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Quantum Darwinism (QD) proposes that classical objectivity emerges from the broadcast of information
about a microscopic degree of freedom into multiple fractions of a many-body environment. Such a broadcast
of information is in sharp contrast with its scrambling under strong interaction. It was recently shown that
quantum dynamics interpolating between broadcasting and scrambling may display sharp phase transitions of
information propagation, named QD-encoding transitions. Here we initiate their systematic study in generic,
non-Clifford settings. First, in a general theoretical setup where the information propagation is modeled as an
isometry, whose input qudit is entangled with a reference, we propose a probe of the transitions—the distribution
of the density matrix of the reference after measuring an environment fraction. This probe measures the classical
correlation between the fraction and the injected information. We then apply the framework to two similar models
defined by a tensor network on an expanding tree, modeling a noisy apparatus that attempts to broadcast the z
component of a spin-half. We derive an exact recursion relation of the density matrix distribution, which we
analyze analytically and numerically. As a result we find three phases: QD, intermediate, and encoding, and two
continuous transitions. The encoding-intermediate transition describes the establishment of nonzero correlation
between the reference and a small environment fraction, and can be probed by a “coarse-grained” measure of
the total spin-z of the fraction, which becomes non-Gaussian and symmetry breaking in the intermediate space.
The QD-intermediate transition is about whether the correlation is perfect. It must be probed by fined-grained
measures and corresponds to a subtler symmetry breaking in the replica space.
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I. INTRODUCTION

Why does the macroscopic world surrounding us appear
classical, although it obeys the laws of quantum mechanics,
to the best of our knowledge? This basic question, raised
since the birth of quantum mechanics, remains unsettled. An
important step was taken by decoherence theory [1,2], which
points out that any quantum system is inevitably in contact
with some environment and becomes entangled to it. As a
result, a coherent superposition rapidly evolves into a prob-
abilistic mixture of classical “pointer states.” This begs in turn
the question of which pointer states can survive decoherence.

To address this question, a promising approach, much ex-
plored in the past decades [3–14], consists in examining how
information about a quantum system propagates in its envi-
ronment, whose complex many-body structure must be taken
into account. This quantum information-theoretical analysis
of the system-environment universe yields an important in-
sight: some information about the system—that corresponding
to pointer states—is duplicated and broadcast into the envi-
ronment. Thus, many observers, each having access to a small
fraction of the environment, are able to retrieve the informa-
tion and agree on it: the information becomes objective.

An illustrative example of an objective fact is a measure-
ment result. Suppose that a qubit (the system) is measured
in the computational basis by a macroscopic apparatus in a
laboratory (the environment). From a super-observer’s point
of view in a Wigner’s friend thought experiment (see, e.g.,

[15,16] for recent advances), it becomes entangled with its
environment, in a way that the whole laboratory is approxi-
mately in a Greenberger-Horne-Zeilinger [17] state:

|�〉lab ≈ 1√
2

(|0〉qubit|0 . . . 0〉env. + |1〉qubit|1 . . . 1〉env. ).

In this simple example, the pointer states are |0〉 and |1〉. Any
fraction of the environment, even a single bit, is perfectly
correlated to the system. Measuring any environment bit (in
the computational basis) will disentangle the system bit and
make it collapse into one of the pointer states. In this sense,
the information of whether the qubit is in |0〉 or |1〉 has become
objective and retrievable in many small fractions of the envi-
ronment. By contrast, one would need to measure the whole
environment to make the system bit collapse to a nonpointer
state, for example, (|0〉 + |1〉)/

√
2.

Now, a typical random state in the system-environment
Hilbert space has a completely different structure of correla-
tion. It is well-known that, although the system is maximally
entangled to the environment, a small fraction of the envi-
ronment (smaller than half of the latter) is uncorrelated with
the system [18–22]. In other words, all information about
the system is “encoded” and inaccessible for all practical
purposes. The encoding of information is also a property of
generic many-body unitary evolution, that is, generated by a
nonintegrable Hamiltonian [23–25]. Information injected by
a local perturbation, while conserved by unitary, becomes
more and more nonlocal and inaccessible. Such information
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encoding (often known as “scrambling”) is believed to un-
derlie the emergence of irreversible phenomena such as
thermalization and hydrodynamic relaxation [26–29].

We have thus two diametrically opposite patterns of
quantum information spreading. They are both—or at least,
expected to be—“generic” but in different contexts. Encoding
is generic when the “universe” consists of an isolated strongly
interacting quantum system [30]; such a “universe” may be
realized with controlled experiments [31–33], strongly cor-
related materials at low temperatures [34], and (simulated)
black holes [26,35]. Meanwhile, classical objectivity arises
generally in “universes” that are more familiar to us, such
as a laboratory apparatus measuring a quantum spin. Usually
we do not model such a universe as a many-body quantum
system; instead, we trace out most of the “bath” degrees
of freedom and focus on the resulting dissipative dynam-
ics [36]. Nevertheless, in principle, both classical objectivity
and encoding behaviors emerge in some many-body quantum
dynamics. Hence it is natural to ask whether they can be
understood as “phases of (quantum) information” and identify
phase transitions between them. More broadly speaking, these
questions can be thought of part of the more ambitious goal
of classifying “phases of information” as an extension to the
classification of phases of matter in equilibrium statistical
mechanics.

While earlier works on quantum Darwinism (QD)
[7,37,38] already pointed out that an environment can exhibit
encoding or QD behaviors upon adjusting some parameter,
or in different time regimes, the task of addressing them as
phases of information and studying transitions between them
was first undertaken recently in Ref. [39]. This work proposed
a toy model where one bit of quantum information propagates
in a structured environment, which is modeled as a random
Clifford unitary circuit on an expanding tree, depending on
one parameter. By tuning the latter, the environment can
be either in an “encoding” phase where the injected infor-
mation is inaccessible in any environment fraction (unless
it is larger than half of the environment), or a “quantum
Darwinism” phase where it is accessible in arbitrarily small
environment fractions. The two phases are separated by a
stochastic-mixed phase where a random instance of the “uni-
verse” can be either encoding or QD with nonzero probability.
Two continuous phase transitions emerge at the QD-mixed
and mixed-encoding boundaries, respectively.

The choice of Clifford circuit was mainly motivated by
solvability, but also limited the generality of the findings.
Indeed, in Clifford stabilizer states, quantum correlation is
“quantized” [40,41]: for example, two qubits can only be
completely uncorrelated, maximally entangled, or classically
correlated in the Pauli Z , X , or Y direction. Of course, in
general, a continuum of other possibilities can exist. Thus, the
quantity used to distinguish the different phases in the Clifford
model does not apply beyond Clifford. Also, the stochastic-
mixed phase is most probably specific to Clifford models,
where entanglement entropy and mutual information can only
be an integer times ln 2. In this paper, which is a follow-up
on Ref. [39], we initiate a systematic study of QD-encoding
phase transitions beyond Clifford models. First, in Sec. II,
we propose a probe of QD-encoding transitions that applies
to a general class of models of information propagation in

FIG. 1. General theoretical setup for studying information prop-
agation in an environment. V is an isometry from A (injected qudit)
to E (output environment). A is initially entangled with a reference R.
To probe the classical correlation between a fraction F ⊂ E and R,
we perform a measurement on F and consider the postmeasurement
density matrix of R. By definition, in the QD phase, ρR,m is almost
surely a pure state; in the encoding phase, ρR,m is almost surely
maximally mixed. (The density matrices are represented using the
Bloch sphere.) In the tree models studied in this work, the two phases
appear at small and large values of a “scrambling parameter” J (that
controls V ). The two phases are separated by an intermediate phase
and two transitions. See Figs. 2 and 3 below.

a many-body environment (see Fig. 1). We adopt a widely
used theoretical technique of keeping a quantum copy of the
injected information in a reference qudit [27,42]. Then, the
probe measures what we can learn about the reference (and
thus the injected information) by measuring a fraction of the
environment. In other words, the probe concerns the “classi-
cal” part of the system-environment correlation [43–45], or
the Holevo bound [46]. This information-theoretical notion
is directly related to the ensemble of random postmeasure-
ment density matrices of the reference, where the randomness
comes from the Born’s rule (and eventually the randomness of
the model itself). Thus, we define the phases of information
in terms of the random density matrix distribution in the in
the thermodynamic limit: the QD, encoding, and intermediate
phases correspond to a distribution of pure, maximally mixed,
and partially mixed states, respectively. While the density
matrix distribution can only be a sum of finite number of delta
peaks in a Clifford model, it has a continuum support and
nontrivial form in general.

The second contribution of this work is a detailed analysis
of two similar non-Clifford expanding-tree models (Sec. III);
one of them is deterministic. They can be viewed as idealized
models of an apparatus or environment attempting to broad-
cast the z-component of the input spin-half (qubit). Although
intuitively similar to their Clifford cousin [39], the generic
models avoid the latter’s artifacts and are also more techni-
cally involved. To analyze them, we derive an exact recursion
relation satisfied by the density matrix distribution. The result
here applies to a large class of hierarchical models. The re-
cursion relations can be viewed as an analog of the “traveling
wave equation” routinely used to analyze branching and tree
models; see, for example, [47–50]. Here, in addition to being
nonlinear, our “traveling wave equation” is also nonlocal,
making its solution a formidable challenge.

Nevertheless, combining analytical and numerical tech-
niques, we established the phase diagram of both models.
They turn out to resemble that of the random Clifford
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model: as a function of a “scrambling” parameter J ∈ (0, 1),
both models display three phases—QD (J < Jd ), intermedi-
ate (Jd < J < Jc), and encoding (J > Jc)—separately by two
critical points Jd and Jc (see Fig. 1).

The encoding phase is, similarly to that in the Clifford
model, characterized by the absence of correlation between
any environment fraction and the reference (unless the frac-
tion is larger than half the environment). Meanwhile, the
QD and intermediate phases are qualitatively distinct from
the Clifford case. In the intermediate phase, which is no
longer a stochastic mixture, measuring an environment frac-
tion partially disentangles the reference, revealing some of
the injected information: its amount is independent of the
fraction’s relative size in the thermodynamic limit. In the QD
phase, this amount becomes the maximal value, one qubit:
the reference is completely disentangled upon measuring the
fraction. Yet, its posterior polarization direction, randomly
distributed according to Born’s rule, is close, but not exactly
equal, to |±z〉 (unless J = 0). This noisy selection of the
pointer state has the following consequence: if the input qubit
is not entangled with the reference, but prepared by Alice to
be either |+z〉 or |−z〉, then Bob cannot infer Alice’s choice
with perfect certainty.

The nature of the phases of information dictates, to a large
extent, that of the critical points. The encoding-intermediate
transition is one between zero and nonzero information re-
trieval. We are able to analytically locate the critical point
and characterize its critical properties (they are of simple
mean-field nature). Moreover, we point out that this transition
is easy to probe. It suffices to measure a “coarse-grained”
observable of a small fraction of the environment, its total spin
(the z component), M. In the encoding phase M has a Gaus-
sian statistics and is uncorrelated with the reference; in the
intermediate phase, M is correlated with the reference, and
has a non-Gaussian distribution with two peaks. In this regard
the encoding-intermediate transition is of a conventional kind,
associated with the breaking or restoration of a Z2 symmetry.

The QD-intermediate transition, between imperfect and
perfect correlation, is more subtle. For instance, we will show
that it cannot be probed with a “coarse-grained” measurement.
To understand heuristically the nature of this transition, we
may observe that it is a purification transition: observing
the environment fraction completely (partially, respectively)
disentangles the reference in the QD (intermediate, respec-
tively) phases. Hence, we may compare the QD-intermediate
transition to the measurement-induced transitions [51–53],
which are also characterized by purification [42,54]. Such
transitions are known to be associated with a more abstract
symmetry breaking, in the replica space [55–58]. In this
work, we will not use the replica trick. Instead, we provide
a direct characterization of the replica-symmetry breaking
in terms of the density matrix distribution and its “equa-
tion of motion” given by recursion relations (in this sense,
our approach is reminiscent of the cavity method in spin
glass theory [59]). The equation of motion always has a QD
(replica-symmetric) solution, but it becomes unstable in the
intermediate (replica-symmetric breaking) phase. This idea
allowed us to numerically locate the critical point with good
precision despite the pronounced finite-size effects and the ab-
sence of exact solution. While numerical data are compatible

with standard mean-field critical behaviors, an analytical un-
derstanding of the generic QD-intermediate transition remains
an open question.

II. GENERAL SETUP AND OBSERVABLES

In this section, we first propose a general theoretical setup
for studying phases of information propagation in structured
environments (Sec. II A). Then we shall define the phases of
information: QD, encoding and intermediate, in terms of the
Holevo bound (Sec. II B). Section II C introduces the notion
of random density matrix ensemble. It is closely related to
the Holevo bound and provides an equivalent definition of
the information phases. The above sections are essential to
understand the rest of the paper. Meanwhile, readers may skip
Sec. II D, which reviews the relation to mutual information, as
well as Sec. II E, which is about the special case of Clifford
models [39].

A. Setup

We consider the propagation of one qudit of quantum
information injected into a many-body environment. Upon
enlarging the environment, we may assume that the process
is isolated and thus described by an isometry from the Hilbert
space of the injected qudit A, of dimension q, to that of the
environment E by the end of the process:

V : Cq � HA → HE , V †V = 1. (1)

Using standard tensor network notation, we may represent V
by an triangle, and the isometry identity as follows:

V = , . (2)

Here the outgoing environment E will have many degrees of
freedom, represented by several legs. Note that the injected
qudit A may not be part of E . This is the case in a destructive
measurement apparatus, for instance a photon detector, which
destroys the incident photon.

It is sometimes useful [39] to view the isometry V as
being obtained by a unitary map U which maps A and some
incoming environment degrees of freedom to the outgoing
environment E :

, (3)

upon contracting with the incoming environment state, which
we assume to be a pure factorized one. However, in what
follows, we shall focus on the isometry V and the term “envi-
ronment” will always refer to the final one, E .

032226-3



BENOÎT FERTÉ AND XIANGYU CAO PHYSICAL REVIEW A 109, 032226 (2024)

In order to study the correlation between (a fraction of) E
and the A, it is convenient to introduce the Choi-Jamiolkowski
(CJ) state of the isometry V , denoted by �V [60,61]. Recall
that this is obtained by entangling initially the injected qudit
A with a reference (R), and applying V on A, leaving R intact:

|�V 〉 = (1R ⊗ VA)|I〉RA, |I〉RA = 1√
q

q−1∑
i=0

|i〉R|i〉A. (4)

A graphical representation of the CJ state is as follows:

|ΨV 〉 = (5)

where a black dot stands for a 1/
√

q factor. By isometry, R
remains maximally entangled to E , so that the reduced density
matrix of R is maximally mixed:

ρR =
1
q
1 = (6)

The information-theoretical meaning of the CJ state is the
following: The reference qudit keeps a quantum record of the
injected information available after the propagation process
destroys A. Thus, we can address the correlation between the
environment and R (the injected information) within the CJ
state �V , as we see below.

We remark that this way of characterizing correlation is
routinely used in other contexts, such as in the black hole
information problem, where one is interested in the correlation
between the Hawking radiation and the information carried
by an in-falling object [27]. The “reference bit” method also
proved useful in characterizing measurement-induced phase
transitions [42,55].

B. Phases of information

Following the QD approach and similar approaches to
emergent classicality, we shall consider what information on
R can be revealed from performing some measurement on a
fraction (subsystem) of the environment, F ⊂ E . Suppose that
we a measurement outcome m. The reduced density matrix of
the reference qudit is then updated from the maximally mixed

one ρR (6) to ρm:

. (7)

A well-known quantity in quantum information under the
names of Holevo bound [46], asymmetric mutual informa-
tion, and classical correlation [43,44], measures the expected
amount of information revealed by the measurement. By def-
inition, it is equal to the von Neumann entropy decrease,
averaged over the measurement results:

χ (F ; R) = S(ρR) −
∑

m

pmS(ρm). (8)

Here pm is the probability of the outcome m, and S(ρ) =
−Tr[ρ ln ρ] is the von Neumann entropy. Since S(ρR) = ln q
(6) and 0 � S(ρm) � q for any m,

0 � χ (F ; R) � ln q. (9)

We shall therefore use χ (F ; R) to define three phases of infor-
mation retrieval:

1. A quantum Darwinism (QD) phase is one in which

χ (F ; R) → ln q (10)

in some thermodynamic limit (same below). In the QD phase,
measuring the environment fraction reveals all of the injected
information [38,45].

2. An encoding phase is one in which

χ (F ; R) → 0. (11)

In the encoding phase, measuring the environment fraction
fails to reveal any injected information.

3. An intermediate phase is one in which none of the
above holds. In this phase, measuring the environment reveals
partially the injected information.

The use of the term “phase” is justified by the following
observation: As a model goes from one phase to another upon
tuning some parameter, the thermodynamic limit of χ (F ; R)
must depend nonanalytically on that parameter (an analytical
function that is constant somewhere must be constant every-
where). Phase transitions of information retrieval are, by the
standard definition, parameter space loci where χ (F ; R) is
nonanalytical.

By the above definition, the phase of information retrieval
depends on the environment dynamics (described by the isom-
etry V ), the fraction F and the choice of measurement. As
we will see, the phase diagram of a model generally depends
on the choice of the measurement. Often, the term quantum
Darwinism is also associated with an independence on the
fraction size F , especially when |F |/|E | → 0, since classi-
cal objectivity requires information to be retrievable in small
fractions. We do not include this requirement in the above def-
inition to keep it simple. Instead, we will treat the fraction size
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as one extra parameter of the phase diagram. Nevertheless, It
turns out that in the tree models we shall study (and those of
[39]), the phase of the model does become independent of the
relative size |F |/|E | in the thermodynamic limit.

C. Random density matrix ensemble

The Hovelo bound χ (F ; R) quantifies how much infor-
mation is revealed. Taking a step further, we may describe
which information is likely to be revealed, by the ensemble
of postmeasurement density matrices ρm, weighed by their
respective outcome probability pm. We find it convenient to
rescale the density matrices as

Q̃m := qρm, (12)

and define the following random matrix ensemble (or distri-
bution):

P (Q̃) =
∑

m

pmδ(Q̃ − Q̃m). (13)

Averages with respect to this distribution will be denoted
by 〈[. . . ]〉: For any observable f that depends on a matrix Q̃,

〈
f (Q̃)

〉
:=

∑
m

pm f (Q̃m). (14)

By construction, the Holevo bound is such an ensemble aver-
age. Indeed, using (6), (17), and (12), it is not hard to show
that

χ (F ; R) = 1

q
〈Tr[Q̃ ln Q̃]〉. (15)

Since the three phases of information are defined with
regard to the extreme values of χ (F ; R), it is not hard to see
that they are characterized by the following properties of the
random matrix ensemble in the thermodynamic limit:

(i) In the QD phase, Q̃ is almost surely of rank one;or
equivalently, Q̃/q is a pure state). In other words, in the QD
phase, measuring F completely disentangles the reference
qudit almost surely. A distribution that is supported in the
manifold of pure states will be called “perfectly QD.”

(ii) In the encoding phase, Q̃ = 1 with probability one. In
other words, in the encoding phase, measuring F does not
affect the reference qudit. The distribution δ(Q̃ − 1) will be
called “perfectly encoding.”

(iii) In the intermediate phase, none of the above holds,
that is, Q̃/q is a mixed state but not maximally mixed. An in-
termediate distribution is one that is neither QD nor encoding.

Note that the above can be taken as equivalent definition of
the phases of information.

As a consequence, any function f (Q̃) that is extremized by
perfectly QD and perfectly encoding ensembles can be used
to probe the three phases. Besides the Holevo abound, another

example is the “purity”1

r2 := Tr[Q̃2] − q

q2 − q
. (16)

From the equivalent definitions above, it follows that the av-
eraged purity 〈r2〉 tends to 1 and 0 in the QD and encoding
phase, respectively. For a qubit (q = 2), the Helovo bound is
related to the purity as follows:

χ (F, R) = ln 2 +
∑
s=±1

〈
1 + sr

2
ln

1 + sr

2

〉
(17)

since (1 ± r)/2 are the two eigenvalues of the postmeasure
density matrix. Thus, χ has the same qualitative behavior as
the purity average. More quantitatively, χ ∼ 〈r2〉/2 when the
latter is small; when the latter approaches 1 with 〈r2〉 = 1 −
2δ, δ � 1, we have a log correction χ → ln 2 + δ ln(δ)/2 +
O(δ). In what follows, we will prefer to use the simpler 〈r2〉
to probe the phases of information.

We now turn to deriving a few simple general formulas
that will be useful for calculating the random matrix ensem-
ble. For this, consider a positive-operator-valued measurement
(POVM) on F , specified by a family of positive semidefinite
Hermitian operators πm, indexed by the measurement out-
come, such that the sum equals identity [19,62]:∑

m

πm = 1. (18)

Now consider the following operator:

Qm = V †πmV = (19)

which acts on the injected qudit A, and which can be viewed
as the Heisenberg time evolution of πm. Then it follows from
the Born’s rule that the outcome m is

pm = 〈�V |πm|�V 〉 = 〈IRA|Qm|IRA〉 = 1

q
Tr[Qm]. (20)

A graphical representation of the calculation is [see (5) and
(19) above]

pm := = .

1Note that this has nothing to do with a two-replica calculation; the
ensemble average considered in this work is always the “physical”
one dictated by Born’s rule, or the n → 1 limit in terms of the replica
trick.
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Hence, the postmeasurement reduced density matrix of the
reference qudit is [see also (12) above]:

Q̃m = qρm = Qm/pm. (21)

Equations (20) and (21) will allow us to calculate the
random matrix ensemble in Sec. III below. For now, let us
apply them to derive a general property of the random matrix
ensemble: the average with f (Q̃) = Q̃ is the identity. Indeed,
recalling (18), (19), and the isometry of V ,

〈Q̃〉 =
∑

m

pmQ̃m =
∑

m

Qm =
∑

m

V †πmV = V †V

=1. (22)

(We leave it to interested readers to draw a graph.) A conse-
quence of this is that the distribution P (Q̃) can be a single
delta peak only in the encoding phase, where the peak is at
Q̃ = 1.

We end this section with a few remarks. First, it will be
useful to consider models defined by a random ensemble of
isometries V instead of a single deterministic one. In that case,
we adapt the definition (13) of the density matrix distribution
by averaging further over V (denoted by EV ):

P (Q̃) = EV

[∑
m

pmδ(Q̃ − Q̃m)

]
. (23)

Thus, the ensemble average 〈[. . . ]〉 is over both the measure-
ment outcome and the realization of V . This is a sensible
definition because any reasonable ensemble average is a linear
functional of the distribution P (Q̃), even if it typically in-
volves a nonlinear observable in Q̃. In particular, Eq. (15) still
holds if we replace the left hand side by the average Holevo
bound EV [χ (F ; R)]. A similar remark applies to the purity,
(16). In what follows, we will absorb the average EV into the
notation 〈[. . . ]〉 for brevity.

Second, by focusing on the random matrix ensemble Q̃, we
are ignoring the correlation between the revealed information
Q̃m and the outcome m itself. In other words we define the
phases by what can be learned about the reference in princi-
ple, ignoring the question of explicitly relating m to Q̃m for
the moment. Nevertheless, we will address this question in
Sec. III D where one measures a macroscopic quantity.

Finally, we caution that being in the QD phase does not
mean that Alice can send log2 q classical bits of informa-
tion perfectly to the fraction. In an attempt to do so, Alice
may initialize the input qubit in | j〉 to send the message
j, j = 0, . . . , q − 1, instead of coupling the input bit to the
reference. The receiver of the message measures the fraction
in order to infer the message. It is not hard to see that the
outcome probability pm = pm, j now depends on the message
j, as follows:

pm| j = 〈 j|Qm| j〉, j = 0, . . . , q − 1. (24)

Suppose also that the observer (measuring F ) has no prior
knowledge on the message. Then, by Bayes’ theorem, upon
obtaining the outcome m, the observer may infer that the
message is j with probability

p j|m = pm| j

pm|0 + pm|1 + · · · + pm|q−1
, j = 0, . . . , q − 1. (25)

Therefore, the observer does not know the message with cer-
tainty, even if Qm is a always proportional to a projector, which
is the definition of the QD phase. We would need to further
require that Qm ∝ | j〉〈 j| for some j (which depends on m). As
we shall see in the concrete models below, the latter condition
is realized only in a fine-tuned limit and compromised by
small perturbations, whereas a stable QD phase exists accord-
ing to our (weaker) definition.

D. Mutual information

We now discuss another quantity describing the correlation
between F and R, the (bipartite, symmetric) mutual infor-
mation, and review its well-known relations to the classical
correlation. Recall that the mutual information is defined as

I (F, R) = S(ρR) + S(ρF ) − S(ρRF ), (26)

where ρX is the reduced density matrix on X of the Choi state
|�V 〉. It is known in general [44] that the mutual information
is greater or equal to the Holevo bound:

I (F, R) � χ (F ; R) (27)

for any choice of measurement involved in the right-hand
side (r.h.s.). This result is interpreted as follows: the mutual
information measures the total correlation, which includes a
classical and a quantum part [43]. The former is captured
by χ (F ; R), the latter is quantified by the “quantum discord”
I (F, R) − χ (F ; R).

A consequence of the inequality (27) on the phases of
information defined in Sec. II B is that, in the QD phase,

I (F, R) → ln q = H (R). (28)

In other words, the mutual information tends to the amount of
injected information. The validity of Eq. (28) for arbitrarily
small fractions, sometimes known as the “QD plateau,” is a
well-known signature of the establishment of classical objec-
tivity [5].

A trivial example where I > χ is when F = E = A and
V = 1. Since F and R are in a maximally entangled pure state,
I (F, R) = 2 ln q. Meanwhile, any strong measurement on F
will completely disentangle R, so that χ (F, R) = ln q, which
is the maximal possible value. When q = 2, the origin of this
difference is easy to explain: we can measure a maximally
entangled pair of spins in either x or z directions and find
perfect correlation (this corresponds to I = 2 ln 2), but we
cannot perform both measures at the same time (so χ can
only be ln 2). Thus, such “quantum” correlation can be only
revealed by experiments of Bell type [63,64], and arguably not
relevant for classical objectivity [14,45,65]. This justifies the
choice of defining the phases of information using χ instead
of I in general.

It is also known [44] that quantum discord vanishes, that
is, the equality in (27) holds, if πm are a complete set of
one-dimensional projectors and ρFR is block diagonal in the
measurement basis:

ρFR =
∑

m

πmρFRπm =
∑

m

pm(|m〉〈m|)F ⊗ ρm, (29)
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where |m〉 is a normalized state such that πm|m〉 = |m〉. In-
deed, if this is the case, we can compute by block

S(FR) = −
∑

m

Tr[pmρm ln(pmρm)]

= −
∑

m

pmTr[ρm ln(ρm)] −
∑

m

pm ln pm

=
∑

m

pmS(ρm) + S(F ).

Comparing this (8) we see that χ (F ; R) = I (F ; R).
The condition (29) can be realized essentially by applying

a dephasing channel to F , which removes the block off-
diagonal density matrix elements. More specifically, we may
do the following: let V0 be any isometry from HA to HE .
Choose a basis {|m〉} for HF and let

YF =
∑

m

|m〉|m〉〈m| (30)

be the “copying” isometry HF → HF ⊗ HF ′ where F ′ is an
identical copy of F (Y acts trivially on E \ F ). We claim that
quantum discord vanishes (if we measure the m-basis in F):
for the CJ state of the amended isometry

V = YFV0 ⇒ I (F, R) = χ (F, R). (31)

To see why, let

ρ0 = TrE\F [|�V0〉〈�V0 |] =
∑
m,n

(|m〉〈n|)F ρR,mn

be the reduced density matrix on FR of the CJ state of V0.
Then we see that

ρFR = TrF ′ [YF ρ0Y
†

F ]

=
∑
m,n

TrF ′[|m〉F |m〉F ′ 〈n|F 〈n|F ′ ]ρR,mn

=
∑

m

|m〉F 〈m|F ρR,mm

is indeed block diagonal in the |m〉 basis, as required by (29).
We shall see that the structure (31) is realized naturally in tree
models [see the discussion around (52)].

E. The Clifford case

To contrast our general approach with the Clifford-specific
method in Ref. [39], let us consider the distribution (13) when
V is deterministic and Clifford: more precisely, this means that
there is some Clifford unitary U such that

V |ϕ〉 = U |ϕ〉 ⊗ |+z〉⊗(|E |−1) (32)

for all |ϕ〉 [this formula is the same as (3) above]. We also
choose to measure all the qubits in F in the computational
basis. We claim that the density matrix distribution P (Q̃) is
either perfectly encoding or is supported on {1 + σ a, 1 − σ a}
for some unique a ∈ {x, y, z}.

To see why, let G = 〈σ z
i , i ∈ F 〉 be the Abelian group gen-

erated by the Pauli z′s on F . For any g ∈ G, U †gU is a product
of Pauli’s acting on A and the recruits (by the Clifford-ness
of U ), and V †gV is either 0, 1 or proportional to a Pauli on

A. In fact, it is not hard to show that the following is a group
homomorphism [39]:

G0 = {g ∈ G : V †gV �= 0} � g �→ V †gV ∈ PA, (33)

where PA is the Pauli group of A. Meanwhile, the set of
measurement outcomes can be identified with the dual group
of homomorphisms (characters) m : G → {1,−1}, such that

πm = 1

|G|
∑
g∈G

gm(g) ⇒ Qm = 1

|G|
∑
g∈G0

V †gV m(g).

Now, one of the two possibilities must happen:
(i) If V †G0V ⊂ {±1}, then for any m, Qm either vanishes

or is proportional to 1. So P (Q̃) must be perfectly encoding.
(ii) Otherwise, V †G0V contains some nontrivial Pauli,

±σ a, a ∈ {x, y, z}. Since V †G0V is abelian, a is unique. Now,
for any m, g �→ V †gV m(g) is also a group homomorphism. If
its image contains {1,−1}, then Qm = 0 and the measurement
outcome m cannot occur. Otherwise, {V †gV m(g) : g ∈ G0} =
{1, uσ a} for some u ∈ {1,−1} and we have

Qm = |G0|
|G|

1

2
(1 + uσ a),

which is proportional to a pure state in the ±a direction.
We thus conclude that in a deterministic Clifford model,

P (Q̃) can only be perfectly encoding or perfectly QD; in the
latter case, it is supported on a set of two points, {1 + σ a, 1 −
σ a} for some unique a = x, y, or z. Any intermediate behavior
can only be a stochastic mixture resulting from averaging
over a random ensemble of models. By doing that, we always
obtain a simple distribution P (Q̃) whose support is a finite set
contained in {1} ∪ {1 ± σ a : a = x, y, z}. This is why Clifford
models are simple to solve; see also Sec. III E for an example.
As we shall see, beyond Clifford, a deterministic model can
have qualitatively different intermediate QD phases, where
P (Q̃) has a continuum support.

Finally, we note that the analysis here is less general than
the Clifford-specific approach of Ref. [39], which allows to
probe both quantum and classical correlations. To do this
in generic, non-Clifford models, we may resort to the mu-
tual information, for which the standard calculation technique
requires taking a replica limit. Alternatively, we need to con-
sider Bell-type experiments with measurements that cannot be
simultaneously performed. Investigation along those lines will
be left to the future.

III. EXPANDING TREE MODELS

In this section we apply the above general formalism to
the study of two similar hierarchical models of structured
environment. The models will be defined in Sec. III A. In
Sec. III B we derive the exact recursion relations satisfied
by the density matrix distribution. These apply to the “mi-
croscopic measurement.” It is the strong measurement in the
computational basis, for which we shall show that the quan-
tum discord vanishes exactly, so this will be the “default”
measurement with which we define the phase diagram. Sec-
tion III C is the technical core of this paper, where we establish
the phase diagram and study in detail the critical points. In
Sec. III D we turn to considering “coarse-grained” measure-
ments, which can probe the encoding-intermediate transition,
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but not the QD-intermediate one. Finally, Sec. III E discusses
a simple random Clifford version of the models studied so far;
curiously, this simple model exhibits a direct QD-encoding
transition.

A. Models

To define the models, we will proceed in two steps. First,
we construct the isometry V (Sec. III A 1). Then we specify
the environment fractions and the types of measures applied
on them (Sec. III A 2).

1. Isometry

The isometry V is constructed as a tensor network with the
geometry of a binary tree. The construction is very similar
to that of the random Clifford models of Ref. [39], except
that V is not Clifford. We will consider two variants: one is
deterministic, and the other has a random isometry. They will
lead to similar physical properties, yet each variant proves to
have its own technical appeal.

Let us first define the deterministic variant. We will use
two basic building blocks: a one-site unitary U : Cq → Cq

and a branching isometry Y : Cq → Cq ⊗ Cq, to be specified
below. Then, we can construct a sequence of isometries

Vn : HA = Cq → (Cq)⊗2n = HE , n = 1, 2, 3, . . . , (34)

recursively as follows:

V1 = Y, Vn+1 = (Vn ⊗ Vn)Ŷ , n = 0, 1, 2, (35)

where Ŷ := (U ⊗ U )Y. (36)

It is convenient to adopt a standard tensor network graphical
representation, where

(both maps act from bottom to top). Then the recursion rela-
tion can be represented as follows:

Vn+1 = . (37)

Here each isometry maps the bottom qudit to the top qudits.
Iterating this, one may readily see that Vn is represented by a
tensor network binary tree with n layers of branching vertices,
and 2n leaves (output qudits). For example, starting from

the tensor network of n = 2 and n = 3 are built as follows:

V2 = , V3 = (38)

where each boxes contains a copy of the previous generation
[compare to (37)]. It is worth noting that the recursion works

by adding a layer at the bottom of the tree, which corresponds
to early time in terms of the dynamics. This is known as a
“backward recursion,” as opposed to the forward one which
adds a layer at the top.

It remains to specify U and Y for our models. They are
qubit models, so q = 2, and we will view qubits as spin halves
in the standard way. The branching isometry is defined as

Y = |+z〉|+z〉〈+z| + |−〉|−z〉〈−z|, (39)

where |±z〉 are the eigenstates of σ z. The unitary is a rotation:

U = e−iσ yθ/2 =
(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)
, (40)

where σ y = (0 −i
i 0 ) is the Pauli-y matrix. We shall

parametrize the angle as

θ = Jπ/2 (deterministic), (41)

where J ∈ (0, 1) is the tuning parameter of the model.
Having constructed the isometry of the deterministic

model, we can obtain that of the random model by making the
following change: the rotation angle of each one site unitary is
now chosen randomly and independently among two opposite
values:

θ = ±Jπ/2 (random), (42)

with equal probability. We can still define the random isome-
try Vn recursively: V1 = Y remains deterministic; to generate
a realization of Vn+1, we take two independent realizations of
Vn, Vn,
 and Vn,r , and two independent random rotations U
,Ur

defined by (40) and (42), and let

Vn+1 = (Vn,
 ⊗ Vn,r ) (U
 ⊗ Ur )Y, n � 1. (43)

The basic intuition motivating the above definitions is very
simple. The branching isometry Y broadcasts the z component
of its input to the two outputs (descendants). As a result, when
J = 0, the CJ state �V is a GHZ state on E ∪ R,

|�V 〉J=0 = 1√
2

(|+z〉R|+z〉⊗|E | + |−z〉R|−z〉⊗|E |), (44)

and has an “ideal” QD behavior: the z component of the
injected spin is broadcast to all the environment ones. Now, Y
cannot broadcast the x component as well, due to no-cloning.
So, when J increases, the one-site rotation perturbs the broad-
casting process more and more strongly, with the maximal
effect expected at J = 1, where the rotation transforms z to
x. Hence, we may expect a QD phase at small J and an
encoding phase at large J (this will be confirmed below). We
may also view our models as perturbations of a log-depth
circuit generating the repetition code. It is curious to note that
log-depth circuits are known as well for the toric code [66].

Before moving on, we recall that the branching isometry
Y can be obtained by applying a CNOT gate to the input qubit
and a new “recruit” qubit in the |+z〉 = |0〉 state [39]:

. (45)

Such a CNOT operation, as well as its variants, is a routinely
used to model a quantum measurement process, and much
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discussed in the context of decoherence and emergence of
classicality [1,6,13,45]. Note also that the recruit qubits are
nothing but the initial environment degrees of freedom; see
(3) above. With this in mind, we may represent the n = 3
isometry as a circuit:

V3 = (46)

We observe that the environment qubits are incorporated grad-
ually into the dynamics, and every pair of qubits interact at
most once. In this sense, our models are a type of “collision
model” [8], which has already been applied to study QD [7].
In this respect our contribution is a systematic study of phases
of information in such models.

2. Fraction and measurements

We now specify the choice of the environment fraction F ⊂
E , where the environment E has 2n bits, represented as the
leaves of the binary tree. Note that the information retrievable
in F depends not only on its size, but also on how its qubits are
distributed with respect to the tree structure. It turns out that to
obtain a nontrivial phase diagram, it is necessary to distribute
F uniformly among the subtrees. One way to do this [39] is
to choose F randomly. Here we shall consider deterministic
fractions F = Ft,k with size

|Ft,k| = 2t , t = n − k, k ∈ {2, 3, . . . }, (47)

such that every subtree of size 2k contains exactly one qubit in
F (that one qubit can be arbitrarily chosen in the subtree, all
choices being equivalent). We will often describe F in terms
of its relative size,

|Ft,k|/|E | = 2−k � 1/4. (48)

We excluded the case k = 1, f = 1/2 for now, since it leads
to a qualitatively distinct behavior from k > 1, as we shall see
below (Sec. III B 3). Here is an illustration with t = 1, k = 2
and n = t + k = 3:

(49)

It is hopefully clear from this figure that Ft,k can be also
constructed by an recursion on t . Indeed, Ft=0,k contains
exactly one qubit, which can be chosen arbitrarily. For t =
0, 1, 2, . . . , the fraction Ft+1,k is obtained by joining two
copies of Ft,k , associated with the two descendants of the root:

Ft+1,k = F (
)
t,k � F (r)

t,k . (50)

In the example (49) above, the recursive construction of the
fraction is illustrated as follows:

(51)

We will consider two type of measurements. First, the basic
choice is to measure all the spins in F in the z (computational)
basis. This “microscopic” measurement will be our focus until
Sec. III D. In the latter we will consider “coarse-grained”
measurements, such as the total magnetization in F .

Let us point out that with the microscopic measurement,
the quantum discord vanishes for any k � 1:

I (F, R) = χ (F, R), k � 1 (microscopic). (52)

Indeed, one can readily see that the isometry V has the form
YFV0 (31) where YF = ⊗i∈FYi and V0 is the isometry from the
root to the second last layer of qubits (adjacent to the output
leaves).

B. Recursion relation

The recursive construction of the tree models, explained
in the previous section, indicates that the matrix distribution
P (Q̃) can be also computed by a recursion relation. The
goal of this section is to derive them for the microscopic
measurement. The coarse-grained measurements have slightly
different recursion relations; see Sec. III D below.

The main idea is to relate the matrix distribution Pt+1,k (Q̃),
which involves V = Vn+1 (n = t + k) and F = Ft+1,k , to
Pt,k (Q̃), which involves V = Vn and F = F = Ft,k . This re-
cursion relation allows to increase t and n by 1 while keeping
k fixed. Below we will first derive general results valid for
binary-tree models (Sec. III B 1), where the main result is
(65); then we specify to our concrete cases (Sec. III B 2),
where the main results are (81) and (82). The recursion re-
lations are complemented by the initial condition, P0,k (Q̃),
which we will determine in Sec. III B 3. We will mainly
focus on the deterministic model, where the derivation is
more transparent, and amend the procedure to incorporate the
randomness.

1. Recursion in general

Consider measuring all the qubits in the fraction F =
Ft+1,k in the z-basis. The measurement outcome can be written
as �m = (mi )i∈F where mi = ±1 is the outcome of qubit i ∈ F .
The corresponding operators are projectors:

π �m =
∏
i∈F

I + miσ
z
i

2
, (53)

where σ z
i is the Pauli-z operator acting on the site i. Now

observe that we may split the measurement outcomes into two
halves coming from the two subtrees of the root:

�m = ( �m
, �mr ), �m
,r = (mi )i∈F 
,r
t,k

. (54)
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Accordingly, the projectors act on the two subtrees in a factor-
ized way:

π �m = π �m

⊗ π �mr . (55)

Let us also introduce the time evolution super-operator

LA(X ) := A†XA, (56)

where A is an isometry. It is routine to check that

LU1U2 (X ) = LU2 (LU1 (X )), (57)

LU1⊗U2 (X1 ⊗ X2) = LU1 (X1) ⊗ LU1 (X2). (58)

Then, using the definition (19) and the recursion relation for
Vn (35), we have

Q �m = LVn+1 (π �m)

= LŶ (LVn⊗Vn (π �m

⊗ π �mr ))

= LŶ (LVn (π �m

) ⊗ LVn (π �mr ))

= LŶ (Q �m

⊗ Q �mr ). (59)

Now, recall from (20) that Q �m = p �mQ̃ �m where Tr[Q̃ �m] = q,
and similarly for �m
 and �mr . Then the above formula can be
written as

p �mQ̃ �m = p �m

p �mrLŶ (Q̃ �m


⊗ Q̃ �mr ). (60)

Taking the trace on both sides we find

p �m = p �m

p �mr ϕ(Q̃ �m


, Q̃ �mr ), (61)

where ϕ(A, B) := 1

q
Tr[LŶ (A ⊗ B)], (62)

and also

Q̃ �m = μ(Q̃ �m

, Q̃ �mr ), (63)

where μ(A, B) := LŶ (A ⊗ B)

Tr[LŶ A ⊗ B)]/q
. (64)

The formulas (61)–(64) are important. They show that the
measurement results in the two subtrees are correlated, and
that Q̃ �m is a nonlinear function of Q̃ �m


and Q̃ �mr . These features
make the model nontrivial.

We are now ready to derive the recursion relation for the
density matrix distribution Pt,k (Q̃) in a general form (below
we will omit k for brevity). It is more convenient to work
with an ensemble average with an arbitrary test function f (Q̃).
Recalling the definition (14), and using (54), (61), and (63),
we have

〈 f (Q̃)〉Pt+1 =
∑

�m
p �m f (Q̃m)

=
∑
�m


∑
�mr

p �m

p �mr ϕ(Q̃ �m


, Q̃ �mr ) f (μ(Q̃ �m

, Q̃ �mr ))

= 〈ϕ(Q̃
, Q̃r ) f (μ(Q̃
, Q̃r ))〉P⊗2
t

. (65)

In the average of the last line, Q̃
 and Q̃r are independent and
identically distributed as Pt . The above formula, valid for any
f , determines completely the distribution Pt+1, and thus the
recursion relation. An explicit (but less useful) formula for

Pt+1 is the following:

Pt+1(Q̃)

=
∫

Q̃
,Q̃r

δ(Q̃ − μ(Q̃
, Q̃r ))ϕ(Q̃
, Q̃r )Pt (Q̃
)Pt (Q̃r ).

(66)

The above recursion relation holds for any binary-tree tensor
network models where each branching corresponds to a de-
terministic isometry Ŷ , and thus, to our deterministic model.
Our random model falls into a category where the Ŷ ′s on each
vertex are independent; see (43). For these, using the adapted
definition of P (Q̃) (23) which also averages over randomness,
it is not hard to see that (65) still holds provided we also
average over Ŷ (which affects μ and ϕ) in the r.h.s.:

〈 f (Q̃)〉Pt+1 = EŶ

〈
ϕ(Q̃
, Q̃r ) f (μ(Q̃
, Q̃r ))

〉
P⊗2

t
. (67)

Below, for brevity, we will absorb EŶ , into the symbol 〈[. . . ]〉:
〈[. . . ]〉P⊗2

t
:= EŶ 〈[. . . ]〉P⊗2

t
.

Equations (65) and (67) are the main result of this section,
and valid for general binary tree models. (Generalization to
general trees is straightforward to write, but we will not need
that.) Before applying them to our specific qubit models, let
us discuss a few simple general properties.

First, let us check that the recursion relation preserves the
normalization 〈1〉 = 1 and the property 〈Q̃〉 = 1 (22) that we
know to hold for any density matrix distribution. Let us pro-
ceed by induction, assuming that 〈1〉Pt = 1 and 〈Q̃
,r〉Pt = 1.
Then, setting f = 1 in (65), we have

〈1〉Pt+1
=

〈
1

q
Tr[LŶ (Q̃
 ⊗ Q̃r )]

〉
P⊗2

t

= 1

q
Tr[LŶ (〈Q̃
〉Pt ⊗ 〈Q̃r〉Pt )]

= 1

q
Tr[LŶ (1 ⊗ 1)] = 1

q
Tr[1] = 1, (68)

where the last line follows from the isometry of Ŷ . This
equation shows that the recursion relation provides a correctly
normalized distribution. Similarly, we have

〈Q̃〉Pt+1 = 〈LŶ (Q̃
 ⊗ Q̃r )〉 = 1, (69)

which means that the property 〈Q̃
,r〉 = 1 is preserved by the
recursion.

Next, we note that the perfectly encoding distribution
P (Q̃) = δ(Q̃ − 1) is a fixed point of the recursion map. In-
deed, the isometry of Ŷ implies LŶ (1 ⊗ 1) = 1 so μ(1 ⊗
1) = 1. Thus if Q̃
,r = 1 almost surely, so does Q̃. Finally,
a “perfectly QD” distribution in which Q̃/q is almost always
a projector is sent to another perfectly QD distribution by the
recursion map. This is because if Q̃
,r ∝ |ψ
,r〉〈ψ
,r |, then

Q̃ ∝ LŶ (Q̃
 ⊗ Q̃r ) ∝ |ψ〉〈ψ |, |ψ〉 = Y †(|ψ
〉 ⊗ |ψ
〉),

which is also proportional to a projector. For later reference,
let us summarize the invariance of perfectly QD and encoding
distributions in terms of the purity (16):

∀b ∈ {0, 1}, 〈r2〉t = b ⇒ 〈r2〉t+1 = b. (70)
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2. Recursion in concrete models

We now apply the above general formulas to our concrete
models. Since the building blocks of our models, U (40) and
Y (39), are represented by real matrices in the computational
basis, all the Q̃ matrices will be real symmetric with trace q =
2. So we can parametrize them by a real 2D vector (u, v) as
follows:

Q̃ = 1 + u σ z + v σ x. (71)

Similarly, Q̃
,r are parametrized by (u
,r, v
,r ). Note that the
purity (16) equals the squared norm of the vector:

r2 = Tr[Q̃2] − q

q2 − q
= u2 + v2. (72)

Also, as Q̃/q is a density matrix, u2 + v2 = r2 � 1. So any
density matrix P (u, v) is supported in the unit disk. A per-
fectly QD distribution is supported on the unit circle u2 +
v2 = 1, and the perfectly encoding one is peak at the origin
u = v = 0. Finally, the property 〈Q̃〉 = 1 (22) translates to

〈u〉 = 〈v〉 = 0 (73)

in any ensemble.
Let us now compute LŶ (Q̃
 ⊗ Q̃r ). Since Ŷ = (U
 ⊗ Ur ) ⊗

Y (36), we have

LŶ (Q̃
 ⊗ Q̃r ) = LY (LU

(Q̃
) ⊗ LUr (Q̃r )). (74)

As U
,r = e−iθ
,rσ
y/2 (40) is a rotation, we have (recall

[σ y, σ z] = 2iσ x and [σ y, σ x] = −2iσ z):

Q̃′

,r := LU
,r (Q̃
,r ) = 1 + u′


,rσ
z + v′


,rσ
z, (75)

where (
u′


,r
v′


,r

)
=

(
cos θ
,r − sin θ
,r

sin θ
,r cos θ
,r

)(
u
,r

v
,r

)
(76)

are the vectors rotated by θ
,r (we will routinely use the prime
to denote the rotation in order to save space). Now, since Y =∑

i |ii〉〈i| (39) in the z-basis, the action of LY amounts to an
“element-wise” multiplication of the matrix elements in the
z-basis (computational basis):

〈i|LY (A ⊗ B)| j〉 = 〈i|A| j〉〈i|B| j〉. (77)

In this basis 1 + uσ z + vσ x = (1 + u v

v 1 − u), so we have

LY (Q̃′

 ⊗ Q̃′

r ) =
(

(1 + u′

)(1 + u′

r ) v′

v

′
r

v′

v

′
r (1 − u′


)(1 − u′
r )

)

= (1+u′

u′

r )

(
1+ u′


+u′
r

1 + u′

u′

r

σ z + v′

v

′
r

1 + u′

u′

r

σ x

)
.

(78)

This gives following explicit formulas for the functions μ (64)
and ϕ (62):

ϕ((u
, v
), (ur, vr )) = 1 + u′

u′

r, (79)

μ((u
, v
), (ur, vr )) =
(

u′

 + u′

r

1 + u′

u′

r

,
v′


v
′
r

1 + u′

u′

r

)
. (80)

Now, in the deterministic model, the rotation angle is deter-
ministic θ
,r = Jπ/2, so (79) and (80) lead immediately to

the following recursion relation:

〈 f (u, v)〉Pt+1

=
〈
(1 + u′


u′
r ) f

(
u′


 + u′
r

1 + u′

u′

r

,
v′


v
′
r

1 + u′

u′

r

)〉
P⊗2

t ,θ
,r=Jπ/2

.

(81)

Here u′

,r, v

′

,r are given by (76) with θ
,r = Jπ/2. In the r.h.s.

average, (u
, v
) and (ur, vr ) are independent and identically
distributed as Pt .

In the random model, we need to further average over
θ
,r = ±Jπ/2 (the four possibilities have probability 1/4
each):

〈 f (u, v)〉Pt+1

=
〈
(1 + u′


u′
r ) f

(
u′


 + u′
r

1 + u′

u′

r

,
v′


v
′
r

1 + u′

u′

r

)〉
P⊗2

t ,θ
,r=± Jπ
2

.

(82)

Equations (81) and (82) are the main results of this sec-
tion. They will be analyzed numerically and analytically in
Sec. III C.

3. Initial condition

The recursion relations (81) and (82) need to be com-
plemented by the initial condition Pt=0,k , corresponding to
a single-qubit fraction |F | = 1. So the distribution Pt=0,k

consists of two delta peaks (at least before averaging over
randomness). To find them, it suffices to compute the operator
Q(k)

m for the two measurement outcomes m = ±1. We can do
this by a recursion in k. Indeed, the recursion construction of
the isometry (35) implies the following:

Q(1)
m = LY

(
1 + mσ z

2
⊗ 1

)
= 1 + mσ z

2
. (83)

Q(k+1)
m = LŶ

(
Q(k)

m ⊗ 1
)
. (84)

Plugging in the explicit definition of Ŷ , it is not hard to find
that

Q(k)
m = 1 + mck−1σ z

2
, c := cos(Jπ/2). (85)

Note that since cos(θ ) = cos(−θ ), the above holds in the
deterministic model and any instance of the random model,
since θ = ±Jπ/2 in all cases. Therefore, for both models, the
initial condition for the recursion relation is

P0,k (u, v) = 1

2

∑
m=±1

δ(u − m ck−1)δ(v), (86)

in terms of the parametrization (71). We observe that the ini-
tial condition (86) depends explicitly on the relative fraction
size |F |/|E | = 2−k [by contrast, the recursion relations (81)
and (82) do not depend on k]. In particular, P0,k is perfectly
QD when and only when k = 1; in that case, Pt,k will be
perfectly QD for t , regardless of J; see above (70). This is
why k = 1 is special and shall be considered separately from
k > 1. In the latter case, P0,k is neither perfectly QD nor
perfectly encoding; it tends to being perfectly encoding when
k → ∞, that is, when the relative fraction size |F |/|E | → 0.
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Depending on J , it can flow to a QD, encoding or interme-
diate distribution as t → ∞ under the iterated action of the
recursion map. The asymptotic behavior of the recursion flow
determines the phase diagram, and will be our main focus in
the next section.

C. Phase diagram (microscopic measurement)

In this section we study the phase diagram of the models,
by analyzing the recursion relations we just derived, with a
combination of numerical and analytical techniques. After
discussing the numerical methods in Sec. III C 1, we will
present an overview of the phase diagram in Sec. III C 2,
followed by a short discussion on initial-condition inde-
pendence (Sec. III C 3). Then the encoding-intermediate
and QD-intermediate transitions will be studied in detail, in
Secs. III C 4 and III C 5, respectively. We will discuss an
application to redundancy (Sec. III C 6) before a brief con-
clusion.

1. Numerical methods

We start by discussing numerical implementations of the
recursion relations, which are nontrivial; the impatient reader
may skip to Sec. III C 2 for numerical results.

First, the brute-force method consists in representing Pt

exactly, as a sum of delta peaks:

Pt =
∑

i

piδ(ui, vi ), (87)

where we used the shorthand δ(x, y) := δ(u − x)δ(v − y). To
obtain Pt+1, we may perform two steps:

(1) Rotation: In the deterministic variant, we rotate all
(ui, vi ) by θ = Jπ/2. In the random variant, we make two
copies of each (ui, vi ) (with weight pi/2 each), and rotate
them by ±Jπ/2 respectively. Let the intermediate result be∑

i p′
iδ(u − u′

i )δ(v − v′
i ).

(2) Branching: We calculate the effect of the branching
isometry exactly:

Pt+1 =
∑

i j

p′
i p

′
j (1 + u′

iu
′
j )δ

(
u′

i + u′
j

1 + u′
iu

′
j

,
v′

iv
′
j

1 + u′
iu

′
j

)
. (88)

This method is straightforward and exact. But the number
of delta peaks grows double-exponentially in t , or exponen-
tially in the fraction size |F |: so the brute-force method is no
better than an exact representation of the wave function. In
practice we use it only to obtain exact solutions up to t = 5
for the deterministic model and t = 4 for the random one.

To go beyond, we may represent the distribution approx-
imately, as M delta peaks at (ui, vi )M

i=1 with equal weight
1/M, where M does not increase with t . Such a “compressed”
distribution can be obtained from an exact one, or another
compressed one, by sampling M random points with the ap-
propriate weights. With this in mind, we propose the following
approximate algorithm for the deterministic model, where
M = N2 is a perfect square:

(1) Rotation: The same as the brute-force method above.
(2) Branching: Compress the intermediate result to size N ,

calculate the r.h.s. of (88), and compress the result (of size M)

to size N . Repeat this N times, and let Pt+1 be the sum of the
results, which again have M peaks.

This algorithm is exact in the N → ∞ limit. In practice,
N ∈ [102, 103] appears to be a good compromise between pre-
cision and speed. We can reliably reach t = 15 (corresponding
to |F | � 104) before the algorithm becomes numerically un-
stable.

Finally, there is a faster algorithm, which we shall apply
to the random model. To explain its idea, observe that we can
rewrite the recursion relation as follows:

〈 f 〉t+1 = 〈(1 + u′

u′

r ) f 〉t

= 1

2

∑
s=±1

〈(1 + su′

)(1 + su′

r ) f 〉t . (89)

This means that, in order to sample an instance (u, v) from
the distribution Pt+1, we may first draw a random variable
s = ±1 (with equal probability), and then sample (u′


, v
′

) and

(u′
r, v

′
r ) independently from the randomly rotated ensemble

{(u′, v′)}: the probability of picking (u′, v′) is that given by
Pt , multiplied by a bias factor (1 + su′). Moreover, we can
show (for example, by induction) that in the random model,
Pt (u, v) is has a Z2

2 under u → −u and v → −v. Exploiting
(and preserving) this symmetry, we end up with the following
procedure:

(1) Rotation: Proceed as in the brute-force method
(random case), and obtain the intermediate ensemble∑

i�2M δ(u′
i, v

′
i )/(2M ).

(2) Branching: Sample M delta peaks from the bi-
ased distribution

∑
i�2M (1 + u′

i )δ(u′
i, v

′
i )/(2M ), and call them

{(u′
i
, v

′
i
}i�M/2. Sample independently {(u′

ir, v
′
ir}i�M/2 in the

same way. Then let

Pt+1,± = 2

M

∑
i�M

δ

(
± u′

i
 + u′
ir

1 + u′
i
u′

ir

,
v′

i
v
′
ir

1 + u′
i
u′

ir

)
. (90)

Finally let Pt+1 = 1
2

∑
s=± Pt+1,s.

The trick in the branching step is that we only sample
explicitly for s = +1, and then obtain a (correctly biased)
sample for s = −1 by symmetry. Also, we force the samples
to come in pairs (u, v), (u,−v). As a result, the procedure pre-
serves the Z2

2 symmetry, and thus the property 〈u〉 = 〈v〉 = 0
(73). We observed empirically that preserving this property
stabilizes the approximate algorithm, and allows us to reach
t ∼ 102 in the random model; with M = 104–105, the algo-
rithm is reasonably fast and precise. (By contrast the above
algorithm turns out not stable enough for the deterministic
model in order to outperform the slower algorithm above. The
culprit is presumably that the matrix distribution of determin-
istic model does not have the Z2

2 symmetry; hence, preserving
〈u〉 = 〈v〉 = 0 is nontrivial.)

2. Phase diagram overview

Using the above methods, we calculated the density matrix
distributions Pt up to t = 10 (corresponding to a fraction of
size |F | = 1024 qubits!) for different values of the parameter
J ∈ (0, 1) and initial condition k > 1; recall that the latter is
related to the relative fraction size, |F |/|E | = 2−k .

In Fig. 2 we plot the obtained distribution in the (u, v)
plane with three representative values of J for both models.
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FIG. 2. The matrix distribution Pt,k (Q̃) = Pt,k (u, v) where Q̃ = 1 + uσ z + vσ x , for three values of the parameter J in the deterministic
(a)–(c) and random (d)–(f) tree models. The distributions are obtained by numerically solving the recursion relations (81) and (82), by methods
in Sec. III C 1. These distributions describe the injected information retrievable from a fraction of size |F | = 2t in an environment of size
|E | = 2t+k ; here t = 7 and k = 2. (a), (d) When J is close enough to 0, the distribution is supported on the unit circle u2 + v2 = 1 (indicated
in green); this indicates a QD phase where the injected information is entirely retrievable from F . (b), (e) For intermediate values of J , the
distribution has a nontrivial shape supported throughout the unit disk. The injected information is partially accessible from F . (c), (f) When
J is close enough to 1, the distribution is peaked at u = v = 0. This is the hallmark of an encoding phase where no information is accessible
from F .

As we anticipated, the distributions of the random model are
symmetric with respect to u → −u and v → −v, while those
of the deterministic model do not have any visible symmetries.
Despite this difference, in both models, the distribution be-
comes more concentrated near u = v = 0 as J approaches 1.
In contrast, as J approaches 0, the distribution becomes more
concentrated on the unit circle, and more particularly, near the
poles u = ±1, v = 0. Finally, for intermediate values of J , the
distributions has a nontrivial shape, covering a finite portion of
the of the unit disk. To start probing quantitatively the phase
diagram, we measure the purity of the distribution 〈r2〉 =
〈u2 + v2〉. The results are plotted in Fig. 3 as a function of J ,
and for different values of t (fraction size). As we may expect,
the deterministic and random models yield nearly identical
qualitative behaviors. For J close enough to 0, we observe
that 〈r2〉 → 1 rapidly as t → ∞, indicating the existence of
a stable QD phase at small J . Similarly, an encoding phase,
characterized by 〈r2〉 → 0, emerges at a region of J close to 1.
The phase diagram at intermediate J ≈ 0.5 is a priori not clear
from Fig. 3, due to strong finite-size effects. At this stage, the
data are consistent with (at least) two possibilities: (1) a direct
discontinuous transition from QD to encoding phase and (2)
an intermediate phase, and two continuous transitions. A main
goal of what follows is to show that (2) actually takes place
in our models, by a combination of analytical and numerical
arguments.

3. Fraction size independence

Before proceeding to the detailed analysis of the phase
diagram, let us discuss the dependence on the relative frac-
tion size |F |/|E | = 2−k . As we have shown, k only affects
the initial condition of the recursion, but not the recursion
relation itself. Now, the phase diagram is determined by the
thermodynamic (t → ∞) limit of Pt,k , or, in other words,
the attractive fixed points of the recursion flow. Under the
reasonable assumption that such a fixed point is unique (and
that there is no exotic asymptotic behaviors such as a limit
cycle), we expect the t → ∞ limit of Pt,k to be independent
of the initial condition, and the phase diagram to depend only
on the parameter J , not on the fraction size. To provide some
numerical evidence for the above assumption, in Fig. 4 we
plot the fraction size dependence of the purity for two values
of J in the random model. Note that we consider only k > 1,
since 〈r2〉 = 1 for k = 1 and any t ; see Sec. III B 3 above. For
the small value J = 0.25 (which is deep inside the QD phase,
as is apparent in Fig. 3; see also below), the purity converges
to 1 rapidly for all fraction size. As a consequence the mu-
tual information I (F, R) → ln 2 as well, independently of the
relative fraction size |F |/|E |; this independence is sometimes
called the Darwinism or objectivity plateau. In Sec. III C 6 be-
low we will characterize more quantitatively the establishment
of the objectivity plateau in the QD phases. Meanwhile, the
flow is much slower for J = 0.45 (in the intermediate phase;
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FIG. 3. The purity 〈r2〉 = 〈u2 + v2〉 of the density matrix dis-
tribution Pt,k as a function of the parameter J for different values
of t and k = 3 (the fraction size is |F | = 2t and its relative size is
|F |/|E | = 2−k), in the deterministic (a) and random (b) tree models.
In both models, 〈r2〉 → 1 rapidly as t increases when J is small
enough, and 〈r2〉 → 0 rapidly when J is close enough to 1. At inter-
mediate values, the convergence to the thermodynamics limit is slow.
Further analysis (see below) will show that an intermediate phase
where 0 < 〈r2〉t→∞ < 1 separates the QD phase and the encoding
phase. The data are obtained by numerically solving the recursion
relations (81) and (82); see Sec. III C 1 for methods.
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FIG. 4. Dependence of the purity on the relative fraction size
|F |/|E | = 2−k, k = 2, . . . , 8, for two values of J and a few values
t (|F | = 2t ). At small enough J , the purity converges rapidly to a
Darwinism plateau 〈r2〉 = 1 for all values of k. At intermediate J ,
the convergence is slower, yet 〈r2〉 tends to a k-independent value
between 0 and 1 in the thermodynamic limit.

see below). Nevertheless, it is visible that a plateau at a value
between 0 and 1 establishes itself as t increases. Finally, deep
inside the encoding phase, we observe a rapid convergence
〈r2〉 → 0 regardless of the initial condition. We also observed
similar behaviors in the deterministic model. In conclusion,
we may indeed treat k as an irrelevant parameter in the more
refined study of the phase diagram below.

4. Encoding phase and transition

In this section we argue analytically that both models have
a stable encoding phase at

J > Jc = 1
2 , (91)

which terminates as a continuous transition at Jc to an inter-
mediate phase.

To show this, we recall that the perfectly encoding dis-
tribution P (u, v) = δ(u)δ(v) is always a fixed point of the
recursion relation. A model is in the encoding phase if and
only if this encoding fixed point is stable (here we assume the
uniqueness of the attractive fixed point; see above). In order
to study the stability, we may assume that Pt is a distribu-
tion close to the encoding fixed point, and compute second
moments of u and v with respect to Pt+1 as a linear map of
the same moments with respect to Pt , dismissing higher order
terms as being much smaller.

Concretely, the recursion relation of both models, (81) and
(82), implies the following:

〈u2〉t+1 =
〈

(u′

 + u′

r )2

1 + u′

u′

r

〉
t

≈ 2〈(u′

)2〉t , (92)

〈v2〉t+1 =
〈

(v′

v

′
r )2

1 + u′

u′

r

〉
t

≈ 0, (93)

〈uv〉t+1 =
〈

(u′

 + u′

r )v′

v

′
r

1 + u′

u′

r

〉
t

≈ 0. (94)

Here the r.h.s. average is over P⊗2
t and eventually over the

random rotation angle; the sign ≈ means that the two sides
are equal up to terms that are higher than second order in
u′, v′; we expand the denominator in geometric series, which
is justified as u′, v′ are small. Note that in (92) we used the
property 〈u〉 = 〈v〉 = 0 (73) to drop 〈u′


u′
r〉. Now, recalling

that u′

 = cos θ
u
 − sin θ
v
, we have

〈u2〉t+1 ≈ 2 cos(Jπ/2)2〈u2〉t + O(〈v2〉t , 〈uv〉t ). (95)

We conclude that the linear recursion map [〈(u2, v2, uv)〉t �→
〈(u2, v2, uv)〉t+1] has only one nonzero eigenvalue

λc = 2 cos(Jπ/2)2 (96)

in both models. Thus, when 1 > J > Jc = 1/2, |λc| < 1, and
the encoding fixed point is stable. So we have determined the
extent of the encoding phase, as announced above.

Now, when J < Jc, the encoding fixed point becomes un-
stable. Yet, when Jc − J is small, we may still look for a
nonencoding fixed point near the encoding one, by pushing
the above calculation to higher order. For this, we let

ε = cos(Jπ/2)2 − 1/2, 0 < ε � 1 (97)
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be the small parameter. We the extend the expansions (92)–
(94) further, up to the fourth order in u′, v′. As a result, we
find

〈u2〉t+1 ≈ 2〈(u′

)2〉t − 2〈(u′


)2〉2
t , (98)

〈v2〉t+1 ≈ 〈(v′

)2〉2

t , 〈uv〉t+1 ≈ 0. (99)

When looking for a fixed point we may assume 〈uv〉t ≈ 0 and
〈v2〉t = O(〈u2〉2

t−1) � 〈u2〉t already. Then we have

〈u2〉t+1 ≈ (1 + 2ε)〈u2〉t + 〈v2〉t − 2
(

1
2

〈
u2

〉
t

)2
, (100)

〈v2〉t+1 ≈ (
1
2

〈
u2

〉
t

)2
, (101)

where we also dropped terms of O(ε〈u2〉2). Plugging the sec-
ond equation with t → t − 1 to the first one, and assuming
slow variation |〈u2〉t − 〈u2〉t−1| � 〈u2〉t , we obtain

〈u2〉t+1 − 〈u2〉t ≈ 2ε〈u2〉t − 1
4 〈u2〉2

t . (102)

Due to the negative quadratic term, this recursion flow has a
stable fixed point 〈u2〉t→∞ = 8ε + o(ε), Since 〈v2〉 is much
smaller, we have

〈r2〉t→∞ = 8ε + o(ε). (103)

We have thus shown that the transition at Jc is a continuous
one between the encoding phase and an intermediate phase.
Note that this argument rules out a direct discontinuous tran-
sition into a QD phase. If this were the case, we would not
have found a stable fixed point close to the encoding one
(assuming uniqueness of stable fixed point). Viewing r as the
order parameter of the encoding-intermediate transition, (103)
also predicts the “spontaneous magnetization” exponent β,
defined as 〈r2〉 ∼ |Jc − J|2β , to be 1/2, as in the mean-field
theory of magnetism. Section III D below will provide more
substance to this analogy. We stress that Eq. (103) results from
a controlled expansion, and is exact, including the prefactor, in
the t → ∞ limit. However, it does not compare quantitatively
well with small t numerical data, due to the strong finite-size
effects near J ≈ Jc. In fact, in Fig. 3, it is not even obvious
that Jc = 1/2. Nevertheless, due to the efficient sampling al-
gorithm (see Sec. III C 1) applied to the random model, we
are able to go to t = 160. The numerical results, plotted in
Fig. 5, show a convincing convergence to the asymptotic pre-
diction (103), with the predicted prefactor. This agreement is
a nontrivial benchmark for the numerical method, which will
play an important role in the analysis of the QD-intermediate
transition below.

5. QD phase and transition

We now turn our attention to smaller values of J , where
we do not have an exact quantitative theory as we do near
the encoding-intermediate transition. For instance, we do
not predict the exact locus of the critical point Jd of the
QD-intermediate transition. The numerical data from Fig. 3
indicate rather convincingly that Jd > 0, but are not enough
to estimate its location. However, we can make progress by
reformulating the problem as the stability of the QD fixed
point.

Indeed, recall that by starting with an initial condition with
k = 1, the distribution Pt,1 is perfectly QD for all t . Numer-

0.425 0.450 0.475 0.500 0.525 0.550
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FIG. 5. The purity 〈r2〉 as a function of J near the encoding
transition Jc = 1/2. The numerical data (dots connected by lines,
which are a guide to the eye) are obtained in the random model, up
to t = 160, using the efficient sampling method; see Sec. III C 1.
To reduce statistical noise, we averaged over data in a small time
interval [0.9t, t] for each data point. The red dashed curve represents
the analytical prediction (103) in the t → ∞ limit.

ically, we find that Pt,1 converges very rapidly to a QD fixed
point Pt→∞,1; the finite-size effect is much weaker compared
to k > 1. We also observe that this perfectly QD fixed point
depends smoothly on J . In Fig. 6 we plotted the QD fixed
point a few values of J . We see that for J small, the distri-
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FIG. 6. Perfectly QD distribution Pt,k=1 for a few values of J
and t = 9 and t = 10 obtained by solving the recursion relation (82)
(random model) with initial condition (86) and k = 1. These distri-
butions are supported on the unit circle u2 + v2 = 1 and symmetric
with respect to v → −v, so we plot them as a distribution of the
angle α = arccos(u). We observe a fast convergence to the t → ∞
limit and no abrupt dependence on J .
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bution is highly concentrated around u = ±1, and gradually
delocalizes as J increases. This indicates that the transition
out of the QD phase does not result from a nonanalytic J
dependence of the QD fixed point itself, but rather from its
stability with respect to a perturbation that decreases 〈r2〉 from
1. This characterization of the QD-intermediate transition is
similar to that of the encoding-intermediate transition, which
concerns the stability of the perfectly encoding fixed point.
So, by analogy, we expect the stability can be quantified by
some eigenvalue λd , such that

〈1 − r2〉t+1 = λd〈1 − r2〉t + o
(〈1 − r2〉2

t

)
.

So, by determining λd as a functional of the perfectly QD
fixed point Pt→∞,1, we will be able to leverage the precise nu-
merical estimate of Pt→∞,1 and estimate the QD-intermediate
transition to be the point where λd exceeds 1. To carry out
this program, we now find an approximate expression of λd .
For this let us consider the variable

�2 := v2

1 − u2
. (104)

Its average 〈�2〉 = 1 for a perfectly QD distribution, just like
〈r2〉. Moreover, the recursion relation (82) implies the follow-
ing exact identity:

2〈�2〉t+1 =
〈

v2

1 − u

〉
t+1

+
〈

v2

1 + u

〉
t+1

=
〈

v′2

1 − u′

〉2

t

+
〈

v′2

1 + u′

〉2

t

= 〈�′2(1 + u′)〉2 + 〈�′2(1 − u′)〉2, (105)

where we dropped the 
, r subscript from u′, v′ and wrote
�′2 = v′2/(1 − u′2). Now, let us assume that Pt is close to the
QD fixed point, so in particular �′ is close to 1, and expand
the r.h.s. up to linear order in 1 − �′2. Recalling 〈u′〉 = 0, we
find a nice formula:

〈1 − �2〉t+1 = 2〈1 − �′2〉t + O((1 − �′)2). (106)

It remains to relate 〈1 − �′2〉 with 〈1 − �2〉. To do this
we observe that since (u′, v′) is (u, v) rotated by θ , r2 =
r′2. Moreover, we also have 1 − r2 = (1 − �2)(1 − u2). To
proceed further, we make the following uncontrolled approxi-
mation:

〈1 − r2〉 = 〈(1 − �2)(1 − u2)〉 ≈ 〈1 − �2〉〈1 − u2〉, (107)

and similarly for r′, �′, u′. Essentially, we consider the ampli-
tude of the perturbations (1 − �′2), (1 − �2) to be uniform,
and thus independent of 1 − u2. Then we obtain

〈1 − �′2〉 ≈ 〈1 − r′2〉
〈1 − u′2〉 = 〈1 − r2〉

〈1 − u′2〉 ≈ 〈1 − �2〉 〈1 − u2〉
〈1 − u′2〉 .

Combining this with (106) we conclude that

〈1 − �2〉t+1 ≈ λd〈1 − �′2〉t , λd := 2
〈1 − u2〉t

〈1 − u′2〉t
. (108)

This is the stability “eigenvalue” of the QD fixed point we
sought. If λd > 1 (λd < 1), a small perturbation away from
the manifold of perfectly QD distribution will be amplified
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Jd ≈ 0.375
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t = 10

FIG. 7. The (approximate) stability eigenvalue, λd = 2〈1 −
u2〉/〈1 − u′2〉 (108), evaluated on the perfectly QD distribution Pt,k=1

as a function of J for t = 9, 10 (the result is practically independent
of t). See Fig. 6 for plots of such distributions. We estimate the
QD-intermediate transition Jd ≈ 0.375(5) as the value where λd = 1.

(shrunk, respectively), and thus the QD fixed point is unstable
(stable). Qualitatively, it indicates that a QD fixed point tends
to be more stable if it is peaked around u = ±1, v = 0 (since
then the random rotation will make 1 − u′2 larger). This is
after all expected: the branching isometry Y (39) broadcasts
information only in the z direction.

Quantitatively, Eq. (108) is useful as an efficient approxi-
mate numerical method to test the stability of QD fixed points,
and thus locate the critical point Jd . As we need to evaluate
only the expression of λd on the fixed point, we avoid the
strong finite-size effects exhibited by the flow of intermedi-
ate distributions (see Fig. 3). We applied this method to the
numerically converged QD fixed points for a range of J . The
result is plotted in Fig. 7. We find that λd increases with J , and
exceeds 1 at

J = Jd ≈ 0.375(5) (random model). (109)

To test this estimate, and further characterize the critical
behavior, we performed extensive simulations up to t = 160.
This is feasible due to the efficient sampling method presented
in Sec. III C 1 and benchmarked in Sec. III C 4 in the slow,
J ≈ 0.5 regime. We first plot the results as a function of J
for increasing t in Fig. 8(a). The results are in nice agreement
with (109), and also suggest a “mean-field” behavior of the
“order parameter” φt := 1 − 〈r2〉t , namely, φt→∞ ∼ |J − Jd |
at J > Jd .

To corroborate this claim, we plot in Fig. 8(b) the same
data as a function of t . We find that near criticality, mt ∼ t−1

decays as a power law. This power law is a signature of
the following “mean-field” effective flow equation at small t
[compare to (102)]:

∂tφt = (λd − 1)φt − bφ2
t + o

(
φ2

t

)
, b > 0. (110)

Here the quadratic term has a negative sign and hence the lin-
ear term controls the stability of the QD fixed point φt , and the
coefficient must be λd − 1, by definition of λd . At criticality,
λd = 1 and we have ∂tφt ∝ −φ2

t and hence φt ∼ t−1, which
is observed in Fig. 8(b). When λd < 1 the power-law decay
crosses over to an exponential one eventually. When λd > 1,
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FIG. 8. Purity 〈r2〉 in the random model up to t = 160, ob-
tained by numerical solution to the recursion relation (82); see
Sec. III C 1 for numerical methods. (a) 〈r2〉 as a function of J , for
t = 10, 20, . . . , 160. To reduce statistical noise, we averaged over
data in a small time interval [0.9t, t] for each data point. The vertical
dashed line represents the estimate of the QD-intermediate critical
point (109). (b) 1 − 〈r2〉t as a function of t , for different values of J
(see color bar). The green line indicates a power law decay ∝ t−1.
The data curves above (below) the green line have J > Jd (J < Jd ),
respectively.

the decay halts at the stable fixed point φt→∞ ∝ (λd − 1).
Since λd depends smoothly on J such that λd − 1 ∝ J − Jd

(see Fig. 7), we have indeed φt→∞ ∼ (J − Jd ). So far we
focused on the random model where extensive simulation is
possible. Concerning the deterministic model, the approxi-
mate method based on estimating the stability of the QD fixed
point is still applicable. Indeed, we observe a fast convergence
of the recursion relation flow with the k = 1 initial condition
as in the random model. As a result, we obtain an estimate:

Jd ≈ 0.35(1) (deterministic); (111)

see Fig 9(a). To test this estimate, we computed Pt,k=2 up to
t = 10 and tested the purity against the scaling Ansatz,

(1 − 〈r2〉t )t = f ((J − Jd )t ), (112)

which can be derived from the mean-field effective flow equa-
tion (110). As a result, we observe a reasonable collapse of
data with different t in Fig. 9(b), with no adjustable parame-
ters. These results indicate that in both models there is a QD
phase and a QD-intermediate transition of similar mean-field
critical properties.
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FIG. 9. Numerical study of the QD-intermediate transition in
the deterministic model. (a) The approximate stability eigenvalue
λd = 2〈1 − u2〉/〈1 − u′2〉 (108) as a function of J , evaluated on the
perfect QD distribution Pt,k=1 with t = 9 and 10, at which value
Pt,k=1 has well converged to the t = ∞ limit. The QD-intermediate
critical point Jd ≈ 0.35(1) is estimated as the value where λ exceeds
1. (b) Main: Testing the scaling Ansatz (112) with Jd = 0.35 (not
adjusted) using numerical data from t = 7, . . . , 10 (k = 2). Inset:
raw data.

6. Scaling of redundancy

Let us now apply the tools developed so far and revisit
the fraction size dependence, making a connection with the
notion of redundancy [5,13]. In QD, this notion is defined as
the inverse of the minimal relative fraction size such that the
Holevo bound with the reference is greater than (1 − δ) bit,
where δ is the tolerance:

Rδ = 1/ min{|F |/|E | : χ (F, R) � (1 − δ) ln 2}. (113)

In other words, Rδ estimates the number of “good” copies
of the injected information that are broadcast into the envi-
ronment; the smaller δ is, the stricter the standard of “good”
is. Since the quantum discord vanishes for the microscopic
measurement, the result below applies verbatim to the mutual
information I (F, R) = χ (F, R).

We would like to understand how Rδ scales with δ and t in
the QD phase. For this, consider a small relative fraction size

|F |/|E | = 2−k, R = 2k, k � 1. (114)
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This leads to an almost encoding initial condition (86), such
that

〈u2〉t=0 ∼ c2k � 1, c := cos(Jπ/2), (115)

Then, initially, we may apply the linearized recursion relation
at the encoding fixed point and find (96)

〈u2〉t ∼ c2kλt
c, λc = 2c2 > 1. (116)

The above equation holds as long as the r.h.s. is small, that is,

t � tk = 2k
| ln c|
ln λc

. (117)

Then, after a transient of order one duration, the flow will
converge to a QD fixed point exponentially with a rate given
by the stability eigenvalue of the QD fixed point λd < 1 [an
approximate formula of λd is given by (108)]:

φ := 〈1 − r2〉 ∼ λ
t−tk
d . (118)

Now recall from (17) that φ is essentially the distance between
the Holevo bound and ln 2, up to a log correction:

δ = 1 − I (F, R)

ln 2
∼ φ| ln φ| ⇒ φ ∼ δ

| ln δ| . (119)

Combining the above, and letting n = t + k (recall that |E | =
2n is the total size of the environment), we obtain the scaling
law of redundancy:

Rδ ∼ |E | ln λc
ln 2

(
δ

| ln δ|
) ln λc

| ln λd |
. (120)

A few observations are in order. First, the redundancy
grows as a power law of the environment size. The exponent
ln λc/ ln 2 < 1, approaching 1 from below as J → 0. Thus, in
the thermodynamic limit, the redundancy tends to infinity for
any fixed tolerance, yet remains subextensive: the number of
redundant copies is much smaller than that of the degrees of
freedom.

It is worth remarking that the exponent ln λc
ln 2 depends solely

on the instability eigenvalue of the encoding fixed point. In
fact, the |E | scaling of (120) applies also in the intermediate
phase, as long as the tolerance is not too small so that (1 −
δ) ln 2 < limt→∞ χ (F, R): we have a redundant yet imperfect
broadcast of the injected information.

In the QD phase, Rδ decays as a power law of the tol-
erance δ. The exponent depends on the stability eigenvalues
of both QD and encoding fixed points. It diverges at the
QD-intermediate transition (since λd → 1). Thus, when J ∼
Jc, large good quality redundancy is almost impossible to
achieve. In fact, redundancy remains small in moderate-sized
systems even away from Jc. For example, take J = 0.2, for
which λd ≈ 0.75 (in both models). Then according to (120),
R10% ≈ 0.5 and R20% ≈ 5 for |E | = 103, while R10% ≈ 30 and
R20% ≈ 256 for |E | = 105. This is after all unsurprising, as the
models we are considering are by design near the boundary of
the QD phase.

7. Summary

We studied the information retrieval phase diagram of
the tree models. We found that there are three phases, the
QD phase at 0 < J < Jd , the intermediate phase Jd < J < Jc,

and the encoding phase Jc < J < 1. The phase diagram is
independent of the relative size of the fraction. The encoding-
intermediate transition takes place at Jc = 1/2 (exact) for
both models. The QD-intermediate critical point is numeri-
cally estimated as Jd ≈ 0.375(5) in the random model and
Jd ≈ 0.35(1) in the deterministic one. Both transitions display
mean-field critical behavior.

Note that the above phase diagram is specific to the micro-
scopic measurements, where we measure all the spins in F in
the computational basis. Since the quantum discord vanishes
for this measurement, the phase diagram also describes the
mutual information I (F, R), and thus the maximal amount of
injected information one may retrieve. I (F, R) → ln 2 in the
QD phase, I (F, R) → 0 in the encoding phase, and in the
intermediate phase, the I (F, R) tends to a J-dependent value
between 0 and ln 2.

D. Coarse-grained measurements

In this section we study the information retrievable by
coarse-grained measurements. One motivation is to address
the relation between measurement result and retrieved in-
formation. In general, this relation is given by the mapping
m �→ Qm. In a tree model, this can be computed numer-
ically without much difficulty for any given microscopic
outcome m = (mi )i∈F . However, to understand the relation in
the thermodynamic limit, one clearly needs a coarse-grained
description of the outcome. To make an analogy with stan-
dard equilibrium statistical mechanics, Q �m corresponds to the
Boltzmann weight of a microscopic configuration, e−H [σ ] (in
this sense, Q �m is an operator-valued Boltzmann weight). In
statistical physics, it is well known that by coarse graining the
microscopic configuration σ → ϕ, we may obtain an effective
action e−Seff (ϕ) of the collective field, which is more useful
in describing emergent behaviors. The results below can be
viewed as a first glimpse of the (operator-valued) effective
action in our context.

Throughout this section we shall focus on the deterministic
model. In Sec. III D 1 we derive the recursion relation for
the total spin measurement and present numerical results.
In Sec. III D 2 we will focus on the small J regime and
show that the QD phase cannot be observed with coarse-
grained measurements. Meanwhile, they are able to probe
the encoding-intermediate transition, as we will show in
Sec. III D 3.

1. Recursion relation and numerical results

We start with the most basic coarse-grained measurement,
that of the total spin of the fraction F . We can think of it as
measuring all the spins in F as above, but then coarse graining
the outcome �m = (mi )i∈F to one integer, their sum:

M =
∑
i∈F

mi. (121)

Hence, the corresponding projectors are

πM =
∑

∑
mi=M

π �m.

The non-normalized postmeasurement density matrices
QM = V †πMV (19) of the coarse-grained measurements can
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be obtained from the microscopic measurement:

QM =
∑

∑
i mi=M

Q �m. (122)

We will parametrize them in a slightly different way from (71)
above, as follows:

QM = pM(1 + uMσ z + vMσ x )

= pM1 + aMσ z + bMσ x. (123)

That is, we write a = pu and b = pv, which will prove con-
venient. Recall that pM is the probability of the outcome
M, while (1 + uMσ z + vMσ x )/2 is the normalized postmea-
surement density matrix of the reference. So we can define a
outcome-resolved purity:

r2
M := u2

M + v2
M. (124)

Further averaging over the outcomes gives us back the
ensemble-averaged purity:

〈r2〉 =
∑
M

r2
MpM. (125)

Note that the left-hand side is in general smaller than the
same quantity with microscopic measurements: by using less
of the measurement outcome, we retrieve less information
about the reference. Of course, p �m, a �m, b �m are defined for the
microscopic measurement as well. However, coarse graining
makes it feasible to calculate such quantities in large systems.
To proceed, we derive a backward recursion relation for Qt,M,
where we recall that t indicates the size of the fraction |F | =
2t . For this, we observe that M = M
 + Mr where M
 and
Mr are the total magnetization of the left and right subtrees
of the root, respectively. Then, using the recursion relation for
Q �m (59), we have

Qt+1,M =
∑

M
+Mr=M
LŶ (Qt,M


⊗ Qt,Mr ). (126)

This holds for a general deterministic binary tree model. To
write the recursion relation for our concrete deterministic
model, we shall use parametrization (123) and the shorthand
for rotation(

a′
b′

)
=

(
cos θ − sin θ

sin θ cos θ

)(
a
b

)
, θ = Jπ/2. (127)

It is also convenient to introduce the discrete convolution with
respect to the variable M:

( f � g)M =
∑

M
+Mr=M
fM


gMr . (128)

Then it is not hard to obtain the following recursion relations:

pt+1 = pt � pt + a′
t � a′

t ,

at+1 = 2pt � a′
t , (129)

bt+1 = b′
t � b′

t .

The initial condition is the same as for the microscopic mea-
surement, since M = m when F has only one spin, and we
recall it here (85):

p0,M = 1
2 , a0,M = 1

2Mck−1, b0,M = 0, (130)
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FIG. 10. Outcome distribution of M = ∑
i∈F mi (total spin of

the fraction) and the postmeasurement reference state, for J = 0.1
(a), 0.3 (b), and 0.6 (c) in the deterministic model with fraction size
|F | = 212 and relative size |F |/|E | = 1/4. (See also Fig. 12 for a
closer look at very small J .) We plot the probability density of the
total spin re-scaled by its standard deviation, m = M/σM, P(m) =
pMσM as the filled area. r2

MP(z) is plotted as a colored curve, where
the color indicates the angle of (uM, vM), indicating the polarization
direction the postmeasurement reference state. The filled area below
and above the colored curve represents the information revealed by
and hidden from the measurement respectively.

where M = ±1, |F |/|E | = 2−k and c = cos(Jπ/2). Note
that pt , at , at are all functions of the discrete variable M that
can take 2t + 1 values. Hence, computing exactly pt , at , bt

using the above recursion relations is exponentially hard in t ,
or linearly hard in the fraction size |F |. This is far better than
microscopic measurement case, where the brute-force com-
putation cost is O(2|F |). Moreover, in practice QM depends
smoothly on M and can nearly vanish for most M, so that we
can represent the function QM in a compressed way and still
obtain numerically exact results.

In Fig. 10 we plot the exact numerical results thus obtained
for t = 12, for three values of J . We observe that, for a
large J = 0.6, the outcome distribution resembles a Gaus-
sian with zero mean. Also, r2

M almost vanishes for any M.
This is expected since J > Jc = 1/2 is in the encoding phase
where F and R are uncorrelated in the thermodynamic limit.
As J decreases below 1/2, the distribution of M deviates
from being Gaussian and develops two peaks at positive and
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FIG. 11. Main: the averaged purity with different measurement
schemes in the deterministic model with fraction size |F | = 212

and relative size |F |/|E | = 2−2. τ = 0: only the total spin of F is
measured. τ = 1: the total spins of the left and right subtrees are mea-
sured separately. τ = 2: the total spins of the four “grandchildren”
subtrees of the root are measured separately. τ = t : the microscopic
measurement. See also Fig. 13. Inset: log-log plot of the τ = 1 and
τ = 2 data near J = 0, compared to power laws. The prefactor of the
J4 power law is an exact prediction (133).

negative values. Moreover, M becomes correlated with the z
component of the reference. For M on the positive (negative)
peak, the references postmeasurement state ρM is close to
|+〉z (|−〉z, respectively), so that r2

M → 1. Meanwhile, 0 <

r2
M < 1 when M is between the peaks: obtaining such an

outcome reveals less information about the reference. Finally,
as J approaches 0, the distribution has two sharp and separated
peaks. r2

M becomes close to 1 for all values of M, including
when M ≈ 0. For these values, ρM ≈ |−〉x is polarized in the
x direction.

Globally, the outcome distribution pM is qualitatively rem-
iniscent of that of the total magnetization in the Ising model,
which is also a Gaussian in the paramagnetic phase and
non-Gaussian with two peaks in the ferromagnetic one. Mean-
while, uM and vM) have no analogy with classical magnetism
and are the new ingredients of the operator-valued effective
action.

2. Absence of the QD phase

Let us now be more quantitative, and average the purity
over the measurement outcomes, and compare the results
to the microscopic measurements. In Fig 11 we see that
coarse-graining decreases the purity, as expected. While the
difference is quantitatively more apparent for intermediate
values of J , there is a qualitative change at small J: under
coarse graining, the purity 〈r2〉 does not tend to 1 in the
thermodynamic limit for any nonzero J . Instead, we have

1 − 〈r2〉t→∞ ∼ J4, J → 0. (131)

In other words, the nontrivial QD phase disappears with the
total spin measurement. When J is small the information
retrieval is almost perfect for all practical purposes, but not
strictly perfect in the thermodynamic limit. The basic rea-
son behind the absence of a nontrivial QD phase is that the
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FIG. 12. Outcome distribution of the total spin measurement
with J = 0.02, |F | = 211, |F |/|E | = 2−2. See Fig. 10 for further
description. Here, in addition, we plot pM(1 − r2

M) in black. At
small J , the distribution has a “multifractal” structure of peaks; the
dominant ones are M ≈ ±|F |. The information retrieval is nearly
perfect: r2

M is close to 1 for all M. The imperfections are concen-
trated at secondary peaks at M = 0, ±|F |/4.

total-spin recursion relation (126) does not send a perfectly
QD distribution to another one, in contrast with the micro-
scopic measurement case (70). Indeed, suppose that in the
r.h.s. of (126), Qt,M is always proportional to a pure state,
and thus so is each single term in (126). But their sum will
be mixed, unless all the terms are proportional to each other.
To see how this works in our model, we followed the re-
cursion relation (129) for generic θ (using symbolic algebra
software), starting from a perfectly QD initial condition: (130)
with k = 1. We found that the t = 1 distribution is still per-
fectly QD; at t = 2, the first imperfection appears at M = 0,
where pM(1 − r2

M) = θ4 + O(θ5). Starting from t = 3, we
find consistently that the leading imperfections are

pM
(
1 − r2

M
) =

⎧⎪⎨
⎪⎩

θ2 + O(θ5) M = 0

2θ2/3 + O(θ5) M± = 2t−2

O(θ5) otherwise

. (132)

So we conjecture that the prefactor in (131) is given by

〈1 − r2〉 ∼ 7

4

(
Jπ

2

)4

, J → 0 (133)

at t → ∞. This prediction is corroborated by (finite-
precision) numerics; see Fig. 11 (inset). The structure of the
leading imperfection is shown in Fig. 12, which also reveals
a beautiful “multifractal” structure of pM at small J . The dis-
tribution appears singular, made of peaks whose amplitudes
differ by orders of magnitudes. It would be interesting to char-
acterize this structure with a systematic small-J expansion.

The total spin measurement is the first and simplest one of
a sequence of coarse-grained measurements. For each τ � 0,
we can consider measuring the total spin of the 2τ subtrees
of depth τ from the root. The case τ = 0 is the total spin
measurement considered above. For τ = 1, we measure the
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FIG. 13. Illustration of coarse-grained measurements. The green
squares indicate the spins in the fraction F , with size |F | = 2t = 8
and relative size |F |/|E | = 2−k = 1/4. M, the total spin of F , is
divided into that of the subtrees. The coarse-grained measurement
with τ = 2 will measure M

, . . . ,Mrr . The corresponding density
matrices can be obtained in two stages. First we obtain the total-
spin (τ = 0) matrices at t − τ = 1 using the recursion (129); then
we iterate (134) twice (τ = 2).

total spin of the two direct descendant subtrees of the root,
(M
,Mr ). For τ = 2 we measure that of the four “grandchil-
dren” subtrees of the root (M

,M
r,Mr
,Mrr ), and so on.
(In all cases, only the spins in the fraction F are included.)
The microscopic measurement corresponds to τ = t , since
then each subtree has only one spin in F . See Fig. 13 for
an illustration. It is not hard to show that the non-normalized
density matrices of all such coarse-grained measurements can
be obtained recursively:

Qt+1
M
,Mr

= LŶ (Qt
M


⊗ QMr ),

Qt+1
M

,M
r ,Mr
,Mrr

= LŶ (Qt
M

,M
r

⊗ Qt
Mr
,Mrr

), (134)

and so on. (We indicate t and t + 1 as superscripts instead
of subscripts for display.) Note that the recursion increases
both t and τ . In fact, these recursion relations are essentially
identical to (59), except that the initial condition is given by
Qt,M with t � 0. Direct numerical calculation using the above
recursion has a cost 2(t−τ )2τ

. In practice, due to compression
(see Sec. III D 1), we can easily obtain reliable results up to
τ = 2 and t = 12. The results are plotted in Fig. 11 as well. As
τ increases, we retrieve more information about the reference.
However, a nontrivial QD phase cannot be recovered with
any finite τ , since applying the recursion map a finite times
cannot turn an intermediate distribution to a perfectly QD one.
Numerically we find that for small J 1 − 〈r2〉t ∼ Ja(τ ) where
the exponent increases with τ , with a(0) = 4 (131), a(1) ≈ 6,
etc. In the fine-grained (τ → ∞) limit, the distinction be-
tween QD and intermediate phases reemerges. Note that we
can obtain the fine-grained limit by sending t → ∞ before
τ , so 1 � τ � t . In other words, to probe the QD phase
requires arbitrarily fine resolution, but not necessarily a micro-
scopic one.

3. Encoding-intermediate transition

We now come back to τ = 0 (total spin measurement)
and study the recursion relations (129) analytically. We will
show that the total spin measurement exhibits an encoding-
intermediate transition at J = 1/2, which coincides with the
same transition under microscopic measurements. We will
also show that the outcome distribution tends to a Gaussian in
the encoding phase, and quantify the non-Gaussianity when
J < 1/2.

To analyze (129), which involve convolutions, it is conve-
nient to introduce the moment generating functions:

p̂(h) :=
∑
M

ehMpM, (135)

and â and b̂ are similarly defined from a and b, respectively.
Then the recursion relations imply that

p̂t+1 = p̂2
t + (â′

t )
2, ât+1 = 2 p̂t â

′
t , b̂t+1 = (b̂′

t )
2, (136)

for any h (its dependence is omitted for brevity). Now, one
may readily check that the derivatives of p̂ at h = 0 are the
moments of the outcome distribution, and those of â, b̂ are the
joint moments with u and v, respectively. The first moments
are as follows:

p̂t (h) = 1 + 〈M〉t h + 〈M2〉t h
2/2 + O(h3),

ât (h) = 〈Mu〉t h + O(h2), b̂t (h) = 〈Mv〉t h + O(h2). (137)

Here ât (0) = b̂t (0) = 0 comes from the general property
〈Q̃〉 = 1 (22). Plugging the expansion (137) back into (136),
we obtain the recursion relations for the moments. That of
the first moment 〈M〉t+1 = 2〈M〉t together with the initial
condition (130) implies that

〈M〉t = 0. (138)

The first nontrivial moment recursion relations are thus

〈M2〉t+1 = 2〈M2〉t + 2〈Mu′〉2
t , (139)

〈Mu〉t+1 = 2〈Mu′〉t , 〈Mv〉t+1 = 0. (140)

Hence, we may lose 〈Mv〉 altogether and replace 〈Mu′〉 =
cos(Jπ/2)〈Mu〉. Then (140) implies

〈Mu〉t � ck−1(2c)t , c ≡ cos(Jπ/2). (141)

Now, comparing the two terms in (139), we see that the
encoding-intermediate critical point Jc = 1/2 is a threshold.
When J > Jc, we can ignore the second term since the growth
generated by the first one (∼2t ) is much larger:

〈M2〉t � C2t � 〈Mu〉2
t (J > Jc) (142)

[the prefactor C = (1 + c2k )/(1 − 2c2) can be determined by
solving explicitly (139), and the same below]. Meanwhile,
when J < Jc, the opposite happens:

〈M2〉t � C′(2 cos(Jπ/2))2t ∼ 〈Mu〉2
t (J < Jc), (143)

where C′ = c2k/(2c2 − 1). The asymptotic growth rate of the
variance 〈M2〉t is nonanalytical at Jc = 1

2 , so the latter is a
critical point for the total spin measurement as well. Observe
that both prefactors above diverge at J = Jc, where there is a
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correction to scaling 〈M2〉t ∼ t2t . So the total-spin measure-
ment gives rise to the same encoding-intermediate transition.
Since the QD phase is absent, we have an encoding phase at
J > Jc and an intermediate phase at J < Jc.

We now turn to characterize the two phases in terms of the
total-spin measurement. First, when J > Jc, we claim that the
total spin distribution tends to a Gaussian. To be precise, we
will consider the rescaled total spin

m := 2−t/2M, (144)

which by (142) has a finite variance as t → ∞ (m should not
be confused with the earlier notation for a general measure-
ment outcome). The rerescaling amounts to considering the
moment generating function at small h,

h = 2−t/2h̃. (145)

Now, the low-moment calculation above applies precisely to
the small-h regime, and tells us that ât , b̂t � p̂t and can be ne-
glected as t → ∞. Hence, the recursion relation (136) can be
approximated by p̂t+1 ≈ p̂2

t , and the approximation becomes
asymptotically exact. Hence, we can fix t0 � 1 and write

p̂t (h) ≈ p̂t0 (h)2t−t0 → ech̃2/2, t → ∞, (146)

where c is the coefficient in the expansion p̂t0 (h) = 1 +
ch̃2/2 + · · · . Equation (146) is equivalent to saying that m
tends to a centered Gaussian. Its variance is fixed by (142)
above and depends on k. This “central limit theorem” for the
encoding phase can be also understood as follows: for any
c > 0,

p̂∗ = ech̃2/2, â∗ = b̂∗ = 0 (147)

is a stable fixed point of the recursion map (136) plus the
rescaling h̃ �→ h̃/

√
2. When J < Jc, it is natural to expect that

the recursion map (136) plus the rescaling h̃ �→ h̃/(2c) goes to
a unique stable fixed point upon fixing (∂2

h̃
p)h̃→0 = 1, which

is equivalent to 〈m2〉 = 1. The moments of this fixed point
distribution can be computed order by order by expanding
(136). For instance, the skewness and excessive kurtosis of
m, which characterize its non-Gaussianity, are as follows:

〈m3〉∗ = 3 cos
3
2 (2θ ) tan3(θ )

[2 cos(θ ) − 1]
[
4 cos3(θ ) − 1

] , (148)

3 − 〈m4〉∗ = 3(2c2 − 1)2g(c)

c7(2c − 1)2(2c + 1)(8c4 − 1)
, (149)

where g(c) = 16c10 − 8c9 + 14c8 − c7 − 6c6 − 11c5 +
4c4 + 7c3 + 2c2 − c − 2. The covariance between m and u is
given by

〈mu〉∗ =
√

2 − sec(θ )2; (150)

see Fig. 14 for plots. All the above quantities vanish as J →
1/2 where m becomes Gaussian and uncorrelated with u. For
0 < J < 1/2, m is positively skewed, has negative excessive
kurtosis (due to the two peaks), and is positively correlated
with u. All of this is qualitatively consistent with the numeri-
cal results (Fig. 10) above.

mu

m3

3 - m4

0.0 0.1 0.2 0.3 0.4 0.5
J

0.5

1.0

1.5

2.0

FIG. 14. The covariance 〈mu〉∗ (150), skewness 〈m3〉∗ (148), and
negative excessive kurtosis 〈3 − m4〉∗ (149) of the fixed point out-
come distribution m, normalized so that 〈m2〉 = 1.

E. A Clifford model with a direct transition

As a last point of this section, we briefly study a random
Clifford analog of the above models, which interpolates be-
tween the same J = 0 and J = 1 limits. Curiously, it has a
distinct phase diagram, with a direct first order transition from
QD to encoding phases. To define the model, it suffices to
slightly modify the definition of the isometry in Sec. III A 1,
by letting the rotation angles θ be random (and independent):
θ = 0 with probability 1 − J , and θ = π/2 with probability
J . In terms of the parametrization Q̃ = 1 + uσ z + vσ x (71)
and U †Q̃U = 1 + u′σ z + v′σ x (U = e−iσ y

is the rotation), we
have

(u′, v′) =
{

(u, v) with probability 1 − J
(−v, u) with probability J.

(151)

This model coincides with the deterministic model above
at J = 0 and J = 1, but is now Clifford for any J ∈ (0, 1).
Then the general argument in Sec. II E implies that the
density matrix distribution is supported on the finite set
{(0, 0), (±1, 0), (0,±1)} in terms of (u, v). Also, since 〈u〉 =
〈v〉 = 0, the distribution depends only on two parameters π z

and π x satisfying π z � 0, π x � 0, (1 − π z − π z ) � 0, as fol-
lows:

P (Q̃) = π z

2
[δ(u − 1) + δ(u + 1)]δ(v)

+ π x

2
[δ(v + 1) + δ(v − 1)]δ(u)

+ (1 − π z − π x )δ(u)δ(v). (152)

Using the method of Sec. III B 2, it is not hard to derive
a recursion relation for π z

t and π x
t (one can find the same

recursion relations using the method of Ref. [39]):

π z
t+1 = 2

[
π z

t (1 − J ) + π x
t J

] − [
π z

t (1 − J ) + π x
t J

]2
,

π x
t+1 = [

π x
t (1 − J ) + π z

t J
]2

. (153)

The recursion flow, plotted in Fig. 15, has a remarkable fea-
ture: the t → ∞ limit has a direct discontinuous transition at
J = Jc = 1/2 from a QD fixed point (π z + π x = 1, J < 1/2)
to the encoding fixed point (π z = π x = 0, J > 1/2). In fact,
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FIG. 15. The flow generated by the recursion relation (153) of
the Clifford model, at J = 0.45 < Jc (a) and J = 0.55 > Jc (b). The
asymptotic limit undergoes a discontinuous transition from a QD
fixed point to the encoding fixed point.

one can show that (153) admits no other fixed points, un-
less J = Jc. At that point, (153) has a line of fixed points:
(π z, π x ) = (a − a2/4, a2/4), 0 � a � 1, connecting the per-
fectly encoding distribution (a = 0) to a perfectly QD one
(a = 1). This behavior, which is the origin of the discontin-
uous transition, is nongeneric among Clifford models. Indeed,
the model of Ref. [39], which involves more one-body Clif-
ford gates, has a mixed phase and two continuous transitions.

To conclude, the solution of the above Clifford toy model
shows that a direct QD-encoding transition is in principle
possible. It will be interesting to find non-Clifford model with
a direct QD-encoding transition.

IV. CONCLUSION

We studied phases of information propagation and the
emergence of classical objectivity in a structured environ-
ment. We proposed a general framework and a quantitative
probe of the different phases: quantum Darwinism (QD), in-
termediate, and encoding. We partially solved two similar
mean-field models, which exhibit the three phases separated
by two continuous transitions of distinct nature.

The encoding-intermediate transition marks the onset of
broadcast, at which point the injected information becomes
partially accessible in small fractions of the environment. It
can be probed by measuring an extensive (“coarse-grained”)
quantity: its non-Gaussian fluctuation (reminiscent of sym-
metry breaking) and correlation with the injected information
are signatures of the intermediate phase. Such measurements
should be in principle accessible in an experimental re-
alization of our mean-field models, and arguably in their
nonhierarchical cousins as well.

In contrast, distinguishing the QD and intermediate phases
is more laborious, and requires a fine-grained observation
of the fraction. Conceptually this is due to the fact that the
QD-intermediate transition breaks a more abstract replica
symmetry. Indeed, a replicated perfectly QD distribution (the
results of this work are exclusively about the physical n → 1
limit)∑

m

pn
mQ̃⊗n

m ∝
∑

n

pn
m|ϕm〉⊗n〈ϕm|⊗n ∈ (Cq)n ⊗ (Cq)n

(154)

is symmetric under the Sn × Sn action that permutes the bras
and the kets. By contrast, a replicated encoding or inter-
mediate distribution breaks this symmetry, and favors one
particular pairing between the bras and kets [53]. In an ex-
perimental realization of our tree model, one may proceed
in a hybrid fashion: one measures F , computes (classically)
the posterior density matrix ∝ Q̃m by hand from the outcome,
and verifies it by measuring R in the direction specified by
Q̃m. In an ideal experiment, one may predict the outcome
of the R-measure perfectly in the QD phase, and imper-
fectly in the intermediate phase. Now, the middle classical
step would become computationally hard in a nonhierarchical
model, due to the operator growth involved in the Heisen-
berg evolution Qm = V †πmQ. (A similar difficulty, known
as the “postselection problem,” is known in the context of
measurement-induced transitions [67–70].)

Despite the potential technical challenges, it is important
to note that going beyond hierarchical models may cure the
artefacts of the latter, in at least two ways. First, the operator
growth can turn a local spin operator into a sum of such
terms (by diffusion), and thus accessing effectively a larger
environment fraction. Second, tree models have pathological
space-time domain walls. Indeed, the two subtrees of the root
do not interact anymore beyond the initial branching. Thus, in
our model, with probability ∼J2 (for J small), we may mea-
sure large and opposite total spins in the two subtrees: such
discordant amplification in fine leads to the absence of the
QD phase with coarse-grained measurements. In a nonhier-
archical model, such a space-time configuration would have a
domain wall cost that grows with the system size ∝ t , and thus
parametrically suppressed. Based on these considerations, we
speculate that probing QD-intermediate transitions beyond
mean-field may require fewer measurements, which leads to
a simpler postselection problem. It is also possible that the
enhancement of QD in nonhierarchical systems could lead to
a direct QD-encoding transition, bypassing the intermediate
phase.

We therefore advocate that future work on QD-encoding
transitions should shift focus onto finite-dimensional and
potentially more realistic systems, for example, expanding
quantum circuits (with loops), or central spin models [71–73].
From a statistical physics perspective, a natural problem is to
characterize the universality class of both transitions. We may
attempt to understand the encoding-intermediate transition as
a dynamical criticality associated with symmetry breaking
[74,75], whereas it will be meaningful to compare the QD-
intermediate transition to an entanglement phase transition.
Finally, it may be even more important to relate our technical
results to the conceptual questions that motivated them at the
first place, for example, which phases of quantum information
underlie the wave-function collapse as perceived by an agent
in the laboratory.
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