⎝( n̄

n̄+1

)k − ( n̄
n̄+1

)N1/2+1

1 − n̄
n̄+1

⎞
⎠

= 1 + (2QN1/2 − 1)

(
n̄

n̄ + 1

)N1/2+1

− Q̃N1/2 , (A20)

where Q̃n is the CDF for the Poisson process with λ = n̄ ln 2.
The second sum is

1

n̄ + 1

∞∑
k=N1/2+1

(
n̄

n̄ + 1

)n

(2Qn − 1)

=
∞∑

n=N1/2+1

(
n̄

n̄ + 1

)n n∑
k=0

[(n̄ + 1) ln 2]k

k!
−
(

n̄

n̄ + 1

)N1/2+1

= −
(

n̄

n̄ + 1

)N1/2+1

+ 2−n̄

n̄ + 1

⎛
⎝N1/2∑

k=0

[(n̄ + 1) ln 2]k

k!

∞∑
n=N1/2+1

(
n̄

n̄ + 1

)n

+
∞∑

k=N1/2+1

[(n̄ + 1) ln 2]k

k!

∞∑
n=k

(
n̄

n̄ + 1

)n
⎞
⎠

= 1 + (2QN1/2 − 1)

(
n̄

n̄ + 1

)N1/2+1

− Q̃N1/2 . (A21)

Combining these sums gives us the final result:

1

2
||ρ0 − ρ1|| = 2

(
1 + (2QN 1

2
− 1)

(
n̄

n̄ + 1

)N 1
2
+1

− Q̃N 1
2

)
.

(A22)

4. Encoding Method for Fock States

Elaborating on the results of Sec. V, we can imagine a
particular encoding method for Fock state communication.
Let’s consider a particular example. Suppose n̄ = 0.56 and
Alice wants to communicate the six-bit string 101001, which
we can think of as the binary expression for the number 41.
(Note that this protocol requires Bob to know the size of
the message being communicated). If Alice wants to know
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FIG. 7. This figure illustrates the process Alice uses to construct
the encoded message as described above on Pascal’s triangle. First,
she calculates that the message is transmissible using eight bits since
41 < 56 (green), as above. Then, she determines the message (41) is
in the largest of 21 numbers, and so she boxes 21 and the first digit is
1 so she moves right. Then she determines 41 is neither in the largest
6, nor 6 + 5, nor 6 + 5 + 4 messages, and so circles the numbers 6,
10, and 15, and moves left each time, with each circle signifying a
zero (the intermediate numbers 4, 5, and 6 are also highlighted since
it is useful to keep track of their values). These steps are repeated
until Alice reaches the right edge of the triangle at which point she
knows all remaining digits are 0. As this figure shows, this is an
efficient encoding as only a linear amount of combinations in the
starting position need to be computed.

how many bits she needs to encode an x-bit number with M
n̄+1

zeroes, she solves the equation(
M
M

n̄+1

)
= 2x+1 − 1. (A23)

Alice can transmit her string with M = 8 bits: the condition is
that (

M
M

n̄+1

)
= 2Mh( 1

n̄+1 ) � |m|, (A24)

where we use |m| to denote the value of the message, which is
41. Therefore, Alice’s message should consist of 5 bits of 0, 3
bits of 1, and we can verify that

(8
3

) = 56 > 41.
As we will show, 41 is encoded by the binary string

10 001 100, which is the binary expression for 140, the 41st-
smallest number with an 8 bit string representation (possibly
with leading zeroes) with the appropriate ratio of 1s to 0s.
To find this string, we follow a process derived from the
“Christmas Stocking Theorem” mentioned above, which we
detail in Fig. 7. First, consider that if we are using N bits,
nz of which are 0, there are

(N−1
nz

)
strings with 1 in the first

spot. There are
(N−2

nz−1

)
strings with 0 in the first spot and 1

in the second spot, and so on. Alice can subtract these from
56 total possible strings to find the string in question. For
example, the first

(7
5

) = 21 bits have a 1 at the start, and
41 > 56 − 21 so Alice’s message must start with 1, denoted
by the blue square over the 21 in the figure. Then there are

(6
5

) = 6 strings with 11, so the second bit she sends must be
0, since 41 � 56 − 6 (denoted by the red square over the 6 in
the figure), 56 − 6 − 5 − 4 = 41 so the string so far is 10 001.
Actually, at this point we have reached the 41st largest string
so Alice’s message is the largest such string with that prefix,
10 001 100 = 140, and the remaining digits are in red in the
figure since they correspond to the trailing 0s now that we
have allocated all the 1s.

Once Alice knows that this is the encoded string she wants
to send, she generateseight Fock states in a ratio of 5 : 3 zeroes
to ones (where “one” here refers to a mode greater than 0,
with the appropriate statistics to emulate the thermal state).
Then she sends one of the |1+〉 states for every position cor-
responding to 1 in the string 10 001 100 and a |0〉 state for each
0. Bob measures the Fock states and should receive 1 001 100
as the most likely string, after inverting the above algorithm,
which is straightforward. Eve should see something that looks
like a thermal state: After all, it is bitwise random and has the
required overall statistics.

5. Practical Fidelity Bounds for the Fock Encoding

In practice, the Fock state encoding is not exactly equiva-
lent to a thermal state. While we would like to send the state

ρ = 1

n̄ + 1
|0̄〉 〈0̄| + n̄

n̄ + 1
|1̄〉 〈1̄| , (A25)

in practice we have a finite number of bits, so we are sending
either the state

ρ ′ = 1

N

(⌊
N

n̄ + 1

⌋
|0̄〉 〈0̄| +

⌈
Nn̄

n̄ + 1

⌉
|1̄〉 〈1̄|

)
, (A26)

or the state

ρ ′′ = 1

N

(⌈
N

n̄ + 1

⌉
|0̄〉 〈0̄| +

⌊
Nn̄

n̄ + 1

⌋
|1̄〉 〈1̄|

)
(A27)

(whichever maximizes the fidelity). Another way of writing
this is, e.g.,

ρ ′ =
⌊

N
n̄+1 t

⌋
N

|0〉 〈0| + 1

N (n̄ + 1)

∞∑
n=1

⌈
Nn̄

n̄ + 1

⌉

×
(

n̄

n̄ + 1

)n−1

|n〉 〈n| . (A28)

We would like to compute, as a function of n̄,

maxσ∈{ρ ′,ρ ′′}F (ρ, σ )

= max[Tr(
√

ρσ )]

= max

(
Tr

√∑
n

1

n̄ + 1

(
n̄

n̄ + 1

)n

cn |n〉 〈n|
)

= e.g.,

√ ⌊
N

n̄+1

⌋
N (n̄ + 1)

+
∞∑

n=1

1

n̄ + 1

√ ⌈
Nn̄

n̄+1

⌉
n̄

N (n̄ + 1)

(
n̄

n̄ + 1

)n

� 1 − 1

8

⎛
⎝(1 −  N

n̄+1 �(n̄+1)
N

)2
n̄ + 1

+ n̄
(
1 − � Nn̄

n̄+1 �( n̄+1
n̄ )

N

)2
n̄ + 1

⎞
⎠

− ( n̄+1
n̄ )2

16N3
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= 1 − 1

8

⎛
⎝⌈ Nn̄

n̄+1

⌉2 n̄+1
n̄ + ⌊ N

n̄+1

⌋2
(n̄ + 1)

N2
− 1

⎞
⎠−

(
n̄+1

n̄

)2
16N3

� 1 − 1

8

⎛
⎝( Nn̄

n̄+1 + 1
)2( n̄+1

n̄

)+ ( N
n̄+1

)2
(n̄ + 1)

N2
− 1

⎞
⎠

−
(

n̄+1
n̄

)2
16N3

= 1 − 1

8

(
2N + 1

N2
+ 1

N2n̄

)
− 1

16

(
n̄+1

n̄

)2
N3

, n̄ � 1,

� 1 − 1

8

(
2N + n̄ + 1

N2

)
− 1

16

(n̄ + 1)2

N3
, n̄ < 1, (A29)

where the third-order correction is due to Taylor’s theorem.
The above chain of inequalities shows that when N is fairly
large, the fidelity between the encoded state and the ther-
mal state is very close to 1. At the cost of sharing some
additional secret key, Alice and Bob can actually make the
fidelity (almost) perfect. The gap in fidelity between the
encoded state and the thermal state results from using inte-
ger approximations to N/(n̄ + 1) and Nn̄/(n̄ + 1). However,
Alice and Bob can, in principle, randomly choose the num-
bers of 0s and 1s to be used in the encoding, from the
binomial distribution with probabilities corresponding to the
thermal state: p(0) = 1/(n̄ + 1) and p(1) = n̄/(n̄ + 1). By
averaging over this choice, one can match the thermal state
perfectly.
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