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Quantum electrodynamics (QED) is the most accurate of all experimentally verified physical theories. How
QED and other theories of fundamental interactions couple to gravity through special unitary symmetries,
on which the standard model of particle physics is based, is, however, still unknown. Here we develop a
coupling between the electromagnetic field, Dirac electron-positron field, and the gravitational field based on an
eight-component spinorial representation of the electromagnetic field. Our spinorial representation is analogous
to the well-known representation of particles in the Dirac theory but it is given in terms of 8 × 8 bosonic
gamma matrices. In distinction from earlier works on the spinorial representations of the electromagnetic field,
we reformulate QED using eight-component spinors. This enables us to introduce the generating Lagrangian
density of gravity based on the special unitary symmetry of the eight-dimensional spinor space. The generating
Lagrangian density of gravity plays, in the definition of the gauge theory of gravity and its symmetric stress-
energy-momentum tensor source term, a similar role as the conventional Lagrangian density of the free Dirac
field plays in the definition of the gauge theory of QED and its electric four-current density source term.
The fundamental consequence, the Yang-Mills gauge theory of unified gravity, is studied in a separate work
[arXiv:2310.01460], where the theory is also extended to cover the other fundamental interactions of the standard
model. We devote ample space for details of the eight-spinor QED to provide solid mathematical basis for the
present work and the related work on the Yang-Mills gauge theory of unified gravity.
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I. INTRODUCTION

Quantum electrodynamics (QED) agrees with experiments
to an exceedingly high accuracy [1–3]. In this regard, it can
be considered as the most successful theory of physics ever
developed. The present formulation of QED has, however, not
enabled coupling of the electromagnetic and Dirac electron-
positron fields to the gravitational field through the special
unitary symmetries on which the standard model of particle
physics is based [1,4]. Therefore, alternative approaches, such
as string theory [5,6] and loop quantum gravity [7–9], are
being developed. We approach the problem from a different
point of view: It is proposed that identifying a special-unitary-
symmetry-based coupling of the present standard model to
the gravitational field leads to the Yang-Mills gauge theory of
unified gravity, the theory of all known fundamental interac-
tions of nature. Thus, it is our interest to study whether QED,
the simplest quantum field theory of the standard model in-
teractions [1,4], can be reformulated in alternative ways using
novel mathematical structures that may help us to identify the
special-unitary-symmetry-based coupling to gravity. This is
the ultimate goal of the present work. Due to the very specific
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goal of the present work, the review of the relation of the
present spinorial representation of the electromagnetic field to
earlier spinorial representations [10–15] will be left as a topic
of further work.

Advances in optics and photonics technologies enable
detailed experimental investigations of the spin and orbital
angular momenta of light [16–19] and the related physics
of structured light fields [20–24] and chiral quantum optics
[25–28]. Classical Maxwell’s equations and QED provide
solid basis for theoretical understanding of the related phys-
ical phenomena [29–36]. However, in spite of overall success,
theories of light are also associated with well-known enigma
that exist independently of the question of the gravitational
coupling.

In QED, the usual approach to quantize the electromag-
netic field [37,38] is based on the transverse-vector-potential
eigenstates describing the transverse photons [30,39,40]. In
optical spectroscopy [41], only radiative processes, which can
be associated with transverse photons, are discovered. One
enigmatic feature of the transverse-vector-potential eigen-
states is that their Lorentz transformation between inertial
frames leads to a nonzero scalar potential and a nonzero
longitudinal component in the transformed inertial frame [42].
Thus, the transformed state does not belong to the set of
transverse-vector-potential eigenstates, which excludes scalar
and longitudinal photon states [43]. This is associated with the
vector potential being gauge dependent [30,43]. The related
enigma of the definition of the photon wave function has been
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a subject of a continuing dialogue [14,30,44–53]. The same
applies to the definition of the relativistic quantum spin struc-
ture of light [54,55]. The enigma is conventionally avoided
only in the formalism of second quantization.

For comparison, the wave functions of spin-1/2 particles
and their antiparticles are described by the Dirac equa-
tion whose solutions are four-component spinors [30,43].
The Dirac spinors transform between inertial frames by their
own spinorial Lorentz transformation, which is not equivalent
to the Lorentz transformation of four-vectors. The Lorentz-
transformed spinors belong to the set of eigenstates in contrast
with the case of the transverse-four-potential eigenstates of
photons as discussed above.

Furthermore, the spin emerges from the Dirac theory
through the generators of Lorentz transformations on the
Dirac spinors [1]. The origin of the spin in the Dirac theory
suggests that a similar Lorentz-transformation-based origin
may be found for the spin of photons. A strict relativistic
description of the spin of photons does not emerge within
the principles of classical physics from Maxwell’s equations,
from the electromagnetic field tensor, or from the electro-
magnetic four-potential. The conventional formulations of the
quantum field theory of photons neither lead to a natural
emergence of the covariant and gauge-invariant spin structure
of light [56,57]. The previous two-component spinorial repre-
sentations of the electromagnetic field [10–12] are covariant
but they have been formulated so that the electromagnetic
spinors in vacuum satisfy the Weyl equation. Regarding
the spin properties of the theory, the Weyl equation using
Pauli spin matrices is more natural in the description of
massless spin-1/2 particles, known as Weyl fermions, as dis-
cussed by Perkins [12]. The rank-two bispinor formulation
of Kiessling et al. [14] satisfies the massless Dirac equation,
which is likewise typically used to describe spin-1/2 particles.

The initial goal of the present work was to shed light on
the wave function and spin properties of light by constructing
a covariant and gauge-invariant spinorial wave function and its
Lorentz transformation for photons with a natural emergence
of the spin structure of light. However, we discovered later that
the theory of light based on the spinorial electromagnetic field
leads to much more far-reaching consequences on the gravi-
tational coupling as discussed below. First, we introduce the
eight-component spinorial Maxwell equation, the solutions
of which are called electromagnetic spinors. This approach
leads to the appearance of 8 × 8 matrices in the spinorial
Maxwell equation and to the electromagnetic spinors having
eight components. The relativistic description of the quantum
spin of light emerges from this theory through the genera-
tors of Lorentz transformations on electromagnetic spinors
in analogy to the emergence of the spin in the Dirac theory.
Since the electromagnetic spinors are gauge independent, they
also avoid the gauge dependence problem of the four-potential
eigenstates.

The spinorial representation of the electromagnetic field
enables rewriting the conventional QED and its Lagrangian
density without changes in the physical predictions of the
theory. However, as a fundamental consequence, the eight-
spinor formulation of the theory enables the description of the
generating Lagrangian density of gravity based on the special
unitary symmetry of the eight-dimensional spinor space. The

generating Lagrangian density of gravity leads to an elegant
derivation of the symmetric stress-energy-momentum (SEM)
tensors of the electromagnetic and Dirac electron-positron
fields in accordance with Noether’s theorem [58,59]. Previ-
ously, the SEM tensors have been derived only by utilizing
the external space-time symmetry. Furthermore, the canonical
SEM tensors of the conventional QED are asymmetric, being
as such incompatible with general relativity. This suggests
that the generating Lagrangian density of gravity provides the
basis for the derivation of the quantum field theory of grav-
ity. Accordingly, the fundamental consequence of the present
eight-spinor theory, the Yang-Mills gauge theory of unified
gravity, is investigated in a separate work [60]. In Ref. [60],
we also extend the theory to cover, not just QED, but all
fundamental interactions of the standard model. The present
work provides a detailed discussion of many physical and
mathematical concepts that are extensively used in Ref. [60].

We present a self-contained description of the theory and
reserve plenty of space for the detailed study of the foun-
dations so that the reader can become convinced that the
mathematical and physical formulations are technically sound
in every detail. This work is organized as follows: Section II
introduces the electromagnetic spinor and formulates the
spinorial Maxwell equation, which is the basis of the present
work. Section III is devoted to the description of Lorentz and
Poincaré transformations and their generators, which provide
a natural way to introduce a relativistically consistent spin
structure to the theory of light. The quantum operators in the
first quantization of the field are presented in Sec. IV. The
spinorial photon eigenstates and their density expectation val-
ues and charge-parity-time (CPT) symmetry are described in
Sec. V. The conventional QED Lagrangian density is reformu-
lated using eight-spinors, and Euler-Lagrange equations are
investigated in Sec. VI. Section VII briefly presents the foun-
dations of the second quantization using eight-spinors. This
section is provided as a technical tool for interested readers to
outline how the key properties of QED emerge from the con-
ventional quantization procedure when eight-spinors are used.
Section VIII shows how the eight-spinor formalism of QED
enables the description of the generating Lagrangian density
of gravity that acts as the basis for the Yang-Mills gauge
theory of unified gravity [60]. Related elegant special-unitary-
symmetry-based derivations of the electromagnetic and Dirac
field SEM tensors are also presented. Finally, conclusions are
drawn in Sec. IX.

II. SPINORIAL MAXWELL EQUATION

A. Electromagnetic and charge-current spinors

We start the formulation of the theory by introducing an
electromagnetic spinor � and a charge-current spinor �,
which both have eight components. As we show below, the ad-
vantage of using an eight-dimensional electromagnetic spinor
is that it is gauge-independent. The eight-component spinors
describe the physics of all four Maxwell’s equations including
the charge and current densities: one component is related to
Gauss’s law of magnetism, three components to the Ampère-
Maxwell law, one component to Gauss’s law of electricity,
and three components to Faraday’s law. In any inertial frame,
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the components of �(t, r) are composed of the electric and
magnetic fields, E(t, r) and B(t, r), and the components of
�(t, r) are composed of the total electric charge and current
densities ρe(t, r) and Je(t, r). Omitting the time and position
arguments, we write

� =
√

ε0

2

⎡⎢⎢⎣
0
E
0

icB

⎤⎥⎥⎦, � =
√

ε0

2

⎡⎢⎢⎣
0

μ0cJe

ρe/ε0

0

⎤⎥⎥⎦. (1)

Here ε0, μ0, and c = 1/
√

ε0μ0 are the permittivity, perme-
ability, and the speed of light in vacuum, respectively. The
zero elements of the electromagnetic spinor � are related to
the property of all electromagnetic spinors to be eigenstates
of the spin operator squared, having a well-defined spin S = 1.
The zero elements of the charge-current spinor � are related
to the nonexistence of magnetic monopoles as elementary
particles [29]. The definition of the covariant spin operator
will be given in Secs. IV B and IV C, and the eigenstates are
discussed in Sec. V A.

The fields appearing in the electromagnetic spinor in
Eq. (1) can be either real- or complex-valued solutions of
the complete set of Maxwell’s equations. They will then
automatically satisfy the eight-component spinorial Maxwell
equation, given in Sec. II B. The spinors made of real-valued
fields E� and B�, charge density ρe�, and current density
Je� are denoted by the subscript � as �� and ��. The
spinors are normalized so that �

†
��� = 1

2 (ε0E2
� + B2

�/μ0)
corresponds the classical expression of the energy density of
the electromagnetic field. Using complex-valued amplitudes
of time-harmonic fields, the energy density expectation value
is 1

2�†� = 1
4 (ε0|E|2 + |B|2/μ0), which corresponds to the

expression of the energy density of a classical time-harmonic
field averaged over the harmonic cycle. When we consider the
electromagnetic spinor in Eq. (1) as a quantum-mechanical
concept, we end up to the second quantization and the related
description of Fock states. Thus, the quantum-mechanical
information content is not equal to that of a classical time-
harmonic field, but limited by complete lack of the knowledge
of the phase of single-photon states in accordance with the
uncertainty principle of the photon number and the phase [61].
The density expectation values and the classical and quantum-
mechanical information content of the electromagnetic spinor
in Eq. (1) will be addressed in more detail in Sec. V.

The electromagnetic spinor in Eq. (1) can be compared
with previous approaches to construct a wave-function-like
concept for photons. One conventional approach is to use the
electromagnetic vector potential or four-potential in the role
of the photon wave function [30]. The Lorentz transformation
of the electromagnetic four-potential predicts, for a radia-
tion field in a general inertial frame, unobserved longitudinal
and scalar photons [42,54]. The present eight-component
electromagnetic spinor � is seen to be a generalization
of the six-component quantity

√
ε0
2 [E, cB]T used in some

previous literature [33,62–71], where T indicates the trans-
pose. Depending on the work, the imaginary unit can be
present as a factor of the electric or magnetic-field com-
ponent. In the case of real-valued fields, the sum of the
electric and magnetic components of �� is also seen to

correspond to the three-component Weber vector
√

ε0
2 (E� +

icB�) [14,72], also known as the Riemann-Silberstein vec-
tor [45,73–79]. An expression that recalls the Weber vector
but generalizes to complex-valued fields is the representa-
tion of the electromagnetic field in the space-time algebra
[48,80–83] through a quantity

√
ε0
2 (E + IcB), where the al-

gebraic element I satisfying I2 = −1 is not the imaginary
unit, but a geometric object. In the previous two-component
spinorial representations [10–12], the spinors are formed
by mixing different components of the electric and mag-
netic fields, e.g., ϕ1 = √

ε0
2 [(cB�z − iE�z ), (cB�x − iE�x ) +

i(cB�y − iE�y)]T and ϕ2 = √
ε0
2 [−(cB�x − iE�x ) + i(cB�y −

iE�y), (cB�z − iE�z )]T corresponding to the representation by
Sachs and Schwebel [10]. This representation does not gener-
alize to complex-valued field amplitudes.

B. Spinorial Maxwell equation and the associated
gamma and sigma matrices

Our formulation of electrodynamics equations below is
closely analogous to the approach of Dirac starting from the
second-order Klein-Gordon equation to derive a first-order
equation, the Dirac equation [84,85]. Dirac’s clever idea was
to take a square root of the wave operator, which is equivalent
to finding matrices γa, which satisfy In∂

a∂a = (γa∂a)2, where
the Einstein summation convention is used and In is the n × n
identity matrix. In this work, the Latin indices a, b, c, d ∈
{0, x, y, z} range over the four dimensions of the Minkowski
space-time, the Latin indices i, j, k ∈ {x, y, z} range over the
three spatial dimensions, and the Greek indices μ, ν, ρ, σ ∈
{x0, x1, x2, x3} range over the four general space-time dimen-
sions. Dirac found that I4∂

a∂a = (γa
F∂a)2 is satisfied with

4 × 4 matrices γa
F, which became known as the Dirac gamma

matrices. Here we use the subscript F to indicate that these
gamma matrices are associated with fermionic fields in dis-
tinction from the gamma matrices of bosonic fields introduced
below.

Our goal is to define gamma matrices, which enable
writing the well-known second-order wave equation of the
four-potential, given by ∂a∂aAb = μ0Jb

e , as a first-order equa-
tion for the electromagnetic spinor � in Eq. (1), which, unlike
the Dirac equation, also includes the source term expressed
by the charge-current spinor �. We next show that it is pos-
sible to construct 8 × 8 gamma matrices, which operate on
the electromagnetic spinor � in Eq. (1) leading to Maxwell’s
equations and to � having desired properties. In analogy to
the Dirac theory, our gamma matrices γa

B satisfy I8∂
a∂a =

(γa
B∂a)2. Here we use the subscript B to indicate that these

gamma matrices are associated with bosonic fields in distinc-
tion from the gamma matrices of fermionic fields in the Dirac
theory.

We write the spinorial Maxwell equation in a form that
closely reminds the Dirac equation describing spin-1/2 par-
ticles in the case when the mass of the particle is set to zero
and when an external source term is added. The spinorial
Maxwell equation, which, as shown in Sec. II C, describes all
of classical electromagnetism, is written as

γa
B∂a� = −�. (2)
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In analogy to the Dirac equation for electrons, the spinorial
Maxwell equation is a first-order differential equation that is
covariant in Lorentz transformations between inertial frames.
The 8 × 8 bosonic gamma matrices γa

B in Eq. (2) are defined
as

γ0
B =

[
I4 0

0 −I4

]
, γ i

B =
[

0 σ i
B

−σ i
B 0

]
. (3)

The 4 × 4 bosonic sigma matrices σx
B, σ

y
B, and σz

B in Eq. (3)
are given in the Cartesian basis by

σ i
B = Ki

boost + iKi
rot. (4)

Here Ki
boost and Ki

rot are generators of the proper or-
thochronous Lorentz group SO+(1,3). The Lorentz boost
generators Ki

boost are given by [86]

Kx
boost =

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦, Ky
boost =

⎡⎢⎢⎣
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎤⎥⎥⎦,

Kz
boost =

⎡⎢⎢⎣
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎤⎥⎥⎦, (5)

and the SO(3) rotation generators Ki
rot are given by

Kx
rot =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎤⎥⎥⎦, Ky
rot =

⎡⎢⎢⎣
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎤⎥⎥⎦,

Kz
rot =

⎡⎢⎢⎣
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎤⎥⎥⎦. (6)

Apart from not having the imaginary unit and the reduced
Planck constant h̄ as a factor, the lower-right 3 × 3 space
components of the rotation generators in Eq. (6) are equal to
the well-known spin matrices of the three-dimensional space
[45,70,87–89].

The form of the bosonic gamma matrices γa
B in Eq. (3)

recalls the conventional definition of the 4 × 4 fermionic
gamma matrices γa

F in the Dirac theory [59], but the di-
mensions and the corresponding representations of the sigma
matrices are different. In the Dirac theory, the 2 × 2 sigma
matrices σ i

F are known as Pauli matrices. The 8 × 8 gamma
matrices of the present theory can also be seen as the gen-
eralization of the 6 × 6 gamma matrices that have been used
together with the six-component wave-function-like concept
in previous literature [67,68]. In comparison with the 6 ×
6 gamma matrices, one particular advantage of our 8 × 8
gamma matrices is that all Maxwell’s equations can be pre-
sented as a single equation allowing us to rewrite the QED in
the eight-spinor notation as presented in Sec. VI. The bosonic
gamma matrices in Eq. (3) can be used to define the spinorial
Lorentz transformations as will be shown in Sec. III. This
makes the electromagnetic spinor in Eq. (1) a true spinor with
spin 1 in the full physical meaning of the term [90–92].

C. Dynamical equations in terms of the fields,
charges, and currents

When the expressions of the electromagnetic spinor � and
the charge-current spinor � from Eq. (1) are substituted into
the spinorial Maxwell equation in Eq. (2), we obtain the full
set of four Maxwell’s equations in the conventional form as

∇ · B = 0, (7)

∇ × B = μ0Je + 1

c2

∂

∂t
E, (8)

∇ · E = ρe

ε0
, (9)

∇ × E = − ∂

∂t
B. (10)

Thus, the very compact representation of the spinorial
Maxwell equation in Eq. (2) together with the electromagnetic
and charge-current spinors in Eq. (1) is equivalent to the full
theory of classical electromagnetism [29]. Again, the fields
and charge and current densities in Eqs. (7)–(10) can be either
real or complex valued.

Operating on Eq. (2) side by side with an operator γa
B∂a

and using (γa
B∂a)2 = I8∂

a∂a on the left-hand side, we obtain
∂a∂a� = −γa

B∂a�. This equation is equivalent to the continu-
ity equation of the electric four-current density Ja

e = (cρe, Je )
and the inhomogeneous wave equations of the electric and
magnetic fields as

∂ρe

∂t
+ ∇ · Je = 0, (11)

∇2E − 1

c2

∂2

∂t2
E = μ0

∂

∂t
Je + 1

ε0
∇ρe, (12)

∇2B − 1

c2

∂2

∂t2
B = −μ0∇ × Je. (13)

Therefore, in addition to the conventional Maxwell’s equa-
tions, the spinorial Maxwell equation also compactly de-
scribes the physics related to the conservation of the electric
four-current density [29]. If the hypothetical magnetic charge
and current densities were added in the theory through substi-
tuting them in the zero elements of the charge-current spinor
in Eq. (1), the conservation law of the magnetic four-current
density would also follow.

D. Potential spinor

For the Lagrangian formulation of QED using the present
spinorial notation, to be presented in Sec. VI, we next provide
the spinorial representation of the four-potential. The elec-
tromagnetic four-potential is a four-vector Aa = (φe/c, A),
where φe is the electric scalar potential and A is the vector
potential. Apart from constant prefactors, the potential spinor
� is constructed from the components of Aa = (φe/c, A) in
the same way as the charge-current spinor is made of the
components of the electric four-current density Ja

e = (cρe, Je )
as presented in Eq. (1). Consequently, we write � as

� =
√

ε0

2

⎡⎢⎢⎣
0

cA
φe

0

⎤⎥⎥⎦. (14)
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Then, operating on this spinor by the operator −γa
B∂a, we

obtain

−γa
B∂a� =

√
ε0

2

⎡⎢⎢⎢⎢⎣
0

−∇φe − ∂
∂t A

c∂aAa

ic∇ × A

⎤⎥⎥⎥⎥⎦
∂aAa→0−−−−→

√
ε0

2

⎡⎢⎢⎣
0
E
0

icB

⎤⎥⎥⎦ = �. (15)

Here we have used the conventional expressions of the fields
in terms of the vector and scalar potentials, given by E =
−∇φe − ∂

∂t A and B = ∇ × A [29]. Equation (15) shows that
the four-potential can be used to construct the electromagnetic
spinor � by the operator −γa

B∂a when the Lorenz gauge
condition ∂aAa = 0 is satisfied. Otherwise, the fifth compo-
nent of the electromagnetic spinor would be nonzero as seen
from Eq. (15). This would violate the property of all elec-
tromagnetic spinors to be eigenstates of the spin operator
squared, having a well-defined spin of S = 1, as presented in
Sec. V A. Note the fact that the Lorenz gauge condition does
not determine the four-potential uniquely since there are re-
maining degrees of freedom corresponding to gauge functions
which satisfy the wave equation. This is called residual gauge
symmetry [93]. If the Coulomb gauge condition ∇ · A = 0 is
used, then the Lorenz gauge condition must be simultaneously
satisfied. This means that we must separately have the time
derivative of the scalar potential equal to zero. If the electric
and magnetic fields are transverse, we can set the scalar po-
tential to zero, and with this further condition, the Coulomb
gauge is called the radiation gauge [29].

From the perspective of the four-potential, the formulation
of the spinorial photon equation can be seen as follows: The
wave equation of the four-potential in the Lorenz gauge is
given by ∂a∂aAb = μ0Jb

e . To transform this equation to an
equation for the potential spinor, we use Ab and Jb

e to form
spinors � and � according to Eqs. (1) and (14). Thus, the
wave equation of the four-potential is rewritten as

∂a∂a� = �. (16)

To transform this equation into a first-order partial differential
equation for the electromagnetic spinor �, we write the wave
operator as I8∂

a∂a = (−γa
B∂a)2. Thus, the left-hand-side of

the wave equation of the potential spinor in Eq. (16) is rewrit-
ten as ∂a∂a� = (−γa

B∂a)2� = −γa
B∂a�, where we have used

Eq. (15). Thus, from Eq. (16), we obtain

−∂a∂a� = γa
B∂a� = −�. (17)

This equation is equivalent to the spinorial Maxwell equa-
tion in Eq. (2).

E. Left-handed and right-handed spinor components
and the fifth gamma matrix

In analogy to the Dirac theory [1], the electromagnetic
spinor can be projected onto its left-handed and right-handed

chiral components �L and �R as

�L = I8 − γ5
B

2
�, �R = I8 + γ5

B

2
�. (18)

The components �L and �R are eigenstates of γ5
B with

eigenvalues ±1 as γ5
B�L = −�L and γ5

B�R = �R. The fifth
gamma matrix γ5

B is the chirality operator, and it is defined
in terms of the other gamma matrices by the relation γ5

B =
i

4!εabcdγ
a
Bγb

Bγc
Bγd

B = iγ0
Bγx

Bγ
y
Bγ z

B, where εabcd is the four-
dimensional Levi-Civita symbol. This relation is of the same
form as the corresponding relation for conventional Dirac
gamma matrices [1]. The matrix γ5

B anticommutes with the
other gamma matrices as {γ5

B, γa
B} = 0 and commutes with

the Lorentz transformation matrices that will be presented
in Sec. III. For massless particles, such as for photons in
the present case, the chirality is equivalent to the helicity
divided by h̄ [1]. For the definition of the helicity operator,
see Sec. IV B. For further discussion of the helicity-chirality
equivalence, see Appendix A. As will be shown in Sec. VIII,
γ5

B plays a fundamental role in the definition of the gener-
ating Lagrangian density of gravity and its special unitary
symmetry.

F. Eight-spinor adjoint

Next, we define the eight-spinor adjoints of the electromag-
netic and charge-current spinors and any other eight-spinors.
In analogy to the Dirac adjoint ψ̄ = ψ†γ0

F of Dirac spinors
ψ , we define the eight-spinor adjoints in terms of the timelike
gamma matrix and the Hermitian conjugates of the spinors.
For the electromagnetic spinor, we thus write

�̄ = �†γ0
B. (19)

The eight-spinor adjoints of other eight-spinor quantities are
obtained by similar relations. For a generic 8 × 8 matrix H,
the corresponding adjoint is defined as H̄ = γ0

BH†γ0
B. The

eight-spinor adjoint can be used to write the local scalar prod-
uct for two arbitrary eight-spinors. Each of the spinors can be
an electromagnetic spinor, charge-current spinor, or any other
eight-spinor. As an example, using the electromagnetic spinor
symbols �1 and �2, the local scalar product is written as

�̄1�2 = �
†
1γ0

B�2. (20)

A fundamental property of the local scalar product in Eq. (20)
is that, for two electromagnetic spinors, �̄1�2 transforms as
a Lorentz scalar between inertial frames, which is not the
case for �

†
1�2. Thus, the local scalar product of eight-spinors

in Eq. (20) highlights the fundamental analogy between the
present eight-spinor theory of the electromagnetic field and
the Dirac theory of the electron-positron field. In previ-
ous constructions of wave-function-like concepts for photons
or representations of the electromagnetic field in general
[14,30,45,48], such a transparent analogy is not typically ob-
servable. However, the previous six-component representation
of the wave-function-like quantity for the electromagnetic
field [64,67,68] can be seen to be analogous to the Dirac the-
ory, but it neither possess all properties of the present theory,
such as the presentation of all Maxwell’s equations by a single
equation.

032224-5



MIKKO PARTANEN AND JUKKA TULKKI PHYSICAL REVIEW A 109, 032224 (2024)

G. Algebraic properties of the Lorentz generators and sigma
and gamma matrices

The Lorentz boost and rotation generators Ki
boost and

Ki
rot in Eqs. (5) and (6) satisfy the commutation rela-

tions [Ki
boost, K j

boost] = −εi jkKk
rot, [Ki

rot, K j
rot] = εi jkKk

rot, and
[Ki

rot, K j
boost] = εi jkKk

boost, where εi jk is the three-dimensional
Levi-Civita symbol. The Lorentz Lie algebra relations and the
presentation of the Lorentz transformations in terms of the
Lorentz generators are discussed in Sec. III.

The sigma matrices σ i
B in Eq. (4) are Hermitian, in-

volutory, and unitary satisfying σx
Bσx

B = σ
y
Bσ

y
B = σz

Bσz
B =

−iσx
Bσ

y
Bσz

B = I4. Their determinants are equal to unity as
Det(σ i

B) = 1 and their traces are zero as Tr(σ i
B) = 0. The

eigenvalues of each σ i
B are ±1. The commutation and an-

ticommutation relations of the sigma matrices are given by
[σ i

B, σ
j
B] = 2iεi jkσ

k
B and {σ i

B, σ
j
B} = 2δi jI4, where δi j is the

Kronecker delta. Apart from the sign of the determinants of
σ i

B, these relations correspond to the relations of the Pauli
matrices in the conventional 2 × 2-dimensional case.

In analogy to the Dirac theory, the timelike gamma ma-
trix γ0

B is Hermitian and the spacelike gamma matrices
γx

B, γ
y
B, and γ z

B are anti-Hermitian. The gamma matrices
are generators of the gamma group G1,3 [94]. Furthermore,
the gamma matrices satisfy the anticommutation relation
{γa

B, γb
B} = 2ηabI8, where ηab is the Minkowski metric tensor

with signature (+,−,−,−). The conventional Dirac gamma
matrices are well known to satisfy the corresponding rela-
tion {γa

F, γ
b
F} = 2ηabI4 [1]. This is the defining relation of a

Dirac algebra, which is a Clifford algebra C�1,3(C) over the
four-dimensional Minkowski space-time. Therefore, in spite
of being 8 × 8 matrices, the present bosonic gamma matrices
share the same group-theoretical and algebraic properties with
the conventional 4 × 4 gamma matrices of the Dirac theory.
One particularly useful relation to note is γa†

B = γ0
Bγa

Bγ0
B. To

preserve the forms of the electromagnetic and charge-current
spinors in Eq. (1) in terms of their component fields in all
inertial frames, the present theory follows the convention that
the spinors transform under Lorentz transformations and the
gamma matrices are constant having the same form in all
inertial frames [43].

III. LORENTZ AND POINCARÉ TRANSFORMATIONS
AND INVARIANTS

In the present theory, there are two types of Lorentz trans-
formations for eight-spinors: the Lorentz transformation of
spinors generated by four-vectors, called four-vector spinors,
such as the charge-current spinor and the potential spinor;
and the Lorentz transformation of spin-1 field spinors, such
as the electromagnetic spinor. These transformations preserve
the forms of the electromagnetic and charge-current spinors
in Eq. (1) and the potential spinor in Eq. (14) in all inertial
frames. The transformations are analogous to the Lorentz
transformation of Dirac spinors in their construction through
the Lorentz generators in a way that they differ from the
Lorentz transformation of four-vectors. For completeness, the
Lorentz transformation of the conventional spin-1/2 Dirac
field spinors is also presented. In addition, we construct the
Lorentz transformation of spin-2 fields, which can be pre-

sented using 8 × 8 matrices in the present theory [60]. The
Lorentz transformations are described in detail in the sec-
tions below. In the last three sections, we present the com-
plete Lorentz transformations of fields, which involve the
transformations of the coordinate arguments; the Poincaré
transformations, which also involve space-time translations;
and the construction of Lorentz invariants.

A. Lorentz transformation of four-vectors

We start with the conventional Lorentz transformation of
four-vectors. In terms of the generators of the proper or-
thochronous Lorentz group SO+(1,3) in Eqs. (5) and (6),
the Lorentz boost of four-vectors is given by �boost (ζ) =
exp(−ζ · Kboost ) and the spatial rotation of four-vectors is
given by �rot (θ) = exp(θ · Krot ), where ζ = (ζx, ζy, ζz ) =
arctan(v/c)v/|v| is the rapidity vector, in which v is the boost
velocity, and θ = (θx, θy, θz ) is the axis-angle vector [29].
The total combined Lorentz transformation of four-vectors
is given by �(ζ, θ) = exp(−ζ · Kboost + θ · Krot ), where
Kboost = (Kx

boost, Ky
boost, Kz

boost ) and Krot = (Kx
rot, Ky

rot, Kz
rot ).

A more compact presentation of the full Lorentz transfor-
mation involving both a boost and rotation is obtained by
substituting the components of the rapidity and axis-angle
vectors in an antisymmetric Lorentz parameter matrix �ab,
given by

�ab =

⎡⎢⎢⎢⎢⎣
0 −ζx −ζy −ζz

ζx 0 θz −θy

ζy −θz 0 θx

ζz θy −θx 0

⎤⎥⎥⎥⎥⎦, (21)

and combining the representation of the Lorentz generators in
Eqs. (5) and (6) by defining [95]

(Kab)c
d = ηacδb

d − ηbcδa
d . (22)

For different values of indices c and d , this expression gives
matrices corresponding to the Lorentz generators in Eqs. (5)
and (6). Using Eq. (22), one can show that the generators
Kab obey the Lorentz Lie algebra relations, [Kab, Kcd ] =
ηbcKad − ηacKbd + ηad Kbc − ηbd Kac, and the Lorentz trans-
formation of four-vectors is given by [95]

� = exp
(

1
2�abKab

)
. (23)

Using this Lorentz transformation matrix, a four-vector X
transforms between inertial frames as X ′ = �X . For boosts,
the real-valued Lorentz transformation matrix � in Eq. (23) is
symmetric, i.e., � = �T . For SO(3) rotations, it is orthogonal,
i.e., ��T = I4.

B. Lorentz transformation of four-vector spinors

The commutator of the boost parts of the bosonic gamma
matrices determines the Lorentz transformation of eight-
component four-vector spinors, such as the charge-current
spinor in Eq. (1) and the potential spinor in Eq. (14). With this
commutator, we define 8 × 8 antisymmetric matrices �ab

L , the
generators of Lorentz transformations on four-vector spinors,
as

�ab
L = [

γa
B,boost, γ

b
B,boost

]
. (24)
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The boost parts γa
B,boost of the gamma matrices are determined

through Eq. (3) with σ i
B replaced by Ki

boost and I4 replaced by
1
2 I4. The generators �ab

L obey the Lorentz Lie algebra rela-
tions, [�ab

L , �cd
L ] = ηbc�ad

L − ηac�bd
L + ηad�bc

L − ηbd�ac
L .

Under the Lorentz transformation, four-vector spinors
transform as �′ = �L�, where the 8 × 8 transformation ma-
trix �L is in analogy to Eq. (23) given by

�L = exp
(

1
2�ab�

ab
L

)
. (25)

The appearance of the Lorentz parameter matrix �ab in
Eq. (25) ensures that this transformation is a manifestation
of the same Lorentz transformation as presented for four-
vectors in Eq. (23). For boosts, the Lorentz transformation
matrix �L in Eq. (25) is Hermitian, i.e., �L = �†

L. For SO(3)
rotations, it is unitary, i.e., �L�†

L = I8. In analogy to the
Dirac theory [1], using the identity γ0

B�†
Lγ0

B = �−1
L , for the

Lorentz transformation of �̄ = �†γ0
B, we obtain �̄′ = �̄�−1

L .
Thus, �L preserves the scalar product in Eq. (20) for arbitrary
four-vector spinors �1 and �2 as �L�1�L�2 = �̄1�2.

The consistency of the Lorentz transformation of our
eight-component four-vector spinors in Eq. (25) can be
straightforwardly verified by observing that it reproduces
the conventional Lorentz transformation of the electric four-
current density, when it is used to transform a generic
charge-current spinor of the form in Eq. (1).

C. Lorentz transformation of spin-1/2 field spinors

The commutator of the conventional fermionic gamma
matrices determines the Lorentz transformation of spin-1/2
field spinors, i.e., the Dirac spinors. With this commutator,
one defines antisymmetric spin matrices �ab

F , the generators
of Lorentz transformations on spin-1/2 field spinors as [1]

�ab
F = 1

4

[
γa

F, γ
b
F

]
. (26)

The generators �ab
F obey the Lorentz Lie algebra relations,

[�ab
F , �cd

F ] = ηbc�ad
F − ηac�bd

F + ηad�bc
F − ηbd�ac

F .
Under the Lorentz transformation, spin-1/2 field spinors

ψ transform as ψ ′ = �Fψ , where the 4 × 4 transformation
matrix �F is in analogy to Eq. (23) given by [1]

�F = exp
(

1
2�ab�

ab
F

)
. (27)

Again, the appearance of the Lorentz parameter matrix �ab

in the transformation in Eq. (27) ensures that this transforma-
tion manifests the same Lorentz transformation for spin-1/2
field spinors as was defined for four-vectors in Eq. (23). For
boosts, the Lorentz transformation matrix �F in Eq. (27) is
Hermitian, i.e., �F = �†

F. For SO(3) rotations, it is unitary,
i.e., �F�

†
F = I4. Using the identity γ0

F�
†
Fγ

0
F = �−1

F , for the
Lorentz transformation of ψ̄ = ψ†γ0

F, we obtain ψ̄ ′ = ψ̄�−1
F

[1]. Thus, �F preserves the scalar product ψ̄1ψ2 for arbitrary
Dirac spinors ψ1 and ψ2 as �Fψ1�Fψ2 = ψ̄1ψ2.

D. Lorentz transformation of spin-1 field spinors

The commutator of the rotational parts of the bosonic
gamma matrices determines the Lorentz transformation of
electromagnetic spinors or any other spinors corresponding
to a spin-1 field. With this commutator, we define 8 × 8

antisymmetric spin matrices �ab
S , the generators of Lorentz

transformations on spin-1 field spinors as

�ab
S = [

γa
B,rot, γ

b
B,rot

]
. (28)

The rotational parts γa
B,rot of the gamma matrices are de-

termined through Eq. (3) with σ i
B replaced by iKi

rot and I4

replaced by 1
2 I4. The generators �ab

S obey the Lorentz Lie al-
gebra relations, [�ab

S , �cd
S ] = ηbc�ad

S − ηac�bd
S + ηad�bc

S −
ηbd�ac

S .
Under the Lorentz transformation, spin-1 field spinors

transform as � ′ = �S�, where the 8 × 8 transformation ma-
trix �S is in analogy to Eqs. (23), (25), and (27) and is given
by

�S = exp
(

1
2�ab�

ab
S

)
. (29)

Again, the appearance of the Lorentz parameter matrix �ab in
the transformation in Eq. (29) ensures that this transformation
is a manifestation of the same Lorentz transformation for
spin-1 field spinors as was defined for four-vectors in Eq. (23).
For boosts, the Lorentz transformation matrix �S in Eq. (29)
is Hermitian, i.e., �S = �†

S. For SO(3) rotations, it is unitary,
i.e., �S�

†
S = I8. In analogy to the Dirac theory [1], using the

identity γ0
B�†

Sγ
0
B = �−1

S , for the Lorentz transformation of
�̄ = �†γ0

B, we obtain �̄ ′ = �̄�−1
S . Thus, �S preserves the

local scalar product in Eq. (20) for arbitrary electromagnetic
spinors �1 and �2 as �S�1�S�2 = �̄1�2.

The consistency of the Lorentz transformation in Eq. (29)
for our eight-component spin-1 field spinors can be straight-
forwardly verified by observing that it reproduces the con-
ventional Lorentz transformation of the electric and magnetic
fields, when it is used to transform a generic electromagnetic
spinor of the form in Eq. (1).

E. Lorentz transformation of spin-2 fields

The commutator of the full bosonic gamma matrices de-
termines the Lorentz transformation of spin-2 fields, which
can be presented using 8 × 8 matrices in the present theory
[60]. With this commutator, we define 8 × 8 antisymmetric
matrices �ab

J , the generators of Lorentz transformations on
spin-2 fields as

�ab
J = 1

4

[
γa

B, γb
B

]
. (30)

The generators �ab
J obey the Lorentz Lie algebra relations,

[�ab
J , �cd

J ] = ηbc�ad
J − ηac�bd

J + ηad�bc
J − ηbd�ac

J .
Under the Lorentz transformation, a tensor field H trans-

forms as H′ = �JH�−1
J , where the 8 × 8 transformation

matrix �J is in analogy to Eqs. (23), (25), (27), and (29) given
by

�J = exp
(

1
2�ab�

ab
J

)
. (31)

The appearance of the Lorentz parameter matrix �ρσ in the
transformation in Eq. (31) ensures that this transformation is a
manifestation of the same Lorentz transformation for gamma
matrices as was defined for four-vectors and other spinors
above. For boosts, the Lorentz transformation matrix �J in
Eq. (31) is Hermitian, i.e., �J = �†

J . For SO(3) rotations, it is
unitary, i.e., �J�

†
J = I8. Using the identity γ0

B�†
J γ

0
B = �−1

J ,
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for the Lorentz transformation of H̄ = γ0
BH†γ0

B, we obtain
H̄′ = �JH̄�−1

J .
For a general Lorentz transformation, using the gamma

matrix algebra, it can be verified that the operation of �J

on the matrix product of two arbitrary complex-conjugated
gamma matrices is invariant as �Jγ

a∗
B γb∗

B �−1
J = γa∗

B γb∗
B . Sim-

ilarly, we have �Jγ
5∗
B γa∗

B γb∗
B �−1

J = γ5∗
B γa∗

B γb∗
B . From this

relation, it follows that the representation of a spin-2 tensor
field as a linear combination of the symmetry transform gener-
ators in the special unitary symmetry studied in Sec. VIII B is
invariant. This observation is utilized in the Yang-Mills gauge
theory of unified gravity that we elaborate in a separate work
in Ref. [60]. It is known that a massless spin-2 field can be
associated with gravity [96]. Therefore, due to the connection
to gravity, we call the Lorentz transformation �J the Lorentz
transformation of spin-2 fields. However, since spin-2 fields
are invariant with respect to �J as briefly mentioned above,
�J does not represent an actual transformation of such fields.

F. Complete Lorentz transformations
of space-time-dependent fields

In the case of fields that are functions of space-time,
when performing the Lorentz transformations, it is nec-
essary to transform the vector or spinor components of
the fields, as discussed above, and also to reexpress the
space-time-coordinate arguments of the functions via the co-
ordinates of the transformed frame using �−1. In the cases of
the space-time-dependent four-vector field X (x), four-vector-
spinor field �(x), spin-1/2 field spinor ψ (x), spin-1 field
spinor �(x), and the spin-2 field H(x), in the Minkowski
space-time with x = (ct, x, y, z)T , we then have

X ′(x) = �X (�−1x), (32)

�′(x) = �L�(�−1x), (33)

ψ ′(x) = �Fψ (�−1x), (34)

� ′(x) = �S�(�−1x), (35)

H′(x) = �JH(�−1x)�−1
J . (36)

For infinitesimal Lorentz transformations, the relations above
give

X ′(x) =
(

I4 + 1

2ih̄
�abĴab

K

)
X (x), (37)

�′(x) =
(

I8 + 1

2ih̄
�abĴab

L

)
�(x), (38)

ψ ′(x) =
(

I4 + 1

2ih̄
�abĴab

F

)
ψ (x), (39)

� ′(x) =
(

I8 + 1

2ih̄
�abĴab

S

)
�(x). (40)

H′(x) =
(

I8 + 1

2ih̄
�abĴab

J

)
H(x). (41)

Here we have defined the total angular-momentum tensor
operators, the generators of the complete infinitesimal Lorentz
transformations of the pertinent fields, as

Ĵab
K = L̂ab

4 + ih̄Kab, (42)

Ĵab
L = L̂ab

8 + ih̄�ab
L , (43)

Ĵab
F = L̂ab

4 + ih̄�ab
F , (44)

Ĵab
S = L̂ab

8 + ih̄�ab
S , (45)

Ĵab
J = L̂ab

8 . (46)

The operators L̂ab
n = −ih̄In(Kab)c

d xd∂c are the orbital
angular-momentum tensor operators that arise from the
Lorentz transformations of the function arguments. The latter
terms are the spin angular-momentum tensor operators, given
in terms of the vector-space Lorentz generator matrices of the
pertinent fields discussed above. The total angular-momentum
tensor operators in Eqs. (42)–(46) satisfy the Lorentz Lie
algebra relations [95]

[Ĵab, Ĵcd ] = ih̄(ηbcĴad − ηacĴbd + ηad Ĵbc − ηbd Ĵac). (47)

The orbital and spin angular-momentum tensor operators
commute with each other and separately satisfy the Lorentz
Lie algebra relations similar to Eq. (47). For a more detailed
discussion of the angular-momentum operators of the electro-
magnetic spinor field, see Sec. IV below. Equations (37)–(41)
show that the total angular-momentum tensor operators are
the generators of the infinitesimal Lorentz transformations
involving the transformations of the coordinate arguments of
the fields.

G. Poincaré transformations

The Poincaré transformations, also called inhomogeneous
Lorentz transformations, in the Minkowski space-time consist
of the Lorentz transformation and a translation of coordinates
with an arbitrary constant four-vector a = (a0, ax, ay, az )T and
b = �a as [95,96]

x′ = �x + b ⇔ x = �−1x′ − a. (48)

For the Poincaré transformations of the space-time-dependent
fields of different types, we then have

X ′(x) = �X (�−1x − a), (49)

�′(x) = �L�(�−1x − a), (50)

ψ ′(x) = �Fψ (�−1x − a), (51)

� ′(x) = �S�(�−1x − a). (52)

H′(x) = �JH(�−1x − a)�−1
J . (53)

The infinitesimal Poincaré transformations are given by

X ′(x) =
(

I4 + i

h̄
aaP̂a

4 + 1

2ih̄
�abĴab

K

)
X (x), (54)

�′(x) =
(

I8 + i

h̄
aaP̂a

8 + 1

2ih̄
�abĴab

L

)
�(x), (55)
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ψ ′(x) =
(

I4 + i

h̄
aaP̂a

4 + 1

2ih̄
�abĴab

F

)
ψ (x), (56)

� ′(x) =
(

I8 + i

h̄
aaP̂a

8 + 1

2ih̄
�abĴab

S

)
�(x), (57)

H′(x) =
(

I8 + i

h̄
aaP̂a

8 + 1

2ih̄
�abĴab

J

)
H(x). (58)

Here P̂a
n = ih̄In∂

a are the four-momentum operators that will
be discussed in Sec. IV C below. The terms dependent on
P̂a

n originate from the space-time translation. Thus, P̂a
n can

be called translation generators. The complete infinitesimal
Poincaré transformations are, thus, generated by P̂a

n and the to-
tal angular-momentum tensor operators of the pertinent fields.
The Poincaré algebra is the Lie algebra of the Poincaré group.
It is a Lie algebra extension of the Lorentz Lie algebra. The
commutation relations of the Poincaré Lie algebra are given
by [95]

[P̂a, P̂b] = 0, (59)

[Ĵab, P̂c] = ih̄(ηbcP̂a − ηacP̂b), (60)

[Ĵab, Ĵcd ] = ih̄(ηbcĴad − ηacĴbd + ηad Ĵbc − ηbd Ĵac). (61)

From Eq. (59), it is seen that the momentum operators P̂a

represent a commutative subalgebra of the Poincaré algebra.
Using the Lie theorem, this implies that the space-time trans-
lations form an Abelian subgroup of the Poincaré group. The
commutation relation of the total angular-momentum tensor
operators in Eq. (61) is equivalent to the Lorentz Lie algebra
relation in Eq. (47).

H. Lorentz invariants

Next, we briefly describe how the Lorentz invariant scalars
and pseudoscalars can be constructed from fields of different
types. As a space-time-dependent quantity, a pseudoscalar
behaves like a scalar, except that it changes sign under a
parity transformation [1]. For the parity transformation, see
Sec. V D. A four-vector X a produces a scalar by a contraction
with itself as X aXa, e.g., in the case of the electric four-current
density we have Ja

e�Je�a = c2ρ2
e� − J2

e�. A four-vector spinor
�� produces a scalar by a product with the eight-spinor ad-
joint as �̄���, e.g., in the case of the charge-current spinor
we have �̄��� = −μ0

2 Ja
e�Je�a = μ0

2 (J2
e� − c2ρ2

e�). A spin-
1/2 field spinor ψ produces a scalar by a product with the
Dirac adjoint as ψ̄ψ and a pseudoscalar through the use of the
fermionic fifth gamma matrix as iψ̄γ5

Fψ [1]. The imaginary
unit factor has been chosen to make the expression Hermitian.
Correspondingly, a spin-1 field spinor �� produces a scalar by
a product with the eight-spinor adjoint as �̄��� and a pseu-
doscalar through the use of the bosonic fifth gamma matrix as
i�̄�γ5

B��. In the case of the electromagnetic spinor, we have

�̄��� = − 1

4μ0
FabF ab = 1

2

(
ε0E2

� − 1

μ0
B2

�

)
, (62)

i�̄�γ5
B�� = 1

4μ0
FabF̃ ab = −ε0cE� · B�. (63)

In Eqs. (62) and (63), F ab is the electromagnetic tensor, which
is given in terms of the four-potential and the corresponding

electric and magnetic fields as [29,97]

F ab = ∂aAb
� − ∂bAa

�

=

⎡⎢⎢⎢⎢⎣
0 −Ex

�/c −Ey
�/c −Ez

�/c

Ex
�/c 0 −Bz

� By
�

Ey
�/c Bz

� 0 −Bx
�

Ez
�/c −By

� Bx
� 0

⎤⎥⎥⎥⎥⎦. (64)

The dual electromagnetic field tensor F̃μν in Eq. (63) is de-
fined as [29]

F̃μν = 1

2
εμνρσ Fρσ =

⎡⎢⎢⎢⎢⎣
0 −Bx

� −By
� −Bz

�
Bx

� 0 Ez
�/c −Ey

�/c

By
� −Ez

�/c 0 Ex
�/c

Bz
� Ey

�/c −Ex
�/c 0

⎤⎥⎥⎥⎥⎦.

(65)

The Lorentz scalar in Eq. (62) is equal to the well-known
Lagrangian density of the electromagnetic field discussed in
Sec. VI below. The pseudoscalar in Eq. (63) emerges as
an important quantity in the context of QED low-energy
effective-field theories [98,99]. It is also used in the context
of dual electromagnetism [100].

IV. QUANTUM OPERATORS IN THE FIRST
QUANTIZATION

In this section, we determine the key quantum-mechanical
operators for electromagnetic spinors given in Eq. (1). These
operators are in the literature called the operators in the first
quantization. For the quantum field of many photons, one
will need the corresponding second quantization operators
described in Sec. VII.

A. Hamiltonian operator

By defining the 8 × 8 matrices αi
B = γ0

Bγ i
B and βB = γ0

B,
the associated vector αB = (αx

B,α
y
B,αz

B), and the momen-
tum operator p̂ = −ih̄∇, the spinorial Maxwell equation in
Eq. (2), corresponding to Maxwell’s equations in Eqs. (7)–
(10), can be written as

cαB · p̂� − ih̄cβB� = ih̄
∂�

∂t
. (66)

Here the time derivative has been separated to the right-hand
side. For nonzero charge-current spinors �, the spinorial
Maxwell equation in Eq. (66) is not of the conventional form
of a time-dependent wave equation of a particle. However,
for external field components or for the total field in the
absence of charges and currents, we can write the spinorial
Maxwell equation in Eq. (66) as an explicit time-dependent
wave equation in the conventional form, given by

Ĥ� = ih̄
∂�

∂t
. (67)

Here the electromagnetic field Hamiltonian operator Ĥ is
simply obtained from the first term of Eq. (66) as

Ĥ = cαB · p̂. (68)
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The form of the spinorial Maxwell equation in Eq. (67) corre-
sponds to an electromagnetic field propagating in vacuum, and
it is analogous to the corresponding equation for free particles
in the Dirac theory [85]. However, note that, in the present
theory, the square of the electromagnetic spinor describes the
electromagnetic energy density expectation value, while the
square of the Dirac spinor describes the probability density
of the Dirac fermions. For narrow-frequency-band spinorial
electromagnetic wave-packet states, the probability density
can be defined as discussed in Sec. V C.

B. Scalar and three-vector quantum operators

Next, we consider other relevant quantum-mechanical op-
erators and their commutation relations. We start with the
most trivial operator, which is the photon number operator that
is, by definition, an identity operator for single-photon states
as

n̂ = 1. (69)

The single-photon number operator naturally commutes with
all other operators defined for single-photon states.

Then, we write the conventional energy and momentum
operators corresponding to the pertinent classical quantities.
The energy operator Ê and the momentum operator p̂, also
used in Eqs. (66)–(68) above, are given by [40,101]

Ê = ih̄
∂

∂t
, (70)

p̂ = −ih̄∇. (71)

With space and time coordinates, the energy and momen-
tum operators satisfy the well-known commutation relations
[ri, p̂ j] = ih̄δi j , [t, Ê ] = −ih̄, [ri, Ê ] = 0, and [t, p̂i] = 0.
The energy operator Ê and the momentum operator com-
ponents p̂i commute with each other and with the Hamilto-
nian operator as [Ê , p̂i] = 0, [ p̂i, p̂ j] = 0, [Ê , Ĥ ] = 0, and
[ p̂i, Ĥ ] = 0. The commutation relation between the position
and the Hamiltonian operator is given by [r, Ĥ ] = ih̄cαB.

The angular momentum is the rotational analog of linear
momentum. As conventional in quantum mechanics, the total
angular-momentum operator Ĵ is defined as a sum of the
orbital angular-momentum operator L̂ and the spin angular-
momentum operator Ŝ as [40,101]

Ĵ = L̂ + Ŝ. (72)

The orbital angular-momentum operator is the quantum-
mechanical counterpart of the classical angular momentum. It
follows from the classical definition of the angular momentum
as a cross product between the position and momentum vec-
tors of a particle by replacing the classical momentum with the
momentum operator in Eq. (71) [40,101]. With an additional
multiplication by an identity matrix, the components of the
orbital angular-momentum operator are matrices, given by

L̂i = −ih̄I8(r × ∇)i. (73)

For light beams, the orbital angular momentum is known to
be associated with helical wave fronts following from a phase
proportional to the azimuthal angle [18,56,57,102–104].

As known for spin-1/2 particles, the spin angular-
momentum operator has in general no classical counterpart.

It is generally a purely quantum-mechanical property related
to elementary particles. The spin angular-momentum operator
depends on the type of the elementary particle as it operates in
the internal vector space associated with the elementary par-
ticle. In the present formulation of electromagnetic spinors,
the components of the spin angular-momentum operator are
matrices given by

Ŝi =
[

ih̄Ki
rot 0

0 ih̄Ki
rot

]
. (74)

Even though the spin has in general no classical counterpart,
for the electromagnetic field, the spin is known to be related
to the polarization of light [57,102,105,106].

The orbital and spin angular-momentum operators satisfy
the conventional commutation relations, given by [L̂i, L̂ j] =
ih̄εi jkL̂k , [Ŝi, Ŝ j] = ih̄εi jk Ŝk , and [L̂i, Ŝ j] = 0. For the en-
ergy, momentum, and position operators, the commutation
relations are given by [L̂i, Ê ] = 0, [Ŝi, Ê ] = 0, [L̂i, p̂ j] =
ih̄I8εi jk p̂k , [Ŝi, p̂ j] = 0, [L̂i, r j] = ih̄I8εi jkrk , and [Ŝi, r j] =
0. In the same way as in the Dirac theory [107], the spin
and orbital angular-momentum operators do not commute
with the Hamiltonian operator. Their commutation relations
with the Hamiltonian operator in Eq. (68) are given by
[L̂, Ĥ ] = ih̄cαB × p̂ and [Ŝ, Ĥ ] = −ih̄cαB × p̂. Thus, the to-
tal angular-momentum operator Ĵ in Eq. (72) commutes with
the Hamiltonian operator as [Ĵ, Ĥ ] = 0. The total angular-
momentum operator satisfies the same commutation relations
as the orbital and spin angular-momentum operators, given by
[Ĵi, Ĵ j] = ih̄εi jk Ĵk .

By their definition, it is seen that the spin and orbital
angular-momentum operators commute with each other, but
neither of them commutes with the Hamiltonian operator. This
implies that they cannot be independently constants of motion
simultaneously with energy. Unlike in the case of the Dirac
electron-positron field in an external electromagnetic field
[30], it is not possible to define a separate interaction energy
for the coupling of the spin and orbital angular momenta of
light. The interaction of magnetic momenta related to orbital
and spin angular momenta of an electron is best understood
in the nonrelativistic limit, which cannot be taken for the
electromagnetic field.

In this section, we rely on the definition of the spin
and orbital angular-momentum operators in the conven-
tional first-quantized quantum mechanics of particles. Thus,
our approach is analogous to the Dirac theory before the
quantization of the field resulting in the many-particle pic-
ture. In previous literature, there are several classical and
quantum field formulations of the spin and orbital angu-
lar momenta of light in terms of the electric, magnetic
and vector-potential fields and the corresponding operators
[54,56,57,103,108,109]. These approaches are not directly
comparable to the first-quantized operators of this sec-
tion since they are based on the many-photon picture obtained
in the second quantization. Such a picture is obtained also
in the present theory after the quantization of the field as
presented in Sec. VII. Detailed comparison of the present
theory with the extensive previous literature on the spin and
orbital angular momenta of light is a topic of a separate work.
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Related to the energy and momentum operators, it is con-
venient to define the orbital-boost-momentum operator N̂
[100,110–113]. This operator is needed in the determination
of the orbital angular-momentum tensor operator as presented
in the next section. The components of N̂ are defined as matrix
operators, given by

N̂i = I8

(
Ê

c2
ri − p̂it

)
. (75)

From the commutation relations of the energy and momentum
operators, it follows that the orbital-boost-momentum
operator satisfies the commutation relations [N̂i, Ê ] =
ih̄I8 p̂i, [N̂i, p̂ j] = ih̄I8δi j Ê/c2, [N̂i, N̂ j] = −ih̄εi jkL̂k/c2,
[N̂i, L̂ j] = ih̄εi jkN̂k , [N̂i, r j] = ih̄I8δi jt , [N̂i, t] = ih̄I8ri/c2,
and [N̂, Ĥ ] = ih̄αBÊ/c.

For use in the determination of the spin angular-momentum
tensor operator in the next section, we define the spin-boost-
momentum operator N̂ . The components of N̂ are defined as
matrix operators, given by

N̂ i = −γ5
BŜi/c. (76)

It follows that the spin-boost-momentum operator satisfies the
commutation relations [N̂ i, N̂ j] = ih̄εi jk Ŝk/c2, [N̂ i, Ŝ j] =
ih̄εi jkN̂ k , and [N̂ , Ĥ ] = ih̄γ5

BαB × p̂. These relations are
analogous to the commutation relations of the orbital-boost-
momentum operator above.

The helicity operator is defined as the projection of the
spin angular-momentum operator along the direction of the
momentum, and it is written as [1,30,40,101,114]

ĥ = Ŝ · p̂
|p| . (77)

By studying the action of the helicity operator in Eq. (77) on
electromagnetic spinors, it is found that the helicity operator
divided by h̄ swaps the upper and lower four components of
the electromagnetic spinors. This corresponds to the action
of the chirality operator γ5

B discussed in Sec. II E. The corre-
spondence ĥ/h̄ ↔ γ5

B for electromagnetic spinors is discussed
further, in the case of photon states, in Appendix A. The
helicity operator commutes with the Hamiltonian operator as
[ĥ, Ĥ ] = 0.

C. Four-vector and tensor quantum operators

The energy and momentum operators in Eqs. (70) and (71)
are components of the four-momentum operator P̂a whose
contravariant form is given by

P̂a = ih̄I8∂
a = ih̄I8η

ab∂b = (I8Ê/c, I8p̂). (78)

The four-vector corresponding to an eigenvalue of the four-
momentum operator in Eq. (78) can be transformed between
inertial frames using the conventional Lorentz transformation
of four-vectors discussed in Sec. III A. Together with the
total angular-momentum tensor operator, discussed below, the
four-momentum operator in Eq. (78) satisfies the Poincaré Lie
algebra relations in Eqs. (59)–(61).

The components of the angular momentum do not form
a four-vector [96,115]. Therefore, it is useful to form a ten-
sor operator, through which the components of the angular

momentum can be transformed between inertial frames by
using the Lorentz transformation of this tensor. Consequently,
the relativistic orbital angular momentum is defined as a
tensor operator L̂ab that is different from the three-vector
operator L̂, whose components are given in Eq. (73). This
second-rank antisymmetric tensor operator, called the orbital
angular-momentum tensor operator, also includes components
of the boost-momentum operator N̂ in Eq. (75), and, in anal-
ogy to the relativistic structure of the corresponding classical
quantity [115], with x = (ct, x, y, z)T , it is given by

L̂ab = −ih̄I8(Kab)c
d xd∂c = xaP̂b − xbP̂a

=

⎡⎢⎢⎢⎢⎢⎣
0 −cN̂x −cN̂y −cN̂z

cN̂x 0 L̂z −L̂y

cN̂y −L̂z 0 L̂x

cN̂z L̂y −L̂x 0

⎤⎥⎥⎥⎥⎥⎦. (79)

The corresponding expressions for the components of L̂ab are
given by L̂i0 = cN̂i, L̂0i = −cN̂i, and L̂i j = εi jkL̂k .

Similarly, the relativistic spin angular momentum is de-
fined as a tensor operator Ŝab, which is different from the
three-vector operator Ŝ, whose components are given in
Eq. (74). This second-rank antisymmetric tensor operator is
made of generators �ab

S of the Lorentz transformation on
electromagnetic spinors, given in Eq. (28). This is analogous
to the case of the spin angular momentum in the Dirac theory
[1]. Accordingly, the spin tensor operator Ŝab is given by

Ŝab = ih̄�ab
S =

⎡⎢⎢⎢⎢⎢⎣
0 −icN̂ x −icN̂ y −icN̂ z

icN̂ x 0 Ŝz −Ŝy

icN̂ y −Ŝz 0 Ŝx

icN̂ z Ŝy −Ŝx 0

⎤⎥⎥⎥⎥⎥⎦.

(80)

The operator Ŝab is antisymmetric. All the component matri-
ces can be expressed in terms of the components Ŝi of the
three-vector spin operator in Eq. (74) as Ŝi0 = icN̂ i, Ŝ0i =
−icN̂ i, and Ŝi j = εi jk Ŝk . These relations are of the same
form as the corresponding relations in the Dirac theory [1].
The appearance of the spin-boost-momentum operators in the
definition of the spin tensor operator in Eq. (80), in analogy
to the Dirac theory, strongly indicates that the present spino-
rial formulation of the theory is necessary for the consistent
determination of the relativistic spin structure of light.

The total angular-momentum tensor operator is a sum of
the orbital angular-momentum tensor operator in Eq. (79) and
the spin tensor operator in Eq. (80) as

Ĵab = L̂ab + Ŝab = xaP̂b − xbP̂a + Ŝab. (81)

This relation is again analogous to the corresponding relation
in the Dirac theory [1]. Equation (81) is equivalent to Eq. (45)
with Ĵab = Ĵab

S and L̂ab = L̂ab
8 . Again, note that, together with

the four-momentum operator in Eq. (78), the total angular-
momentum tensor operator in Eq. (81) satisfies the Poincaré
Lie algebra relations in Eqs. (59)–(61).
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D. Density operators

For systematic calculation of density expectation values
of quantum operators, we present an arbitrary first-quantized
density operator ρ̂Ô corresponding to the pertinent first-
quantized operator Ô as

ρ̂Ô(r, r′) = 1
2 {Ô(r′), δ(r − r′)}. (82)

The argument r indicates the position at which the density
is calculated and r′ is the coordinate of the field. The anti-
commutator is necessary in Eq. (82) for obtaining real-valued
density expectation values in the case of operators that do not
commute with the position operator. Equation (82) is justified
by the physically meaningful results obtained for the density
expectation values in Sec. V B and for the second-quantized
density operators in Sec. VII B.

As an example of the use of the first-quantized density
operator in Eq. (82), we study the number density. Substitut-
ing the trivial single-photon number operator from Eq. (69)
into Eq. (82) gives the single-photon number density operator
as ρ̂n̂(r, r′) = δ(r − r′) [116]. Thus, for the first-quantized
number-density expectation value, we obtain

ρ
(M)
n̂ (r) =

∫
�†(r′)ρ̂n̂(r, r′)�(r′)d3r′∫

�†(r′)�(r′)d3r′

= �†(r)�(r)∫
�†(r′)�(r′)d3r′ . (83)

The superscript (M) is used to indicate that the expectation
value density is calculated for the Maxwell electromagnetic
spinor field. Equation (83) shows that the number density of
first-quantized electromagnetic field is simply equal to the
squared norm of the electromagnetic spinor normalized by the
volume integral of the same quantity. The state must be nor-
malizable for Eq. (83) to be well-defined. Equation (83) is in
accordance with Born’s probability interpretation of the wave
function [117]. Since the photon number of single-photon
states is fixed to one, according to the uncertainty principle
of the photon number and the phase [61], there is complete
lack of the knowledge of the phase of the photon state. For the
number density and other density expectation values in the
second-quantization picture, see Sec. VII.

V. SPINORIAL PHOTON EIGENSTATES

In this section, we present selected well-known special
cases of photon eigenstates in the spinorial formulation of
the electromagnetic field. To be able to define the second-
quantized electromagnetic field, we need a complete set of
solutions of the free-field spinorial Maxwell equation in
Eq. (67), which we call photon spinors. Eigenvalue equa-
tions of quantum operators, presented below, cannot be
satisfied for the electromagnetic spinor in Eq. (1) if it is
made of classical real-valued fields. Therefore, the eigenvalue
equations of quantum operators require the determination
of complex-valued photon spinors. The real-valued physi-
cal quantities are recovered in this formalism as expectation
values.

Complete sets of complex-valued photon spinors are con-
veniently given in the plane-wave and spherical state bases.
Their mathematical forms are presented in Appendix A. These

sets describe a transverse electromagnetic radiation field. In
contrast with the conventional vector-potential eigenstates, the
photon spinors remain transverse in the Lorentz transforma-
tion defined in Sec. III. In other words, these sets are closed
under the action of the Lorentz group. Therefore, photon
spinors avoid the gauge dependence problem of the conven-
tional vector-potential eigenstates. The radiation gauge is not
Lorentz invariant, so each inertial coordinate system requires
its own gauge condition.

A. Eigenvalues of physical observables in the plane-wave
and spherical-state bases

When the field is an eigenstate of the energy, momentum,
and helicity operators, we obtain the following set of eigen-
value equations of commuting observables, written as

Ŝ2�k,q = h̄2S(S + 1)�k,q,

Ĥ�k,q = Ê�k,q = h̄ωk�k,q,

p̂�k,q = h̄k�k,q,

ĥ�k,q = h̄q�k,q. (84)

Here S = 1 is the spin quantum number, k is the wave
vector, ωk = c|k|, and q = ±1 is the helicity quantum num-
ber. We call the photon spinors �k,q plane-wave states. One
can produce identical photons corresponding to plane-wave
states given in Eq. (84) and measure any of the quantum
numbers ωk, k, and q. In repeated measurements, one then
always obtains the same results. Thus, these quantum num-
bers refer to physical quantities, which are constants of
motion.

As presented in Appendix A, the spinor �k,q is formed
from the complex-valued normalized plane-wave electric and
magnetic-field amplitudes Ek,q and Bk,q [39] corresponding
to Eq. (1) as �k,q = [0,Ek,q, 0, iBk,q]T . The operator Ŝ2 =
Ŝ2

x + Ŝ2
y + Ŝ2

z , formed using the operators for the components
of the spin in Eq. (74), is a diagonal matrix whose first
and fifth diagonal elements are zero and its eigenvalue cor-
responds to S = 1. As briefly mentioned in the context of
the definition of the electromagnetic spinor in Eq. (1), this
corresponds to the property of all electromagnetic and photon
spinors to be eigenstates of Ŝ2 with the first and fifth spinor
components being zero. Together with this condition, from the
free-field spinorial Maxwell equation in Eq. (67), it follows
that the field must be transverse and the helicity eigenvalues
correspond to the helicity quantum number q = 1 for right-
handed circular polarization and q = −1 for the left-handed
circular polarization.

Correspondingly, when the field is an eigenstate of the
energy operator, and the square and z component of the total
angular-momentum operator, we obtain

Ŝ2�ω,J,M = h̄2S(S + 1)�ω,J,M ,

Ĥ�ω,J,M = Ê�ω,J,M = h̄ω�ω,J,M,

Ĵ2�ω,J,M = h̄2J (J + 1)�ω,J,M,

Ĵz�ω,J,M = h̄M�ω,J,M . (85)

032224-12



QED BASED ON AN EIGHT-DIMENSIONAL SPINORIAL … PHYSICAL REVIEW A 109, 032224 (2024)

We call these photon spinors spherical states. As presented
in Appendix A, using the definition of the electromag-
netic spinor in Eq. (1), we can write �ω,J,M using the
well-known normalized complex-valued spherical electric
and magnetic-field amplitudes Eω,J,M and Bω,J,M [30] as
�ω,J,M = [0,Eω,J,M, 0, iBω,J,M]T .

Both sets of quantum numbers, (k, q) and (ω, J, M ),
considered above, unambiguously specify the quantum
state of the photon. Accordingly, both (Ŝ2, Ĥ , Ê , p̂, ĥ) and
(Ŝ2, Ĥ , Ê , Ĵ2, Ĵz ) are complete sets of mutually commuting
operators [118]. Furthermore, the photon spinors correspond-
ing to the latter set can be split into two linearly independent
parts associated with the electric and magnetic multipoles of
the multipole expansion of the electromagnetic field [29,30].
This will be discussed in Appendix A.

B. Density expectation values

Next, we consider the density expectation values for eigen-
states of the Hamiltonian operator, which are complex-valued
spinors as discussed above. We assume that the state is
normalizable as 1

2

∫
�†�d3r = h̄ω, where ω is the angular

frequency of the field. To fulfill this normalization condition,
we must take a narrow-frequency-band superposition of the
spinorial photon states in Eq. (84) or (85). This is because
the eigenstates of the Hamiltonian operator in Eq. (68) do not
vanish sufficiently rapidly at infinity and are, thus, only nor-
malizable with respect to the Dirac delta function as presented
in Appendix A. Accordingly, we use the narrow-frequency-
band plane-wave wave-packet state, defined as

�k0,q =
∫

u(k, k0)�k,qd3k,

u(k, k0) =
exp

(− (kx−k0x )2

2(�k0x )2 − (ky−k0y )2

2(�k0y )2 − (kz−k0z )2

2(�k0z )2

)
(
√

2π )3�k0x�k0y�k0z

. (86)

Here k = (kx, ky, kz )T is the component representation of the
wave vector, k0 = (k0x, k0y, k0z )T is the central wave vector of
the wave packet, and �k0i are the standard deviations of the
wave-vector components, which satisfy �k0i/|k0| � 1, with
|k0| = ω/c. Without this narrow-frequency-band wave-packet
approximation, the probability density cannot be defined for
photons using a wave-function-like picture. This is discussed
in previous literature [30,45–47,50–52].

Since the narrow-frequency-band superposition in Eq. (86)
is a solution of the free-field spinorial Maxwell equa-
tion in Eq. (67), we can understand the first-principles
quantum-mechanics-based spinor in Eq. (86) also as a
complex-valued electromagnetic spinor of Eq. (1), given by
�k0,q = √

ε0/2[0, Ek0,q, 0, icBk0,q]T . Omitting the subscripts
k0 and q for brevity, we obtain the density expectation values
for selected key quantum operators, given by

ρ
(M)
n̂ =

∫
�†ρ̂n̂�d3r′∫
�†�d3r′ = �†�∫

�†�d3r′ = �†�

2h̄ω
= ρ

(M)
Ĥ

h̄ω

= 1

4h̄ω

(
ε0|E|2 + 1

μ0
|B|2

)
, (87)

ρ
(M)
Ĥ

=
∫

�†ρ̂Ĥ�d3r′∫
�†�d3r′ = �†Ĥ�∫

�†�d3r′ = �†�

2
= h̄ωρ

(M)
n̂

= 1

4

(
ε0|E|2 + 1

μ0
|B|2

)
, (88)

ρ
(M)
p̂ =

∫
�†ρ̂p̂�d3r′∫
�†�d3r′ = 1

2

�†p̂� − (p̂�†)�∫
�†�d3r′

= 1

4ω
Im

[
ε0E∗ · (∇)E + 1

μ0
B∗ · (∇)B

]
, (89)

ρ
(M)
L̂

=
∫

�†ρ̂L̂�d3r′∫
�†�d3r′ = 1

2

�†L̂� − (L̂�†)�∫
�†�d3r′ = r × ρ

(M)
p̂

= 1

4ω
r × Im

[
ε0E∗ · (∇)E + 1

μ0
B∗ · (∇)B

]
, (90)

ρ
(M)
Ŝ

=
∫

�†ρ̂Ŝ�d3r′∫
�†�d3r′ = �†Ŝ�∫

�†�d3r′

= 1

4ω
Im

[
ε0E∗ × E + 1

μ0
B∗ × B

]
, (91)

ρ
(M)
ĥ

=
∫

�†ρ̂ĥ�d3r′∫
�†�d3r′ = �†ĥ�∫

�†�d3r′

= c

4ω2
Re

[
ε0E∗ · (∇ × E) + 1

μ0
B∗ · (∇ × B)

]
= ε0c

2ω
Im(B∗ · E). (92)

Boldface is used for the density operators and density ex-
pectation values of vector quantities. Similar relations apply
to the narrow-frequency-band wave-packet states based on
the spherical photon states. All density expectation values in
Eqs. (87)–(92) are approximately independent of time since
they are given for an approximate eigenstate of the energy
operator. If the energy eigenstate is also an approximate
eigenstate of the momentum operator, which is the case with
the narrow-frequency-band plane-wave wave-packet state in
Eq. (86), the density expectation values are additionally
approximately independent of the position. The results in
Eqs. (87)–(92) are seen to be consistent with previous liter-
ature [70,71], as expected.

When comparing the energy density expectation value in
Eq. (88) to the well-known energy density of classical field,
one must account for the complete lack of knowledge of the
phase of photon spinors and their narrow-frequency-band ap-
proximations. In Eq. (88), the phase information is lost in the
squares of the absolute values of the complex-valued fields.
Thus, the density expectation value of energy in Eq. (88)
corresponds to the expression of the energy density of a
classical time-harmonic field averaged over the harmonic cy-
cle as discussed in Sec. II A. The lack of phase information
applies similarly to the other density expectation values in
Eqs. (87)–(92). Applying the eight-spinor formalism to co-
herent quantum states, which include the phase information
and can only be described through the second quantization,
discussed in Sec. VII, is beyond the scope of the present
work.
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C. Photon probability current four-vector

Next, we consider the photon probability current four-
vector Iν

M = (ρ (M)
n̂ , jM/c) for eigenstates of the Hamiltonian

operator. Again, we effectively assume the normalizabil-
ity of a narrow-frequency-band wave-packet state, given by
1
2

∫
�†�d3r = h̄ω. The quantity jM is the conventional prob-

ability current three-vector. The time component ρ
(M)
n̂ of the

photon probability current four-vector is equal to the photon
probability density in Eq. (87) as

ρ
(M)
n̂ = �†�

2h̄ω
= 1

4h̄ω

(
ε0|E|2 + |B|2

μ0

)
. (93)

The fundamental relation between the photon probability den-
sity ρ

(M)
n̂ and the probability current jM is given by

d

dt

∫
V

ρ
(M)
n̂ d3r = −

∫
V

∇ · jMd3r = −
∫

∂V
jM · dS. (94)

This equation is required to apply to an arbitrary volume V
and its boundary ∂V .

Next, we elaborate an expression for the photon probability
current three-vector jM in terms of the photon spinor. First, we
write the Hamiltonian operator in Eq. (68) as

Ĥ = cαB · p̂ = −ih̄cγ0
Bγ i

B∂i. (95)

The dynamical equations for the photon spinor and its conju-
gate transpose are then given by

Ĥ� = ih̄
∂�

∂t
= −ih̄cγ0

Bγ i
B∂i�, (96)

�†Ĥ = ih̄
∂�†

∂t
= −ih̄c∂i�

†γ0
Bγ i

B. (97)

Using these equations, the partial time derivative of �†� is
written as

∂

∂t
(�†�) = ∂�†

∂t
� + �† ∂�

∂t

= −c(∂i�
†)γ0

Bγ i
B� − c�†γ0

Bγ i
B(∂i� )

= −∂i
(
c�†γ0

Bγ i
B�

)
= −∂i

(
c�̄γ i

B�
)
. (98)

For eigenstates of the Hamiltonian operator, the photon energy
h̄ω is constant. Therefore, we can place 2h̄ω as the numerator
inside the derivatives of Eq. (98) so that the left-hand side
corresponds to the partial time derivative of the photon prob-
ability density in Eq. (93). Thus, we obtain

∂ρ
(M)
n̂

∂t
= ∂

∂t

(
�†�

2h̄ω

)
= −∂i

(
c�̄γ i

B�

2h̄ω

)
= −∇ · jM, (99)

where the components of the probability current three-vector
jM are, thus, given by

ji
M = c�̄γ i

B�

2h̄ω
. (100)

Furthermore, in terms of the electric and magnetic-field ampli-
tudes, we can write the photon probability current three-vector
as

jM = ε0c2

2h̄ω
Re(E∗ × B). (101)

Thus, the spatial components of the probability current four-
vector are equal to the components of the Poynting vector of
a classical time-harmonic field averaged over the harmonic
cycle and normalized by the photon energy.

Using Eqs. (93) and (100), the photon probability current
four-vector for photon spinors is then given by

Ia
M = (

ρ
(M)
n̂ , jM/c

) = �̄γa
B�

2h̄ω
. (102)

The covariance of this representation can be verified for plane-
wave states, discussed in Sec. V, by checking that the Lorentz
transformation of spinors and the angular frequency gives
the same result as the direct Lorentz transformation of the
probability current four-vector as �a

bIb
M = 1

2h̄ω′ �S�γa
B�S�,

where ω′ is the Doppler-shifted angular frequency. The
Lorentz transformations are discussed in more detail in
Sec. III.

In the case of spherical photon states, discussed in Sec. V,
it is important to note that these states when transformed to
another inertial frame are no longer eigenstates of the energy
operator in the transformed inertial frame. This is because
the field components propagating in different directions ex-
perience different Doppler shifts. Thus, the angular frequency
of a spherical state is not a global state parameter in the
transformed inertial frame. Therefore, Eq. (102) cannot be
applied to spherical states in transformed inertial frames.

We find that the probability current three-vector in
Eq. (101) is related to the momentum and spin-density ex-
pectation values in Eqs. (89) and (91) as

jM = c2

h̄ω

(
ρ

(M)
p̂ + 1

2
∇ × ρ

(M)
Ŝ

)
= c2

2h̄ω

�†p̂� − (p̂�†)� + ∇ × (�†Ŝ�)∫
�†�d3r

. (103)

In nonrelativistic quantum mechanics of spinless particles
with a rest mass m0, a formula equivalent to Eq. (103) is well
known to give the probability current of the particle. In this
case, the photon energy h̄ω is replaced by the rest mass energy
m0c2 and the spin term is dropped out [119,120]. In the case
of Dirac fermions, the momentum operator is replaced by the
corresponding components of the gauge-covariant momen-
tum operator containing a dependence on the electromagnetic
four-potential, and the coefficient of the spin term is different
by the electron-spin g factor [121]. The four-vector general-
ization of the relation in Eq. (103) is given by

Ia
M = c

2h̄ω

�†P̂a� − (P̂a�†)� + ∂b(�†Ŝab�)∫
�†�d3r

. (104)

Here P̂a is the four-momentum operator in Eq. (78) and
Ŝab is the spin tensor operator in Eq. (80). Equations above
strongly indicate that, assuming the narrow-frequency-band
wave packet approximation, the photon spinor of the present
work can be used as an equally consistent wave-function-like
concept as the electron wave function of the Dirac theory.
The obvious difference comes from changing the number of
particles in the system since any single-photon state over-
laps in energy scale with an infinite number of many-photon
states. No such overlapping takes place in the case of Dirac
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fermions at low energies. For Dirac fermions, one must cre-
ate a particle-antiparticle pair, which has a large threshold
energy of 2mec2, where me is the electron rest mass. The
photon spinor representation of the effective wave function
for narrow-frequency-band wave-packet states and Eqs. (102)
and (104) enable discovering photon-particle form similarities
that are not equally obvious in the conventional four-potential-
based formulation of QED.

D. Charge-parity-time symmetry

The CPT symmetry is the combined charge-conjugation
(C), parity (P), and time-reversal (T) symmetry that is ob-
served to be an exact symmetry of the laws of nature. It
is formed by discrete Lorentz transformations [4,122]. Elec-
tromagnetic interaction is known to satisfy each of these
symmetries separately. Here we limit our study to the trans-
formation properties of photon spinors. Another part of the
CPT symmetry is the transformation of the derivatives in the
equations of motion, which we do not consider here. We
define the time-reversal T̂ , parity P̂, and charge-conjugation
Ĉ transformations of photon spinors as

T̂ �(t, r) = �(−t, r), (105)

P̂�(t, r) = �(t,−r), (106)

Ĉ�(t, r) = ηcC�̄T (t, r). (107)

Here C is the charge-conjugation matrix and ηc is a phase
factor. Since photons are their own antiparticles, the charge-
conjugation matrix does not change the particle type when it
operates on photon spinors. Instead, for photon spinors, it is
related to the inversion of the angular momentum. Accord-
ingly, for plane-wave photon states, the charge-conjugation
matrix operates on the spinor components so that the helicity
is inverted as

Ĉ�k,q(t, r) = −�̄T
k,−q(t, r). (108)

For spherical photon states, the charge-conjugation matrix
inverts the angular momentum z component as

Ĉ�
(η)
ω,J,M (t, r) = (−1)J+M+δη,m�̄

(η)T
ω,J,−M (t, r). (109)

General photon spinors do not remain unchanged in each
of the three symmetry transformations in Eqs. (105)–(107)
separately, but the combination of the three symmetry trans-
formations preserves photon spinors unchanged as

ĈP̂T̂ �(t, r) = �(t, r). (110)

This means that photon spinors satisfy the CPT symmetry.
Equation (110) is straightforward to verify by using the ex-
plicit expressions of the plane-wave and spherical photon state
spinors, given in Appendix A.

VI. QED LAGRANGIAN DENSITY AND
EULER-LAGRANGE EQUATIONS

In this section, we investigate the derivation of the present
spinorial electromagnetic theory from the Lagrangian den-
sity. Thus, we follow the conventional approach of deriving
field theories. There are formal differences in our spinorial

representation compared with the conventional four-potential-
based QED, but the resulting theory is equivalent to the
conventional QED as discussed in more detail below.

A. Lagrangian density of QED

Here we present the conventional Lagrangian density of
the coupled system of the electromagnetic field and the Dirac
field. It will be given in terms of the potential spinor �� in
Eq. (14) and the Dirac electron-positron field ψ since the in-
teraction between the electromagnetic field and the Dirac field
is known in terms of the four-potential and the direct represen-
tation in terms of the electric and magnetic fields is unknown.
The conventional four-potential is a real-valued quantity and
described by a Hermitian operator in QED [1,30]. Therefore,
here we use the real-valued form �� of the potential spinor.
The definition of the Dirac field requires no quantization and
the Lagrangian density is called the Lagrangian density of
QED as a historical artifact. The second quantization is de-
scribed in Sec. VII below.

Using our spinor notation, the derivation of the the-
ory below differs from the conventional four-potential-based
derivation, even though the resulting dynamical equations are
equivalent. The conventional formulation of the complete
QED Lagrangian density starting from the Lagrangian density
of the free Dirac field is briefly described in Appendix B. The
conventional QED Lagrangian density LQED is written in the
eight-spinor notation as

LQED = LQED,D + LQED,M + LQED,DM

= ih̄c

2
ψ̄ (γ̄F �D − �DγF)ψ − mec2ψ̄ψ + �̄���,

LQED,D = ih̄c

2
ψ̄ (γ̄F�∂ − �∂γF)ψ − mec2ψ̄ψ,

LQED,M = �̄��� = �̄� �∂aγ
a
Bγb

B
�∂b�� = − 1

4μ0
FabF ab,

LQED,DM = �̄��� + �̄��� = ge

2
ψ̄ (γ̄F�� + �̄�γF)ψ

= −Ja
e�A�a. (111)

Here LQED,D is the Lagrangian density of the free Dirac field
and LQED,M is the Lagrangian density of the free Maxwell
electromagnetic field. The Lagrangian density LQED,DM de-
scribes the minimal-coupling interaction between the Dirac
and electromagnetic fields. The quantity ge = qe

√
2/ε0 in

Eq. (111) is the electric coupling constant of the present the-
ory, where qe = ±e is the electric charge of the particle with
e being the elementary charge. The Dirac field is normalized
so that ψ†ψ corresponds to the number density. The vector
arrows above symbols in Eq. (111) indicate the direction in
which the differential operators operate. We have defined the
eight-spinor electromagnetic-gauge-covariant derivative oper-
ator �D and its adjoint �D as

�D = �∂ − ige

h̄c
�� = [0, �Dx, �Dy, �Dz,− �D0, 0, 0, 0]T ,

�D = �∂ + ige

h̄c
�̄� = [0, �Dx, �Dy, �Dz, �D0, 0, 0, 0]. (112)
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Here the well-known electromagnetic-gauge-covariant deriva-
tive of the Dirac field is given by [1]

�Da = �∂a + i
qe

h̄
A�a, �Da = �∂a − i

qe

h̄
A�a. (113)

The eight-spinor partial differential operator �∂ , its adjoint
�∂ , the four-vector-type eight-spinor γF, made of the Dirac

gamma matrices, its adjoint γ̄F, and the eight-spinor timelike
unit vector e8 and its adjoint spinor ē8, for use in Sec. VIII,
are given by

�∂ = [0, �∂x, �∂y, �∂z,−�∂0, 0, 0, 0]T ,

�∂ = [0, �∂x, �∂y, �∂z, �∂0, 0, 0, 0],

γF = [
0, γx

F, γ
y
F, γ

z
F, γ

0
F, 0, 0, 0

]T
,

γ̄F = [
0, γ̄x

F, γ̄
y
F, γ̄

z
F,−γ̄0

F, 0, 0, 0
]
,

e8 = [0, 0, 0, 0, 1, 0, 0, 0]T ,

ē8 = [0, 0, 0, 0,−1, 0, 0, 0]. (114)

Here γ̄a
F = γ0

Fγ
a†
F γ0

F = γa
F. In the equality between the first

two forms of LDM in Eq. (111), we have used

�� = 1
2 geψ̄ (γF)ψ, �̄� = �

†
�γ0

B = 1
2 geψ̄ (γ̄F)ψ. (115)

These forms are obtained from the definition of the charge-
current spinor in Eq. (1) by using the well-known expression
of the four-current density in terms of the Dirac spinors,
given by Ja

e� = (cρe, Je�) = qecψ̄γa
Fψ [30]. In the last form

of LDM in Eq. (111), we have used the covariant form of
the electromagnetic four-potential, given by A�a = ηabAb

� =
(φe�/c,−A�).

B. Euler-Lagrange equations of the potential spinor field

When writing the Euler-Lagrange equations, the spinors
�� and �̄� are treated as independent dynamical variables.
The Euler-Lagrange equation of �̄� is given by

∂LQED

∂�̄�
− ∂a

[
∂LQED

∂ (∂a�̄�)

]
= 0. (116)

Using the Lagrangian density in Eq. (111), we obtain
∂LQED/∂�̄� = �� and ∂LQED/∂ (∂a�̄�) = γa

Bγb
B∂b��. Sub-

stituting these derivatives into Eq. (116), using ∂aγ
a
Bγb

B∂b =
I8∂

a∂a, and rearranging the terms, the Euler-Lagrange equa-
tions of motion become

∂a∂a�� = ��. (117)

Equation (117) is equal to the real part of the equation of the
potential spinor in Eq. (16). Using Eq. (17), we can see that
it is also equal to the spinorial Maxwell equation in Eq. (2).
Thus, the Lagrangian density in Eq. (111) enables a compact
derivation of the full set of Maxwell’s equations. In contrast,
in the conventional Lagrangian theory derivation of electro-
dynamics using the four-potential, one obtains only Gauss’s
law for electricity and the Ampère-Maxwell law directly from
the Euler-Lagrange equations [97,100,123]. Faraday’s law of
induction and Gauss’s law for magnetism are obtained from
the definition of the electromagnetic field tensor in terms of
the four-potential by using the Bianchi identity.

As a further consistency check, we investigate the
Euler-Lagrange equations for ��, which are identical to
Eq. (116) with �̄� replaced by ��. In this case, we have
∂LQED/∂�� = �̄� and ∂LQED/∂ (∂a��) = ∂b�̄�γb

Bγa
B. Sub-

stituting these derivatives into the Euler-Lagrange equation,
using ∂a∂b�̄�γb

Bγa
B = ∂a∂a�̄�, and rearranging the terms,

we obtain −∂a∂a�̄� = −�̄�. Using �̄� = �
†
�γ0

B and �̄� =
�

†
�γ0

B, we obtain −∂a∂a�
†
�γ0

B = −�
†
�γ0

B. Taking the con-
jugate transpose of this equation, multiplying the resulting
equation by γ0

B from the left, and rearranging the terms leads
to ∂a∂a�� = ��. This is equal to Eq. (117).

C. Euler-Lagrange equations of the Dirac field

Next, we consider dynamical equations of the Dirac field.
As conventional, we treat ψ and ψ̄ = ψ†γ0

F as independent
dynamical variables and write the Euler-Lagrange equa-
tions for ψ̄ as [1]

∂LQED

∂ψ̄
− ∂a

[
∂LQED

∂ (∂aψ̄ )

]
= 0. (118)

Using the Lagrangian density in Eq. (111) with the identi-
ties γ̄F�∂ = γa

F
�∂a and �∂γF = �∂a γa

F, we obtain ∂LQED/∂ψ̄ =
i
2 h̄cγa

F∂aψ − mec2ψ + 1
2 ge(γ̄F�� + �̄�γF)ψ and ∂LQED/

∂ (∂aψ̄ ) = − i
2 h̄cγa

Fψ . Substituting these derivatives into
Eq. (118), the Euler-Lagrange equations of motion become

ih̄cγa
F∂aψ − mec2ψ + 1

2 ge(γ̄F�� + �̄�γF)ψ = 0. (119)

Using the relation 1
2 ge(γ̄F�� + �̄�γF) = −qecγa

FA�a, and
the definition of the electromagnetic-gauge-covariant deriva-
tive of the Dirac field in Eq. (113), we can write Eq. (119)
compactly as

ih̄cγa
F
�Daψ − mec2ψ = 0. (120)

In terms of the components of the four-potential A�μ =
(φe�/c,−A�), momentum operator p̂, Dirac alpha and beta
matrices αi

F = γ0
Fγ

i
F and βF = γ0

F, and the associated vector
αF = (αx

F,α
y
F,α

z
F), Eq. (120) can be further rewritten as

Ĥψ = ih̄
∂

∂t
ψ. (121)

Here the Hamiltonian operator Ĥ takes for the Dirac field the
form

Ĥ = cαF · (p̂ − qeA�) + βFmec2 + qeφe�I4. (122)

Equations (120)–(122) show that the dynamical equation of
the Dirac field is equivalent to the conventional minimally
coupled Dirac equation in the presence of interaction with the
electromagnetic field [30], as expected.

For checking the consistency, we derive the Dirac equa-
tion from the Euler-Lagrange equations for ψ , which
is identical to Eq. (118) with ψ̄ replaced by ψ . In
this case, we have ∂LQED/∂ψ = − i

2 h̄c∂aψ̄γa
F − mec2ψ̄ +

1
2 geψ̄ (γ̄F�� + �̄�γF) and ∂LQED/∂ (∂aψ ) = i

2 h̄cψ̄γa
F. Sub-

stituting these derivatives into the Euler-Lagrange equation,
we obtain −ih̄c∂aψ̄γa

F − mec2ψ̄ + 1
2 geψ̄ (γ̄F�� + �̄�γF).

Taking the conjugate transpose of this equation, using
ψ̄ = ψ†γ0

F, and multiplying the resulting equation by γ0
F
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from the left leads to ih̄cγ0
Fγ

a†
F γ0

F∂aψ − γ0
Fγ

0
Fmec2ψ +

1
2 geγ

0
F(γ̄F�� + �̄�γF)†γ0

Fψ . Using γ0
Fγ

a†
F γ0

F = γa
F, γ0

Fγ
0
F =

I8, and γ0
F(γ̄F�� + �̄�γF)†γ0

F = γ̄F�� + �̄�γF, we finally
obtain the Dirac equation in the form given in Eq. (119).

VII. SECOND QUANTIZATION OF SPINORIAL
ELECTROMAGNETIC FIELD

The goal of this section is to give the reader a concise idea
of how the definitions of the key quantum operators and their
matrix elements in the spinorial form transform into the perti-
nent quantities in the conventional QED. The quantization of
the electromagnetic spinor field form ��, made of real-valued
fields, follows trivially from the conventional QED [39]. It is
obtained by substituting the conventional Hermitian electric
and magnetic-field operators in places of the electric and mag-
netic fields in the electromagnetic spinor in Eq. (1). Similarly,
the charge-current spinor �� is quantized by substituting the
conventional Dirac field operator into Eq. (115) or the corre-
sponding components of the electric four-current density into
Eq. (1).

This section is devoted to the quantization of the complex-
valued electromagnetic spinor field form �. Since � is
complex valued, the corresponding operator is non-Hermitian
in analogy to the Dirac field operator. We demonstrate the us-
ability of the photon-spinor-field operator in the calculation of
the correct second-quantized operators of physical quantities
in a way analogous to the Dirac theory. We also compare the
single-photon states in the second quantization formalism to
the first-quantized spinorial photon eigenstates presented in
Sec. V and in Appendix A.

A. Photon-spinor-field operator

Following the conventional quantization procedure of
fields in the plane-wave basis [1,39], the photon-spinor-field
operator is given in the Heisenberg picture by

�̂ =
∑

q

∫
V

(2π )3

1√
2h̄ωk

�k,q(âk,q + â†
k,q )d3k. (123)

Here âk,q and â†
k,q are the conventional photon annihilation

and creation operators, respectively, and V is the quantization
volume. The operators âk,q and â†

k,q satisfy the well-known
bosonic commutation relations, given by

[âk,q, â†
k′,q′ ] = (2π )3

V
δq,q′δ(k − k′),

[âk,q, âk′,q′ ] = [â†
k,q, â†

k′,q′] = 0. (124)

For the action of the photon annihilation and creation op-
erators on photon states of the second quantization, see
Sec. VII C below.

We define the commutator of two field operators of the
form in Eq. (123) so that there is a scalar product between
the spinor terms �k,q, whence the commutator applies to the
annihilation and creation operators only. Consequently, since
the sum âk,q + â†

k,q is a Hermitian operator, the equal-time

commutation relations for �̂ and �̂† are all zero as

[�̂(r), �̂†(r′)] = [�̂(r), �̂(r′)] = [�̂†(r), �̂†(r′)] = 0.

(125)

It also follows that the operators �̂ (+) and �̂ (−), which are the
annihilation operator part of �̂ and the creation operator part
of �̂†, respectively, satisfy the canonical equal-time commu-
tation relations, given by

[�̂ (+)(r), �̂ (−)(r′)] = δ(r − r′),

[�̂ (+)(r), �̂ (+)(r′)] = [�̂ (−)(r), �̂ (−)(r′)] = 0. (126)

The photon-spinor-field operator in Eq. (123) can also
be expressed in the spherical state basis, presented in Ap-
pendix A. In this basis, it is written as

�̂ =
∑

J,M,η

∫ ∞

0

2V ω2

πc3
√

2h̄ω
�

(η)
ω,J,M

(
â(η)

ω,J,M + â(η)†
ω,J,M

)
dω. (127)

Here the quantum number J ranges from one to infinity, M
ranges from −J to J , and the state parameter η has values e
and m for the states associated with the electric and magnetic
multipoles of the multipole expansion of the electromagnetic
field [29,30].

The bosonic commutation relations of the photon annihi-
lation operators â(η)

ω,J,M and creation operators â(η)†
ω,J,M in the

spherical basis are given by[
â(η)

ω,J,M , â(η′ )†
ω′,J ′,M ′

] = πc3

2V ω2
δη,η′δJ,J ′δM,M ′δ(ω − ω′),[

â(η)
ω,J,M , â(η′ )

ω′,J ′,M ′
] = [

â(η)†
ω,J,M , â(η′ )†

ω′,J ′,M ′
] = 0. (128)

Another standard approach for the quantization of the
electromagnetic field is to use wave-packet states and the cor-
responding wave packet creation and annihilation operators
[39]. This approach to the quantization of � is also possible.

B. Second-quantized operators

Next, we define quantum operators for the electromag-
netic field in the second-quantized multiphoton picture. In
distinction to the operators in the first quantization, we denote
the second-quantized operators with an underline. Then, the
second-quantized operator Ô, which corresponds to an arbi-
trary first-quantized operator Ô, is given by

Ô =
∫

: �̂†Ô�̂ : d3r. (129)

Here the colons denote the conventional normal ordering of
operators, which removes the infinite constant term that oth-
erwise arises from the commutator of the annihilation and
creation operators [39].

Second-quantized operators obtain simple forms in the
eigenbasis of the pertinent first-quantized operators. There-
fore, as examples of second-quantized operators, we present
selected operators using the pertinent eigenbases. The opera-
tors are obtained by substituting the first-quantized pertinent
operators from Sec. IV and the photon-spinor-field operator
from either Eq. (123) or (127) into Eq. (129). Using the
normal ordering relations of bosonic operators, given as an ex-
ample in the plane-wave basis by : â†

k,qâk,q := â†
k,qâk,q = n̂k,q
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and : âk,qâ†
k,q := â†

k,qâk,q = n̂k,q, where n̂k,q = â†
k,qâk,q is the

single-mode number operator, after some algebra, we obtain
the conventional results

n̂ =
∑

q

∫
V

(2π )3 n̂k,qd3k =
∑

J,M,η

∫ ∞

0

2V ω2

πc3
n̂(η)

ω,J,Mdω,

(130)

Ĥ =
∑

q

∫
V

(2π )3 h̄ωkn̂k,qd3k

=
∑

J,M,η

∫ ∞

0

2V ω2

πc3
h̄ωn̂(η)

ω,J,Mdω, (131)

p̂ =
∑

q

∫
V

(2π )3 h̄kn̂k,qd3k, (132)

ĥ =
∑

q

∫
V

(2π )3 h̄qn̂k,qd3k, (133)

Ĵ2 =
∑

J,M,η

∫ ∞

0

2V ω2

πc3
h̄2J (J + 1)n̂(η)

ω,J,Mdω, (134)

Ĵz =
∑

J,M,η

∫ ∞

0

2V ω2

πc3
h̄Mn̂(η)

ω,J,Mdω. (135)

The second-quantized square of the spin operator is triv-
ially given by Ŝ2 = h̄2S(S + 1)n̂. The conventional results
in Eqs. (130)–(135) strongly indicate the correctness of the
present formalism since the results predicted by these conven-
tional operators agree with ample experimental evidence.

Note that first-quantized density operators defined through
Eq. (82) can also be used in place of Ô in Eq. (129).
Thus, Eq. (129) also defines the density operators in
the second-quantization picture. For example, using the
first-quantized number-density operator ρ̂n̂(r, r′) = δ(r − r′),
following from Eqs. (69) and (82), we then obtain the second-
quantized number density operator as

ρ̂n̂
(M ) =: �̂†�̂ : . (136)

In analogy to the Dirac theory, ρ̂n̂
(M ) is equal to the time

component of the number-density-current four-vector opera-
tor, which is given for photons by

Îμ
M =: ˆ̄�γ

μ
B�̂ : . (137)

Using Eq. (129) with the pertinent first-quantized den-
sity operators obtained through Eq. (82), we obtain the
second-quantized Hamiltonian, momentum, orbital angular
momentum, spin angular momentum, and helicity density op-
erators of the electromagnetic field as

ρ̂Ĥ
(M ) =: �̂†Ĥ�̂ :, (138)

ρ̂p̂
(M ) =: 1

2 [�̂†p̂�̂ − (p̂�̂†)�̂] :, (139)

ρ̂L̂
(M ) =: 1

2 [�̂†L̂�̂ − (L̂�̂†)�̂] :, (140)

ρ̂Ŝ
(M ) =: �̂†Ŝ�̂ :, (141)

ρ̂ĥ
(M ) =: �̂†ĥ�̂ : . (142)

The expectation values of these operators for second-
quantized single-photon states can be compared with the
first-quantized density expectation values in Eqs. (88)–(92).
This comparison is discussed in Sec. VII C below.

C. Photon states in the second quantization

The single-photon plane-wave Fock state is the momentum
eigenstate that is a continuum state written in the Heisenberg
picture in terms of the plane-wave photon states �k,q(t, r),
presented in Sec. V and in Appendix A, as

|1k,q〉 =
∫

�k,q(0, r)|r〉d3r. (143)

Similarly, we can write the single-photon spherical Fock state
in terms of the spherical photon states �

(η)
ω,J,M (t, r), presented

in Appendix A, as∣∣1(η)
ω,J,M

〉 =
∫

�
(η)
ω,J,M (0, r)|r〉d3r. (144)

As conventional, many-photon states are formed as symmetric
product states of the single-photon states. The direct sum of
all product states of different numbers of photons then forms
a Fock space.

In analogy to the standard QED, operating on a single-
mode plane-wave vacuum state |0k,q〉, the creation operator
â†

k,q creates a single-photon Fock state |1k,q〉 with a wave
vector k and the helicity quantum number q as |1k,q〉 =√

h̄ωkâ†
k,q|0k,q〉, and the annihilation operator âk,q annihilates

this state as âk,q|1k,q〉 = √
h̄ωk|0k,q〉. Correspondingly, the

operator �̂ (−) creates a single-photon state at position r as
�̂ (−)|0r〉 = |1r〉. The operator �̂ (+) annihilates this state as
�̂ (+)|1r〉 = |0r〉. Similar relations apply to spherical photon
states. The completeness relation for single-particle states is
given in the plane-wave and spherical state bases by [1]

1̂1 =
∑

q

∫
V

(2π )3

1

h̄ωk
|1k,q〉〈1k,q|d3k

=
∑

J,M,η

∫ ∞

0

2V ω2

πc3

1

h̄ω

∣∣1(η)
ω,J,M

〉〈
1(η)

ω,J,M

∣∣dω. (145)

This operator is an identity operator within the subspace of
single-particle states, and it is zero in the rest of the Hilbert
space.

It is interesting to compare the single-photon expecta-
tion values of the second-quantized density operators in
Eqs. (138)–(142) to the first-quantized density expectation
values in Eqs. (88)–(92). For simple comparison, we do not
form narrow-frequency-band wave-packet states here but use
the δ-function-normalized Fock states. As an example, for
the Hamiltonian density operator expectation value for the
single-photon plane-wave Fock state, we obtain

〈1k,q|ρ̂Ĥ |1k,q〉
〈1k,q|1k,q〉 = �

†
k,qĤ�k,q∫

�
†
k,q�k,qd3r

= h̄ωk

�
†
k,q�k,q∫

�
†
k,q�k,qd3r

.

(146)
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In the calculation, we have used 〈1k,q|â†
k′,q′ âk′′,q′′ |1k,q〉 =

h̄ωk[(2π )3/V ]2δq,q′δq′,q′′δ(k − k′)δ(k′ − k′′). The result of
Eq. (146) corresponds to the first-quantized Hamiltonian den-
sity expectation value in Eq. (88) if �k,q is used in Eq. (88).
Corresponding relations apply to other density operators.
Thus, the second-quantized expectation value densities for
single-photon states are equal to the first-quantized expec-
tation value densities as expected. The comparison of the
first-quantization and second-quantization density expectation
values shows that the electromagnetic spinor � is a rigorous
physical concept also in understanding single-photon states.

VIII. GENERATING LAGRANGIAN DENSITY OF
GRAVITY, SPECIAL UNITARY SYMMETRY, AND THE

STRESS-ENERGY-MOMENTUM TENSOR

In the sections above, we have presented how the conven-
tional QED is expressed in the eight-spinor formalism. Next,
we introduce the generating Lagrangian density of gravity
that plays, in the definition of the gauge theory of gravity
[60], a similar role as the conventional Lagrangian density
of the free Dirac field plays in the definition of the gauge
theory of QED [1,4,124]. The generating Lagrangian density
of gravity is associated with a special unitary symmetry of
the quantum fields in the standard model, and it enables an
elegant derivation of the symmetric SEM tensors as described
in detail in the sections below. The Yang-Mills gauge theory
of unified gravity that follows is presented in a separate work
[60].

A. Generating Lagrangian density of gravity

As the starting point for defining the generating Lagrangian
density of gravity, we use the analogy with standard gauge
theory as it is applied in deriving the full QED from the
Lagrangian density of the free Dirac field, LQED,0 = LQED,D,
in Eq. (111). We have presented a concise summary of the
conventional gauge theory of QED in Appendix B. As shown
in Appendix B, the unitary transformation ψ → eiθψ with pa-
rameter θ and the electromagnetic-gauge-covariant derivative
�Da = �∂a + i qe

h̄ A�a in Eq. (113) generate from the Lagrangian
density LQED,0 the full QED. In Appendix B, we also show
that the variation of the generating Lagrangian density of
QED, δLQED,0 = − h̄

qe
Ja

e�∂aθ , is proportional to the electric
four-current density, which is the source term of the electro-
magnetic field.

Based on the known properties of gravitational interaction,
we must set certain conditions that we require the generating
Lagrangian density of gravity and the resulting full gauge
theory of unified gravity to satisfy:

(1) The theory must satisfy the global Lorentz invariance
and the general covariance, which means the form invari-
ance of physical laws under general differentiable coordinate
transformations. More strongly, we require diffeomorphism
invariance.

(2) The SEM tensor must act as the source term of the
gravitational field. It follows that the gravitational field is a
tensor gauge field in contrast with the vector gauge fields of
the standard model.

(3) Instead of the Abelian U(1) gauge theory of QED, we
must use the non-Abelian Yang-Mills gauge theory analogous
to the theories of weak and strong interactions [1,4,124]. This
is because four symmetry generators are needed for the de-
scription of the tensor gauge field.

(4) To enable unification of gravity with the fundamental
interactions of the standard model, the gauge theory of gravity
must be based on an internal special unitary symmetry or
subsymmetry of the quantum fields in the standard model.

(5) The theory must contain a new coupling constant gg,
called the coupling constant of unified gravity. The variation
of the generating Lagrangian density of gravity with respect
to the symmetry transformation parameters must be directly
proportional to the SEM tensor divided by gg.

(6) The gauge theory of gravity must enable writing
the dynamical equations for the gravitational field through
the Euler-Lagrange equations. The gravitational field equa-
tions must reproduce the experimentally verified predictions
of general relativity.

(7) Through the Euler-Lagrange equations, we must also
obtain the generalized equations of motion containing grav-
itational coupling for all the fundamental interactions of the
standard model [1,4,124]. In the Minkowski metric limit of
the gravitational gauge field, these equations must reproduce
the dynamical equations of the standard model.

The generating Lagrangian density of gravity can be seen
as the fundamental hypothesis of the theory that unifies the
standard model and gravity. All quantum fields of the standard
model can be included on equal footing, but, for simplicity,
here we present the theory using the Dirac electron-positron
field and the electromagnetic field only. In a process of trial
and error, we have heuristically ended up to the generating
Lagrangian density of gravity, given by

L0 =
[

h̄c

4gg
ψ̄

( �DĪgγ
5
Bγν

B
�∂νIgγF − γ̄F Īgγ

5
Bγν

B
�∂νIg �D)

ψ

+ imec2

2gg
ψ̄ ē8I†

gγ
5
Bγν

B
�∂ν Ī†

ge8ψ + mec2ψ̄ψ

+ i

gg
�̄�I†

gγ
5
Bγν

B
�∂ν Ī†

g�� + �̄���

]
√−g. (147)

Here g = det(gμν ) denotes the determinant of the metric ten-
sor gμν , whose definition in the present theory is discussed in
Ref. [60]. The gamma matrices with Greek indices are given
by γν

B = g ν
a γa

B, where g ν
a is the tetrad field that maps the

tangent space coordinates to general space-time coordinates
[125–127]. The first three terms inside the square brackets
of the generating Lagrangian density of gravity in Eq. (147)
describe the Dirac field. The last two terms describe the
electromagnetic field. The coupling between the Dirac and
electromagnetic fields is described through �D and �D. The
partial derivatives �∂ν in front of Ig and Ī†

g in Eq. (147) act on
Ig and do not extend to the spinors �� and ψ . In the present
work, we use Ig = I8 and leave the study of possible space-
time-dependent forms of Ig as a topic of further work. Since
Ig = I8 is a constant identity matrix, the terms �∂νIg and �∂ν Ī†

g
are actually identically zero. These terms become nonzero
after the partial derivatives �∂ν are replaced by gravitational-
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gauge-covariant derivatives as shown in the Yang-Mills gauge
theory of unified gravity in Ref. [60]. The terms �∂νIg and �∂ν Ī†

g
become nonzero also when the related space-time-dependent
symmetry transformation is carried out for Ig. This symmetry
transformation will be elaborated below.

B. SU(8)4D symmetry

While the theories of the electromagnetic, weak, and
strong interactions utilize U(1), SU(2), and SU(3) symmetries
[1,4,124], here we utilize a four-dimensional subsymmetry of
SU(8), defined below and denoted by SU(8)4D. In analogy
to the description of gauge symmetries in the conventional
quantum field theory [1,4,59,124], we consider the SU(8)4D

symmetry transformation under which the generating La-
grangian density in Eq. (147) is globally invariant and whose
space-time-dependent variation without introducing the gauge
field is related to the source term of the gauge field. In our
case, this source term is the SEM tensor, while in the case
of the U(1) symmetry of QED it is the electric four-current
density as briefly presented in Appendix B. The generating
Lagrangian density of gravity is invariant with respect to any
global, i.e., space-time-independent, symmetry transforma-
tion of Ig = I8, since such transformations do not make �∂νIg

and �∂ν Ī†
g nonzero. Thus, the generating Lagrangian density

of gravity is trivially globally invariant with respect to the
SU(8)4D symmetry.

The SU(8)4D symmetry differs from the U(1) symmetry of
the conventional QED: While the U(1) symmetry operates on
the Dirac field and generates the electromagnetic field as a
gauge field, the SU(8)4D symmetry operates through its influ-
ence on Ig on both the Dirac and electromagnetic fields and
generates the gravitational field as a gauge field. Such an op-
eration is necessary since gravity is known to affect all fields
and matter. Here we limit our study of the SU(8)4D symmetry
to its relation to the SEM tensors of the Dirac and electromag-
netic fields without introducing the gravitational gauge field.
The Yang-Mills gauge theory of unified gravity arising from
the SU(8)4D symmetry is studied in Ref. [60]. We define the
SU(8)4D symmetry transformation as

Ig → UIg, where U = exp (iφata). (148)

The symmetry transformation matrix U has determinant 1.
Thus, it is an element of the special unitary group SU(8). The
real-valued four-vector φa in Eq. (148) defines the symmetry
transformation parameters. The four transformation genera-
tors ta are constant traceless Hermitian matrices, given in
terms of the complex-conjugated bosonic gamma matrices
as ta = (γ0

Bγ5
Bγa

B)∗. The commutation relation of the gen-
erators is given by [ta, tb] = i f ab

c tc, where f ab
c = 2ε0cab.

Thus, ta generate a Lie algebra, which is a prerequisite for
developing the Yang-Mills gauge theory in Ref. [60]. The
generators are Lorentz invariant, satisfying �Jta�−1

J = ta.
The matrix U satisfies the commutation relations [U, γ5

B] = 0,
[U, γa

Bγb
B] = 0, and [U,�J] = 0. These relations are neces-

sary for the gravitational gauge invariance of the Lagrangian
density in the Yang-Mills gauge theory of unified gravity [60].
The group of transformations defined by U corresponds to a
four-dimensional subgroup of SU(8), which is isomorphic to
SU(2)⊗U(1), and which we denote SU(8)4D. For comparison

with the present SU(8)4D generators ta, in the case of the
SU(2) symmetry of the electroweak interaction, the generators
are the three Pauli matrices, and in the case of the SU(3) sym-
metry of quantum chromodynamics (QCD), the generators are
the eight Gell-Mann matrices [4].

C. Symmetric stress-energy-momentum tensor

In this section, we generalize the global SU(8)4D symmetry
transformation of Eq. (148) into a local symmetry transfor-
mation by making the symmetry transformation parameters
φa space-time dependent as φa = φ(x0, x1, x2, x3). Would we
follow the Yang-Mills gauge theory, we should simultane-
ously introduce the gauge-covariant derivative that makes the
derivative terms of the generating Lagrangian density of grav-
ity in Eq. (147) invariant. The consequences of adding the
gauge-covariant derivative are elaborated in the separate work
on the Yang-Mills gauge theory of unified gravity in Ref. [60].
Here we consider the variation of the generating Lagrangian
density of gravity without adding the gauge field. We recover
the profound relationship between the SU(8)4D symmetry and
the symmetric SEM tensor source term of gravity. This re-
lationship is completely analogous to the relation between
the U(1) symmetry of QED and the electric four-current den-
sity source term of electromagnetism, as briefly presented in
Appendix B.

The infinitesimal variation of Ig = I8 in the SU(8)4D

symmetry transformation of Eq. (148) with respect to the
transformation parameters φa is given by

δIg = itaδφa. (149)

Using this infinitesimal variation, it is straightforward to cal-
culate the variation of the generating Lagrangian density of
gravity in Eq. (147) with respect to φa as

δL0 =
[

h̄c

4gg
ψ̄

[ �D(δIg)γ5
Bγν

B
�∂νIgγF + �DĪgγ

5
Bγν

B
�∂ν (δIg)γF

− γ̄F(δIg)γ5
Bγν

B
�∂νIg �D − γ̄F Īgγ

5
Bγν

B
�∂ν (δIg) �D]

ψ

+ imec2

2gg
ψ̄ ē8(δIg)†γ5

Bγν
B
�∂ν Ī†

ge8ψ

+ imec2

2gg
ψ̄ ē8I†

gγ
5
Bγν

B
�∂ν (δIg)

†
e8ψ

+ i

gg
�̄�(δIg)†γ5

Bγν
B
�∂ν Ī†

g��

+ i

gg
�̄�I†

gγ
5
Bγν

B
�∂ν (δIg)

†
��

]√−g

= √−g

[
ih̄c

4gg
ψ̄

[ �Dγ5
Bγν

BtaγF − γ̄Fγ
5
Bγν

Bta �D]
ψ�∂νδφa

+ mec2

2gg
gaνψ̄ψ�∂νδφa + 1

gg
�̄�taγν

Bγ5
B���∂νδφa

]
=

√−g

gg
T aν �∂νδφa. (150)

In the second equality of Eq. (150), we have used an identity
γ5

Bγν
Bt̄a = −taγν

Bγ5
B for the electromagnetic field term and
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the mass term of the Dirac field. For the mass term of the
Dirac field, we have also used ē8taγν

Bγ5
Be8 = gaν = g ν

b ηab.
The quantity T aν , defined by the last equality of Eq. (150),
is found to be related to the total symmetric SEM tensor T μν

of the Dirac and electromagnetic fields by the inverse tetrad
field as T aν = ga

μT μν . Thus, the SEM tensor is given by

T μν = ih̄c

4
ψ̄

( �Dγ5
Bγν

BtμγF − γ̄Fγ
5
Bγν

Btμ �D)
ψ

+ mec2

2
gμνψ̄ψ + �̄�tμγν

Bγ5
B��. (151)

The first two terms of Eq. (151) are equal to the SEM tensor
of the Dirac field in an external electromagnetic field. The last
term is equal to the SEM tensor of the electromagnetic field.
The conservation law for the SEM tensor is given by ∂νT μν =
0. That Eq. (151) leads to the well-known expressions of
the symmetric SEM tensors of the Dirac and electromagnetic
fields is revealed in the sections below.

1. Stress-energy-momentum tensor of the Dirac field

From the first two terms of Eq. (151), we obtain the SEM
tensor of the Dirac field, given by

T μν
D = ih̄c

4
ψ̄

( �Dγ5
Bγν

BtμγF − γ̄Fγ
5
Bγν

Btμ �D)
ψ + mec2

2
gμνψ̄ψ

= ih̄c

4
ψ̄

(
γ

μ
F

�Dν + γν
F
�Dμ − �D

ν
γ

μ
F − �D

μ
γν

F

− gμνγ
ρ
F

�Dρ + �Dργ
ρ
Fgμν

)
ψ + mec2

2
gμνψ̄ψ. (152)

In the last equality, we have used the mathemati-
cal identities γ̄Fγ

5
Bγν

Btμ �D = −γ
μ
F

�Dν − γν
F
�Dμ + gμνγ

ρ
F

�Dρ and
�Dγ5

Bγν
BtμγF = − �D

μ
γν

F − �D
ν
γ

μ
F + �Dργ

ρ
Fgμν . When the Dirac

equation is satisfied, the terms proportional to the inverse
metric tensor gμν cancel each other, and the SEM tensor of
the Dirac field becomes

T μν
D =

[
WD cGD

cGD T D

]

= ih̄c

4
ψ̄

(
γ

μ
F

�Dν + γν
F
�Dμ − �D

ν
γ

μ
F − �D

μ
γν

F

)
ψ. (153)

This is the well-known result for the symmetric SEM tensor
of the Dirac field in an external electromagnetic field [1]. In
general, all four terms on the last line of Eq. (153) are neces-
sary for the SEM tensor to be symmetric and its components
real valued. In the Minkowski space-time, the energy density,
momentum density, and stress tensor components of the Dirac
field SEM tensor are given by

WD = ρ
(D)
Ĥ

,

GD = ρ
(D)
p̂−qeA� + 1

2∇ × ρ
(D)
Ŝ

,

T D = 1

2

(
ρ

(D)
v̂⊗(p̂−qeA� ) + ρ

(D)
(p̂−qeA� )⊗v̂

)
. (154)

Here v̂ = cαF is the effective velocity operator for the Dirac
field, obtained in the Heisenberg picture from the time depen-
dence of the position operator as v̂ = ∂r/∂t = i

h̄ [Ĥ , r] = cαF.

The Dirac field Hamiltonian operator Ĥ used here is given in
Eq. (122).

2. Stress-energy-momentum tensor of the electromagnetic field

From the last term of Eq. (151), we obtain the SEM tensor
of the electromagnetic field, given by

T μν
M = �̄�tμγν

Bγ5
B�� =

[
WM cGM

cGM T M

]

= 1

μ0

(
Fμ

ρFρν + 1

4
gμνFρσ Fρσ

)
. (155)

In terms of the electric and magnetic fields, the components
of the SEM tensor T μν

M in Eq. (155) are given in Minkowski
space-time by

WM = 1

2

(
ε0E2

� + 1

μ0
B2

�

)
,

GM = ε0E� × B�,

T M = WMI3 − ε0E� ⊗ E� − 1

μ0
B� ⊗ B�. (156)

The SEM tensor T μν
M in Eq. (155) is equal to the well-known

symmetric SEM tensor of the electromagnetic field [29,97].
For a general classical time-harmonic field, the time aver-

ages of the energy and momentum density components WM

and GM in Eq. (156) over the harmonic cycle, denoted by
the brackets with a subscript ω, are related to the expectation
value densities in Eqs. (88), (89), and (91) as 〈WM〉ω = ρ

(M)
Ĥ

and 〈GM〉ω = ρ
(M)
p̂ + 1

2∇ × ρ
(M)
Ŝ

. The first one of these rela-
tions is widely known. The second relation is equivalent to
Eq. (103) and it is also known from previous literature [33,66].
Apart from the need of the harmonic cycle time average on the
left-hand sides, these equations are analogous to those in the
case of the Dirac field in Eq. (154).

D. Summary of the generating Lagrangian density of gravity
and its special unitary symmetry

We expect that the eight-spinor formulation of the standard
model is necessary for the unification of gravity into it. This
conclusion is based on the surprising simplicity of how all
the fermionic and bosonic fields of the standard model can be
coupled to the gravity in the gauge theory [60] arising from
the SU(8)4D symmetry presented in this work. The decades of
work on this problem without an unambiguous solution also
suggest that the formulation of the quantum field theory of
gravity using the standard model without eight-spinor struc-
tures is extremely difficult if not impossible.

In the derivation of the SEM tensor using the generating
Lagrangian density of gravity, the symmetric SEM tensor
follows directly from the internal symmetry of the gener-
ating Lagrangian density of gravity. This is in accordance
with Noether’s theorem, which states that each generator of
a continuous symmetry is associated with a conserved cur-
rent [58,59]. In the present case, the conserved currents of
the four symmetry generators ta combine to a single SEM
tensor. Using the internal special unitary symmetry SU(8)4D

instead of the external space-time symmetry differs from the
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conventional Lagrangian derivation of the SEM tensor
[97,128]. In the conventional derivation [97], the SEM ten-
sor follows from the external space-time symmetry of the
action and it is asymmetric if no additional symmetrization
procedures are introduced, such as the Belinfante-Rosenfeld
symmetrization [129–133]. This observation is one of the
foundations for the development of the Yang-Mills gauge
theory of unified gravity in Ref. [60].

We have shown how the SEM tensor acting as the
source term in the Yang-Mills gauge theory of unified
gravity arises from the special unitary symmetry, but have
left the description of the tensor gauge field to a separate
work [60]. Here we briefly note that the tensor gauge field
is a Lorentz-invariant tensor whose representation as a
4 × 4 matrix is invariant in the Lorentz transformation of
second-rank tensors, and whose representation in terms of
8 × 8 matrices [60] is invariant in the Lorentz transformation
of spin-2 fields, given in Sec. III E. The different Lorentz
transformation properties of vector and tensor gauge fields are
one indication why the Yang-Mills gauge theory of unified
gravity cannot be derived from the conventional Lagrangian
density, but the generating Lagrangian density of gravity is
needed. The conventional Lagrangian density follows from
the gravitational-gauge-invariant form of the Lagrangian
density of the Yang-Mills gauge theory of unified gravity in
the Minkowski metric limit [60].

IX. CONCLUSIONS

In conclusion, we have presented QED based on the
eight-dimensional spinorial Maxwell equation. The spinorial
Maxwell equation is equivalent to the full set of Maxwell’s
equations. Consequently, it is equivalent to several formu-
lations of electrodynamics, such as the most conventional
three-vector-calculus [29], electromagnetic field tensor [29],
exterior algebra of differential forms [134], space-time al-
gebra [48], quaternions [15,135], two-component spinors
[10,11], and rank-two bispinors [14]. It provides an elegant
representation of classical electrodynamics and QED, but it
does not produce new physics if no other elements are added
to the theory.

In comparison to other known formulations of electro-
dynamics, the present formulation of the spinorial Maxwell
equation is the most analogous to the Dirac equation. Here
we interpret the analogy in such a way that, in our case
of photons, the pertinent gamma matrices must reflect the
properties of a spin-1 field instead of the spin-1/2 field of
the Dirac theory. Instead of the conventional 4 × 4 Dirac
gamma matrices, our spinorial Maxwell equation is given in
terms of 8 × 8 bosonic gamma matrices satisfying the Dirac
algebra. In contrast with 6 × 6 gamma matrices that have been
studies in some previous works [67,68], the gamma matrices
of the present theory allow the description the physics of all
Maxwell’s equations by a single equation, and accordingly,
complete reformulation of QED using eight-spinors. Many
properties of the Dirac field are directly transferable to the
eight-spinor electromagnetic theory. For example, we have
formulated the Lorentz transformations of eight-spinors in
analogy to the Lorentz transformation of Dirac spinors. As a
result, the relativistic quantum spin operators of light emerge

naturally through the generators of Lorentz transformations
on eight-component electromagnetic spinors. Therefore, our
work provides a well-defined electromagnetic spinor and field
operator representations with a natural emergence of the rela-
tivistic quantum spin structure of light.

The spinorial Maxwell equation leads to the formulation of
the Lagrangian density of QED using eight-spinors. It enables
the generating Lagrangian density of gravity with inter-
nal special-unitary-symmetry-based coupling of the quantum
fields of the standard model to gravity. The internal special
unitary symmetry of the generating Lagrangian density of
gravity was shown to enable an elegant derivation of the sym-
metric SEM tensors of the electromagnetic and Dirac fields.
The possible space-time-dependent form of the quantity Ig

in the generating Lagrangian density of gravity was left as
a topic of further work. Due to the analogous forms of the
underlying theories, the present eight-spinor formalism can
be extended to describe the other fundamental interactions and
the related fermionic and bosonic fields of the standard model.
The related fundamental consequence, the Yang-Mills gauge
theory of unified gravity, is studied in a separate work [60].
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APPENDIX A: PHOTON SPINORS FOR PLANE-WAVE
AND SPHERICAL STATES

1. Plane-wave photon states

The photon spinors for the plane-wave states correspond-
ing to the wave vector k and the helicity quantum number q
are given by

�k,q =

⎡⎢⎢⎢⎢⎣
0

Ek,q

0

iBk,q

⎤⎥⎥⎥⎥⎦. (A1)

Here the electric and magnetic three-vector plane-wave state
components Ek,q and Bk,q are defined to absorb the normaliz-
ing prefactors of Eq. (1), and they are written as

Ek,q =
√

h̄ωk

2V
e(q)

k ei(k·r−ωkt ), (A2)

Bk,q = ∇ × Ek,q

ik
= k

k
× Ek,q. (A3)

Here the helicity quantum number q = ±1 and the wave vec-
tor k appearing as indices in the spherical polarization vector
e(q)

k correspond to a fixed polarization and wave vector state
of a photon. We define the spherical polarization vectors as
e(0)

k = Rk · ẑ and e(±1)
k = Rk · 1√

2
(x̂ ± iŷ), where x̂, ŷ, and ẑ

are unit vectors parallel to the x, y, and z axes, respectively,
and Rk is a rotation matrix that rotates ẑ parallel to the
wave vector k. The rotation matrix Rk is given by Rk =
I3 cos θk + (s · â) sin θk + (â ⊗ â)(1 − cos θk ), where θk is
the polar angle of the wave vector, â = (ẑ × k)/|ẑ × k|, and
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s = (sx, sy, sz ) is a vector made of the 3 × 3 rotation generator
matrices, given by

sx =
⎡⎣0 0 0

0 0 −1
0 1 0

⎤⎦, sy =
⎡⎣ 0 0 1

0 0 0
−1 0 0

⎤⎦,

sz =
⎡⎣0 −1 0

1 0 0
0 0 0

⎤⎦. (A4)

The plane-wave states are eigenstates of the helicity
operator satisfying (ĥ/h̄)[0,Ek,q, 0, iBk,q]T = q[0,Ek,q, 0,

iBk,q]T = [0, iBk,q, 0,Ek,q]T . In the last form of this equa-
tion, we have pointed out that the action of the helicity
operator in Eq. (77) and the division by h̄ is equivalent to
swapping of the upper and lower three-vector components
in the photon spinor. This result is in agreement with the
helicity-chirality equivalence for massless particles, ĥ/h̄ ↔
γ5

B, discussed in Sec. II E. From the point of view of the light
source, the helicity quantum number q = 1 corresponds to
clockwise or right-handed circular polarization, while q = −1
corresponds to counterclockwise or left-handed circular polar-
ization.

The normalization condition for the plane-wave photon
states is written as∫

�
†
k,q�k′,q′d3r = h̄ωk

(2π )3

V
δq,q′δ(k − k′). (A5)

This kind of a normalization of one-particle states is known to
be Lorentz invariant [1]. The plane-wave photon states satisfy
the space- and time-reversal symmetry relation, given by

�k,q(−t,−r) = −γ0
B�∗

k,−q(t, r). (A6)

This relation is useful in checking that the CPT symmetry is
satisfied as discussed in Sec. V D.

2. Spherical photon states

The photon spinors for the spherical states are given by

�
(e)
ω,J,M =

⎡⎢⎢⎣
0

Eω,J,M

0
iBω,J,M

⎤⎥⎥⎦, �
(m)
ω,J,M =

⎡⎢⎢⎣
0

iBω,J,M

0
Eω,J,M

⎤⎥⎥⎦. (A7)

The spinors �
(e)
ω,J,M and �

(m)
ω,J,M are associated with the

electric and magnetic multipoles of the multipole expan-
sion of the electromagnetic field [29,30]. These spinors
are found to be related to each other by the action of
the helicity operator in Eq. (77) as �

(m)
ω,J,M = (ĥ/h̄)� (e)

ω,J,M

and �
(e)
ω,J,M = (ĥ/h̄)� (m)

ω,J,M . This corresponds to the helicity-

chirality equivalence for massless particles, ĥ/h̄ ↔ γ5
B, dis-

cussed in Sec. II E. The normalized electric and magnetic
three-vector spherical state components Eω,J,M and Bω,J,M in
Eq. (A7) are written as

Eω,J,M =
√

h̄ω

2V
e−iωt

[√
J

2J + 1
jJ+1

(ωr

c

)
Y J,J+1,M (θr, φr )

−
√

J + 1

2J + 1
jJ−1

(ωr

c

)
Y J,J−1,M (θr, φr )

]
, (A8)

Bω,J,M = ∇ × Eω,J,M

iω/c

=
√

h̄ω

2V
e−iωt jJ

(ωr

c

)
Y J,J,M (θr, φr ). (A9)

Here jJ (kr) are the spherical Bessel functions of the first kind
and YJ,L,M (θr, φr ) are the vector spherical harmonic func-
tions, defined as [136]

YJ,L,M (θr, φr )

=
1∑

n=−1

〈L, M − n, 1, n|J, M〉YL,M−n(θr, φr )u(n). (A10)

The terms of this series are formed from the well-known
Clebsch-Gordan coefficients 〈L, M − n, 1, n|J, M〉 [137], the
scalar spherical harmonic functions YL,M (θr, φr ), and the
spherical unit vector u(n). The spherical unit vectors u(n)

are defined as u(0) = ẑ, u(−1) = 1√
2
(x̂ − iŷ), and u(+1) =

− 1√
2
(x̂ + iŷ). For the spherical harmonic functions, we use

the definition written in terms of the associated Legendre
polynomials PL,M (x) as

YL,M (θr, φr ) =
√

2L + 1

4π

(L − M )!

(L + M )!
PL,M (cos θr )eiMφr .

(A11)

For the associated Legendre polynomials, we use the Condon-
Shortley phase convention [138]. Thus, the Condon-Shortley
phase is also included in our definition of the spherical
harmonic functions. The normalization condition for the
spherical photon states is written as∫

�
(η)†
ω,J,M�

(η′ )
ω′,J ′,M ′d3r = h̄ω

πc3

2V ω2
δη,η′δJ,J ′δM,M ′δ(ω − ω′).

(A12)

The spherical photon states satisfy the space- and time-
reversal symmetry relations, given by

�
(η)
ω,J,M (t,−r) = (−1)J+1+δη,mγ0

B�
(η)
ω,J,M (t, r), (A13)

�
(η)
ω,J,M (−t, r) = (−1)M+1�

(η)∗
ω,J,−M (t, r). (A14)

These relations are useful in checking that the CPT symmetry
is satisfied as discussed in Sec. V D.

That the two linearly independent vectors in Eq. (A7) are
needed for the spherical states is manifested by the fact that
the plane-wave states �k,q can be written as a sum over spher-
ical photon states, where both �

(e)
ω,J,M and �

(m)
ω,J,M are needed,

as [136,137]

�k,q = −i
√

2π

∞∑
J=1

J∑
M=−J

iJ
√

2J + 1

× D(J )
M,q(φk, θk,−φk )

(
�

(m)
ω,J,M + q�

(e)
ω,J,M

)
. (A15)

Here D(J )
M,q(φk, θk,−φk ) are Wigner D-matrix elements cor-

responding to the three Eulerian angles that are in our case
formed from the components of the wave vector k in the
spherical coordinates, i.e., k = (k, θk, φk ).
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APPENDIX B: DERIVATION OF THE ELECTRIC
FOUR-CURRENT DENSITY IN QED

Here we briefly present the derivation of the electromag-
netic four-current density using the free Dirac field term
LQED,0 = LQED,D of the conventional QED Lagrangian den-
sity in Eq. (111). The Lagrangian density LQED,0 can be called
the generating Lagrangian density of QED. The derivation
of the electric four-current density using LQED,0 highlights
the complete analogy with the derivation of the symmetric
SEM tensor using the generating Lagrangian density of grav-
ity in Sec. VIII. Thus, as the starting point, the generating
Lagrangian density of QED is given by

LQED,0 = i

2
h̄cψ̄

(
γa

F
�∂a − �∂a γa

F

)
ψ − mec2ψ̄ψ. (B1)

The generating Lagrangian density of QED satisfies the global
unitary symmetry U(1). The unitary transformation associated
with this symmetry is given by

ψ → Ueψ, where Ue = eiθ . (B2)

The infinitesimal variations of the Dirac field ψ and its adjoint
ψ̄ with respect to the symmetry transformation parameter θ

are given by

δψ = iψδθ, δψ̄ = −iψ̄δθ. (B3)

Using these infinitesimal variations, the variation of the gen-
erating Lagrangian density LQED,0 in Eq. (B1) is written as

δLQED,0 = i

2
h̄c(δψ̄ )

(
γa

F
�∂a − �∂aγ

a
F

)
ψ − mec2(δψ̄ )ψ

+ i

2
h̄cψ̄

(
γa

F
�∂a − �∂aγ

a
F

)
(δψ ) − mec2ψ̄ (δψ )

= −h̄cψ̄γa
Fψ∂aδθ

= − h̄

qe
Ja

e�∂aθ. (B4)

In the last equality of Eq. (B4), we have defined the electric
four-current density Ja

e� as

Ja
e� = qecψ̄γa

Fψ. (B5)

The derivation of the electric four-current density above using
Eqs. (B1)–(B4) can be seen to be completely analogous to
the derivation of the symmetric SEM tensor using Eqs. (147)–
(150).

For completeness, next we describe the derivation of the
electromagnetic-gauge-invariant Lagrangian density of QED
from the generating Lagrangian density of QED in Eq. (B1)
using the conventional gauge theory. In the case of the grav-
itational coupling of the present theory, analogous steps are
not described in the present work, but they are left as a topic
of the Yang-Mills gauge theory of unified gravity in Ref. [60].

The variation of the generating Lagrangian density of QED
in Eq. (B4) is generally nonzero for a position- and time-
dependent θ , for which ∂aθ �= 0. Therefore, the generating
Lagrangian density of QED in Eq. (B1) is not invariant

with respect to the local form of the symmetry transfor-
mation in Eq. (B2) with θ depending on the position and
time. To promote the global symmetry of constant θ to a
local symmetry of space-time dependent θ (t, r), the partial
derivatives �∂a and �∂a in the generating Lagrangian density
of QED in Eq. (B1) are replaced by electromagnetic-gauge-
covariant derivatives, given by Eq. (113) as �Da = �∂a + i qe

h̄ A�a

and �Da = �∂a − i qe

h̄ A�a. These derivatives bring the electro-
magnetic gauge potential A�a to the theory.

The electromagnetic-gauge-covariant derivative trans-
forms by the same unitary transformation as the Dirac field
itself in Eq. (B2) as �Daψ → Ue �Daψ . The corresponding
transformation for the Dirac adjoint is given by ψ̄ �Da →
ψ̄ �DaU ∗

e . That these transformations are satisfied requires
that the gauge field A�a transforms as A�a → (UeA�a +
ih̄
qe

∂aUe )U ∗
e = A�a − h̄

qe
∂aθ . Replacing the partial derivative

operators �∂a and �∂a in the generating Lagrangian density
of QED in Eq. (B1) by the electromagnetic-gauge-covariant
derivative operators �Da and �Da makes the Lagrangian density
invariant with respect to the local space-time-dependent form
of the U(1) symmetry transformation in Eq. (B2).

To construct the complete electromagnetic-gauge-invariant
Lagrangian density, one must also add an electromagnetic-
gauge-invariant term that depends on the gauge field A�a only.
Utilizing the gauge theory, this is obtained from the commu-
tator of the electromagnetic-gauge-covariant derivatives. The
commutator [ �Da, �Db] = iqe

h̄ Fab defines an antisymmetric field
strength tensor Fab, which corresponds to Eq. (64), as

Fab = ∂aA�b − ∂bA�a. (B6)

In the U(1) gauge symmetry transformation in Eq. (148), the
field strength tensor Fab transforms as Fab → UeFabU ∗

e = Fab.
Using the gauge theory, we obtain an electromagnetic-gauge-
invariant Lagrangian density term, which depends on the
gauge field A�a only, as

LQED,M = − 1

4μ0
FabF ab, (B7)

in agreement with Eq. (111). The prefactor of LQED,M is found
from comparison of the resulting Euler-Lagrange equations of
the electromagnetic gauge field to Maxwell’s equations. The
complete electromagnetic-gauge-invariant generalization of
the generating Lagrangian density of QED in Eq. (B1) is then
given by

LQED = ih̄c

2
ψ̄

(
γa

F
�Da − �Daγ

a
F

)
ψ − mec2ψ̄ψ − 1

4μ0
FabF ab.

(B8)

This equation is equivalent to Eq. (111). The electromag-
netic gauge invariance means that the Lagrangian density in
Eq. (B8) satisfies δLQED = 0, when varied with respect to
the symmetry transformation parameter θ . Thus, the addition
of the gauge field cancels the variation of the generating
Lagrangian density of QED obtained without the gauge field
in Eq. (B4).
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