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Multipartite high-dimensional quantum state engineering via discrete-time quantum walk
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Quantum state engineering, namely, the generation and control of arbitrary quantum states, is drawing more
and more attention due to its wide applications in quantum information and computation. However, there is no
general method in theory, and the existing schemes also depend heavily on the selected experimental platform.
In this article, we give two schemes for the generating task of arbitrary quantum state in c-partite d-dimensional
system, both of which are based on a discrete-time quantum walk with a 2c-dimensional time- and position-
dependent coin. The first procedure is a d-step quantum walk where all the d coins are nonidentity, while the
second procedure is an O(d )-step quantum walk where only O(log d ) coins are nonidentity. A concrete example
of preparing generalized Bell states is given to demonstrate the first scheme we proposed. Furthermore, the first
scheme can be applied to give an alternative approach to the quantum state preparation problem which is one of
the fundamental tasks of quantum information processing. We design circuits for quantum state preparation with
the help of our quantum state engineering scheme that match the best current result in both size and depth of the
circuit asymptotically.

DOI: 10.1103/PhysRevA.109.032229

I. INTRODUCTION

High-dimensional states carry more information than
qubits and thus can be exploited to reduce resource con-
sumption of quantum information and computation tasks
[1–3]. Multipartite high-dimensional states, especially high-
dimensional entanglement [4], can be used as important
sources in plenty of quantum information protocols, such as
quantum teleportation [5], quantum key distribution [6–8],
and quantum secret sharing [9]. Thus, quantum state engineer-
ing, i.e., the realization of coherent dynamics or multipartite
high-dimensional quantum states by manipulating appropriate
quantum mechanical systems, has become a hot topic in mod-
ern physics and computer sciences. In this work, we study the
generation (or preparation) of multipartite high-dimensional
states.

Discrete time quantum walk acts as a powerful tool in a
lot of areas of quantum information and computation. From
the computational theory perspective, it is universal for quan-
tum computation [10–13], and serves as an important part
in various quantum algorithms such as element distinctness
[14], triangle finding [15], and so on. It is also proved that
quantum algorithms for finding a marked vertex via quantum
walk search is quadratic faster than classical random walk
[16]. Apart from that, discrete-time quantum walk has been
experimentally illustrated in some physical platforms, such
as ion traps [17,18], optical [19,20], and superconducting
processor [21,22].

*niejunhong19z@ict.ac.cn
†Corresponding author: limeng2021@ict.ac.cn
‡sunxiaoming@ict.ac.cn

Due to the flexibility and experimental feasibility of
quantum walk, it has also been applied to the prepara-
tion of high-dimensional states [23,24]. In general, there
are three kinds of quantum coins in quantum walks: time-
dependent, position-dependent, time- and position-dependent.
Innocenti et al. proposed a scheme for preparing most of
the high-dimensional states on a single particle using a one-
dimensional quantum walk with time-dependent coins [25],
which is later experimentally realized in the linear-optics plat-
form [26] and further serves as an experimental example in
Ref. [27]. Moreover, Kadiri gives a sufficient condition of
what states can be generated by quantum walk with time-
dependent coin, of the entire system including both position
and coin space [28]. However, Montero shows that quantum
walks with time- and position-dependent coins can be used
to retrieve any given distribution on a single particle [29,30],
and this theoretical result has been experimentally realized
recently [31].

However, most of the current schemes are only for single-
qudit states, or there are limitations on the dimension of the
bipartite quantum states discussed above. Motivated by this,
we focus on preparing arbitrary states in multipartite systems.
Due to the essence of preparing multipartite high-dimensional
entanglements and the variety of physical platforms, we aim
to seek a general framework to accomplish this task by taking
advantage of quantum walk with time- and position-
dependent coins. Here, we first put forward two quantum
walk procedures generating arbitrary c-partite d-dimensional
quantum state |φ〉 with the help of a 2c-dimensional time-
and position-dependent coin. The first one has exactly d steps
where all the d coins are nonidentitical. The second scheme
is an O(d )-step quantum walk where only O(log d ) coins are
nonidentitical. Both of these procedures has nearly optimal
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TABLE I. Relationship of our work with previous works. The
multipartite engineering based on time-dependent coin mainly con-
cerns a system consisting of one qudit and one qubit [28].

One qudit Multipartite

Time-dependent coin [25] qudit +qubit [28]
Experiments [26,27] –
Time- and position-dependent coin [30] Our work
Experiments [31] –

steps. A summary of the relationship of our work with other
previous works is shown in Table I.

We also illustrate the first scheme with two examples,
hoping for encouraging potential applications of engineer-
ing multipartite high-dimensional quantum states. The first
example is about engineering generalized Bell states which
firstserves as basis for the measurements Alice used in the
quantum teleportation scheme [5]. Later in some quantum
key distribution (QKD) protocols, it was used as the initial
shared entanglements [32]. Here, we illustrate our algorithm
with this particular state. For bipartite Bell states, our scheme
has d steps. It is worth noting that one can indeed achieve
O(d ) steps in this application using the scheme from Ref. [25].
However, as will be mentioned in Sec. V A, the realization of
shift operator using Ref. [25]’s scheme is a lot more tricky
compared with just using the native shift operator by leverag-
ing our scheme.

Another example is the relationship between quantum en-
gineering and quantum state preparation. Quantum circuit and
quantum walk are two important models in quantum informa-
tion and they are proved to be equivalent from the perspective
of quantum computation. However, as mentioned earlier, there
are several different approaches to physically realize quan-
tum computation and quantum circuit model is suitable for
describing quantum evolutions in some approaches, while the
quantum walk model may be suitable for some others (e.g., the
shift operator may be native in some physical realizations).
Quantum state preparation is a fundamental problem asking
for a quantum circuit preparing any given n-qubit quantum
state of size and depth as small as possible [33–37]. When the
number of ancillary qubits is O(n), the asymptotically opti-
mal circuit accomplishing this task has size �(2n) and depth
�( 2n

n ) [37]. Here we seek for a quantum walk protocol prepar-
ing a particular state on qudit systems. As explained above,
these two problems are both for preparing states while they
differ from each other on the quantum information models
they are based on. Considering that quantum walk is universal
for quantum computation, which means that any quantum
circuit can be simulated by a quantum walk protocol, we
explore the similarity of these two problems. We show that the
same bounds can also be reached simultaneously by treating
the problem in the quantum circuit model as engineering a bi-
partite 2

n
2 -dimensional quantum state and utilizing our scheme

in the quantum walk model. To achieve this, we go the oppo-
site way that quantum walk procedures can be implemented
by efficient quantum circuits.

This paper is organized as follows. In Sec. II, we briefly
introduce the model of quantum walks we will base on. In

Sec. III, we propose our first scheme to engineer an arbi-
trary multipartite high-dimensional quantum state based on
quantum walk with time- and position-dependent coins. The
bipartite case where c = 2 is detailed in Sec. III A and the
general multipartite case is sketched in Sec. III B. In Sec. IV,
we show our second scheme which has O(d ) steps while only
O(log d ) coins are nonidentitical. We only detail the bipartite
case with d a power of 2. After that in Sec. V, we give two
examples where our scheme may be used. The first one is
an illustration of our scheme by taking the generalized Bell
state as an example, which is shown in Sec. V A. And the
relationship between quantum state engineering and quantum
state preparation is presented in Sec. V B. Finally, we end with
a summary and outlook in Sec. VI.

II. PRELIMINARIES

Quantum walks are analogies of the well-known random
walks in which at each step one tosses some coins (may be
biased) to decide which direction to go. In this work, the
system where quantum walks apply to consists of c particles
and a 2c-dimensional coin. That is, the system is the prod-
uct of two Hilbert spaces: position space HP in which the
particles live and coin space HC . We use the computational
basis, i.e., HP spanned by {|x〉 : x ∈ Zc, x � 0}, and HC

spanned by {|c〉 : c ∈ {0, 1}c}. The initial state of the system is
|0〉⊗c ⊗ |0〉⊗c.

The kth step of a quantum walk on H = HP ⊗ HC is
described as a unitary W (k) = SC(k), where C(k) is the coin-
flipping operator and S is the conditional shift operator.
Generally speaking, there are three kinds of coin operators
which have also been illustrated experimentally in the lit-
erature, time-dependent [38,39], position-dependent [40,41],
both time- and position-dependent [42,43]. As mentioned in
Sec. I, in this work we use both the time- and position-
dependent coin-flipping operator, that is,

C(k) =
∑
x�0

|x〉 〈x| ⊗ C(k)(x). (1)

The conditional shift operator S is defined as

S =
∑
x�0

c∈{0,1}c

|x + c〉 〈x| ⊗ |c〉 〈c| . (2)

Let’s illustrate this with the special case c = 2. The initial
state is |0, 0〉 ⊗ |0, 0〉. For this four-dimensional coin, we may
use alternative notations

|�〉 = |0, 0〉 , |→〉 = |1, 0〉 , |↑〉 = |0, 1〉 , |↗〉 = |1, 1〉
(3)

to describe the computational basis on a 2D grid, so the initial
state can also be written |0, 0〉 ⊗ |�〉. Now we can define the
coin operator C(k) and conditional shift operator S:

C(k) =
∑

x,y�0

|x, y〉 〈x, y| ⊗ C(k)(x, y), (4)
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FIG. 1. Illustration of propagation of amplitudes using algorithm
in Ref. [25].

where C(k)(x, y)′s are all 4 × 4 unitaries, and

S(|x, y〉 ⊗ |�〉) = |x, y〉 ⊗ |�〉 ,

S(|x, y〉 ⊗ |→〉) = |x + 1, y〉 ⊗ |→〉 ,

S(|x, y〉 ⊗ |↑〉) = |x, y + 1〉 ⊗ |↑〉 ,

S(|x, y〉 ⊗ |↗〉) = |x + 1, y + 1〉 ⊗ |↗〉 .

(5)

In fact, this direction calibration is equivalent to the usual
method (the particle moves left, right, up or down according
to the coin state), and in this way we can have a much cleaner
and more intuitive representation.

III. THEORETICAL SCHEME
FOR ENGINEERING QUANTUM STATES

One can apparently make use of the scheme from Ref. [25]
on c particles to produce arbitrary product states with only
time-dependent coins used. However, engineering of multi-
partite entanglement states using only time-dependent coins
is a bit more tricky. Indeed, one can encode the basis of
the entire system in a zigzag fashion and utilize the scheme
on the one-dimensional line (The propagation procedure of
d = 2 is illustrated in Fig. 1), but this procedure takes dc

steps of quantum walk, and needs us to design coin operators
delicately and manipulate shift operator in a complicated way.
Also, this method reaches the lower bound of steps using
time-dependent coins, which can be proved by a counting
argument. Indeed, s steps of the time-dependent quantum
walk has O(s) different quantum coins and each of these coins
provides constant number of degrees of freedom, so there are
O(s) flexible parameters in total. However, arbitrary states on
c particles involve O(dc) parameters. Therefore, this scheme
is not ideal for multipartite quantum state engineering from
the perspective of the number of steps.

In this section, we will elaborate the theoretical protocol
of realizing arbitrary multipartite high-dimensional quantum
state engineering via a d-step quantum walk, which is nearly
optimal. Here we fully explore the potential of the quantum
walk with time- and position-dependent coins by focusing on
the critical positions and splitting coin operators.

A. Bipartite case

Now we explain how our method works in the bipartite
case. We make use of quantum walks with c = 2, which is
detailed in Sec. II. Say one has an arbitrary state to be pre-
pared |φ〉 = ∑d−1

x,y=0 αx,y |x, y〉, and the initial state is |� (0)〉 =
|0, 0〉 ⊗ |�〉, then the procedure is described as the following
d steps:

|φ〉 ⊗ |�〉 = W (d−1)W (d−2) · · ·W (1)W (0) |� (0)〉 . (6)

The design of coin operators is the key to make the procedure
suitable for arbitrary target quantum states.

Instead of directly design the coin operators in the quantum
walk procedure, we accomplish the engineering task via an
alternative procedure and turn it into the standard quantum
walk procedure described in Eq. (6). The procedure we are
looking at is denoted as

V (d−2) · · ·V (1)V (0) |� (0)〉 . (7)

Later we will see the definition of the operators V (k). Also, we
define some intermediate states

|� (1)〉 = V (0) |� (0)〉 ,

|� (2)〉 = V (1) |� (1)〉 ,

. . . ,

|� (d−1)〉 = V (d−2) |� (d−2)〉 .

(8)

For these |� (k)〉′ s, we make a crucial convention that their
coin spaces are all in the particular state |�〉. That is, they are
all of the form

|� (k)〉 = |φ(k)〉 ⊗ |�〉 , (9)

in which |φ(k)〉 = ∑k
x,y=0 α(k)

x,y |x, y〉 is spanned by {|l, r〉 : 0 �
l, r � k} for all k = 0, 1, . . . , d − 1 and |φ(d−1)〉 = |φ〉. That
is, after d − 1 steps, we reach the target state on position
space. From now on, we use the notation |� (k)〉 and |φ(k)〉
interchangeably.

Now we define the operators V (k). Each C(k) in the walk
operator W (k) in Eq. (6) is decomposed into two coin op-
erators: C(k) = C(k)

1 C(k)
2 for k = 0, . . . , d − 1 with C(0)

2 =
C(d−1)

1 = I . In addition we define V (k) = C(k+1)
2 SC(k)

1 for all
k = 0, 1, . . . , d − 2. Intuitively, the coin operator C(k)

1
′s fork

the directions according to the α(k+1)
x,y

′s, and C(k)
2

′s are for the
purpose of turning the states of coin space into |�〉. Thus as
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(a) k = 1 (b) k = 2 (c) k = 3

FIG. 2. Illustration of propagation of amplitudes along the algorithm process.

long as the state after shift operator (SC(k)
1 |� (k)〉) is given, the

operator C(k+1)
2 is settled automatically.

With these definitions in hand, we show how to en-
gineer the state |φ〉. This is described in an inductive
fashion: suppose for any |� (k)〉, there exists operators
V (0),V (1), . . . ,V (k−1) such that

|� (k)〉 = V (k−1) · · ·V (1)V (0) |� (0)〉 , (10)

we claim that for any given state |φ(k+1)〉, there exists opera-
tors V (0),V (1), . . . ,V (k) such that

|� (k+1)〉 = V (k) · · ·V (1)V (0) |� (0)〉 . (11)

Once this claim is proved, we can indeed reach our goal:
simply let |� (d−1)〉 be equal to |φ〉 ⊗ |�〉, then there exists
V (0),V (1), . . . ,V (d−2) such that

|� (d−1)〉 = V (d−2) · · ·V (1)V (0) |� (0)〉 . (12)

This indeed corresponds to a quantum walk procedure de-
scribed in Eq. (6) because

S |� (d−1)〉 = S(|φ〉 ⊗ |�〉) = |φ〉 ⊗ |�〉 = |� (d−1)〉 , (13)

where the second equation is according to the definition of
shift operator S in Eq. (5).

Given |φ(k+1)〉, to prove the claim, we delicately pick
some |φ(k)〉 and computes two coins C(k)

1 and C(k+1)
2 , such

that |� (k+1)〉 = C(k+1)
2 SC(k)

1 |� (k)〉 for all k = 0, 1, . . . , d − 2.
Since the coin operator can take full control of the position
space, let’s denote

C(k)
i =

∑
x,y�0

|x, y〉 〈x, y| ⊗ C(k)
i (x, y), (14)

where i = 1, 2. Note that |φ(k)〉 is spanned by {|l, r〉 : 0 �
l, r � k}, which means C(k)

1 (x, y) is meaningless for x > k
or y > k, and thus they can be set identity. To make the coin
operator as simple as possible, C(k)

1 (x, y) for x, y < k are a set
identity also. This, in fact, leads to the state |φ(k)〉 we choose.

The base case |� (0)〉 is fixed. For k � 0, suppose
the given state is |φ(k+1)〉 = ∑k+1

x,y=0 α(k+1)
x,y |x, y〉, then the

algorithm sets

α(k)
x,y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(k+1)
x,y , x, y < k,√∣∣α(k+1)

x,y

∣∣2 + ∣∣α(k+1)
x+1,y

∣∣2
, x = k, y < k,√∣∣α(k+1)

x,y

∣∣2 + ∣∣α(k+1)
x,y+1

∣∣2
, x < k, y = k,√∣∣α(k+1)

x,y

∣∣2 + ∣∣α(k+1)
x+1,y

∣∣2 + ∣∣α(k+1)
x,y+1

∣∣2 + |α(k+1)
x+1,y+1

∣∣2
, x = y = k.

(15)

The intuition behind setting these parameters is illustrated in
Fig. 2. In the figure, each diagram represents an internal state
of the algorithm. Each box corresponds to a position of the
system’s Hilbert space. Some boxes are colored by light (dark)
orange to represent that the amplitude of the corresponding
position is already (not yet) settled (that is, identical to target
state |φ〉), while the other boxes are not colored, which means
that the amplitude of the corresponding position is zero for the
current step. Figure 2 illustrates the propagation of amplitudes
from k = 1 to k = 3.

For the system’s state |� (k)〉 at step k, positions corre-
sponding to the lower-left corner colored by light orange are
settled. Each position on the dark boundary has a specific
amplitude that is ready for amplitude propagation to positions
in one dashed box in future steps. For example, the upper-right
corner has amplitude that is the sum of all absolute values
of amplitudes in the upper-right dashed box. In other words,
our strategy is that the absolute values of amplitudes propa-
gate along this process while the relative phases are adjusted
locally.
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Now suppose this particular |� (k)〉 has been prepared, the
operators C(k)

1 (x, y) are given by the following formula. Note

that, for simplicity, we slightly abuse the notations such that
the entire term is zero while dividing by zero

C(k)
1 (x, y) |�〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|�〉 , x, y < k,(
α(k+1)

x,y |�〉 + α
(k+1)
x+1,y |→〉)/α(k)

x,y, x = k, y < k,(
α(k+1)

x,y |�〉 + α
(k+1)
x,y+1 |↑〉)/α(k)

x,y, x < k, y = k,(
α(k+1)

x,y |�〉 + α
(k+1)
x+1,y |→〉 + α

(k+1)
x,y+1 |↑〉 + α

(k+1)
x+1,y+1 |↗〉)/α(k)

x,y, x = y = k,

(16)

In addition, C(k)
2 (x, y) satisfies

C(k)
2 (x, y) |�〉 = |�〉 , x, y < k,

C(k)
2 (x, y) |→〉 = |�〉 , x = k, y < k,

C(k)
2 (x, y) |↑〉 = |�〉 , x < k, y = k,

C(k)
2 (x, y) |↗〉 = |�〉 , x = y = k.

(17)

It’s straightforward to see these C(k)
1 (x, y)′s and C(k)

2 (x, y)′s
can be set to unitaries and they can indeed achieve our goal.
Let’s take the case x = k, y < k as example, and the proof of
the remaining cases are similar. The initial state at x = k, y <

k is α(k)
x,y |x, y〉 ⊗ |�〉, and after C(k)

1 (x, y), the shift operator S

and C(k+1)
2 (x, y), the state becomes

α(k)
x,y |x, y〉 ⊗ |�〉

C(k)
1−−→ α(k)

x,y |x, y〉 ⊗ (
α(k+1)

x,y |�〉 + α
(k+1)
x+1,y |→〉)/α(k)

x,y

S−−→ α(k+1)
x,y |x, y〉 ⊗ |�〉 + α

(k+1)
x+1,y |x + 1, y〉 ⊗ |→〉 (18)

C(k)
2−−→ (

α(k+1)
x,y |x, y〉 + α

(k+1)
x+1,y |x + 1, y〉) ⊗ |�〉 .

Also note that the C(k)
1 (x, y)′s and C(k)

2 (x, y)′s can be set iden-
tity for all x, y < k.

In fact, the explicit form of the α(k)
x,y

′s in our algorithm for
every step k < d can be directly expressed by the amplitudes
of the desired state |φ〉, i.e., αx,y

′s. For a fixed k, we have the
following observations: α(k)

x,y
′s are zero except for the case x �

k, y � k. In addition, α(k)
x,y = αx,y for x < k, y < k. So the only

unsettled cases are x = k, y < k; x < k, y = k; and x = k, y =
k. It’s straightforward to see that

α(k)
x,y =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

αx,y, x, y < k,√∑d−1
z=k |αz,y|2, x = k, y < k,√∑d−1
w=k |αx,w|2, x < k, y = k,√∑d−1
z,w=k |αz,w|2, x = y = k.

(19)

One can prove this by plugging it into Eq. (15) and
making induction on k. With the help of Eq. (19),
one can construct the coin operators C(k)

1 (x, y) for
every k explicitly.

The algorithm is shown in Algorithm 1. Below we show
that the time complexity for computing the parameters on
a classical machine is O(d2). To compute the elements of

C(k)(x, y)′s, one needs to compute the coefficients α(k)
x,y for

every k first, according to Eq. (15). Notice that at step k, there
are only 2k + 1 of these coefficients that differs from αx,y,
so the total effort of computing these coefficients for all k
is O(d2). After that, the elements of the coin operators can
be computed according to Eqs. (16) and (17). Again, recall
that at step k, only 2k + 1 out of k2 of the operators C(k)

x,y are
nonidentity, and they are all 4 × 4 matrices whose elements
can be computed from the α(k)

x,y
′s. Thus, the total effort of

computing these operators is O(d2) also. In summary, this
algorithm takes O(d2) time to compute all the coin operators
used in engineering |φ〉.

B. Multipartite case

The multipartite case is a natural generalization of the
bipartite case, so here we briefly sketch the scheme. Say again
one has an arbitrary state to be prepared |φ〉 = ∑

x<d αx |x〉,
and the initial state is |� (0)〉 = |0c〉 ⊗ |0c〉. Then the quantum
walk procedure is

|φ〉 ⊗ |0c〉 = SC(d−1)SC(d−2) · · · SC(1)SC(0) |� (0)〉 . (20)

Again, we look at the alternative procedure

V (d−2) · · ·V (1)V (0) |� (0)〉 . (21)

Denote |� (k)〉 = |φ(k)〉 ⊗ |0c〉 the intermediate state of step k
in which

|φ(k)〉 =
∑
x�k

α(k)
x |x〉 , (22)

and

|� (k+1)〉 = V (k) |� (k)〉 (23)

for all k = 0, 1, . . . , d − 2. Recall that V (k) = C(k+1)
2 SC(k)

1 ,
C(k)

i = ∑
0�x�k |x〉 〈x| ⊗ C(k)

i (x), where i = 1, 2.

ALGORITHM 1. Quantum state engineering for bipartite
systems

Input: a complex vector {αx,y} describing the state |φ〉 = ∑d−1
x,y=0

αx,y |x, y〉 to be prepared
Output: {C (k)}d−1

k=0
1: for k ← d − 1, 0 do
2: Compute all α(k)

x,y according to Eq. (15)
3: Compute all C (k)

1 (x, y) and C (k)
2 (x, y) according to Eqs. (16)

and (17), respectively
4: end for
5: Compute C (k) = C (k)

1 C (k)
2 for k = 0, 1, . . . , d − 1

6: return {C (k)}d−1
k=0
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(a) C
(0)
1 (b) S (c) C

(1)
2 and future directions

FIG. 3. Propagation of one step of the alternative approach. This illustration corresponds to the operator V (0) = C (1)
2 S(2)C (0)

1 for d = 4.

Now we describe how to design the operators V (k). We
achieve this in an inductive fashion: suppose for any |� (k)〉,
there exists an alternative procedure of k steps, we show
that for any given state |φ(k+1)〉, there exists an alternative
procedure of k + 1 steps. That is, given |φ(k+1)〉, we delicately
pick some |φ(k)〉 and compute two coins C(k)

1 and C(k+1)
2 , such

that |� (k+1)〉 = C(k+1)
2 SC(k)

1 |� (k)〉.
The base case k = 0 is simple and similar to the bipartite

case in Sec. III A. For k > 0, given arbitrary state |φ(k+1)〉 =∑
x�k+1 α(k+1)

x |x〉, the algorithm sets α(k)
x

′s in the following
way. For x < k, α(k)

x is simply set to be equal to α(k+1)
x . For

x � k with xi = k for some i, define a vector cylinder Vx =
{z ∈ {0, 1}c : z j = 0 if x j < k}, then the algorithm sets

α(k)
x =

√∑
z∈Vx

∣∣α(k+1)
x+z

∣∣2
. (24)

Now suppose the state |φ(k)〉 defined above is prepared,
C(k)

1 (x) is given by

C(k)
1 (x) |0c〉 =

∑
z∈Vx

α
(k+1)
x+z |z〉 /α(k)

x . (25)

In addition, C(k)
2 (x) satisfies

C(k)
2 (x) |z〉 = |0c〉 (26)

for all z ∈ Vx. Note again that the C(k)
1 (x)′s and C(k)

2 (x)′s can
be set identity for all x < k.

IV. ALTERNATIVE SCHEME
FOR ENGINEERING QUANTUM STATES

In this section, we elaborate another theoretical protocol
of realizing arbitrary multipartite high-dimensional quantum
state engineering via an O(d )-step quantum walk. While the
scheme described in Sec. III consists of d steps of the quantum
walk that each coin operator is nonidentitical, this alterna-
tive scheme has only O(log d ) nonidentitical coin operators
in total. This is achieved by taking advantage of time- and
position-dependent coins further such that the engineering
procedure becomes much more paralleled. We will illustrate
this scheme by only the bipartite case when the dimension d is
a power of 2, scheme for general d , and the multipartite case
are both natural generalizations that are omitted.

Below we adopt the settings and notions used in Sec. III A.
Suppose the state to be prepared is |φ〉 = ∑d−1

x,y=0 αx,y |x, y〉,
and the initial state is |� (0)〉 = |0, 0〉 ⊗ |�〉. The whole pro-
cedure is described as Eq. (6). Again, instead of directly
designing the coin operators, we decompose each C(k) into
C(k) = C(k)

1 C(k)
2 and seek for another procedure that is equiv-

alent to the original one. This time we look at a slightly
different procedure, which is denoted as

V (log d−1) . . .V (1)V (0) |� (0)〉 , (27)

where V (i) = C(i+1)
2 S

d
2i+1 C(i)

1 for i = 0, 1, . . . , log d − 1. It can
be verified that this procedure is indeed a quantum walk of
O(d ) steps.

Intuitively, this scheme builds up the whole state by first
engineering a state that has nonzero amplitudes only on
some particular positions, say |0, 0〉 , | d

2 , 0〉 , |0, d
2 〉 , | d

2 , d
2 〉,

and then assuming one can engineer arbitrary bipartite states
with dimension d

2 , the whole state can be engineered by
starting from these four positions and calling four state engi-
neering procedures for dimension d

2 in parallel. An illustration
for d = 4 is presented in Fig. 3. The figure shows the propa-
gation of the first step V (0). The idea is dividing the whole
position space into four regions dashed in Fig. 3(c). The
scheme first distributes the amplitudes to these four regions
according to their total amplitudes in target state |φ〉 and call
the procedure recursively to engineer the “substates” in these
regions.

Like Sec. III A, we describe this scheme in an inductive
fashion. However, instead of using an induction by the dimen-
sion d of the system in Sec. III A, here we use an induction by
log d . First we define notions |� (k)〉 for k = 0, 1, . . . , log d:

|� (k)〉 = |φ(k)〉 ⊗ |�〉 , (28)

in which |φ(k)〉 = ∑2k−1
x,y=0 α(k)

x,y |x, y〉 and |φ(log d )〉 = |φ〉. For
these |� (k)〉 ′s, we remark that their coin spaces are all in the
particular state |�〉. Note that |φ(k)〉 is a quantum state of one-
qudit system whose dimension is 2k . We claim that suppose
for any |� (k)〉, there exists operators V (0),V (1), . . . ,V (k−1) of
the form V ( j) = C( j+1)

2 S2k−1− j
C( j)

1 such that

|� (k)〉 = V (k−1) · · ·V (1)V (0) |� (0)〉 , (29)
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then for any given state |φ(k+1)〉, there exists operators
U (0),U (1), . . . ,U (k) of the form U ( j) = C( j+1)

2 S2k− j
C( j)

1 such
that

|� (k+1)〉 = U (k) · · ·U (1)U (0) |� (0)〉 . (30)

Once this claim is proved, we can indeed reach our goal by
simply letting |� (log d )〉 be equal to |φ〉 ⊗ |�〉.

For k � 0, suppose the given state is |φ(k+1)〉 =∑2k+1−1
x,y=0 α(k+1)

x,y |x, y〉, we construct four states starting at the
four positions mentioned earlier. Denote

∣∣φ(k)
0,0

〉 = 1√
γ

(k)
0,0

2k−1∑
x,y=0

α(k+1)
x,y |x, y〉 , γ

(k)
0,0 =

2k−1∑
x,y=0

∣∣α(k+1)
x,y

∣∣2
,

∣∣φ(k)
1,0

〉 = 1√
γ

(k)
1,0

2k−1∑
x,y=0

α
(k+1)
x+2k ,y |x, y〉 , γ

(k)
1,0 =

2k+1−1∑
x=2k

2k−1∑
y=0

∣∣α(k+1)
x,y

∣∣2
,

∣∣φ(k)
0,1

〉 = 1√
γ

(k)
0,1

2k−1∑
x,y=0

α
(k+1)
x,y+2k |x, y〉 , γ

(k)
0,1 =

2k−1∑
x=0

2k+1−1∑
y=2k

∣∣α(k+1)
x,y

∣∣2
,

∣∣φ(k)
1,1

〉 = 1√
γ

(k)
1,1

2k−1∑
x,y=0

α
(k+1)
x+2k ,y+2k |x, y〉 , γ

(k)
1,1 =

2k+1−1∑
x,y=2k

∣∣α(k+1)
x,y

∣∣2
.

(31)

According to the assumption, each of these four states can be
engineered by a k-step procedure, which, for the procedure en-
gineering |φ(k)

a,b〉 we denote U (k)
a,b · · ·U (2)

a,bU (1)
a,b , for a, b ∈ {0, 1},

respectively, where U ( j)
a,b = C( j+1)

2,a,b S2k− j
C( j)

1,a,b by the definition
of these operators. (Note that the indices of operators engi-
neering |φ(k)

a,b〉 starts from 1 instead of 0 because they are used
in step 1, . . . , k of the procedure engineering |φ(k+1)〉 and we
want to keep these indices consistent.)

Now we show the design of the operators U ( j) for j =
0, 1, . . . , k. The operator U (0) = C(1)

2 S2k
C(0)

1 is described as
follows:

C(0)
1 (0, 0) |�〉 =

√
γ

(k)
0,0 |�〉 +

√
γ

(k)
1,0 |→〉

+
√

γ
(k)

0,1 |↑〉 +
√

γ
(k)

1,1 |↗〉 (32)

and C(0)
1 (x, y) = I for x > 0 or y > 0. In addition C(1)

2 (x, y)
satisfies

C(1)
2 (x, y) |�〉 = |�〉 , x, y = 0,

C(1)
2 (x, y) |→〉 = |�〉 , x = 2k, y = 0,

C(1)
2 (x, y) |↑〉 = |�〉 , x = 0, y = 2k, (33)

C(1)
2 (x, y) |↗〉 = |�〉 , x = y = 2k,

and C(1)
2 (x, y) = I for other positions. It is easily checked that

after applying operator U (0) on the initial state, we get the
following state:

(√
γ

(k)
0,0 |0, 0〉 +

√
γ

(k)
1,0 |2k, 0〉 +

√
γ

(k)
0,1 |0, 2k〉

+
√

γ
(k)

1,1 |2k, 2k〉 ) ⊗ |�〉 . (34)

The operator U ( j) = C( j+1)
2 S2k− j

C( j)
1 for j = 1, 2, . . . , k satis-

fies

C( j)
1 =

2k+1−1∑
x,y=0

|x, y〉 〈x, y| ⊗ C( j)
1,1x�2k ,1y�2k

(35)

and

C( j)
2 =

2k+1−1∑
x,y=0

|x, y〉 〈x, y| ⊗ C( j)
2,1x�2k ,1y�2k

, (36)

where 1x�2k and 1y�2k are indicator functions that value 1 if
and only if the conditions x � 2k and y � 2k are true, respec-
tively. In other words, C( j)

1 and C( j)
2 uses different operators

according to which region the position belongs to (see Fig. 3).
The correctness comes naturally from assumption about the
U ( j)

a,b
′s for a, b ∈ {0, 1}, and the whole procedure has only

O(log d ) nonidentity coin operators as promised.
The algorithm is shown in Algorithm 2. Below we show

that the time complexity for computing the parameters on a
classical machine is O(d2). Indeed, the procedure for comput-
ing parameters according to |φ〉 has four recursive calls each
of which is of size d/2. It is O(1) time to compute γ and U (0).
In addition to that, it is also O(1) time to compute other U ( j)

because these operators are merely a combination of the four
groups of operators returned from the four recursive calls. So
if the classical computing time for dimension d is T (d ), then
the recursion satisfies T (d ) = 4T (d/2) + O(1) which results
in T (d ) = O(d2). In summary, this algorithm takes O(d2)
time to compute all the coin operators used in engineering |φ〉.
In Table II, we compare these two schemes we proposed.

V. APPLICATIONS OF OUR SCHEME

In this section, we show two applications of our scheme
for engineering quantum states in multipartite systems. In
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ALGORITHM 2. Alternative scheme for bipartite systems

Input: a complex vector {αx,y} describing the state |φ〉 = ∑d−1
x,y=0

αx,y |x, y〉 to be prepared
Output: {V (k)}log d−1

k=0
1: procedure ComputeParameters |φ〉
2: k ← dimension of |φ〉
3: Split |φ〉 into four states |φ0,0〉 , |φ0,1〉 , |φ1,0〉 , |φ1,1〉

according to Eq. (31)
4: for a, b ∈ {0, 1} do

5:
[
γa,b,

{
U ( j)

a,b

}k

j=1

] ← ComputeParameters (|φa,b〉)
6: end for
7: γ ← ∑

a,b∈{0,1} γa,b

8: Compute U (0) according to Eqs. (32) and (33)
9: Compute other U ( j), j = 1, 2, . . . , k according to Eqs. (35)

and (36)
10: return γ , {U ( j)}k

j=0

11: end procedure
12:

13:
[
γ ,

{
V (k)

}log d−1

k=0

] ← ComputeParameters (|φ〉)
14: return {V (k)}log d−1

k=0

Sec. V A, we illustrate our scheme by taking engineering
generalized the Bell state as an example. Later in Sec. V B,
we show how the quantum walk procedure obtained by our
scheme can be used to generate a quantum circuit of size
O(2n) and depth O( 2n

n ) preparing any n-qubit state with O(n)
ancillary qubits, which also reaches the best quantum state
preparation method accomplishing this task.

A. Taking generalized Bell state as example

The generalized Bell state, which is written as

|φn,m〉 = 1√
d

d−1∑
j=0

e2π i jn/d | j〉 ⊗ |( j + m) mod d〉 (37)

for some n, m, first serves as basis for the measurements Alice
used in the quantum teleportation scheme [5]. Later in some
quantum key distribution (QKD) protocols, it was used as

TABLE II. Comparison of two schemes we proposed.

Sec. III Sec. IV

Classical time O(d2) O(d2)

#steps d O(d ) a

#{k, x, y : C (k)(x, y) �= I} b O(d2) O(d2)

#{k : C (k) �= I} c d log d

max0�k<d #{x, y : C (k)(x, y) �= I} d 2d − 1 d2

aThe step is d when d is a power of 2, and will not exceed 2d in
general.
bThe third row counts for total nonidentity positions in all steps, and
there are d3 positions in total.
cThe fourth row counts for nonidentity coin operators, and there are
d coin operators since both of these two schemes have d steps.
dThe fifth row counts for nonidentity positions of coin operator in a
single step.

FIG. 4. Illustration of generalized Bell state with n = 5 and m =
2. White boxes represent for positions with amplitude zero. Arrows
are one possible way to encode the nonzero positions onto a 1D line
to utilize the scheme from Ref. [25].

the initial shared entanglements [32]. An illustration of these
states is shown in Fig. 4 where the white boxes represent for
positions with amplitude zero. In this subsection, we illustrate
our algorithm with this particular state. Our scheme has d
steps. As mentioned in Sec. I, it is indeed possible to achieve
O(d ) steps using the scheme in Ref. [25]. However, to achieve
O(d ) steps, the nonzero positions must be encoded in a con-
secutive way. This leads to a challenge for the manipulation
of the shift operator.

We define the |� (k)〉 ′s and |φ(k)〉 ′s for k = 0, 1, . . . , d − 1
as described in Sec. III A, and will give the coin operators
C(k)

1
′s and C(k)

2
′s explicitly.

Let |φ(d−1)〉 = |φn,m〉, the algorithm sets

α(d−1)
x,y =

{
e2π ixn/d/

√
d, y ≡ x + m (mod d ),

0, otherwise.
(38)

For k < d − 1, we suppose 0 � m < d without loss of gen-
erality. According to Eq. (19), there are three nontrivial cases
we need to consider.

Case 1. x = k, y < k. Following Eq. (19), the only coor-
dinates (k, y) such that α

(k)
k,y is not zero has its y coordinate

satisfying the following constraints:

y ≡ z + m (mod d ),

k � z < d. (39)

That is, there exists t ∈ Z that k � y − m − td < d , which is

y − m

d
− 1 < t � y − m

d
− k

d
. (40)

Notice that 0 � y < k and 0 � m < d , so −1 <
y−m

d < 1,
hence the only possible value of t is 0 and −1. If t = 0, then
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FIG. 5. Circuit of our algorithm. The controlled gate with label
on its controlled space represents a “uniformly controlled gate.” That
is, when the state of the position space is |x, y〉, C (k)(x, y) is executed
on the coin space.

y − m � k, which contradicts y < k; otherwise t = −1, and
the constraint k + m − d � y < m must be satisfied.

Case 2. x < k, y = k. Similar to case 1, the only coordi-
nates (x, k) such that α

(k)
x,k is not zero has its x coordinate

satisfying the following constraints:

w ≡ x + m (mod d ),

k � w < d. (41)

That is, there exists t ∈ Z that k � x + m + td < d , which is

−x − m

d
+ k

d
� t <

−x − m

d
+ 1. (42)

Notice again that 0 � x < k and 0 � m < d , so −2 <
−x−m

d � 0, hence t can only be 0 or −1. If t = −1,
then x � k − m + d , which leads to a contradiction; other-
wise t = 0, and the constraint k − m � x < d − m must be
satisfied.

Case 3. x = k, y = k. According to Eq. (19), we need to
count the number of integer solutions of the constraints below:

w ≡ z + m (mod d ),

k � z < d,

k � w < d. (43)

Fix a particular z such that k � z < d . The same as the analy-
sis in case 2, there is exactly one integer w such that (z,w)
satisfies these constraints when k � z < d − m or k − m +
d � z < d . When d − m � z < k − m + d , there’s no such
w. Define a function δ : R → R as

δ(z) =
{

1, z � 0,

0, z < 0.
(44)

Denote the function u : R → R as u(z) = zδ(z). Then the
total number of integer solutions is u(d − m − k) + u(m − k),
which is denoted σm(k).

To summarize, for k < d we have

α(k)
x,y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αx,y, x, y < k,

1√
d
, x = k, k + m − d � y < min{m, k},

1√
d
, k − m � x < min{d − m, k}, y = k,√

σm (k)
d , x = y = k,

0, otherwise.
(45)

One can obtain the corresponding coin operators via plug-
ging the α(k)

x,y
′s into Eq. (16). Notice that for each C(k)

1 (x, y) ∈
C4×4, Eq. (16) has only four constraints, so he may pick the
unitaries that are relatively simple. Here we give one possible
version of the coin operators C(k)

1 (x, y) for k < d of preparing
generalized Bell states directly:

C(k)
1 (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e2π ikn/d I ⊗ I, x = k, y = k + m − d,

X ⊗ I, x = k, k + m − d < y < min{m, k},
e2π i(k−m)n/d I ⊗ I, x = k − m, y = k,

I ⊗ X, k − m < x < min{d − m, k}, y = k,

D(k), x = y = k,

I ⊗ I, otherwise,

(46)

in which I, X,Y are Pauli matrices and D(k) satisfies

D(k) |�〉 =

⎧⎪⎨
⎪⎩

√
1

d−k e2π ikn/d |�〉 +
√

1 − 1
d−k |↗〉 , m = 0,√

δ(m−k−1)
σm (k) |→〉 +

√
δ(d−m−k−1)

σm (k) |↑〉 +
√

σm (k+1)
σm (k) |↗〉 , m �= 0.

(47)

The operator C(k)
2 (x, y)′s can be determined by Eq. (17).

B. Relationship with quantum state preparation

For quantum computation, both quantum walk and quan-
tum circuit are universal computing models. Quantum state
preparation is a well-studied problem under circuit model,

which aims to generate a given state |φ〉 = ∑2n−1
x=0 αx |x〉 from

|0〉⊗n by a quantum circuit. In general, this problem is of great
essence and a series of works have been devoted to reducing
the resources consuming such as circuit size, circuit depth, and
the number of ancillary qubits [33–37]. In particular, when
one has O(n) ancillary qubits, Sun et al. gave quantum circuits
preparing any n-qubit states of O(2n) size and O( 2n

n ) depth that
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p1 x k k x

p2 y = y k k

c1

C(k)(x, y) C(k)(k, y) C(k)(k, k) C(k)(x, k)
c2

FIG. 6. C (k) can be treated as a UCG (left) and further decom-
posed into three UCG’s (right).

reaches the lower bounds of size and depth simultaneously
[37].

Now we show how our quantum engineering procedures
via quantum walk can be used to design the quantum circuit
for quantum state preparation with the same performance.
Given a quantum state preparation instance of size n, we first
divide the n qubits into two parts of �0.5n� each and treat the
two parts as a bipartite system of dimension 2�0.5n� (by adding
an ancillary qubit if n is odd). Then we utilize our scheme
introduced in Sec. III on this system. This results in a quantum
circuit with mainly two kinds of operators: the coin operators
C(k) and the shift operators S. We need to decompose them
into single-qubit gates and CNOT gates.

The decomposition of coin operators is mainly based on a
method decomposing a uniformly controlled gate (UCG) with
n-controlled qubits and constant number of targets into quan-
tum circuit with size O(2n) and depth O( 2n

n ) [37]. The coin
operators C(k) can be seen as UCG’s: as shown in Fig. 5, when
the state of the position space is |x, y〉, C(k)(x, y) is executed
on the coin space. Utilizing the techniques mentioned above
directly, each coin operator can be implemented by a quantum
circuit of size O(2n), but this makes the entire circuit too
big. In fact, we can do much better by using the equivalence
shown in Fig. 6, in which the controlled C(k)(k, y),C(k)(x, k)
gates can be treated as one-qubit controlled UCG’s. Using the
technique from [37], these UCG’s can be decomposed into
a quantum circuit of O(20.5n) CNOT and single-qubit gates
which has O( 20.5n

n ) depth. As shown in Fig. 7, this results in a
quantum circuit of O(20.5n) Toffoli and two-qubit gates which
has O( 20.5n

n ) depth. Each Toffoli and two-qubit gate can be
decomposed into CNOT and single-qubit gates of constant size
and depth. Thus, the overall size and depth of the decomposi-
tion of C(k)(x, y) is O(20.5n) and O( 20.5n

n ), respectively.
The shift operator S in this setting can be seen as con-

trolled quantum adders. If one views the position space as
two quantum registers, then different states of coin space
control the “add one” operation on different registers. To be
concrete, the first (second) register is added by one when the
first (second) coin qubit is in state |1〉. The quantum adder is
a well-studied object [44–46]. In our application, each shift
operator S consists of two controlled “add one” operation on

p1 k x k

p2 k y k

a1 • •
a2 • •
c1

C(k)(k, y) C(k)(k, k) C(k)(x, k)
c2

FIG. 7. Further transformation of the coin operator C (k). Two
clean ancillary qubits a1 (belonging to the first side of the system) and
a2 (belonging to the second side) are introduced. The initial states of
the two ancillary qubits are both |0〉, and they end up with |0〉 as well.

�0.5n� qubits, and this can be realized by a quantum circuit of
size O(n) and depth O(log n) [46].

To sum all these costs, according to Fig. 5, there are 2�0.5n�

coin operators each of size O(20.5n) and depth O( 20.5n

n ), and
2�0.5n� shift operators each of size O(n) and depth O(log n).
Thus, the overall size and depth of the circuit is O(2n) and
O( 2n

n ), which matches the result proposed in Ref. [37] as
promised.

VI. DISCUSSION

In this work, we put forward two schemes for engineer-
ing arbitrary multipartite high-dimensional quantum states
via quantum walks with time- and position-dependent coins,
and discuss several potential areas that our scheme can have
applications in. In fact, it can be applied in other quan-
tum information protocols where a particular multipartite
high-dimensional entangled state is needed. Also, it raises
theoretical support for potential physical experiments of the
quantum walk in multipartite systems since the both time-
and position-dependent coin operation has been realized in
real physical systems [31,43]. However, we believe that this
engineering task can also be accomplished by quantum walk
with position-dependent coins which provide enough degree
of freedom, thus it deserves further exploration. In general,
we hope that this is a possible direction toward better under-
standing of the quantum information involved in multipartite
entanglements.
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