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Nondemolition quasiprobabilities of work and heat in the presence
of a non-Markovian environment

Haiping Li, Jian Zou ,* and Bin Shao
Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education,

School of Physics, Beijing Institute of Technology, Beijing 100081, China

(Received 14 October 2023; revised 14 January 2024; accepted 14 March 2024; published 29 March 2024)

We consider a collision model representation of nonequilibrium dynamics for an externally driven open
quantum system. Specifically we investigate the nondemolition quasiprobability distributions (QPDFs) of work
and heat in both Markovian and non-Markovian regimes. In this model, work and heat correspond to different
evolution processes, and their contributions can be distinguished. For the system state with initial coherence, in
both Markovian and non-Markovian regimes, negative quasiprobabilities at half of the energy gap of the system
for work and the variation of internal energy appear, which is considered to be a witness of the quantumness
of the system. We also find that when the external driving speed slows down, the quantumness of the system
is weakened, and when the driving speed is slow enough, the negative quasiprobability will disappear and
the results of the QPDF coincide with those of the two-measurement protocol. Most importantly, we find that
non-Markovianity can enhance the quantumness of the system.
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I. INTRODUCTION

In the past decades, there has been growing interest re-
garding the applicability of thermodynamics to microscopic
systems, particularly at the nanoscale [1,2]. Quantum effects,
such as quantum coherence [3–8] and quantum correlations
[9–12], play a significant role in microscopic systems. Efforts
have been made to use the characteristics of quantum effects
to achieve more efficient energy extraction in quantum sys-
tems than in classical systems [13]. In addition, fluctuations
play an important role in thermodynamics of small systems.
Thus, it is necessary to study the probability distributions
of work and heat, as their average value cannot sufficiently
describe the dynamics.

Numerous proposals have been put forward to charac-
terize the probability distributions of work. Among these,
the most widely used measurement proposal is based on
the two-point measurement (TPM) protocol [14–19]. How-
ever, the initial coherence of the system is destroyed by the
first projective measurement, thus the TPM is not applicable
to give a thermodynamically consistent description of the
work distribution for an initial state with quantum coherence
[20]. Additionally, other methods beyond the TPM have been
proposed, such as the work operator [21], Gaussian mea-
surement [22], consistent histories [23], weak values [24],
full counting statistics [25], Kirkwood-Dirac quasiprobabil-
ity [26], Margenau-Hill quasiprobability [27], and a general
notion of quasiprobability [28] in analogy to the well-known
Gleason’s theorem [29]. On the other hand, quantum heat
is usually associated with nonunitary parts of the dynam-
ics [30,31], representing the classical energy exchange with
the environment. The proposals to obtain the quantum heat
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statistics have been given in some literatures, including single
discrete quantum jumps [32,33], single continuous quantum
trajectories [34,35], path integrals formulation [36,37], full
counting statistics [25,38], and quantum Bayesian network
[39]. Besides, other methods—for example end-point mea-
surement and one-time measurement based on guessed work
and heat—have been proposed to characterize the energy-
change statistics [40,41].

Recently, a detection scheme to obtain the quasiprobability
density distribution function (QPDF) of work and heat was
proposed by Solinas and Gasparinetti [42–44]. Coupling the
system and the detector allows the information about the
physical observable of the system to be stored in the phase of
the quantum detector, and the quasi-characteristic generating
function (QCGF) and QPDF can be obtained by measuring the
phase of the detector. Unlike previous methods, the statistics
of work and heat can be measured by accessing the degrees
of freedom of the system only. This offers a more accessible
way to obtain the statistics of work and heat experimentally.
Reference [13] implemented the scheme on an IBMQ device,
and the QPDFs of work, heat, and the variation of internal
energy in one cycle were obtained. Reference [45] presented a
theoretical framework for QPDFs of work, heat, and the vari-
ation of internal energy in driven open systems, and discussed
the QPDFs in the limit of closed evolution and fast dissipation.

In general, the evolution of an open system can be
described by a quantum master equation with Markovian
approximation [46], where there is only a monotonous infor-
mation flow from the system to the environment. But when
the memory effect of the environment cannot be ignored, i.e.,
there is an information backflow from the environment to the
system, the dynamics is non-Markovian [47]. In addition, the
memory effect is regarded as a resource in information theory
[48–52], and has led to some interesting phenomena in the
dynamics of open quantum systems [53–59]. So far, the study
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of the probability distribution of work and heat focused on the
Markovian environments, but the effect of non-Markovianity
on the probability distributions of work and heat is not clear
and needs further study.

In this paper, we focus on a driven quantum system coupled
to a thermal reservoir, which consists of a series of two-level
ancillas. Non-Markovian evolution can be achieved by intro-
ducing the interactions between ancillas [60]. It is known that
distinguishing work and heat in a general thermodynamics
process when both drive and dissipation exist is a challenge.
In this model, the contributions of work and heat can be well
distinguished because work and heat are associated with dif-
ferent dynamical evolutions. We find that for the system state
with initial coherence, whether for a Markovian environment
or a non-Markovian environment, negative QPDFs at half
of the energy gap of the system for work and the variation
of internal energy appear, which is considered to be a
witness of the quantumness of the system. When there is no
interaction between ancillas, i.e., the system is Markovian, we
find that the change of the environmental temperature has little
effect on the quantumness of the system. Additionally, we
note that as the external driving speed slows down, the quan-
tumness of the system is weakened. When the driving speed is
slow enough, the negative quasiprobability vanishes, and the
outcomes of the QPDF return to those of the TPM. Further-
more, the coupling between the system and the environment
destroys the initial coherence of the system, resulting in the
weakened quantumness of the system. When considering the
case where the coupling between ancillas is not zero, i.e.,
the memory effect comes into play, we find that the stronger
the non-Markovianity, the stronger the quantumness of the
dynamics.

II. PRELIMINARIES

In this section, we introduce the model used in this paper
and the TPM for calculating work, heat, and the variation
of internal energy of the quantum system. In Sec. II A we
introduce the model, and in Sec. II B we derive the probability
distributions of work, heat, and the variation of internal energy
of the system by the TPM for our model.

A. Model

Let us consider an open two-level system denoted by S sub-
jected to a time-dependent drive, and the total time-dependent
Hamiltonian of the system at time t is

HS (t ) = 1
2ωσ S

z + 1
2 g

(
σ S

x cosωt + σ S
y sinωt

)
. (1)

In this paper, we set h̄ = 1. In Eq. (1) the first term represents
the free Hamiltonian of the system and the remaining of
Eq. (1) represents the external driving acting on the system. In
the operators σ S

i , i = x, y, z are the usual Pauli operators of the
system. ω is the energy gap of the qubit during free evolution
and also the driving frequency of the two-level system, and g is
the driving intensity quantifying the coupling to the external
field. The instantaneous eigenvalues and eigenvectors of the
system are labeled as εi(t ) and |i(t )〉, respectively, satisfying

HS (t )|i(t )〉 = εi(t )|i(t )〉, (2)

FIG. 1. N steps of the evolution process for an open quantum
system under an external drive. The system evolves under an external
drive, interrupted by the S-E interaction and AA interaction. In the
first step, the system interacts with the E1, next E1 interacts with E2,
then the system evolves from 0 to t1 under the unitary evolution U t1

0 .
In the next step, the system interacts with E2, E2 interacts with E3,
the system evolves from t1 to t2, and so on.

where i = g, e, and |g(t )〉, |e(t )〉 are the instantaneous ground
state and excited state of the system at time t . And, the
Hamiltonian varies with time, guaranteeing that the external
field does work on the system. It should be noted that for the
Hamiltonian in Eq. (1), although the eigenstates of the system
may change with time, the eigenvalues of the system energy
remain unchanged, i.e.,

εe(t ) = −εg(t ) =
√

ω2 + g2

2
≡ ε

2
. (3)

And, the corresponding unitary operator US generated by the
Hamiltonian HS (t ) is [61,62]

US (t ) = T exp

(
−i

∫ t

0
dtHS (t )

)

=
(

cos gt
2 e−i ωt

2 −isin gt
2 e−i ωt

2

− isin gt
2 ei ωt

2 cos gt
2 ei ωt

2

)
, (4)

where T is the time-ordering operator.
To describe the influence of the environment, we use the

collision model [60,63], which is efficient for describing
dissipation dynamics. The collision model assumes that the
environment is composed of a large number of initially un-
correlated ancillas, and both Markovian and non-Markovian
dynamics can be simulated by adjusting the relevant parame-
ters [60]. In Markovian dynamics, there is only an information
flow from the system to the environment, but if there is an
information flow back from the environment to the system,
the system may get former information about itself, and the
dynamics is non-Markovian. In this paper, the collision model
involves a time-dependent drive that acts on the system, and
the drive is interrupted by the system-environment (S-E) in-
teractions and the ancilla-ancilla (AA) interactions, as shown
in Fig. 1. In Fig. 1, in the first step, at time t0 = 0 the sys-
tem interacts with E1, E1 interacts with E2, and the system
evolves to t1 under the unitary evolution US (t ); in the next
step, the system interacts with E2, E2 interacts with E3, and
then the system evolves from t1 to t2, and so forth. The
memory effect is introduced by the AA interactions. In the
absence of interactions between ancillas, there is no backflow
of information from the environment to the system, and the
dynamics is Markovian. However, when there are interactions
between ancillas, the system will interact with the nth ancilla
carrying the information obtained from the previous n − 1
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collisions, and the information from the previous process may
participate in the dynamics of the system, thus this process
may be non-Markovian.

We assume that the evolution occurs for 0 � t � tN , and
discretize it in N steps, labeled in discrete time instant
t = t0, t1, t2, . . . , tN , where tn = n�t = ntN/N . Here, we in-
troduce the concept of driving speed v = ‖�HS‖/N , where
‖�HS‖ represents the norm of the variation of the system
Hamiltonian HS (t ) [64]. To simplify the expression, the eigen-
values εi(tn) and eigenvectors |i(tn)〉 of the system at time tn
are substituted by εin and |in〉, respectively. In addition, we
assume that each ancilla En is a two-level qubit with the same
free Hamiltonian HEn = ε

2σz, where ε is the energy gap of an
ancilla, which is equal to the energy gap of the Hamiltonian
HS (t ) in Eq. (1). We also assume that each ancilla is in the
same initial state ρEn . We label the eigenvalues and eigenvec-
tors of the ancillas as HEn | fn〉 = ε fn | fn〉, where f = g, e. As an
example we consider the interaction between the system and
the nth ancilla, and assume that the interaction Hamiltonian
between the system and En is

HSEn = �
(
σ+

S (tn−1)σ−
En

+ σ−
S (tn−1)σ+

En

)
, (5)

where � represents the S-E coupling strength; σ+
S (tn−1) and

σ−
S (tn−1) denote the raising and lowering operators of the

system at tn−1, respectively; and σ+
En

and σ−
En

are the raising and
lowering operators of the nth ancilla, respectively. It is worth
noting that at time t0, the system interacts with the first ancilla,
and at time tn−1, the system interacts with the nth ancilla. The
overall evolution operator can be written as

USEn = e−i�δt1
(
σ+

S (tn−1 )σ−
En

+σ−
S (tn−1 )σ+

En

)
, (6)

where δt1 is the time interval of the interaction between the
system and the ancilla. In fact, when HS (tn−1) + HEn do not
commute with HSEn , not only will there be an exchange of heat
between the two qubits, but the work will also be generated
during the interaction. Our choice of HS (t ) in Eq. (1) ensures

that [HS (tn−1) + HEn , HSEn ] = 0 at any time, therefore there
is only heat exchange between the system and the environ-
ment. Thus, when the system interacts with the ancilla En, the
overall system-environment evolution USEn satisfies the strong
energy-preservation condition [39], there are no other energy
transformations involved, and all the change in the energy of
the system can be unambiguously identified as heat flowing to
the environment.

The interaction Hamiltonian between the (n − 1)th ancilla
and the nth ancilla is assumed as

HEn−1En = 	
(
σ+

En−1
σ−

En
+ σ−

En−1
σ+

En

)
, (7)

and the evolution operator is

UEn−1En = e−i	δt2
(
σ+

En−1
σ−

En
+σ−

En−1
σ+

En

)
, (8)

where 	 represents the coupling strength between ancillas and
δt2 is the time interval of the interaction between ancillas. It
can be found that for the evolution operator of the AA inter-
action introduced in Eq. (8), the dynamics vary periodically
with the coupling strength between ancillas. In this paper, we
focus on the dynamics in the interval 0 � 	 � π

2 , where the
coupling between ancillas is enhanced as 	 increases. If the
AA coupling strength 	 = 0, the dynamics is Markovian, and
when the AA coupling strength 	 �= 0, the dynamics might
be non-Markovian. Additionally, we assume that the S-E cou-
pling and AA coupling occur on much smaller timescales with
respect to the driving timescale, i.e., δt1, δt2 � �t . Under this
condition, in every time interval δt1 + δt2, the Hamiltonian
of the system can be considered unchanged. Hence, when
the interactions between the system and the ancillas and the
interactions between ancillas occur, the free evolution of the
system and the drive action on the system can be ignored.
Thus, the total evolution of the system from tn−1 to tn can be
written in terms of the unitary evolution experienced by the
system and environment,

ρSE
1 = U1

(
ρS0

⊗
ρE1

⊗
ρE2

)
U †

1 = Ut1
0 UE1E2USE1

(
ρS0

⊗
ρE1

⊗
ρE2

)
U †

SE1
U †

E1E2

(
Ut1

0

)†
,

ρSE
n = Un

(
TrEn−1

[
ρSE

n−1

] ⊗
ρEn+1

)
U †

n = Utn
tn−1

UEnEn+1USEn

(
TrEn−1

[
ρSE

n−1

] ⊗
ρEn+1

)
U †

SEn
U †

EnEn+1

(
Utn

tn−1

)†
(n > 1), (9)

where TrEn−1 [•] represents tracing out the (n − 1)th ancilla
before the system interacts with the nth ancilla. It is important
to note that TrEn−1 [ρSE

n−1] is the overall state of the system and
the nth ancilla, Ut1

0 = US (t1) and Utn
tn−1

= US (tn)U †
S (tn−1). It

should be noted that only when the ancilla has completely run
out of its usefulness—in other words, it will not participate
in the subsequent evolution of the dynamics—can it be traced
out. The reduced state of the system after interacting with a
set of n ancillas is obtained by taking the partial trace over the
degrees of freedom of the ancillas,

ρSn = TrEnEn+1

[
ρSE

n

]
. (10)

And, the reduced state of the nth ancilla after interaction is

ρE ′
n
= TrSEn+1

[
ρSE

n

]
, (11)

where TrEnEn+1 [•] represents tracing out the nth ancilla and
the (n + 1)th ancilla, and TrSEn+1 [•] represents tracing out the
system and the (n + 1)th ancilla.

B. Probability distributions of work, heat, and the variation
of internal energy for TPM

In the following, unless specified otherwise, the sys-
tem is initially described by the density matrix ρS0 =∑

i0 j0
ρi0 j0 |i0〉〈 j0|, where |i0〉, | j0〉 = g(0), e(0) represent the

Hamiltonian eigenstates of the system at time t = 0. And,
the nth ancilla is prepared at the thermal state ρEn =∑

fn
ρ fn fn | fn〉〈 fn|, where | fn〉 represents the Hamiltonian

eigenstate of the ancilla and fn = gn, en. The TPM is widely
used to obtain the probability distribution of work, heat, and
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the variation of internal energy. Since the internal energy is a
function of system state, its variation is process independent.
Therefore, we only need to know the energy of the initial
and final states of the system to obtain the change of internal
energy. However, the heat and work are not state functions and
depend on the path swept by the system during the evolution.
In this model, work and heat are associated with different
dynamic processes, respectively. When the system and the
environment interact, no work is done on the system and only
the dissipative heat is involved. Therefore, all the variation in
the energy of the system in this time interval can be interpreted
as heat. And, when the system evolves under the drive of the
time-dependent Hamilton HS (t ), there is no energy exchange
between the system and the environment, thus the energy
change of the system in this process is defined as work. If
the system is measured directly, the coherence of the system
will inevitably be destroyed. We can obtain information of
the system by measuring the state of the ancilla after it has
outlived its usefulness and will not participate in the dynamic
evolution. The nth ancilla is measured in its Hamiltonian

eigenbasis for the first measurement before entering the dy-
namics evolution, whose result is labeled as | fn〉. The nth
ancilla is measured finally only after the ancilla has outlived
its usefulness, whose result is labeled as | f ′

n〉. And, the system
is measured in the eigenstates of the time-dependent Hamilto-
nian HS (t0) and HS (tN ) before and after the entire evolution of
the system, whose results are labeled as |i0〉 and |iN 〉. Based on
the above measurement scheme, the corresponding quantum
trajectory can be represented as

γ = {i0, f1, f ′
1, f2, f ′

2, . . . , fN , f ′
N , iN }. (12)

After the first measurement M fn = | fn〉〈 fn| on the nth ancilla,
the probability of the outcome fn is Pfn = Tr[M fnρEn M†

fn
],

and the ancilla state after the first measurement becomes
ρ fn = | fn〉〈 fn|. Similarly, the probability of obtaining i0 by
measuring the initial state of the system before the evolution
of the system is Pi0 = Tr(Mi0ρS0 M†

i0
), where Mi0 = |i0〉〈i0| is

measurement operator acting on the system, and the corre-
sponding system state changes to ρi0 = |i0〉〈i0|. Then, the joint
distribution P(γ ) is given by

P(γ ) = Pi0 Pf1 ...PfN trSE1...EN

[
MiN M f ′

N
...M f ′

1
UN ...U1

(
ρi0 ⊗ ρ f1 ⊗ ... ⊗ ρ fN

)
U †

1 ...U †
N M†

f ′
1
...M†

f ′
N
M†

iN

]
. (13)

In this way, the variation of internal energy �U as the
difference between the energy of the initial state and the
final measured state of the quantum trajectory γ can be
obtained,

�U [γ ] = εiN − εi0 , (14)

where εin represents the energy eigenvalue of the system at tn.
In the nth step, the heat can be defined for the trajectory in
Eq. (12) as the sum of the energy change between final and
initial states of the nth ancilla. After the interaction between
the system and N th ancilla, the total heat flow from the system
to the environment is

Q[γ ] =
N∑

n=1

ε f ′
n
− ε fn . (15)

It should be noted that an absorption (emission) by the envi-
ronment corresponds to an emission (absorption) process of
the system, i.e., decreasing (increasing) of the system energy.
As the measurements are performed only on those ancillas
that no longer participate in the dynamics of the system,
there is never a direct back action on the system. And, it is
irrelevant whether or not the measurement is taken before the
next evolution step. In addition, according to the law of energy
conservation, the work done on the system can be derived as
W [γ ] = �U [γ ] + Q[γ ].

III. QPDFS OF WORK, HEAT, AND THE VARIATION
OF INTERNAL ENERGY

When the initial state of the system is in the energy
eigenstate or a statistical mixture of energy eigenstates,
the TPM is an effective method to determining the work,
heat, and the variation of internal energy. But, it has its

limitations when one tries to apply the TPM to a more
general class of processes, i.e., the system is initially pre-
pared in a superposition of different energy eigenstates.
This limitation arises from the fact that the initial measure-
ment destroys any initial coherence in the energy eigenbasis
and consequently affects the results of work, heat, and the
variation of internal energy. To preserve the information
about the dynamics and the initial coherence of the sys-
tem, a detection scheme QPDF was proposed by Solinas and
Gasparinetti [42–44].

The QPDF protocol is to couple the system to a quan-
tum detector, and the information about the system is stored
in the phase of the detector. By measuring the phase shift
of the detector, the QCGFs and QPDFs of work, heat,
and the variation of internal energy can be obtained. When
the system is initially in the eigenstate, the statistical in-
formation of the TPM is recovered. In this paper, the
quantum detector is represented by an additional two-level
qubit (denoted by D) with Hamiltonian HD = ∑

λ λ|λ〉〈λ|,
where λ = 0, 1 and |λ〉 = {|0〉, |1〉} are the eigenvalues
and eigenstates of the detector Hamiltonian. The detec-
tor is prepared in an arbitrary state ρD0 = ∑

λ,λ′ ρλλ′ |λ〉〈λ′|,
where ρλλ′ is the density matrix elements of the de-
tector. And, the system-detector coupling Hamiltonian is
chosen as

HSD = f (χ, t )HS (t )
⊗

HD, (16)

where the time-dependent coupling strength f (χ, t ) deter-
mines the time when the system is coupled to the detector
and the coupling strength χ between them. We assume that
the system, environment, and detector are initially in a prod-
uct state, which can be described by the factorized density

032228-4



NONDEMOLITION QUASIPROBABILITIES OF WORK AND … PHYSICAL REVIEW A 109, 032228 (2024)

FIG. 2. Three schematic diagrams corresponding to the detection
of the probability distributions of work W , heat �Q, and the variation
of internal energy �U , respectively. For W : the system interacts with
E1, E1 interacts with E2, the system is coupled to the detector for the
first time, the system evolves from 0 to t1 under unitary evolution
U t1

0 , the system is coupled to the detector for the second time, and
so forth. For �Q: the system is coupled to the detector for the first
time, the system interacts with E1, E1 interacts with E2, the system
is coupled to the detector for the second time, the system evolves
from 0 to t1 under unitary evolution U t1

0 , and so forth. For �U : the
system and the detector are coupled at the beginning and end of the
evolution, respectively.

operator,

ρ0 = ρS0

⊗
ρE1

⊗
...

⊗
ρEN

⊗
ρD0

=
∑

ρi0 j0ρ f1,h1 ...ρ fN ,hN ρλλ′

× |i0, f1, . . . , fN , λ〉〈 j0, h1, . . . , hN , λ′|. (17)

It is noted that during the whole process, neither the system
nor the detector are projectively measured, and the specific
choice of HSD ensures that system-detector coupling does
not lead to any transition between the instantaneous system
eigenstates [44]. As mentioned above, the coupling between
the system and the detector can change the relative phase
of the detector, therefore the information about the physical
observable is stored in the phase of the detector. Tracing out
the system and environment degrees of freedom, the infor-
mation about the observable can be obtained by extracting

the phase difference between the eigenstates |λ〉 and |−λ〉
of the detector. The QCGF for an arbitrary observable η

is [43,44]

Gχ,η = 〈λ|ρD(tN )|−λ〉
〈λ|ρD0 |−λ〉 , (18)

and the final detector density operator ρD(tN ) can be
obtained as

ρD(tN ) = TrSE [Uχ,ηρ0U†
χ,η], (19)

where Uχ,η represents the total evolution operator of the sys-
tem, environment, and detector, including the measurement
of the detector, and the observable η could be W , Q, or �U .
Uχ,η is different for different observable η, and the specific
form of Uχ,η for η = W, Q,�U will be given in Secs. III A,
III B, and III C, respectively. TrSE [•] represents tracing out
the degree of freedom of the system and all the ancillas.
The QPDF can be obtained by taking the Fourier transform
of the QCGF

P(η) =
∫

dχGχ,ηeiχη. (20)

The QCGFs and the QPDFs of work, heat, and the variation
of internal energy are given in the following.

A. QPDF of work

As mentioned above, work depends on the path swept by
the system in the evolution process. To calculate the work
done on the system from 0 to tN , we must track the evolu-
tion in the overall process. Since work is associated with the
change of Hamiltonian HS (t ) of the system, we only need to
couple the system to the detector before and after the vari-
ation of Hamiltonian HS (tn−1) → HS (tn) to obtain the work
produced from tn−1 and tn. And, the evolution of the system-
environment-detector (S-E-D) whole system is described by
the operator (see Fig. 2)

Uχ,W = UN
χ,W ...U2

χ,WU1
χ,W , (21)

with

Un
χ,W = Uχ,tnU

tn
tn−1

U−χ,tn−1UEnEn+1USEn (1 � n < N ),

Un
χ,W = Uχ,tnU

tn
tn−1

U−χ,tn−1USEn (n = N ), (22)

where Uχ,tn = exp[iχHS (tn)
⊗

HD] and U−χ,tn−1 =
exp[−iχHS (tn−1)

⊗
HD]. In order to decompose the

evolution process of the dynamics, at tn, the time-dependent
eigenstates of the system can be denoted by {|in〉}, {| jn〉},
{|kn〉}, and {|ln〉}. For the nth ancilla (1 < n < N), we
denote the Hamiltonian eigenbasis after the interaction
between the (n − 1)th ancilla and nth ancilla as {| f 1

n 〉}
and {|h1

n〉}, the Hamiltonian eigenbasis after the interaction
between the nth ancilla and the system as {| f 2

n 〉} and {|h2
n〉},

and the Hamiltonian eigenbasis after the interaction between
the nth ancilla and the (n + 1)th ancilla as {| f 3

n 〉} and {|h3
n〉}.

For n = 1, there is no interaction with the previous ancilla,
while for the N th ancilla, there is no interaction with the
following ancilla. Based on Eq. (18), the QCGF of work can
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be calculated (see Appendix)

Gχ,W =
∑
P1,P2

ei χ

2 λ

(
wN

P1
+wN

P2

)
�

P1

iN f 2
N ,i0 f1

× ρi0, j0ρ f1,h1 ...ρ fN ,hN

(
�

P2

j0h1, jN h2
N

)†
, (23)

where P1 and P2 represent the transition paths of the
system and environment, �

P1

iN f 2
N ,i0 f1

is the probability am-

plitude of the transition path P1: |i0, f1, f2, . . . , fN 〉 →
|iN , f 2

1 , f 3
2 , . . . , f 2

N 〉, and (�P2

j0h1, jN h2
N

)† is the probability am-

plitude from | j0, h1, h2, . . . , hN 〉 to | jN , h2
1, h3

2, . . . , h2
N 〉 (see

Appendix for more details). Along the paths P1 and P2, the
work done on the system is wN

P1
= ∑N

n=1 εin − εkn−1 and wN
P2

=∑N
n=1 ε jn − εln−1 , respectively. Then, the work QPDF is ob-

tained by taking the Fourier transformation

P (W ) =
∑
P1,P2

�
P1

iN f 2
N ,i0 f1

ρi0, j0ρ f1,h1 ...ρ fN ,hN

(
�

P2

j0h1, jN h2
N

)†

× δ

[
W − λ

2

(
wN

P1
+ wN

P2

)]
. (24)

Also, the environment degrees of freedom is traced out in
Eq. (23), thus f 2

n = h2
n for n = 1, N , and f 3

n = h3
n for 1 <

n < N . We emphasize here that there is no difference whether
we trace out the nth ancilla immediately after the interaction
between the nth ancilla and the (n + 1)th ancilla, or trace out
the ancilla at the end of the evolution in both paths P1 and P2.
Since the degree of freedom of the system is traced out after
the last evolution in the paths P1 and P2, jN = iN is satisfied.

B. QPDF of heat

In analogy to work, heat is also not a state function which
depends on the path swept by the system in the evolution pro-
cess. In addition, the heat absorbed by the system is entirely
due to the interaction between the system and the environ-
ment. To obtain the energy exchange between the system and
the nth ancilla, we turn on the system-detector coupling before
the interaction between the system and the nth ancilla and
after the interaction between the nth ancilla and the (n + 1)th
ancilla (see Fig. 2). Thus, the evolution operator of S-E-D
from 0 to tN can be written as

Uχ,Q = UN
χ,Q...U2

χ,QU1
χ,Q, (25)

with

Un
χ,Q = Utn

tn−1
U−χ,tnUEnEn+1USEnUχ,tn (1 � n < N ),

Un
χ,Q = Utn

tn−1
U−χ,tnUSEnUχ,tn (n = N ), (26)

Similar to the derivation of the QPDF of work, the final
density operator of the system and the detector after N steps
reads

ρN =
∑
P1,P2

ρλ,λ′ei χ

2

(
λqN

P1
−λ′qN

P2

)
�

P1

iN f 2
N ,i0 f1

× ρi0, j0ρ f1,h1 ...ρ fN ,hN

(
�

P2

j0h1, jN h2
N

)†

× |iN , λ〉〈 jN , λ′|, (27)

where the heat flowing from the system to the environment
is qN

P1
= ∑N

n=1 εkn−1 − εin−1 and qN
P2

= ∑N
n=1 εln−1 − ε jn−1 along

paths P1 and P2, respectively. The QPDF of heat is

P (Q) =
∑
P1,P2

�
P1

iN f 2
N ,i0 f1

ρi0, j0ρ f1,h1 ...ρ fN ,hN

(
�

P2

j0h1, jN h2
N

)†

× δ

[
Q − λ

2

(
qN

P1
+ qN

P2

)]
. (28)

C. QPDF of the variation of internal energy

Now we concentrate on the QPDF of variation of internal
energy. Unlike work and heat, internal energy is a state func-
tion, so the change of internal energy only depends on the
initial and the final state of the system. As shown in Fig. 2, we
only need to couple the system and detector at the beginning t0
and at the end of the evolution tN , which generates the S-E-D
evolution

Uχ,�U = Uχ,tN UN ...U1U−χ,t0 . (29)

After N interactions between the system and ancilla, the final
density operator of the system and the detector reads

ρN =
∑
P1,P2

ρλ,λ′ei χ

2 [λ(iN −i0 )−λ′( jN − j0 )]�
P1

iN f 2
N ,i0 f1

× ρi0, j0ρ f1,h1 ...ρ fN ,hN

(
�

P2

j0h1, jN h2
N

)†

× |iN , λ〉〈 jN , λ′|. (30)

Based on Eqs. (18) and (20), the QPDF of the variation of
internal energy can be written as

P (�U ) =
∑
P1,P2

�
P1

iN f 2
N ,i0 f1

ρi0, j0ρ f1,h1 ...ρ fN ,hN

(
�

P2

j0h1,iN h2
N

)†

× δ

(
�U − λ

2
[(iN − i0) + (iN − j0)]

)
. (31)

IV. RESULTS

Based on Eqs. (24), (28), and (31), we investigate the
QPDFs of work, heat, and the variation of internal en-
ergy in Markovian and non-Maokovian dynamics. In this
section, we specifically consider the initial state of the sys-
tem as |ψS0〉 = cos(θ )|g0〉 + sin(θ )|e0〉, with θ = π/4. All
the ancillas are initialized in the same equilibrium state
ρEn = e−βE Eg/ZE |g〉〈g| + e−βE Ee/ZE |e〉〈e|, where βE = 1

T is
the inverse temperature of the environment and the partition
function ZE = Tr[e−βE HEn ]. In this paper, we assume ωtN = π ,
then ‖�HS‖ = 1/2.

A. Markovian environment

In this section, we concentrate on the Markovian environ-
ment, i.e., there is no interaction between ancillas (	 = 0).
The probability distributions of work, heat, and the variation
of internal energy for the TPM and the QPDF with differ-
ent environmental temperatures lnT = −3, 1, 5 are plotted in
Fig. 3. In classical dynamics, there is no energy exchange at
half of the energy gap of the system and the probability is
always positive. But, when quantum effects such as quantum
coherence of the initial state and quantum interference effects
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FIG. 3. The QPDFs (blue triangle) and the probability distributions for the TPM (red solid circle) of heat, work, and the variation of internal
energy for different environmental temperatures lnT = −3, 1, 5. η represents �Q in the first row, W in the second row, and �U in the third
row, and the other parameters are N = 5, � = 0.3π/2, and g = 0.5ω.

appear, there will be negative quasiprobabilities at half of the
energy gap of the system. It can be seen from Fig. 3 that for
the QPDFs of work and the variation of internal energy, the
negative quasiprobabilities and the nonzero quasiprobabilities
at η/ε = ±1/2 appear, where η can be W , �Q, or �U intro-
duced in Eq. (18). For the TPM, the probabilities of work and
the variation of internal energy at η/ε = ±1/2 are equal to 0,
there is no energy exchange at half of the energy gap of the
system, and the probability density distributions are always
positive. However, for the exchange of whole energy quantum,
the QPDFs of work and the variation of internal energy are
the same as that obtained in the TPM. We also find that
unlike the QPDFs of the work and the variation of internal
energy, the QPDF of the heat at half of the energy gap of the
system is always 0, and there is no negative value in the QPDF
of heat. This is because heat carries the classical energy ex-
change with the environment. Although there are no negative
QPDFs of heat at half of the energy gap of the system, the
QPDF of heat at the whole energy quantum is different from
that obtained by the TPM. In addition, we find that variation
of internal energy is within ±1, while the variations of the
heat and work are not limited by η/ε = ±1. This is because
the internal energy only measures the energy variation of the
initial and final states of the system, while heat and work
track the energy change of the system throughout the whole
process, allowing for a wider range of energy distribution.

In order to describe the effect of the environmental
temperature on the quantumness of rhe dynamic system
quantitatively, a new quantity Q(η) [65,66] is introduced and
defined as

Q(η) = −1 +
∑

η

|P (η)|, (32)

where | • | represents the absolute value of •, and η might be
W , �Q, or �U . When {P (η)} is nonnegative, Q(η) = 0. If
there exists the probability P (η) < 0, then Q(η) > 0. Q(W )
and Q(�U ) for the QPDF as functions of environmental
temperature are plotted in Fig. 4. It can be seen that with
the change of environmental temperature, both Q(W )
and Q(�U ) remain almost unchanged, indicating that the
environmental temperature has little effect on the quantum-
ness of the system. This indicates that the environmental
temperature does not affect the decoherence process induced
by interacting with the environment. Moreover, the expected
values of W , �Q, and �U are plotted as functions of lnT in
Fig. 5. It shows that W and �Q decrease with the increase
of environmental temperature, while �U increase with the
environmental temperature in both TPM and QPDF. In
other words, as the environmental temperature increase, the
heat flowing from the system to environment decreases, the
work done on the system decreases, and the variation of
internal energy increases. As the environmental temperature
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FIG. 4. Q(W ) and Q(�U ) for the QPDF as functions of the
environmental temperature lnT . The other parameters are the same
as that in Fig. 3.

increases, the energy absorbed by the environment from the
system decreases, leading to an increase in the internal energy
of the system. Consequently, the probability of the system
being excited to a higher energy level under external driving
decreases, leading to a decrease in the average work done by
the external driving on the system. Moreover, it is evident
from Fig. 5 that the QPDF preserves the initial coherence of
the system, and the average values of work and heat absorbed
by the system are both higher than the results obtained by
TPM. Thus, it is confirmed that quantum coherence can be
considered an energy resource in extraction of energy.

In the following, we discuss the effect of evolution speed
on the probability distributions of work, heat, and varia-
tion of internal energy. In Fig. 6, we plot the QPDFs and
the probability distributions for the TPM of work, heat,
and the variation of internal energy with different interac-
tion times N = 5, 15, 100. The corresponding evolution speed
v = ‖�HS‖/N = 1/10, 1/30, 1/200, where ‖�HS‖ = 1/2
represents the norm of the variation of the system Hamiltonian

FIG. 5. The average values of heat, work, and the variation of
internal energy as functions of the environmental temperature lnT .
The other parameters are the same as Fig. 3.

between HS (0) and HS (tN ). It can be seen from Fig. 6 that,
compared with N = 15 and N = 100, when the system is
driven quickly (N = 5), the magnitudes of the probability of
work and variation of internal energy at η/ε = ±1/2 are the
largest, which indicates that the quantumness of the system
is the strongest at N = 5. For N = 15, we find that compared
with N = 5, the amplitudes of the quasiprobability of work
and the variation of internal energy at half of the energy gap
of the system become smaller. Moreover, when comparing the
results for the QPDF and the TPM, we find that for work, heat,
and the variation of internal energy, as the evolution speed
slows down the QPDFs and the probability distributions for
the TPM are getting closer. For N = 100, we find that the
QPDFs of work, heat, and the variation of internal energy
almost coincides with the probability distribution obtained by
the TPM. This is well illustrated by Q(W ) and Q(�U ) in
Fig. 7, which shows that with the increasing of the collision
times N , i.e., the slowing down of the evolution speed, Q(W )
and Q(�U ) decrease. When the driving speed is slow enough
(N � 1), both Q(W ) and Q(�U ) are close to 0, and the
results of QPDF coincide with the results of TPM. This is
because when the Hamiltonian HS (t ) of the system varies
sufficiently slowly, the adiabatic limit is reached, which means
that the instantaneous eigenstate at one time evolves continu-
ously to the corresponding eigenstate at later times, and will
not transfer to other energy levels. In other words, its popula-
tion in each level remains unchanged. Thus, the quantumness
of the dynamics disappears and the classical limit is reached.

Next we focus on the effect of S-E interaction on the prob-
ability distributions of work, heat, and the variation of internal
energy. The probability distributions of �Q, W , and �U for
the QPDF and TPM for different S-E coupling strengths are
shown in Fig. 8. For � = 0, i.e., the system is isolated, there
is no interaction between the system and the environment,
and the system is only subject to the drive by Hamiltonian
HS (t ). In this case, Q(W ) and Q(�U ) are the largest, which
indicates that the quantumness of the system is the strongest.
Notably, there is no heat exchange between the system and
the environment, so the probability distribution of the heat
only concentrates on �Q = 0. For both the QPDF and the
TPM, the probability distributions of work are identical to
the probability distributions of the variation of internal energy
exactly. When the S-E coupling strength � = π/4, the abso-
lute values of the quasiprobability of work and the variation of
internal energy at half of the energy gap of the system decrease
compared with � = 0. When the system and the environment
are completely swapped (� = π/2), the quasiprobabilities of
W and �U at η/ε = ±1/2 are 0. In this case, the quantumness
completely disappears. Because every S-E interaction means
a complete exchange between the states of the system and the
ancilla, the initial state of the system is reset to the thermal
state, thus the initial quantum coherence of the system is
completely destroyed. The above statement is shown by Q(W )
and Q(�U ) for the QPDF (see Fig. 9). For an isolated system
(� = 0), the values of Q(W ) and Q(�U ) are the largest, i.e.,
the quantumness of the system is the strongest. It can be con-
cluded that the S-E coupling weakens the quantumness of the
system. Furthermore, when the S-E coupling is the strongest
(� = π/2), the dissipation destroys the initial coherence of
the system completely.
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FIG. 6. The QPDFs (blue triangle) and the probability density distributions for the TPM (red solid circle) of heat, work, and the variation
of internal energy for different driving speed v = 1/10, 1/30, 1/200, with lnT = −3, � = 0.3π/2, and g = 0.5ω.

B. Non-Markovian environment

In the above section, we have discussed the QPDFs of
work, heat, and the variation of internal energy in Markovian
dynamics. In this section we focus on the effect of non-
Markovianity on the QPDFs of work, heat, and variation of

FIG. 7. Q(W ) and Q(�U ) for the QPDF as functions of colli-
sion time N , and the other parameters are the same as that in Fig. 6.

internal energy. It has been shown above that the memory is
introduced by the interaction between ancillas [60]. In this
section, we consider the nonzero coupling strengths between
ancillas. In Fig. 10, we plot the QPDFs and the probabil-
ity distributions for the TPM of W , �Q, and �U under
two environment temperatures lnT = −3 and lnT = 5 with
	 = 0.5π/2. As shown in Fig. 10, similar to Markovian
dynamics, we observe that there are no negative quasiprob-
abilities at half of the energy gap for QPDF of �Q even
when 	 �= 0. In order to quantitatively describe how the
quantumness of the system changes with the environmental
temperature in non-Markovian dynamics, Q(W ) and Q(�U )
are plotted as functions of the environmental temperature lnT
in Fig. 11. We find that as the environmental temperature
increases, Q(W ) and Q(�U ) become small, which shows
that the lower the environmental temperature, the stronger the
quantumness of the system, and the higher the temperature,
the weaker the quantumness of the system. In addition, we
have shown that in the Markovian regime, the influence of
temperature on the quantumness is negligible, but when in-
teraction between ancillas is introduced, the influence of the
temperature on the quantumness is obvious.

In order to make it clearer whether the variation
in quantumness is caused by change of the degree of
non-Markovianity, we introduce a measurement of non-
Markovianity based on the dynamics of the trace distance
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FIG. 8. The QPDFs (blue triangle) and the probability density distributions for the TPM (red solid circle) of heat, work, and the variation
of internal energy for different S-E coupling strengths � = 0, π/4, π/2. The other parameters are lnT = −3, N = 5, and g = 0.5ω.

[67]. The trace distance for two quantum states ρ1 and ρ2 is
defined as

D(ρ1, ρ2) = 1
2 tr|ρ1 − ρ2|, (33)

where |A| =
√

A†A. The trace distance D can be used as a
measure of the distinguishability of any two quantum states,

FIG. 9. Q(W ) and Q(�U ) for the QPDF as functions of S-E
coupling strength �. The other parameters are the same as those in
Fig. 8.

D(ρ1, ρ2) = 1 for two completely distinguishable states ρ1

and ρ2 and D(ρ1, ρ2) = 0 for identical states. If ρ1,Sn and ρ2,Sn

are the system states obtained after n sequence mappings, with
the initial system state being ρ1,S0 and ρ2,S0 , respectively, the

FIG. 10. The QPDFs (blue triangle) and the probability distri-
butions for the TPM (red solid circle) of the �Q, W , and �U at
low environmental temperature (lnT = -3) and high environmental
temperature (lnT = 5). The other parameters are g = 0.5ω, N = 5,
� = 0.3π/2, and 	 = 0.5π/2.
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FIG. 11. Q(W ) and Q(�U ) for the QPDF as functions of the
environmental temperature lnT . The other parameters are the same
as in Fig. 10.

degree of non-Markovianity can be written as

N = max
∑

n

[
D

(
ρ1,Sn , ρ2,Sn

) − D
(
ρ1,Sn−1 , ρ2,Sn−1

)]
, (34)

where N accounts for the contribution of all intervals where
the trace distance between any pair of initial states increase,
and “max” represents the maximization over all possible
pairs of the initial state of the system. In general, the max-
imum only occurs in these two pairs of states: (|g(0)〉 +
|e(0)〉)/

√
2, (|g(0)〉 − |e(0)〉)/

√
2 or |g(0)〉, |e(0)〉 [60,68].

From numerical calculations, we find that for the collision
model used in this paper, the degree of non-Markovianity
of Eq. (34) obtained for the pair of initial state (|g(0)〉 +
|e(0)〉)/

√
2, (|g(0)〉 − |e(0)〉)/

√
2 is larger than that ob-

tained for |g(0)〉, |e(0)〉. In Fig. 12, we present the degree
of non-Markovianity N as a function of the environmen-
tal temperature lnT with the pair of initial system states
(|g(0)〉 + |e(0)〉)/

√
2, (|g(0)〉 − |e(0)〉)/

√
2 at AA coupling

FIG. 12. The degree of non-Markovianity N as a function
of the environmental temperature lnT , with g = 0.5ω, v = 1/10,
n = 1000, � = 0.3π/2, and 	 = 0.5π/2.

FIG. 13. The degree of non-Markovianity N as a function
of the AA coupling strength 	, g = 0.5ω, v = 1/10, n = 1000,
� = 0.3π/2, and lnT = −3.

strength 	 = 0.5π/2. Through our study, we find that the
degree of non-Markovianity of the dynamics depends not
only on the coupling strength between ancillas, but also
on the environmental temperature. When the environment is
at low temperature, the degree of non-Markovianity is rel-
atively large. As the temperature increases, the degree of
non-Markovianity decreases. And, when the environmental
temperature reaches a certain temperature, the dynamics of
the system is almost Markovian. When the environmental
temperature is high, it is approximately in a maximally mixed
state and contains the richest information. In addition, the
interaction between the environment and the system has lit-
tle effect on the environment, resulting in little information
flowing back from the environment to the system, so the
dynamics process is almost Markovian. Conversely, at low
environmental temperature, the information flowing from the
system to the environment will flow back into the system,
leading to non-Markovian dynamics.

Above we have discussed the influence of temperature on
the degree of non-Markovianity and the QPDFs of work, heat,
and the variation of internal energy, and we find that at high
environmental temperature, the degree of non-Markovianity
is almost 0, i.e., the dynamics is Markovian. Thus, in the
following, we concentrate on low environmental tempera-
ture to study the effect of the degree of non-Markovianity
on the probability distributions of work, heat, and the vari-
ation of internal energy. In Fig. 13, we show the degree of
non-Markovianity N as a function of the coupling strength
between the ancillas at low environmental temperature lnT =
−3. It is important to note that even when 	 �= 0, the dynam-
ics may still be Markovian. This is because the memory effect
is only activated if the AA coupling exceeds a certain thresh-
old [69]. From Fig. 13, we can find that in the interval 0 �
	 � π

2 , N increases with 	, thus the AA coupling strength 	

can be considered as a measure of non-Markovianity.
In Fig. 14, the QPDFs of work, heat, and the variation

of internal energy and the probability distributions for the
TPM for different AA coupling strengths are plotted. When
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FIG. 14. The QPDFs (blue triangle) and the probability density distributions for the TPM (red solid circle) of heat, work, and the variation
of internal energy for different AA coupling strengths 	 = 0, 0.5π/2, 0.96π/2. The other parameters are g = 0.5ω, N = 5, � = 0.3π/2, and
lnT = −3.

the coupling strength between ancillas 	 = 0, the dynamics
is Markovian. When the AA coupling strength is 0.5π/2, we
find that compared to the Markovian dynamics, the magni-
tudes of the quasiprobability of the work and the variation
of internal energy at half of the energy gap increase, i.e., the
quantumness of the system is enhanced. For 	 = 0.96π/2,
the magnitudes of the quasiprobabilities of W and �U at
η/ε = ±1/2 are larger than those obtained for 	 = 0.5π/2.
The quantumness of the system for 	 = 0.96π/2 is stronger
than that for 	 = 0.5π/2. In Fig. 15, Q(W ) and Q(�U )
are plotted to show the dependence of quantumness on the
coupling strength between ancillas. It can be seen from Fig. 15
that Q(W ) and Q(�U ) increase as the AA coupling strength
	 increases, i.e., the stronger the coupling between ancillas,
the stronger the quantumness of the dynamics. This is be-
cause, due to the memory effect, information about the initial
coherence of the system that flows to the environment returns
to the system, and the stronger the memory effect, the more
information flows back to the system, and the stronger the
quantumness.

V. CONCLUSION

In this paper we studied the QPDFs and probability dis-
tributions for the TPM of work, heat, and the variation of

internal energy for a driven open quantum system. When the
initial system state is incoherent, the QPDFs and probability
distributions for the TPM of work, heat, and the variation of
internal energy are consistent. But, for the system state with
initial coherence, the QPDFs of work and the variation of

FIG. 15. Q(W ) and Q(�U ) for the QPDF as functions of AA
coupling strengths 	. The other parameters are the same as in Fig. 14.
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internal energy might be negative at half of the energy gap
of the system, while the probability distributions for the TPM
is always positive. And, the negative QPDF can be regarded
as the witness of quantumness.

In the Markovian regime, we found that the temperature of
the environment has little effect on the quantumness of the dy-
namics, but the average values of work and heat decrease and
the average value of the variation of internal energy increases
as the temperature increases. As the driving speed slows
down, the quantumness of the system is weakened. When
the driving speed is slow enough, i.e., when the variation
of the system Hamiltonian is sufficiently slow, the condition of
the adiabatic approximation is reached. Therefore, the quan-
tumness of the system disappears and the system reaches the
classical limit. In this case, the QPDFs are consistent with the
results obtained by the TPM. And, as the coupling strength
between the system and the environment increases, the quan-
tumness of the system is also weakened.

When the coupling strength between ancillas 	 �= 0, the
memory effect is introduced. We found that in contrast to
high environmental temperature, low temperature results in
larger Q(W ) and Q(�U ). This indicates that decreasing the
environmental temperature enhances the quantumness of the
system. We found that when the environmental temperature is
high, the degree of non-Markovianity is almost 0. The lower
the environmental temperature, the larger the degree of non-
Markovianity. Thus, the change of quantumness of the system
is mainly caused by the variation of non-Markovianity. In

addition, we found that the stronger the coupling between an-
cillas, the stronger the non-Markovianity. When the coupling
between ancillas is enhanced, the quantumness of the system
is enhanced. Therefore, as the degree of non-Markovianity
is increased, the quantumness of the system is enhanced. In
fact, we demonstrated that non-Markovianity can serve as an
energy resource for extracting energy from thermal reservoirs
and enhancing the power output, representing a significant
advancement for the future application of memory effect in
quantum heat engines.
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APPENDIX: DETAILED DERIVATION
OF THE QPDF OF WORK

To derive Eqs. (23) and (24) in the main text, i.e., the QCGF
and the QPDF of work introduced in Sec. II A, we start from
Eq. (21). The operator sequence Eq. (21) consisting of the
interaction between the system and ancilla USE1 , the interac-
tion between E1 and E2, first system-detector coupling U−χ,0,
system evolution Ut1

0 , and second system-detector coupling
Uχ,t1 leads to the evolution

ρ0 →
∑

ρ f1h1ρ f2h2 ...ρ fN hN ρλ,λ′
(
USE1

)
k0 f 1

1 ,i0 f1
ρi0, j0

(
USE1

)†

j0h1,l1h1
1

∣∣k0, f 1
1 , f2, ..., fN , λ

〉〈
l0, h1

1, h2, ..., hN , λ′∣∣
→

∑
ρ f1,h1ρ f2h2 ...ρ fN hN ρλ,λ′

(
UE1E2

)
f 2
1 f 1

2 , f 1
1 f2

(
USE1

)
k0 f 1

1 ,i0 f1
ρi0, j0

(
USE1

)†

j0h1,l1h1
1

(
UE1E2

)†

h1
1h2,h2

1h1
2

× ∣∣k0, f 2
1 , f 1

2 , ..., fN , λ
〉〈

l0, h2
1, h1

2, ..., hN , λ′∣∣
→

∑
ρ f1,h1ρ f2h2 ...ρ fN ,hN ρλ,λ′ei χ

2 (λεk0 −λ′εl0 )
(
UE1E2

)
f 2
1 f 1

2 , f 1
1 f2

(
USE1

)
k0 f 1

1 ,i0 f1
ρi0, j0

(
USE1

)†

j0h1,l1h1
1

× (
UE1E2

)†

h1
1h2,h2

1h1
2

∣∣k0, f 2
1 , f 1

2 , ..., fN , λ
〉〈

l0, h2
1, h1

2, ..., hN , λ′∣∣
→

∑
ρ f1,h1ρ f2h2 ...ρ fN ,hN ρλ,λ′ei χ

2 (λεk0 −λ′εl0 )
(
Ut1

0

)
i1,k0

(
UE1E2

)
f 2
1 f 1

2 , f 1
1 f2

(
USE1

)
k0 f 1

1 ,i0 f1
ρi0, j0

(
USE1

)†

j0h1,l1h1
1

× (
UE1E2

)†

h1
1h2,h2

1h1
2

((
Ut1

0

)†)
l0, j1

∣∣i1, f 2
1 , f 1

2 , ..., fN , λ
〉〈

j1, h2
1, h1

2, ..., hN , λ′∣∣
→

∑
ρ f1,h1ρ f2h2 ...ρ fN ,hN ρλ,λ′ei χ

2 [λ(εi1 −εk0 )−λ′(ε j1 −εl0 )](Ut1
0

)
i1,k0

(
UE1E2

)
f 2
1 f 1

2 , f 1
1 f2

(
USE1

)
k0 f 1

1 ,i0 f1
ρi0, j0

× (
USE1

)†

j0h1,l1h1
1

(
UE1E2

)†

h1
1h2,h2

1h1
2

((
Ut1

0

)†)
l0, j1

∣∣i1, f 2
1 , f 1

2 , ..., fN , λ
〉〈

j1, h2
1, h1

2, ..., hN , λ′∣∣, (A1)

where the summations are over all the indexes in the density matrix element, (USE1 )k0 f 1
1 ,i0 f1

= 〈k0 f 1
1 |USE1 |i0 f1〉,

(UE1E2 ) f 2
1 , f 1

2 , f 1
1 , f2

= 〈 f 2
1 , f 1

2 |USE1 | f 1
1 , f2〉, and (Ut1

0 )i1,k0 = 〈i1|Ut1
0 |k0〉. In addition, (Ut1

0 )k1,i0 (UE1E2 ) f 2
1 f 1

2 , f 1
1 f2

(USE1 )i1 f 1
1 ,k1 f1

=
γ

P1

i1 f 2
1 f 1

2 ,i0 f1 f2
is the probability amplitude of undergoing path P1: i0 f1 f2 → k0 f 1

1 f2 → k0 f 2
1 f 1

2 → i1 f 2
1 f 1

2 and

(USE1 )†
j0h1,l0h1

1
(UE1E2 )†

h1
1h2, f 2

1 h1
2
(Ut1

0 )l0, j1 = (γ P2

j0h1h2, j1h2
1h1

2
)† represents the probability amplitude of path P2: j0h1h2 → l0h1

1h2 →
l0h2

1h1
2 → j1h2

1h1
2. The generalization of Eq. (A1) to the end of N − 1 steps is straightforward,

ρ0 →
∑
P1,P2

ρλ,λ′ei χ

2

[
λwN−1

P1
−λ′wN−1

P2

]
�

P1

iN−1 f 3
N−1 f 1

N ,i0 f1 f2
ρi0, j0ρ f1,h1 ...ρ fN ,hN

(
�

P2

j0h1h2, jN−1h3
N−1h1

N

)†

× ∣∣iN−1, f 2
1 , f 3

2 , . . . , f 1
N , λ

〉〈
jN−1, h2

1, h3
2, . . . , h1

N , λ′∣∣, (A2)
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with the probability amplitude �
P1

iN−1 f 3
N−1 f 1

N ,i0 f1 f2
of transition path P1: i0 f1 f2... fN → k0 f 1

1 f2... fN → k0 f 2
1 f 1

2 ... fN →
i1 f 2

1 f 1
2 ... fN → k1 f 2

1 f 2
2 ... fN → · · · → iN−1 f 2

1 , f 3
2 ..., f 3

N−1 f 1
N and the probability amplitude (�P2

j0h1h2, jN−1h3
N−1h1

N
)† of path P2:

j0h1h2...hN → l0h1
1h2...hN → l0h2

1h1
2...hN → j1h2

1h1
2...hN → l1h2

1h2
2...hN → · · · → jN−1h2

1, h3
2..., h3

N−1h1
N . After N − 1 steps,

the work done on the system in paths P1 and P2 are wN−1
P1

= ∑N−1
n=1 εin − εkn−1 and wN−1

P2
= ∑N−1

n=1 ε jn − εln−1 , respectively,

�
P1

iN−1 f 3
N−1 f 1

N ,i0 f1 f2
= �N−1

n=2 γ
P1

in f 3
n f 1

n+1,in−1 f 1
n fn+1

γ
P1

i1 f 2
1 f 1

2 ,i0 f1 f2
, (A3)

(
�

P2

j0h1h2, jN−1h3
N−1h1

N

)† = (
γ

P2

j0h1h2, j1h2
1h1

2

)†
�N−1

n=2

(
γ

P2

jn−1h1
nhn+1, jnh3

nh1
n+1

)†
, (A4)

where

γ
P1

i1 f 2
1 f 1

2 ,i0 f1 f2
= (

Ut1
0

)
i1,k0

(
UE1E2

)
f 2
1 f 1

2 , f 1
1 f2

(
USE1

)
k0 f 1

1 ,i0 f1
(n = 1),

γ
P1

in f 3
n f 1

n+1,in−1 f 1
n fn+1

= (
Utn+1

tn

)
in,kn−1

(
UEnEn+1

)
f 3
n f 1

n+1, f 2
n fn+1

(
USEn

)
kn−1 f ′′

n ,in−1 f 1
n
(n > 1), (A5)

and (
γ

P2

j0h1h2, j1h2
1h1

2

)† = (USE1 )†
j0h1,l0h1

1

(
UE1E2

)†

h1
1h2,h2

1h1
2

[(
Ut0

0

)†]
l0, j1

(n = 1),(
γ

P2

jn−1h1
nhn+1, jnh3

nh1
n+1

)† = (
USEn

)†

jn−1h1
n,ln−1h2

n

(
UEnEn+1

)†

h2
nhn+1,h3

1h1
2

[(
Utn

tn−1

)†]
ln−1, jn

(n > 1). (A6)

After the last steps, Eq. (A2) becomes

ρ0 →
∑
P1,P2

ρλ,λ′ei χ

2

[
λwN

P1
−λ′wN

P2

]
�

P1

iN f 2
N ,i0 f1

ρi0, j0ρ f1,h1 ...ρ fN ,hN

(
�

P2

j0h1, jN h2
N

)†

× ∣∣iN , f 2
1 , f 3

2 , . . . , f 3
N−1, f 2

N , λ
〉〈

jN , h2
1, h3

2, . . . , h3
N−1, h2

N , λ′∣∣, (A7)

where �
P1

iN f 2
N ,i0 f1

and (�P2

j0h1, jN h2
N

)† are defined as

�
P1

iN f 2
N ,i0 f1

= γ
P1

iN f 2
N ,iN−1 f 1

N
�

P1

iN f 3
N−1 f 1

N ,i0 f1 f2
,

(
�

P2

j0h1, jN h2
N

)† = (
�

P2

j0h1h2, jN h3
N−1h1

N

)†(
γ

P2

jN−1h1
N , jN h2

N

)†
; (A8)

�
P1

iN f 2
N ,i0 f1

is the probability amplitude of the transition

|i0, f1, f2, . . . , fN 〉 → |iN , f 2
1 , f 3

2 , . . . , f 2
N 〉 and (�P2

j0h1, jN h2
N

)†

is the probability amplitude from | j0, h1, h2, . . . , hN 〉 to
| jN , h2

1, h3
2, ..., h2

N 〉, P1 in Eq. (A.7) is the path defined
by the sequence of states i0 f1 f2... fN → k0 f 1

1 f2... fN →
k0 f 2

1 f 1
2 ... fN → i1 f 2

1 f 1
2 ... fN → k1 f 2

1 f 2
2 ... fN →

· · · → iN f 2
1 f 3

2 ... f 2
N , and (�P2

j0h1, jN−1h1
N

)† is the probability

amplitude defined by the sequence of states for path P2:
j0h1h2...hN → l0h1

1h2...hN → l0h2
1h1

2...hN → j1h2
1h1

2...hN →
l1h2

1h2
2...hN → · · · → jN h2

1h3
2...h

2
N . Along the paths P1 and P2,

the work done on the system is wN
P1

= ∑N
n=1 εin − εkn−1 and

wN
P2

= ∑N
n=1 ε jn − εln−1 , respectively.

The phase accumulated in the detector can be obtained by
tracing out the system degrees of freedom and taking into
account Eq. (18),

Gχ,W =
∑
P1,P2

ei χ

2 λ

[
wP1 +wP2

]
�

P1

iN f 2
N ,i0 f1

ρi0, j0

× ρ f1,h1 ...ρ fN ,hN

(
�

P2

j0h1, jN h2
N

)†
, (A9)

then the work QPDF is obtained by taking the Fourier trans-
form

P (W ) =
∑
P1,P2

�
P1

iN f 2
N ,i0 f1

ρi0, j0ρ f1,h1 ...ρ fN ,hN

(
�

P2

j0h1, jN h2
N

)†

× δ

(
W − λ

2

[
wP1 + wP2

])
. (A10)

Since the system degree of freedom is traced out after the last
evolution, in paths P1 and P2, thus iN = jN .
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