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Probing the Schrödinger-Newton equation in a Stern-Gerlach-like experiment
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Explaining the behavior of macroscopic objects from the point of view of the quantum paradigm has
challenged the scientific community for the past century. A mechanism of gravitational self-interaction, governed
by the so-called Schrödinger-Newton equation, is among the proposals that aim to shed some light on it. Despite
all efforts, this mechanism has been proven difficult to probe. Here, we consider a Stern-Gerlach-like experiment
to try it out. The Schrödinger-Newton equation can be analytically solved under certain proper conditions, and a
change-of-phase effect induced by the gravitational self-interacting potential can be calculated.
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I. INTRODUCTION

According to nonrelativistic quantum mechanics, a local-
ized free particle spreads over time depending on its mass m
and wave-packet width σ . Quantum mechanics implies that
the combination of m and σ for free macroscopic objects
would lead to a fast spreading of the wave packet [1], which
has not been observed until now (possibly because of the
difficulty of isolating them from their environment). In addi-
tion, we have yet to observe the spatial quantum-mechanical
superposition of macroscopic objects. The debate on whether
the no observation of these effects is a momentary difficulty
posed by technology or an intrinsic impediment raised by
nature (stemming from the Planck scale) is ongoing.

Among those who believe that quantum mechanics must
be amended to describe the classical world are Diósi and Pen-
rose [1–3]. The mechanism of gravitational self-interaction
idealized by the first aims to provide some explanation for
the localization of macroscopic objects. According to this
proposal, a nonrelativistic quantum particle would be ruled by
the Schrödinger-Newton equation, which incorporates a grav-
itational self-interacting potential to the usual Schrödinger
equation. As originally discussed by Diósi, the gravitational
self-interaction would prevent wave packets of sufficiently
massive particles from spreading and staying in superposition
(although he already raised issues with the Schrödinger-
Newton equation in the case of two rotating solitons [1]).
Despite the Schrödinger-Newton equation needing an addi-
tional mechanism to cope with the wave-function “collapse”
[1,4], it continues to be widely investigated, since it serves (at
least) as a reference to quantitatively compare the predictions
of usual quantum mechanics with some concrete alternative.
As a matter of fact, the gravitational self-interacting poten-
tial is negligibly small compared to the usual external ones,
making any resulting deviation, e.g., in the energy spectrum,
extremely difficult to trial [5–12]. Thus, instead of looking
for stationary solutions of the Schrödinger-Newton equation,
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one may use the particle spin as a witness of the gravitational
self-interaction [13–15] in a Stern-Gerlach-like experiment
where the only relevant potential will turn out to be the
self-interacting one. By “Stern-Gerlach-like experiment,” we
mean a double Stern-Gerlach experiment followed by a spin
measurement. This proposal is theoretically simple although
experimentally challenging.

The paper is organized as follows. In Sec. II, we introduce
the Schrödinger-Newton equation for quantum particles. In
Sec. III, we analyze the self-interaction effect in a Stern-
Gerlach-like experiment. In Sec. IV, we compare our results
with those of Ref. [15] assuming physical parameters and
make explicit that they complement each other. In Sec. V, we
present our conclusions.

II. THE SCHRÖDINGER-NEWTON EQUATION
FOR QUANTUM PARTICLES

According to Diósi [1], the wave function ψ (�r, t ) of a non-
relativistic quantum particle with mass m would be evolved
by the Schrödinger-Newton equation

ih̄
∂

∂t
ψ (�r, t ) =

(
− h̄2

2m
∇2 + V (�r, t ) + U (�r, t )

)
ψ (�r, t ), (1)

where V (�r, t ) is the usual external potential and

U (�r, t ) ≡ −Gm2
∫

d3�r ′ |ψ (�r ′, t )|2
|�r − �r ′| (2)

is the self-interacting potential. Here, G is the gravitational
constant. In our case, ψ (�r, t ) will describe the center of mass
of an extended object. In addition, we will consider a quantum
state that will allow us to disregard the internal structure
of the system in the self-interacting potential (in contrast
to the case considered in Ref. [15]). The suitability of the
“self-interacting” qualifier for the potential (2) comes from
the fact that it depends on the particle state ψ (�r, t ) itself.
While standard quantum mechanics asserts that |ψ (�r, t )|2 is
the probability density of finding the particle when (and only
when) its position is measured, the presence of U (�r, t ) in
Eq. (1) implies that, to what concerns gravity, a quantum
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FIG. 1. The system starts in the state �(�r, 0), transits to �(�r, t0)
when the Stern-Gerlach split is realized, evolves to �(�r, t0 + T ), and
ends up as �(�r, 2t0 + T ) after the Stern-Gerlach split is reversed.

particle (yet pointlike) would function as an extended system
with an effective mass density given by

η(�r, t ) ≡ m|ψ (�r, t )|2. (3)

Hence, although tiny for elementary particles, the potential (2)
is at odds with standard quantum mechanics.

III. THE SCHRÖDINGER-NEWTON EQUATION
IN A STERN-GERLACH-LIKE EXPERIMENT

As mentioned below Eq. (2), we will consider a massive
extended object (to maximize the effect of the gravitational
self-interacting potential) with ψ (�r, t ) describing the center
of mass of a spherically symmetric microcrystal with mass m,
radius R, and spin s = 1/2. Let us initially set the microcrystal
in the normalized state

�(�r, 0) = ψ↑(�r, 0)|↑〉 + ψ↓(�r, 0)|↓〉, (4)

centered at �r = 0, where

ψ↑(�r, 0) ≡ Gσ (�r)1/2 cos β, (5)

ψ↓(�r, 0) ≡ Gσ (�r)1/2 sin β, (6)

β ∈ (0, π/2), and

Gσ (�r) =
(

1

2πσ 2

)3/2

exp

(
− |�r|2

2σ 2

)
(7)

is the Gaussian distribution. Here, {|↑〉, |↓〉} is the usual eigen-
state basis of the z-axis spin operator Ŝz:

Ŝz|↑〉 ≡ (+h̄/2)|↑〉, Ŝz|↓〉 ≡ (−h̄/2)|↓〉. (8)

By assuming that R 
 σ , we are allowed to use Eqs. (1) and
(2) to evolve �(�r, t ) [1,11,16]. We note that the case treated
here is complementary to the one considered in Ref. [15],
where R � σ (as discussed in Sec. IV).

Next, we realize a Stern-Gerlach split along the z axis,
driving �(�r, 0) into a spatial superposition with |↑〉 and |↓〉

lying apart by a distance L (see Fig. 1),

�(�r, t0) = ψ↑(�r, t0)|↑〉 + ψ↓(�r, t0)|↓〉, (9)

where (except for a common global phase)

ψ↑(�r, t0) = ψ↑(�r − �r1, 0), (10)

ψ↓(�r, t0) = ψ↓(�r − �r2, 0), (11)

and

�r1 ≡ (+L/2)ẑ, �r2 ≡ (−L/2)ẑ, (12)

with R 
 σ 
 L. For this realization, one may employ an
atom chip as a magnetic field source [17]. In this way, it is
possible to accelerate and decelerate the spin components ψ↑
and ψ↓ with a single device, alternating the direction of the
electric current to designate the direction of the magnetic field
applied to the microcrystal. Note that we have assumed t0 to be
much smaller than the time interval T along which the system
evolves free of external influences. Thus, we disregard self-
interaction contributions in the time interval (0, t0) compared
to the interval (t0, t0 + T ).

In the time interval (t0, t0 + T ), the system evolves freely
except for the self-interacting potential. In order to neglect the
quantum spreading of the superposition components ψ↑(�r, t )
and ψ↓(�r, t ), let us begin by writing the effective mass density
associated with each one of them as [see Eq. (3)]

η↑↓(�r, t ) = m|ψ↑↓(�r, t )|2, (13)

and assign the corresponding masses

m↑↓(t ) =
∫

d3�r η↑↓(�r, t ). (14)

These components should spread at speeds of the order

v
(S)
↑↓ ∼ h̄

2m↑↓σ
. (15)

Equation (15) was estimated using Heisenberg’s uncertainty
principle, σ × (m↑↓v

(S)
↑↓ ) ∼ h̄/2. Thus, in order to neglect the

quantum spreading of ψ↑(�r, t ) and ψ↓(�r, t ), we must de-
mand that v

(S)
↑↓ T 
 R. In addition, we will consider physical

situations where the gravitational effect of one superposi-
tion component on the other can be neglected, namely, that
v

(A)
↑↓ T 
 R, where

v
(A)
↑↓ ∼ a↑↓T ∼ Gm↓↑T

L2
. (16)

By dwelling in situations where T is small enough such
that

v
(S)
↑↓ T 
 R, v

(A)
↑↓ T 
 R, (17)

the components ψ↑(�r, t ) and ψ↓(�r, t ) will evolve according
to Eq. (1) with V (�r, t ) = 0 and the corresponding self-
interacting potentials

U (�r1, t ) = −Gm2
∫

d3�r ′ |ψ↑(�r ′, t )|2
|�r1 − �r ′| (18)

and

U (�r2, t ) = −Gm2
∫

d3�r ′ |ψ↓(�r ′, t )|2
|�r2 − �r ′| , (19)

032223-2



PROBING THE SCHRÖDINGER-NEWTON EQUATION … PHYSICAL REVIEW A 109, 032223 (2024)

respectively, where the potentials were evaluated at the cen-
ter of the (peaked) distributions. In this case, ψ↑(�r, t ) and
ψ↓(�r, t ) barely change their spatial distribution:

|ψ↑↓(�r, t0)|2 ≈ |ψ↑↓(�r, t0 + T )|2. (20)

Accordingly, the gravitational self-interacting potential turns
out constant in the time interval (t0, t0 + T ) [see Eqs. (18) and
(19)]:

U (�r j, t0) ≈ U (�r j, t0 + T ) ( j = 1, 2). (21)

Moreover, we will limit ourselves to situations where the
kinetic energy

K ∼
∑

	=↑,↓

1

2
m	

(
v

(S)
	

2 + v
(A)
	

2)
(22)

is much smaller than the absolute value of the self-interacting
potential

|U | ∼
∑

	=↑,↓

Gm2
	

σ
, (23)

in which case ψ↑↓(�r, t ) will be separately evolved by a sim-
plified version of Eq. (1),

ih̄
∂

∂t
ψ↑(�r, t ) = U (�r1, t0)ψ↑(�r, t ), (24)

ih̄
∂

∂t
ψ↓(�r, t ) = U (�r2, t0)ψ↓(�r, t ), (25)

and we recall that U (�r j, t ) ( j = 1, 2) is constant in the interval
(t0, t0 + T ). It should be already clear at this point that the
self-interacting potential will be responsible for causing a
change of phase between ψ↑(�r, t ) and ψ↓(�r, t ), eventually.

The solutions of Eqs. (24) and (25) are

ψ↑(�r, t ) = ψ↑(�r, t0)eiϕ↑(�r1,t ), (26)

ψ↓(�r, t ) = ψ↓(�r, t0)eiϕ↓(�r2,t ), (27)

where
∂

∂t
ϕ↑(�r1, t ) = −1

h̄
U (�r1, t0), (28)

∂

∂t
ϕ↓(�r2, t ) = −1

h̄
U (�r2, t0), (29)

and the self-interacting potentials can be evaluated using
Eqs. (18) and (19),

U (�r1, t0) = −
√

2

π

Gm2

σ
cos2 β, (30)

U (�r2, t0) = −
√

2

π

Gm2

σ
sin2 β. (31)

Then, by resolving Eqs. (28) and (29), we can use Eqs. (26)
and (27) to write ψ↑↓(�r, t ) at t = t0 + T as (except for an
arbitrary global phase)

ψ↑(�r, t0 + T ) = ψ↑(�r, t0)e−iU (�r1,t0 )T/h̄, (32)

ψ↓(�r, t0 + T ) = ψ↓(�r, t0)e−iU (�r2,t0 )T/h̄, (33)

where ψ	(�r, t0) (	 =↑,↓) and U (�r j, t0) ( j = 1, 2) can be read
from Eqs. (10) and (11) and Eqs. (30) and (31), respectively.

Finally, we reverse the Stern-Gerlach split at t = t0 + T ,
leading

�(�r, t0 + T ) = ψ↑(�r, t0 + T )|↑〉 + ψ↓(�r, t0 + T )|↓〉 (34)

into

�(�r, 2t0 + T ) = ψ↑(�r, 2t0 + T )|↑〉 + ψ↓(�r, 2t0 + T )|↓〉,
(35)

where (except for an irrelevant common global phase)

ψ↑(�r, 2t0 + T ) = ψ↑(�r, 0)e−iU (�r1,t0 )T/h̄, (36)

ψ↓(�r, 2t0 + T ) = ψ↓(�r, 0)e−iU (�r2,t0 )T/h̄, (37)

and we recall that ψ	(�r, 0) (	 =↑,↓) are given in Eqs. (5)
and (6). For this reversion, one may employ in principle the
same atom chip used in the Stern-Gerlach split. Neverthe-
less, it is worth noting that the (perfect) recombination of
the superposition components is a challenging task [17]. As
previously discussed, this process occurs in a time interval
t0 
 T , allowing us to disregard self-interaction contributions
in the interval (t0 + T, 2t0 + T ).

Now, let us express Eq. (35) in the eigenstate basis {|→〉,
|←〉} of the x-axis spin operator Ŝx,

Ŝx|→〉 ≡ (+h̄/2)|→〉, Ŝx|←〉 ≡ (−h̄/2)|←〉, (38)

as

�(�r, 2t0 + T ) =ψ→(�r, 2t0 + T )|→〉
+ ψ←(�r, 2t0 + T )|←〉, (39)

with

ψ→(�r, 2t0 + T ) = 1√
2

[ψ↑(�r, 2t0 + T ) + ψ↓(�r, 2t0 + T )],

(40)

ψ←(�r, 2t0 + T ) = 1√
2

[ψ↑(�r, 2t0 + T ) − ψ↓(�r, 2t0 + T )].

(41)

Then, the probability of obtaining as an outcome +h̄/2 in a
measurement for the spin projection along the x axis is

P→(β, T ) =
∫

d3�r|ψ→(�r, 2t0 + T )|2

= 1

2
+ 1

2
sin (2β ) cos [�ϕ(β, T )], (42)

where, using Eqs. (30) and (31), we have

�ϕ(β, T ) ≡ −1

h̄
[U (�r1, t0) − U (�r2, t0)]T

=
√

2

π

Gm2 cos (2β )

h̄σ
T . (43)

For this measurement, one may employ a second atom chip
to realize a Stern-Gerlach split along the x axis. Such an
extra device does not compose the experiment discussed in
Ref. [17] and, therefore, may bring additional difficulties. Let
us note that the usual quantum-mechanical result is recovered
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from the above making G = 0:

PQM
→ (β ) = 1

2 + 1
2 sin (2β ). (44)

In order to compare P→(β, T ) with PQM
→ (β ), let us define

D→(β, T ) ≡ P→(β, T ) − PQM
→ (β )

= − sin (2β ) sin2 [�ϕ(β, T )/2]. (45)

To make explicit the challenge posed by the Planck scale in
observing the change of phase induced by the self-interacting
potential, let us express �ϕ in Eq. (43) as

�ϕ ≈ 2 × 1014

(
m

mP

)2 (T/1 s)

(σ/1 µm)
, (46)

where mP ≡ √
h̄c/G ≈ 2.2 × 10−8 kg is the reduced Planck

mass and we have set cos (2β ) ≈ 1. No self-interaction
effect would be observable for �ϕ 
 1. Fortunately, the
smallness of m/mP can be compensated by choosing an ap-
propriate σ and a long enough spatial-superposition time T ,
driving �ϕ ∼ 1.

IV. PHYSICAL RESULTS

As suggested in Ref. [18], let us consider a spherically
symmetric homogeneous ytterbium (Yb) microcrystal, with
density ρ = 6.9 × 10−15 kg/µm3 [19], doped with a single
atom to give it a spin s = 1/2. The mass of a microcrystal
with radius R = 0.5 µm is m ≈ 3.6 × 10−15 kg.

The microcrystal will be initially described by the Gaus-
sian distribution (7) with standard deviation σ = 5 µm, while
the separation distance of the spatial superposition is chosen
to be L = 100 µm, satisfying the constraint L � σ � R. The
split time can be estimated to be of the order

t0 ∼
√

2mL

gμB∂zB
, (47)

where g is the electronic g factor, μB is the Bohr magne-
ton, and ∂zB is the magnetic-field gradient in the z direction
[18]. For ∂zB ∼ 1 T/µm, we obtain t0 ∼ 10−1 s, driving us
to consider situations where T � 10−1 s. Notwithstanding,
T cannot be too large in order to protect the quantum state
from interacting much with the environment. Then, we shall
typically choose T � 1 s.

Another point we must pay attention to is the satisfaction
of Eq. (17). It is clear from Eq. (15) that the first constraint,
v

(S)
↑↓ T 
 R, will not be satisfied if m↑ or m↓ is arbitrarily

small. In order to avoid it, we must balance the values of
m↑ and m↓. For this purpose, it is enough to restrict the β ∈
(0, π/2) parameter [see below Eq. (6)] to β ∈ (π/12, 5π/12).
In this case,

v
(S)
↑↓ T ∼ 10−7 µm, v

(A)
↑↓ T ∼ 10−10 µm, (48)

respecting Eq. (17) for R = 0.5 µm. Likewise, the demand for
the kinetic energy to be much smaller than the absolute value
of the self-interacting potential is also satisfied,

K/|U | ∼ 10−9 
 1, (49)

vindicating Eqs. (24) and (25).

FIG. 2. The dashed and dotted-dashed lines are the plots of the
probability P→(β, T ) for T = T1 = 2 s and T = T2 = 4 s, respec-
tively. The dotted line represents the probability PQM

→ (β ) provided
by standard quantum mechanics.

Figures 2 and 3 plot the probability P→(β, T ) and the prob-
ability difference D→(β, T ) as functions of β, respectively.
We see that D→(π/4, T ) = 0 since the superposition

�(�r, t0)|β→π/4 → 1√
2

Gσ (�r − �r1)1/2|↑〉

+ 1√
2

Gσ (�r − �r2)1/2|↓〉 (50)

is equally balanced, making the self-interacting potential have
no net effect [see Eq. (43)]. The other local minima and
maxima of D→(β, T ) will depend on �ϕ(β, T ).

Our paper dwells in the regime σ � R which complements
Ref. [15], where σ 
 R. In contrast to our case, where the
change-of-phase formula (43) depends on σ , in Ref. [15]
the internal structure of the microcrystal must be taken into
account, and the change-of-phase formula has R in place of σ

(multiplied by a constant of the order of the unity):

�ϕ(β, T )|σ
R = 6

5

Gm2 cos (2β )

h̄R
T . (51)

It is clear, thus, that Eqs. (43) and (51) should approach each
other as σ approaches R. This is made explicit in Figs. 4
and 5. We see that the smaller the σ , the more our curves

FIG. 3. The dashed and dotted-dashed lines are the plots of the
probability difference D→(β, T ) for T = T1 = 2 s and T = T2 =
4 s, respectively.
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FIG. 4. The probability P→(β, T ) is plotted assuming a spheri-
cally symmetric ytterbium microcrystal with radius R = 0.5 µm for
T = 2 s. The dashed and dotted-dashed lines obey Eq. (42) with
σ = 5 µm and σ = 1 µm, respectively. The solid line is the corre-
sponding plot according to Ref. [15], where σ 
 R. These curves
should be compared against the dotted line representing the usual
result provided by standard quantum mechanics. We see that our
curves approach Großardt’s one as the value of σ gets smaller.

for P→(β, T ) and D→(β, T ) plotted with Eq. (43) (σ > R)
approach Großardt’s ones based on Eq. (51) (σ < R).

V. CONCLUSIONS

Understanding why free macroscopic objects do not
behave according to the predictions of quantum mechanics is
an issue that remains elusive. A thought-provoking proposal
is that a mechanism of gravitational self-interaction would
clarify it [1–3]. Nevertheless, such a proposal is intrinsically
arduous to probe since the usual external potentials
overwhelm the gravitational self-interacting potential by
many orders of magnitude for typical quantum particles. This
drives deviations, e.g., in the energy spectrum due to the self-
interacting potential, tough to observe [5–12]. To circumvent
this difficulty, we have considered an experiment where the
only potential is the self-interacting one. In this case, the
challenge posed by the Planck scale can be compensated

FIG. 5. The probability difference D→(β, T ) is plotted assum-
ing a spherically symmetric ytterbium microcrystal with radius
R = 0.5 µm for T = 2 s. The dashed and dotted-dashed lines obey
Eq. (45) with σ = 5 µm and σ = 1 µm, respectively. The solid line
is the corresponding plot according to Ref. [15], where σ 
 R. We
see that our curves approach Großardt’s one as the value of σ gets
smaller.

by choosing appropriate experimental parameters [see
Eq. (46)]. One should face the present paper and Ref. [15] as
complementing each other, as explained above. Among the
experimental challenges to probe our results are the necessity
of suppressing channels of internal [20,21] and environmental
[22–24] decoherence for a time interval of seconds. We hope
this will be achieved in the near future [17,25–27].
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