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Insights into quantum tunneling via a phase-space approach
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Quantum tunneling, as a quintessential quantum phenomenon, has been investigated in detail both theoret-
ically and experimentally. Still, the physical picture of the tunneling process is not intuitive, leading to some
confusion and paradoxes. In this paper, we have tried to gain insight into quantum tunneling by a phase-space
approach. For this purpose, we scrutinize the evolution of the Wigner distribution during tunneling and derive
the energy and momentum spectra by integrating over a segment of phase space. In this way, some of the
difficulties and paradoxes in tunneling probability, energy conservation, and tunneling time are given a clearer
interpretation. Negative probabilities in the Wigner distribution play a key role in the tunneling process, and
the origin of negative probabilities clearly indicates that the volatility of matter underlies the various exotic
phenomena involved.
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I. INTRODUCTION

Quantum tunneling, one of the most famous phenomena
predicted by quantum theory and observed experimentally,
has long attracted attention [1–6]. This phenomenon occurs
in a variety of physical and chemical processes [2,5–8],
including even photosynthesis [7] and nuclear fusion [8].
Additionally, it is also the principle behind some advanced
applications such as superconducting quantum interference
devices [9–11] and scanning tunneling microscopy [12–14].
These techniques are widely used in condensed matter physics
and materials science, for example, to study the diffusion
of hydrogen atoms on metallic surfaces [15] and to control
the magnetism of nanographenes [16]. Recently, experimental
studies of quantum tunneling have been performed in cold
atomic systems [17,18] as well as in strong-field and ultrafast
laser systems [5,19–23], and some remarkable results have
been obtained, including tunneling in the relativistic case.

While quantum tunneling can be fairly well described
mathematically, its associated physical picture remains some-
what mysterious. For instance, whether particles with kinetic
energy lower than the barrier height is conservation of energy
during tunneling, and the rationale behind the shortened tun-
neling time in the presence of a barrier [4,24]. The reason
for this confusion is that tunneling is a quantum interference
effect [24]. It is, therefore, essentially a reflection of the wave
nature of matter. However, the notion of a particle is often
introduced into an intuitive physical depiction. How to give
a relatively intuitive physical picture without distorting the
physical essence of tunneling is a question worth considering.

The Wigner function serves to portray the quasiprobability
distribution of a quantum state within phase space, which
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is used successfully in many physical problems [25–30].
Numerous investigations have employed the Wigner func-
tion to elucidate the tunneling process, yielding noteworthy
insights [31–33]. Diverging from classical probability dis-
tributions, the Wigner function can assume negative values,
often indicative of nonclassical characteristics [34,35]. Previ-
ous research has established a correlation between negative
Wigner functions and tunneling phenomena [32,33]. Con-
sequently, we posit that employing the Wigner function
facilitates a more lucid physical depiction of the tunneling
process.

This paper employs numerical simulations to depict the
tunneling process of a Gaussian wave packet through a square
barrier, utilizing the Schrödinger equation. Subsequently, the
wave function is employed to formulate the Wigner function,
revealing the evolution within phase space. The momentum
and energy spectra are derived by integrating the phase-space
distribution across specific subregions. The results demon-
strate the conservation of the total energy of the wave packet
during tunneling, although the energy distribution within indi-
vidual regions undergoes a modification. Remarkably, within
the barrier region, the kinetic energy spectrum has a negative
probability distribution due to the presence of a negative re-
gion in the higher segments of the momentum distribution
within the Wigner function. Furthermore, we investigate the
effect of having the same momentum distribution but different
phase distributions on the tunneling time.

II. METHOD

Our discussion commences with a physical model based
on a single atomic wave packet passing through a square
barrier, wherein the wave packet is characterized as a scalar
matter wave. The motion of the atom is described by
the one-dimensional Schrödinger equation [36]. While the
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computed wave functions encapsulate all pertinent infor-
mation, discerning a lucid physical representation of the
tunneling process remains challenging. Consequently, we pro-
ceed to construct the Wigner distribution from the wave
function, thereby delving into a more profound comprehen-
sion of the tunneling process through an examination of its
phase-space evolution.

A. Wave-packet tunneling simulation model

To simulate the nonrelativistic wave-packet tunneling
through a barrier, we employ the time splitting (TS)
scheme [37] to numerically compute the Schrödinger equa-
tion. Introducing the subsequent changes of variables en-
hances the computational approach [38,39], where the left-
hand side of the arrow is the true value, and the right-hand
side is the dimensionless value and its dimension,

t → t

ωm
, a0 =

√
h̄

mωm
, x → xa0, p → p

h̄

a0
,

ψ → ψ

a3/2
0

, � → �ωm, E (·) → h̄ωmEβ,�(·), (1)

where ωm = min(ωx, ωy, ωz ) is the minimum trap frequency
of a three-dimensional harmonic trap, so the dimensionless
Schrödinger equation can be expressed as [40]

i
∂ψ

∂t
=

(
−1

2
� + V

)
ψ. (2)

The initial wave function is a one-dimensional
freely evolving Gaussian wave packet in momentum
representation [41],

ψ (p, τ ) = 1(
2πσ 2

p

)1/4 e
−

(
p−p0
2σp

)2

e−i x0
h̄ (p−p0 )e

(
−i p2

2mh̄ τ
)
.

Numerical calculations require the wave function to be in
coordinate space, which is determined by the inverse Fourier
transform of the above expression,

ψ (x, τ ) = 1(
2πσ 2

x

)1/4
√

1 + ih̄τ
/(

2mσ 2
x

)
× exp

[
−(x − x0)2

(2σx )2
[
1 + ih̄τ

/(
2mσ 2

x

)]
]

× exp

[
ip0

h̄

(
x − p0τ

2m

)]
, (3)

where τ is the time factor that determines the initial phase
distribution of the wave packet, p0 is the central momentum,
x0 represents the initial position, m is the particle mass, and
σx is the initial spreading. Note that in order to make the
one-dimensional Schrödinger equation dimensionless, the re-
placement of the wave function should be ψ → ψ/a1/2

0 .
Subsequently, we introduce two operators, denoted as

A and B, corresponding to the dispersion and poten-
tial components, respectively. In this study, we adopt the
standard decomposition, A = i

2�, and B = −iV (t, x). The
time-dependent partial differential equation (PDE) under con-

sideration is expressed as

∂tψ (t, x) = Aψ (t, x) + Bψ (t, x), ψ (0, x) = ψ0(x).

For all t > 0 and x ∈ Rd , we represent the solution as
ψ (t, x) = e(A+B)tψ0(x). The TS scheme approximates the so-
lution ψ by splitting the exponential operator e(A+B)t into the
operators eAt and eBt . The ψ is written as

ψ (t + δt, x) = e(A+B)δtψ (t, x)

≈ ea1Aδt eb1Bδt · · · eapAδt ebpBδtψ (t, x),

where {ak, bk}1�k�p ⊂ R are weights, which are computed in
order to obtain an approximation of e(A+B)δt of a given order
at a time step δt � 1 and t ∈ R+ := t > 0. The Lie (a1 =
b1 = 1) and the Strang (a1 = a2 = 1/2 and b1 = 1, b2 = 0)
schemes are the most commonly used TS scheme, which are
respectively of order one and two. The notable advantage
of the splitting scheme lies in the efficient solvability of the
equations associated with the operators A and B. As described
in Ref. [42], the use of fast Fourier transforms facilitates the
solution of the partial differential equation associated with A.
Additionally, the ordinary differential equation linked to B can
be accurately integrated.

B. Wigner function

We can construct the Wigner function as follows [30],

W (x, p) = 1

π h̄

∫
ψ (x + s)ψ∗(x − s)e

−2ips
h̄ ds

= 1

π h̄

∫
φ(p + q)φ∗(p − q)e

2iqx
h̄ dq, (4)

where ψ (x) and φ(p) are the wave functions in the
position and the momentum representation, respectively.
Such a function satisfies the normalization condition∫

W (x, p)dxd p = 1. Integrating the Wigner function over the
whole momentum space gives a density distribution, which
is

∫
W (x, p)d p =|ψ (x)|2. Similarly, integrating the Wigner

function across the entire coordinate space yields the momen-
tum distribution. The resulting distribution, when integrated
over either the complete coordinate or momentum space, is
non-negative and measurable. However, if integration is con-
fined to a specific portion of the phase space to obtain the
momentum spectrum within that region, the outcome may
feature negative values. Classically, negative probabilities are
impermissible. From a quantum standpoint, integrating over
a parton region of the Wigner distribution can be perplexing.
This situation is akin to transforming only a segment of the
wave function in coordinate space into a wave function in
momentum space through a Fourier transform, lacking a clear
physical interpretation. Nevertheless, despite this, integrating
over portions of the Wigner distribution can still furnish valu-
able information, comparable to how the short-time Fourier
transform of a signal in the time domain can offer useful
insights in the frequency domain. Notably, this perspective
depicts the momentum distribution within a partial coordinate
space which is similar to the classical standpoint, but the
classical view does not allow for negative probabilities.

We define that P(p) = ∫ x2

x1
W (x, p)dx is the momentum

spectrum in this region, where x1 and x2 are the coordinates
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FIG. 1. Four snapshots of a simulated Gaussian wave-packet tun-
neling process. The left-hand column shows the configuration space
probability density, with vertical lines marking the location of the
rectangular barrier; on the right is the momentum space probability
density, with the dashed line indicating the momentum correspond-
ing to the height of the barrier. From top to bottom, the wave packet
is shown: well before it reaches the barrier (t = 2.99); just before it
enters the barrier (t = 5.98); in the midst of the barrier interaction
(t = 11.47); and just as the interaction ends (t = 17.45).

of the starting and ending points of the region, respec-
tively. The kinetic energy spectrum in this region is
PT (T ) = P(p = √

2mT ) + P(p = −√
2mT ), and the energy

spectrum in this region is PE (E ) = PT (T = E − V ).

III. RESULTS

For our numerical computations, we select the atom 87Rb
with a mass of 1.443 × 10−25 kg. The atom has a central
velocity of 1.5 mm/s, an initial position x0 of −20 µm, and
an initial spread σx of 3 µm. It encounters a barrier with 1.5
times the central energy and a width of 1.6 µm. Setting ωm =
2π × 116 Hz, the dimensionless parameters of condition I are
as follows:

τ = 0, p0 = 2, x0 = −20, σx = 3,

V

E
= 1.5, wbarrier = 1.6.

Under condition I, utilizing the procedure outlined in
Sec. II A, we obtain the wave-packet distribution in both
coordinate and momentum space, depicted in Fig. 1. These
distributions bear a resemblance to those presented in
Ref. [43]. Following the wave-function computation, we con-
struct the Wigner function using Eq. (4). The phase-space
distribution of several representative moments of the tunnel-
ing process, considering the specified initial conditions, is
illustrated in Fig. 2. For a more detailed description of the
evolution of the Wigner distribution during this process, refer
to Appendix A. Subsequently, we delve into the characteris-
tics of the wave-packet tunneling through the barrier in three
issues.

FIG. 2. Evolution of the Wigner distribution of Gaussian wave-
packet tunneling. (a) t = 2.99, (b) t = 5.98, (c) t = 11.47, and
(d) t = 17.45.

A. Deformation of the phase-space distribution and the
tunneling probability

The free evolution of the Wigner function in the ab-
sence of an external potential field proceeds according
to W (x, p, t ) = W (x − p

m δt, p, t0), where δt = t − t0 is the
evolutionary time [26,28,29]. However, the phase-space dis-
tribution is deformed after encountering a barrier. Under
condition I, the approaching barrier induces wave-packet
deformation, resulting in a broadening of the momentum dis-
tribution, as depicted in Fig. 3(a). This broadening affects both
the high- and low-energy components, causing an upward
shift in the peak position of the distribution. While the to-
tal kinetic energy remains approximately constant during the
momentum broadening process, the classical sense fraction of
barrier crossings increases due to the amplified high-energy
segments.

Intuitively, one might easily conceive that the momentum
broadening originates from the inherent uncertainty between
the momentum and position distributions, given that the bar-
rier constrains the spatial extent of the wave packet. However,
this interpretation is not entirely accurate. Let us elucidate this
with an example. Under condition II (τ = 0, p0 = 2, x0 =

FIG. 3. The probability density of momentum in the incident re-
gion (the left of the barrier). (a) For condition I, and (b) for condition
II. The vertical dashed line indicates the momentum corresponding
to the barrier height.
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−20, σx = 1, V/E = 1.5, wbarrier = 1.6), the wave packet
also undergoes deformation upon approaching the barrier,
resulting in changes to both the momentum and spatial distri-
butions. However, the alteration in the momentum distribution
leads to a reduced fraction of kinetic energy above the bar-
rier as depicted in Fig. 3(b). Furthermore, the momentum
distribution is not simply broadened or narrowed; it exhibits
oscillations within the distribution, suggesting that the vari-
ation of the distribution can be understood as interference
induced by the barrier.

The momentum spectrum within the incident region (i.e.,
to the left of the barrier) delineates the proportion of the wave
packet that can, in the classical sense, traverse the barrier.
For condition I: At t = 0 the share on the left-hand side of
the barrier is 100.00%, and the fraction of classically allow-
able crossing is 0.35%. At t = 5.9845, the left-hand side of
the barrier constitutes 99.40% of the share, and the fraction
of classically allowed passage increases to 0.75%. By t =
6.9819, the left-hand side has 97.40% share, and the fraction
of classically allowed passage rises to 1.39%. The ultimate
tunneling ratio is 4.49%. Consequently, the fraction of clas-
sically allowed passage experiences a noteworthy increase as
the wave packet encounters the barrier and undergoes defor-
mation under condition I. Contrastingly, for condition II: At
t = 0 the share on the left-hand side of the barrier is 100.00%
and the classical allowable crossing part is 18.43%. At t =
5.9845, the left-hand side constitutes 99.03% of the share,
and the fraction of classically allowed passage decreases to
16.56%. By t = 6.9819, the left-hand side has 93.90% share,
and the fraction of classically allowed passage further reduces
to 6.30%. The final tunneling ratio is 13.50%. In contrast to
condition I, the fraction of tunneling allowed under condition
II is significantly smaller than the fraction allowed classically.

Remarkably, modifying the momentum spectrum to in-
clude more segments above the barrier enhances the like-
lihood of eventual crossing through the barrier region.
Conversely, if the initial alteration in the momentum spec-
trum leads to a reduction in the portion above the barrier,
the final transmission proportionally diminishes compared to
the classical transmission of the initial wave packet. Thus,
we provide a more intuitive interpretation of the difference
between the transmittance of the quantum tunneling process
and the classical one.

B. Conservation of energy

In the classical scenario, when a particle enters the barrier
region, energy conservation demands an immediate decrease
in kinetic energy to offset the heightened potential energy.
Should the kinetic energy of a classical particle be lower than
the barrier height, it is precluded from entering the barrier
region. In quantum theory, however, particles characterized
as wave packets of matter do not undergo abrupt changes
at the barrier boundary as in the classical model; instead,
they exhibit continuous variation. This raises the pertinent
questions: If the kinetic energy of the wave packet entering
the barrier region remains roughly constant rather than under-
going an abrupt decrease, the resulting augmented potential
energy may lead to energy nonconservation. Alternatively, if
the kinetic energy of the wave packet undergoes a sudden

FIG. 4. The momentum and kinetic energy distributions of
the wave packet in the barrier region (t = 6.98). (a) Momentum
spectrum: The vertical dashed line indicates the momentum corre-
sponding to the barrier height. (b) Kinetic energy spectrum: The
vertical dashed line indicates the barrier height.

decrease after entering the barrier region, it fails to adhere to
the evolution law of the Wigner function. Furthermore, it is
commonly understood that the corresponding momentum will
decrease, thereby increasing the tunneling time of the wave
packet.

However, the evolution of our calculated Wigner function
elucidates that the quasiprobability distribution in phase space
circumvents the above confusion in a nuanced manner. Ini-
tially, the phase-space distribution starts to deform as soon as
the wave packet makes contact with the barrier. In particu-
lar, in the incident region near the edge of the barrier, there
is a broadening towards both the high- and low-momentum
regions, and negative probabilities appear in the front of the
wave packet between the two extension directions. As the
wave packet starts to enter the barrier region, it encompasses
both the low- and high-momentum components, thus exhibit-
ing a distribution of kinetic energy from low to high. However,
since the region of negative probability is initially located in
the higher part of the kinetic energy spectrum, as shown in
Fig. 4 (the parameters are the same as condition I), the overall
effect is that the total kinetic energy inside the barrier region
is smaller than the total potential energy of the wave packet
in this region. The sum of the kinetic energy in the incident
region, the kinetic energy in the transmitted region, and the
potential energy and kinetic energy in the barrier region is
equal to the initial kinetic energy of the wave packet, as shown
in Table I (the parameters are the same as condition I). Further
details on the energy spectra can be found in Appendix B.

The presence of the negative probability region assumes
a crucial role. If the probability of the entire phase-space
distribution is non-negative, the two conditions, energy

TABLE I. Energy evolution during tunneling.

t Etotal Tleft Tmiddle Vmiddle Tright

0 2.014 2.014 0 0 0
3.99 2.014 2.014 0 0 0
5.98 2.014 1.993 0.003 0.018 0
6.98 2.012 1.928 0.008 0.070 0.006
9.97 2.012 1.594 0.025 0.346 0.047
12.47 2.012 1.809 0.010 0.097 0.096
14.96 2.013 1.908 0 0.006 0.099
17.45 2.014 1.914 0 0 0.100
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conservation and nonsteep change of the phase-space dis-
tribution at the barrier boundary, cannot be simultaneously
satisfied. The negative probability region appears in the region
with higher momentum (kinetic energy), which effectively
reduces the kinetic energy of the barrier region, making the
potential energy of the entire interval much higher than the
kinetic energy. This approach reflects the conversion of ki-
netic and potential energy and satisfies the requirement of
energy conservation. At the same time, the region of highest
momentum does not vanish or lose, which is important for the
discussion below.

C. Tunneling time

The question of how long it takes for a particle to tunnel
through a barrier is a long-standing one, and until recently
there have been ongoing theoretical and experimental studies
in this area [3–5,17,18,24,44]. In quantum theory, particles
cannot have both definite positions and velocities, but are de-
scribed in terms of wave packets. There are various definitions
of the tunneling time of a wave packet, the common ones
being phase times, dwell time, and Larmor times, among oth-
ers [4,24]. The phase times, also known as group delays, are
derived from the peak position of the incident, reflected, and
transmitted wave packets as a function of time. The dwell time
is the average time of a particle spending in the barrier, regard-
less of whether it is ultimately transmitted or reflected. The
Larmor times are based on the Larmor precession of a spin
in a homogeneous magnetic field, and they are proportional
to the time of reflected and transmitted wave packets spend in
the barrier region. It was found that the three definitions can
be linked by the following formula [24,45],

τd = |T |2τgt + |R|2τgr − τi, (5)

where τd is the dwell time, T is the transmission coefficient,
R is the reflection coefficient, and τgt and τgr are trans-
mission and reflection group delays, respectively. τi is the
self-interference delay, which comes from the overlap of in-
cident and reflected waves in front of the barrier. Moreover,
τT = τgt − τi and τR = τgr − τi are the Larmor times for trans-
mission and reflection, respectively.

First, we investigate the group delays. In some previous
works Gaussian wave packets similar to Eq. (3) are used,
but they are usually set as τ = 0 and x0 = 0 at the position
where the barrier entrance should be [24,44]. In this paper,
however, we set three different initial phase times τ to ob-
serve the effect of the initial phase distribution. We also set
different barrier heights and other initial conditions are the
same as condition I. Figure 5 depicts the wave packet with
and without a barrier under two conditions, normalized by the
peak value for ease of comparison (t = 22.44). It is evident
that the top of the transmitted wave packet is pushed forward
in the presence of the barrier. More data on the shifts of the
transmitted wave-packet peaks are listed in Table II, where
other parameters are the same as condition I, excepting τ and
V/E . After the transmitted wave packet moves away from the
barrier, the moment at which the peak exits the barrier can be
extrapolated from the position and velocity of the peak at a
certain time. We can also extrapolate the time that the peak
of the incident wave packet would have arrived at the position

FIG. 5. The shift of the top of the transmitted wave packet in the
presence of a barrier. (a) τ = −10, and (b) τ = 10. Other parameters
are the same as condition I.

on the front surface of the barrier in the absence of reflections.
The group delay of the transmitted wave packet is obtained
by subtracting the latter from the former. In a similar way, we
obtain the group delay of the reflected wave packet. Detailed
data on the group delays for various conditions are given in
Table III. It is easy to find that when the barrier height is higher
relative to the kinetic energy of the incident wave packet (such
as V/E = 1.5), the group delay of the transmitted wave packet
is not only significantly shorter than the time required for
the same interval when the wave packet propagates freely
without a barrier, but also appears negative. This implies the
superluminality of the group delay, as the superluminality
appears in the Hartman effect [44]. Although the barrier can
selectively transmit high-momentum components [1,43], it is
not sufficient to explain the significant increase of the group
velocity or even the negative group delay of the transmitted
wave packet, nor why the group delay is related to the initial
phase distribution of the wave packet. In fact, the transmitted
wave packet is a reshaping result of the interference of various
selectively transmitted momentum components [24,44,46].
Thus, momentum-position correlations caused by the phase
distribution of an incident wave packet can have a remarkable
effect, which can be clearly seen in phase space. Figure 6
shows the evolution of the Wigner distribution with a different
initial phase distribution, where other parameters are the same
as condition I. In the case of τ = 10, it is the high-momentum
part that makes contact with the barrier earlier, since it is in
front of the wave packet. In the case of τ = −10, the position
of the high-momentum part is relatively more backward than
in the previous case. Figure 7 shows the momentum spectra
of the two cases in the incident region at different times, from
which it can be seen that the part with momentum above the
barrier appears earlier in the case τ = 10. In short, the high-
momentum part, which contributes more to the transmitted

TABLE II. The shift of the transmitted peak under various
conditions.

�xT �xT �xT

V/E (τ = −10) (τ = 0) (τ = 10)

0 0 0 0
0.5 −0.49 −0.38 −0.27
0.8 −0.32 0.16 0.66
1.0 0.15 0.94 1.78
1.3 0.96 2.04 3.13
1.5 1.33 2.43 3.49
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TABLE III. The group delays in transmission (τgt ) and in reflec-
tion (τgr) under various conditions.

τgt τgt τgt τgr τgr τgr

V/E (τ = −10) (τ = 0) (τ = 10) (τ = −10) (τ = 0) (τ = 10)

0 0.80 0.80 0.80 0.00 0.00 0.00
0.5 1.12 1.06 1.01 1.41 2.12 2.81
0.8 1.28 1.04 0.80 1.35 1.71 2.04
1.0 1.21 0.83 0.43 1.19 1.36 1.49
1.3 0.93 0.41 −0.11 0.85 0.89 0.92
1.5 0.75 0.22 −0.28 0.70 0.70 0.72

wave packet, is distributed at the front of the wave packet,
which causes the transmitted wave packet to appear earlier
and thus the group delay to be negative.

It should be noted that the superluminal group velocity and
the negative group delay do not violate the law of causality.
The front of the wave packet, which is analogous to the
precursor wave of an optical pulse, determines how fast the
information travels. We examine the effect of the presence
of the barrier on the leading edge of the wave packet, as
shown in Fig. 8. The fronts of the transmitted wave packets
in various conditions coincide such that the information speed
of the transmitted wave packets does not change. It can also
be found from Table III that the group delays of reflected
and transmitted wave packets are quite different at τ = 0 and
τ = 10, but the difference between them is small at τ = −10.
In the case of τ = −10, the wave function approaches that of
Eq. (3) with τ = 0 and x0 = 0 when the center of the incident
wave packet propagates freely (no barrier) to the position
where the barrier entrance should be. Thus, the equivalence of
the group delays between the transmitted and reflected wave
packets requires not only the barrier to be symmetric [24], but

FIG. 6. Evolution of the Wigner distribution with different ini-
tial phases. (a) τ = −10: The left figure shows the distribution at
t = 4.99 and the right figure shows the distribution at t = 8.98.
(b) τ = 10: The left figure shows the distribution at t = 4.99 and
the right figure shows the distribution at t = 8.98. Other parameters
are the same as condition I.

FIG. 7. The momentum spectra of the two cases in the incident
region at different times. (a) t = 6, and (b) t = 8.

also the phase-space distribution of the incident wave packet
to be symmetric as it propagates freely to the site of the barrier
entrance.

Then, we examine the dwell time, which is equivalent to an
integral over the norm of a time-dependent wave packet over
the barrier for all time [47],

τd =
∫ ∞

0
dt

∫ L

0
dx|ψ (x, t )|2, (6)

where [0, L] represents the square barrier region in this paper.
We calculate the sum of probabilities in the barrier regions as
a function of time under different initial phase distributions
(other parameters are the same as those in condition I), as
shown in Fig. 9. The three curves are different, but they have
the same integral value τd = 0.469.

On the other hand, for rectangular barriers, there is an
analytic expression for the dwell time [24],

τd (k) = mL

2h̄k(1 + �2tanh2κL)

×
[(

1 + k2

κ2

)
tanh κL

κL
−

(
k2

κ2
− 1

)
sech2κL

]
, (7)

where κ = √
2m(V − E )/h̄ and � = (κ/k − k/κ )/2. This

formula can be used when the width of the momentum dis-
tribution of the wave packet is very narrow, but for the case in
this paper, it is necessary to consider the contribution of the
various momentum components of the wave packet, i.e.,

τ̄d =
∫

|ψ (k)|2τd (k)dk. (8)

The dwell time calculated by Eq. (8) under condition I is τ̄d =
0.462, which is fairly close to previously calculated by Eq. (6).

FIG. 8. The front of the transmitted wave packet under various
conditions (t = 42.39). (a) τ = 10, where other parameters are the
same as condition I, excepting V/E , and (b) for condition II, except-
ing V/E .
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FIG. 9. The sum of probabilities in the barrier regions as a func-
tion of time under different initial phase distributions.

Finally, let us verify Eq. (5). To do this, we need to
calculate the self-interference delay τi. For rectangular bar-
riers, there is an analytic expression for the self-interference
delay [24].

τi(k) = mL

2h̄k
(
1 + �2 tanh2 κL

)[(
1 + κ2

k2

)
tanh κL

κL

]
. (9)

Similar to the calculation of the dwell time, we need to
integrate over all momentum components,

τ̄i =
∫

|ψ (k)|2τi(k)dk. (10)

For condition I, the self-interference delay τ̄i = 0.23 is cal-
culated according to the method described above. For τ =
−10, we have |T |2τgt + |R|2τgr = 0.70 and Eq. (5) holds in
this case. But for τ = 0 and τ = 10, the calculation gives
|T |2τgt + |R|2τgr = 0.68. According to the previous calcula-
tion, the dwell time does not change with the initial phase
parameter τ of the wave packet. If Eq. (5) is true, this im-
plies that the self-interference delay τi depends slightly on the
initial phase distribution of the wave packet.

IV. DISCUSSION

The previous section showed the existence of negative
probability distributions in the momentum or energy spectra
obtained when integrating over a part of the phase space,
which are essential for clarifying some of the paradoxes in
the tunneling process, such as energy conservation. These
negative probability distributions on the momentum or en-
ergy spectra come from negative values of a quasiprobability
Wigner function. Thus, the negative Wigner function is
closely related to the nature of quantum tunneling. Hence, it
becomes imperative to investigate the conditions under which
the negative probability region occurs, or conversely, the con-
ditions under which no negative probability is present. A prior
study demonstrated that a sufficient and necessary condition
for the Wigner function to be non-negative is that the wave
function assumes the form [48]

ψ (x) = e− 1
2 (ax2+2bx+c), (11)

where a, b are arbitrary complex numbers and c is the coeffi-
cient used for normalization. It is evident that a wave function

of this form corresponds to a Gaussian wave packet with
minimal uncertainty in phase space or a deformed Gaussian
wave packet. A Gaussian wave packet with minimal uncer-
tainty represents the ground state of a harmonic trap, while
a deformed Gaussian wave packet corresponds to its free
evolution after release from the trap or its motion in a linear or
quadratic potential field after release. For the time evolution of
the Wigner function, the pseudoparticle method [26,49] can be
employed. The lowest-order (LO) pseudoparticle approxima-
tion of the time evolution of the Wigner function divides phase
space into cells (pseudoparticles) and tracks the trajectories
of these cells using classical equations of motion. It is worth
noting that if the potential is a constant, linear, or harmonic
oscillator potential, then the LO pseudoparticle method pro-
vides the exact solution. In these potentials, the trajectories
of the cells in phase space exactly mirror those of classical
particles. The cells never overlap with each other, precluding
any mutual interference. Consequently, the condition for the
Wigner distribution to be non-negative can be interpreted as
the existence of an initially non-negative distribution and that
the components of the wave packet do not interfere with
each other during the evolution. Since the barrier potential
field cannot belong to the above three cases, an initially non-
negative Gaussian wave packet will definitely develop regions
of negative probability in phase space upon contact with the
barrier. Reference [33] reveals the close relationship between
tunneling and negative quasiprobabilities, while the above dis-
cussion shows that negative quasiprobabilities are inevitable
as long as there is a barrier. The occurrence of negative prob-
abilities is a sensitive indication of the coherent superposition
of the various components in the wave packet under the action
of the barrier. Thus, even if the particle picture is preserved to
some extent, various singularities in quantum tunneling must
be accounted for by considering the wave nature of matter.

The propagation of optical pulses in a dispersive media
is similar in nature to the barrier tunneling discussed in this
paper. Optical experiments have not only shown the peak
advance of the pulse, the superluminality of the group ve-
locity, but also confirmed that the arrival time of the optical
precursor wave is always the same, so that causality is not
violated [46,50–53]. These studies contribute to the under-
standing of the properties of quantum tunneling, especially
at the tunneling time. On the other hand, matter particles
have nonzero rest mass and interact with each other, which is
quite different from photons. Therefore, experimental studies
of tunneling phenomena in matter particles are still necessary.

Presently, Bose-Einstein condensates (BECs) have been
employed to investigate quantum tunneling and related phe-
nomena [17,18]. In contrast to the single-particle wave
packets examined in this paper, BECs constitute many-body
systems [54,55]. The tunneling behavior of BECs is signif-
icantly different from that of single-particle wave packets
due to nonlinear effects arising from interatomic interactions.
For example, the transmission and tunneling times depend
on the positive, negative, and magnitude of interatomic inter-
actions [56,57]. On the other hand, deep cooling techniques
developed in microgravity environments in recent years can
obtain BECs with picokelvin kinetic energy equivalent tem-
peratures and significantly reduced densities [58,59]. The
behavior of BECs under these conditions is very close to
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FIG. 10. Evolution of the Wigner distribution under condition I.

that of a single atomic wave packet, so that the experimental
results can be compared quantitatively with the theory based
on a single atomic wave packet.

V. CONCLUSION

In summary, we have numerically investigated the quantum
tunneling of a Gaussian wave packet through a square barrier.
The Wigner distribution is derived from the calculated wave
functions and the momentum and energy spectra of a subre-
gion are determined by integrating over a portion of the phase

FIG. 11. Kinetic and total energy spectra of the various regions
at several moments. (a) The total energy spectra in full space; (b) the
kinetic energy spectra in the left region of the barrier; (c) the kinetic
energy spectra in the barrier region; (d) the kinetic energy spectra in
the right region of the barrier.

space. In this way, we explore in detail the issues of tunneling
probability, energy conservation, and tunneling time, and suc-
cessfully address some of these puzzles and paradoxes. The
presence of negative probabilities in the Wigner distribution
turns out to be crucial in resolving these problems. Our study
enhances the understanding of quantum tunneling and holds
implications for applications such as quantum metrology.
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APPENDIX A: PHASE-SPACE EVOLUTION

Here, in Fig. 10, we provide a more detailed example of
the evolution of the Wigner distribution during tunneling.

APPENDIX B: ENERGY SPECTRA

Table I exhibits that the sum of the energies in each region
remains constant during tunneling, that is, the energy is con-
served. Here, in Fig. 11, we show the energy spectrum within
each region and as a whole for several moments.
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