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Complementarity between decoherence and information retrieval from the environment
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We address the problem of the fundamental limitations of information extraction from the environment in
open quantum systems. We derive a model-independent, hybrid quantum-classical solution of open dynam-
ics in the recoilless limit, which includes environmental degrees of freedom. Specifying to the celebrated
Caldeira-Leggett model of hot thermal environments, ubiquitous in everyday situations, we reveal the existence
of a new lengthscale, called the distinguishability length, different from the well-known thermal de Broglie
wavelength that governs the decoherence. Interestingly, a new integral kernel, called quantum Fisher information
kernel, appears in the analysis. It complements the well-known dissipation and noise kernels and satisfies
disturbance-information gain type of relations, similar to the famous fluctuation-dissipation relation. Our results
complement the existing treatments of the Caldeira-Legget model from a non-standard and highly nontrivial
perspective of information dynamics in the environment. This leads to a full picture of how the open evolution
looks like from both the system and the environment points of view, as well as sets limits on the precision of
indirect observations.

DOI: 10.1103/PhysRevA.109.032221

I. INTRODUCTION

One of the perpetual questions is if what we perceive is
really “out there?” While the ontology of quantum mechanics
is still a matter of a debate (see, e.g., [1–3]), it is nowa-
days commonly accepted following the seminal works of Zeh
[4] and Zurek [5,6] that interactions with the environment
and the resulting decoherence processes lead to an effective
emergence of classical properties, like position [7–9]. It is
then usually argued, using idealized pure-state environments,
that the decoherence efficiency corresponds directly to the
amount of information recorded by the environment (see, e.g.,
[9]). The more the environment learns about the system, the
stronger it decoheres it. On the other hand, we perceive the
outer world by observing the environment and the information
content of the latter determines what we see.

Here we show that there is a gap between the two: What
the environment learns about the system, as determined by
the decohering power, and what can be extracted from it via
measurements. Some part of information stays bounded. We
show it for physically most relevant thermal environments
in the Caldeira-Leggett regime [10], which is the universal
choice for high-temperature environments, ubiquitous in real-
life situations. One of the most emblematic results of the entire
decoherence theory states that spatial coherences decay on
the lengthscale given by the thermal de Broglie wavelength
λdB and on the timescale tdec ∼ γ −1(λdB/d )2, where d is a
separation and γ −1 is related to the relaxation time [10–12].
We complement this celebrated result by analyzing informa-
tion extractable from the environment as quantified by the
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state distinguishability [13]. We show that it is governed by
a new lengthscale, which we call the distinguishability length,
larger than the decoherence length. Thus the resolution with
which the system’s position can be readoff from the environ-
ment is worse than the decoherence resolution; see Fig. 1. A
part of the information gained by the environment during the

FIG. 1. The environment decoheres the central system at a
lengthscale λdec (equal to the thermal de Broglie wavelength λdB in
the studied example) as a result of dynamical buildup of correlations
and information leakage into the environment. However, not all of
that information is accessible, the retrieval is limited by its own
resolution, the distinguishability length λdist. Since λdist � λdec, part
of the information stays bounded in the environment. Decoherence
and distinguishability are complementary to each other as reflected
by information gain versus disturbance type of a relation: λdistλdec =
const. The accompanying timescales satisfy tdist/tdec ∼ (λdist/λdec)2,
so that reaching a given information retrieval resolution takes a much
longer time than reaching the same decoherence resolution.
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decoherence is bounded in it in the thermal noise, similarly to,
e.g., the bounding a part of thermodynamic energy as thermal
energy, unavailable for work, or to bounding quantum entan-
glement [14]. We obtain the corresponding distinguishability
timescale and introduce a new integral kernel, quantum Fisher
information (QFI) kernel, similar to the well-known noise and
dissipation kernels [7–9] and governing the distinguishability
process. The discovery of this phenomenon was possible due
to the paradigm change in studies of open quantum systems
initiated by quantum Darwinism [15–20] and spectrum broad-
cast structures (SBS) [21–25] programs. They recognize the
environment as a carrier of useful information about the sys-
tem, rather than just the source of noise and dissipation, and
study its information content in the context of the quantum-
to-classical transition. The existence of the gap can be, in
principle, deduced from the existing literature on quantum
Darwinism, e.g., [20], and the corresponding timescale sep-
aration was shown in, e.g., [26]. However, those studies were
performed in finite-dimensional settings. Here we study a con-
tinous variable system, which called for new methods. Some
hints on the effect were also obtained in earlier studies of SBS,
especially in the quantum Brownian motion (QBM) model
[23], where state distinguishability and its temperature depen-
dence was analyzed, but the limited, numerical character of
the studies did not reveal the existence of the distinguishability
length and the gap to the decoherence lengthscale. Our results,
apart from showing intrinsic limitations of indirect observa-
tions, also characterize decoherence, which has become one of
the key paradigms of modern quantum science [27–33], from
a little studied perspective of the “receiver’s end.” Last but not
least, we uncover an interesting new feature of the venerable
Caldeira-Leggett model

Although there exist powerful methods of analysis of
quantum open systems, such as the Bloch-Redfield [34,35]
or Davies-Gorini-Kossakowski-Lindblad-Sudarshan [36–38]
equations, they describe the evolution of the central system
alone, neglecting the environment completely. This will not
tell us anything about the information acquired by the en-
vironment and we instead derive an approximate solution
method focusing on the evolution of the environment. To
this end, we divide the environment into two parts, one de-
noted Euno is assumed to be unobserved and hence traced
over, while the remaining part, denoted Eobs is assumed to be
under observation by an external observer. Our main object
of study will be the so-called partially traced state, obtained
by tracing out only the unobserved part of the environment
[21–23,25]

�S:Eobs = TrEuno�S:E , (1)

Here S : Eobs denotes that the resulting state is a joint state of
the system S and the observed part of the environment Eobs. As
the first approximation, it is enough to consider the recoiless
limit, where the central system S influences the environment E
but is massive enough not to feel the recoil. It is a version of
the Born-Oppenheimer approximation and the opposite, and
less studied, limit to the commonly used Born-Markov ap-
proximation [7–9], where the influence S → E is completely
cut out and is thus useless for our purposes.

II. HYBRID QUANTUM-CLASSICAL DYNAMICS
IN THE RECOILLESS LIMIT

We follow the treatment of Feynman and Vernon [39] using
path integrals. The full system-environment propagator reads

Kt (X, X0; x, x0) =
∫

x(0) = x0

x(t ) = x

Dx(t )
∫

X (0) = X0
X (t ) = X

DX (t )

× exp
i

h̄
{Ssys[X (t )] + Senv[x(t )]

+ Sint[X (t ), x(t )]}, (2)

where Ssys, Senv, Sint are the actions of the system, envi-
ronment, and interaction, respectively; X (t ) is the system
trajectory with the initial condition X (0) = X0, similarly x(t )
is the environment trajectory with x(0) = x0. For a massive
enough central system we may neglect the recoil of the
environment∣∣∣∣ δSsys

δX (t )
[X (t )]

∣∣∣∣�
∣∣∣∣ δSint

δX (t )
[X (t ), x(t )]

∣∣∣∣. (3)

and expand the parts containing X (t ) around a classical tra-
jectory Xcl(t ; X0) (in what follows we drop the dependence
on the initial position X0, it will be self-understood), which
satisfies the unperturbed equation δSsys/δX (t )[X (t )] ≈ 0. The
standard Gaussian integration around Xcl (t ) gives [40]

Kt ≈ e
i
h̄ Ssys[Xcl (t )]

∫
Dx(t )e

i
h̄ Senv[x(t )]e

i
h̄ Sint[Xcl (t ),x(t )]

× Dt [X0, X ; x(t )], (4)

where Dt [X0, X ; x(t )] is the van Vleck determinant [41] for
Ssys + Sint. It depends on x(t ) through δ2Sint/δX (t )δX (t ′).
This is a quantum leftover of the E → S back-reaction, which
we also neglect, assuming∣∣∣∣ δ2Ssys

δX (t )δX (t ′)
[Xcl(t )]

∣∣∣∣�
∣∣∣∣ δ2Sint

δX (t )δX (t ′)
[Xcl (t ), x(t )]

∣∣∣∣, (5)

which, e.g., holds trivially for linearly coupled systems, when
δ2Sint/δX (t )δX (t ′) = 0. Then Dt [X0, X ; x(t )] reduces to the
van Vleck propagator for S alone, Dt (X0, X ) and can be pulled
out of the integral in (4)

Kt ≈ e
i
h̄ Ssys[Xcl (t )]Dt (X0, X )

∫
Dx(t )e

i
h̄ Senv[x(t )]e

i
h̄ Sint[Xcl (t ),x(t )],

(6)

where the first two terms define the semi-classical propagator
for the central system K sc

t (X, X0) ≡ e
i
h̄ Ssys[Xcl (t )]Dt (X0, X ). The

remaining path integral can be represented using the standard
operator formalism∫

Dx(t )e
i
h̄ Senv[x(t )]e

i
h̄ Sint[Xcl (t ),x(t )] ≡ 〈x|Ût [Xcl]|x0〉, (7)

where Ût [Xcl] is the effective unitary evolution of the environ-
ment with Xcl(t ) acting as a classical force

ih̄
dÛt

dt
= (Ĥenv + Ĥint[Xcl(t )])Ût , (8)

where Ĥenv, Ĥint are the Hamiltonians corresponding to the
actions Senv, Sint, respectively. In what follows we use hats to
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denote operators. Thus from (4), (5), (7), and (8) we obtain
the propagator in the recoilless limit

Kt (X, X0; x, x0) ≈ K sc
t (X, X0)〈x|Ût [Xcl]|x0〉. (9)

Assuming a product initial state �(0) = �0S ⊗ �0E , we can use
(9) to construct the approximate solution for the full system-
environment state �S:E . We obtain it in the form of partial
matrix elements between the position states of the central
system

〈X ′|�S:E (t )|X 〉 ≈
∫∫

dX0dX ′
0〈X ′

0|�0S|X0〉K sc
t (X, X0)∗K sc

t

× (X ′, X ′
0)Ût [Xcl]�0EÛt [X

′
cl]

†. (10)

We next specify to the most common situation when the
environment is composed out of a number of subenvironments
or modes, denoted Ek , e.g., a collection of harmonic oscilla-
tors. Furthermore, we assume there are not direct interactions
between the parts of the environment, only the central inter-
actions so that Ĥenv =∑k Ĥk and Ĥint =∑k Ĥ k

int, where k
labels the subenvironments, Ĥk , Ĥk

int are the self-energy and
interaction Hamiltonians of the kth subenvironment, respec-
tively. It is immediate to see that, due to that, the effective
evolution of the environment has a product structure Ût [Xcl] =⊗

k Û k
t [Xcl], where each Û k

t [Xcl] satisfies the corresponding
equation (8). Substituting it into (10) and tracing out suben-
vironments assumed to be unobserved, Euno, we obtain the
desired solution for the partially traced state (1)

〈X ′|�S:Eobs (t )|X 〉 ≈
∫∫

dX0dX ′
0〈X ′

0|�0S|X0〉K sc
t (X, X0)∗K sc

t

× (X ′, X ′
0)F [Xcl(t ), X ′

cl(t )]⊗
k∈Eobs

Û k
t [Xcl]�0kÛ

k
t [X ′

cl]
†. (11)

Here we assume the usual product initial state �0E =⊗k �0k ,
where �0k is the initial state of the kth subenvironment. More-
over, Xcl(0) = X0, Xcl(t ) = X , X ′

cl(0) = X ′
0, X ′

cl(t ) = X ′ and

F [Xcl(t ), X ′
cl(t )] ≡

∏
k∈Euno

Tr
(
Û k

t [X ′
cl]

†Û k
t [Xcl]�0k

)
(12)

is the influence functional [39,40]. This is a general, hy-
brid solution with effectively classical central system, driving
quantum environment. The, admittedly coarse, approximation
(11) is enough for our purposes.

In what follows we will specify to one of the paradigmatic
models of open quantum systems, linear quantum Brownian
motion model (see, e.g., [42–44]), as an example. It is de-
scribed by Lagrangeans: Lsys = 1/2(MẊ 2 − M�2X 2), Lenv =∑

k 1/2(mkẋ2
k − mkω

2
k x2

k ), Lint = −X
∑

k Ckxk , and the corre-
sponding actions. It is easy to see that the no-recoil condition
(3) will be satisfied when

Ck

M�2
 1, (13)

so that Xcl(τ ) are the ordinary oscillator trajectories and the
condition (5) is trivial due to the linearity in X of the interac-
tion term.

The influence functional for QBM was first calculated in
[39] for the physically most relevant situation of the thermal

environments and has the well-known form [7,8,10,39]

F [Xcl(t ), X ′
cl(t )]

= exp

{
− 1

h̄

∫ t

0
dτ

∫ τ

0
dτ ′	(τ )ν(τ − τ ′)	(τ ′)

}
(14)

× exp

{
− i

h̄

∫ t

0
dτ

∫ τ

0
dτ ′	(τ )η(τ − τ ′)X̄cl(τ

′)
}
,

(15)

where 	(τ ) ≡ Xcl(τ ) − X ′
cl(τ ) is the trajectory difference,

X̄cl(τ ) ≡ (1/2)(Xcl(τ ) + X ′
cl(τ )) is the trajectory average, and

ν(τ ), η(τ ) are the noise and dissipation kernels, respectively
[7–10,39],

ν(τ ) ≡
∫

dωJuno(ω)cth

(
h̄ωβ

2

)
cos ωτ, (16)

η(τ ) ≡
∫

dωJuno(ω) sin ωτ, (17)

with β = 1/(kBT ) denoting the inverse temperature and
Juno(ω) ≡∑k∈Euno

C2
k /(2mkωk )δ(ω − ωk ) is the spectral den-

sity of the unobserved part of the environment. The modulus
of F [Xcl(t ), X ′

cl(t )] controls the decoherence process.

III. DISTINGUISHABILITY OF LOCAL STATES
AND QUANTUM FISHER INFORMATION KERNEL

To understand what information about S is available lo-
cally in the the environment, we need the local states of each
subenvironment Ek , as these are the states that fully determine
the results of local measurements for each of the observers.
�k (t ) = TrE1...�Ek ...TrS�S:Eobs . The detailed calculation, relying
on (13), is presented in Appendix B. The result is �k (t ) ≈∫

dX0 p(X0)�k
t [X 0

cl], and similarly for the entire observed frac-
tion of the environment Eobs:

�Eobs (t ) ≈
∫

dX0 p(X0)
⊗

k∈Eobs

�k
t

[
X 0

cl

]
, (18)

where

�k
t [Xcl] ≡ Û k

t [Xcl]�0kÛ
k
t [Xcl]

†, (19)

are conditional states of Ek , p(X0) ≡ 〈X0|�0S|X0〉, and X 0
cl

is the classical trajectory with the endpoint 0: X 0
cl(0) =

X0, X 0
cl(t ) = 0. In the case of linear QBM, the evolution

law (8), satisfied by Û k
t [Xcl], describes a harmonic oscillator

forced along the classical trajectory Xcl. It has a well-known
solution, which in the interaction picture reads (we present it
in Appendix C for completeness)

Û k
t [Xcl] = eiζk (t )D̂

(
− iCk√

2h̄mkωk

∫ t

0
dτeiωkτ Xcl(τ )

)
, (20)

where ζk (t ) is an irrelevant phase factor and D̂(α) ≡
exp(αâ† − α∗â) is the standard optical displacement opera-
tor. The local states of Ek are mixtures of oscillator states
(19), forced along X 0

cl. They are parametrized by the cen-
tral system’s initial position X0 (cf. [23]), spread with the
probability p(X0).
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The information content of the fragment Ek is determined
by the distinguishability of the local states �k

t [Xcl] for different
trajectories. We will consider a general Xcl(τ ), which can later
be specified to X 0

cl(τ ). Among the available distinguishability
measures [13], a particularly convenient one is the generalized
overlap B(�, σ ) ≡ Tr

√√
�σ

√
�. It provides both lower and

upper bounds for such operational quantities as the probability
of error and to the quantum Chernoff information [45] and
is a good compromise between computability and a clear
operational meaning. We define the generalized overlap for
the conditional states of the kth environment

Bk[	, t] ≡ B
(
�k

t [Xcl], �
k
t [X ′

cl]
)

(21)

[from the definition and (19) and (20), B depends only on the
difference of trajectories 	]. For thermal �0k , the overlap (21)

was found in [23] (see Appendix C)

Bk[	, t] = exp

{
− C2

k

4h̄mkωk
th

(
h̄ωkβ

2

)∣∣∣∣
∫ t

0
dτeiωkτ	(τ )

∣∣∣∣
2
}

.

(22)

A single environmental mode typically carries a vanishingly
small amount of useful information. To decrease the discrimi-
nation error, it is beneficial to combine the modes into groups,
called macrofractions [21], scaling with the total number of
observed modes. In our case, we consider the entire observed
environment Eobs. Since there are no direct interactions in the
environment, the conditional states of the observed fraction
are products, cf. (18): �obs

t [Xcl] ≡⊗k∈Eobs
�k

t [Xcl]. The gener-
alized overlap factorizes w.r.t. the tensor product, so there is
no quantum metrological advantage here [46], but still there
is a classical one [21]

Bobs[	, t] ≡ B
(
�obs

t [Xcl ], �
obs
t [X ′

cl]
) =

∏
k∈Eobs

Bk[	, t]

= exp

⎧⎨
⎩−

∑
k∈Eobs

C2
k

4h̄mkωk
th

(
h̄ωkβ

2

)∣∣∣∣
∫ t

0
dτeiωkτ	(τ )

∣∣∣∣
2
⎫⎬
⎭

≡ exp

{
−1

h̄

∫ t

0
dτ

∫ τ

0
dτ ′	(τ )φ(τ − τ ′)	(τ ′)

}
, (23)

where, in the last step, we passed to the continuum limit and
introduced a new kernel

φ(τ ) ≡
∫ ∞

0
dωJobs(ω)th

(
h̄ωβ

2

)
cos ωτ, (24)

called the quantum Fisher information kernel. Here Jobs(ω) ≡∑
k∈Eobs

C2
k /(2mkωk )δ(ω − ωk ) is the spectral density cor-

responding to the observed environment. Note that, quite
surprisingly, the QFI kernel and the overlap (23) have an
almost identical structure to the noise kernel (16) and the real
part of the influence functional [7,8,10,39], the only differ-
ence being in the reversed temperature dependence [23,47].
It can be intuitively understood by recalling that here the
higher the temperature the more efficient the decoherence but
also the more noisy the environment. The name QFI kernel
comes from the observation that the QFI of the X0 phase
imprinting: �k (X ) ≡ e−i/h̄X0Ckx̂k �0kei/h̄X0Ckx̂k is proportional to
the integrand of (24) (see, e.g., [48]).

We want a fair comparison of the decohering power and
the information content of the observed environment, so we
assume equal spectral densities for the unobserved and the
observed fractions Jobs = Juno ≡ J (ω) and choose it to be in
the Lorenz-Drude form [7–9]

J (ω) = 2Mγ

π
ω

�2

�2 + ω2
, (25)

where � is the cutoff frequency and γ is the effective coupling
strength.

IV. INFORMATION GAP

For our demonstration it is enough to use the highly popu-
lar Caldeira-Leggett limit [9,10], kBT/h̄ � � � �, which is
the high-temperature, hight-cutoff limit. The behavior of the
influence functional in this limit is emblematic to the entire
decoherence theory and can be obtained, e.g.. by approxi-
mating cthx ≈ x−1 in the noise kernel (16) and then using
�e−�τ ≈ δ(τ ) valid for τ � �−1 (or using the Matsubara
representation [49]). This leads to the celebrated result that
decoherence becomes efficient at lengths above the thermal
de Broglie wavelength λ2

dB = h̄2/2MkBT [8,10–12]

|F [Xcl(t ), X ′
cl(t )]| ≈ exp

[
− γ

λ2
dB

∫ t

0
dτ	(τ )2

]
, (26)

and for times larger than the decoherence time [12] tdec =
1/γ (λdB/d )2, where d is a given separation and γ −1 is related
to the relaxation time.

The QFI kernel can be studied in the similar way, approxi-
mating thx ≈ x in (24) and passing to a large �τ ,

φ(τ ) ≈
h̄�β1

γ Mh̄β�2

π

∫ ∞

0
dω

ω2

ω2 + �2
cos(ωτ ) (27)

= γ Mh̄β�2

π

(∫ ∞

0
dω cos(ωτ )

−�2
∫ ∞

0
dω

cos(ωτ )

ω2 + �2

)
(28)

= γ Mh̄β

(
�2δ(τ ) − 1

2
�3e−�|τ |

)
. (29)
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We define f (τ ) ≡ �e−�τ for τ > 0 so that �3e−�(τ−τ ′ ) =
d2/dτ ′2 f (τ − τ ′). We can then calculate the integral with the
second term of (29) integrating by parts two times∫ τ

0
dτ ′�3e−�(τ−τ ′ )	(τ ′) =

∫ τ

0
dτ ′ f̈ (τ − τ ′)	(τ ′) (30)

= ḟ (0+)	(τ ) − ḟ (τ )	(0) − f (0)	̇(τ ) + f (τ )	̇(0)

(31)

+
∫ τ

0
dτ ′ f (τ − τ ′)	̈(τ ′), (32)

here the dot means d/dτ ′, so that ḟ (0+) = +�2. In the large
cutoff limit it is justified to assume τ � �−1, i.e., we con-
sider a timescale much larger than the one set by the cutoff,
similarly as it is done analyzing the influence functional [10].
Then the boundary terms containing f (τ ) and ḟ (τ ) can be
neglected and moreover we can substitute f (τ ) ≈ δ(τ ) in the
last integral to obtain∫ τ

0
dτ ′�3e−�|τ−τ ′|	(τ ′) ≈

�τ�1
�2	(τ ) − �	̇(τ ) + 	̈(τ )

(33)

= �2	(τ ) − ��	

(
τ + π

2�

)
− �2	(τ ) (34)

≈
���

�2	(τ ), (35)

where we use the fact that 	(τ ) is a difference of two
oscillator trajectories, so that it satisfies 	̇(τ ) = �	(τ +
π/2�) and 	̈(τ ) = −�2	(τ ). Finally, we neglect the �

terms because � � �. More generally, 	̇(τ ), 	̈(τ ) are in-
verse proportional to the system’s evolution timescale, which
is the slowest timescale, and hence those terms can be omitted
compared to the �2 term. Using (35) and (29) we obtain
our main result: the generalized overlap between the environ-
mental macrostates. It is both remarkably simple and similar
to (26)

B[	, t] ≈ exp

[
− γ

λ2
dist

∫ t

0
dτ	(τ )2

]
. (36)

The expression (36) immediately implies that the distin-
guishability process is described by its own lengthscale, which
we call the distinguishability length

λ2
dist ≡ 2kBT

M�2
= h̄

M�

(
2kBT

h̄�

)
(37)

and happens on the associated distinguishability timescale

tdist = 1

γ

(
λdist

d

)2

. (38)

Surprisingly, (37) does not depend on h̄ in the leading or-
der. It is the lengthscale at which the energy of the “cutoff
oscillator” of mass M and frequency � equals the thermal
energy: M�2λ2

dist/2 = kBT . The cutoff dependence of (37)
can be understood recalling that the cutoff defines the shortest
lengthscale in the environment. Indeed, (37) can be expressed
as the characteristic length of the cutoff oscillator,

√
h̄/M�,

rescaled by the ratio of the thermal energy to the cutoff
energy

√
2kBT/h̄�. Of course the higher-order terms in the

th(h̄βω/2) expansion in (23) and (24) will contribute O(h̄2)
terms to (37). There is clearly a competition in (37) between
the temperature T , which degrades the discriminating abil-
ity of the environment and the cutoff frequency � which
increases it. The relative difference between the two length-
scales

λdist − λdB

λdB
≈ 2

kBT

h̄�
� 1, (39)

shows that there is a “resolution gap” between the de-
coherence and the distinguishability accuracy [50]. The
environment decoheres the system at shorter lengthscales than
those at which information can be extracted from it, i.e., a
part of the information stays bounded in the environment. The
timescales are separated even more strongly

tdist

tdec
= 4

(
kBT

h̄�

)2

, (40)

meaning the distinguishability process takes much longer time
than the decoherence for the same separation. This is in accord
with the earlier results for generic finite-dimensional systems;
see, e.g., [26]. For molecular environments � ∼ 1013 Hz and
at T ∼ 300 K, λdist/λdec ∼ 10, tdist/tdec ∼ 100, which is still
orders of magnitude shorter for macroscopic bodies than typ-
ical relaxation times [12].

As a by-product we obtain a type of information gain ver-
sus disturbance relation (see, e.g., [51]), where the disturbance
is represented by the decoherence efficiency

λdBλdist = h̄

M�
. (41)

The right-hand side does not depend on the state of the envi-
ronment (encoded in the temperature) and is the square of the
characteristic length of the cutoff oscillator. More generally,
passing to the Fourier transforms of the noise, dissipation,
and QFI kernels, denoted by the tilde, we obtain the following
relations, true for thermal environments:

φ̃(ω) = ν̃(ω)th2

(
h̄ωβ

2

)
, (42)

φ̃(ω) = iη̃(ω)th

(
h̄ωβ

2

)
. (43)

They resemble the celebrated fluctuation-dissipation relation
[43,52,53]

ν̃(ω) = iη̃(ω)cth

(
h̄ωβ

2

)
, (44)

but connect dissipation and noise to information accumulation
in the environment. These interesting relations will be inves-
tigated further elsewhere.

V. CONCLUSION

We showed here, using the celebrated model of Caldeira
and Leggett as an example, that there is an information gap
between what environment learns, decohering the system, and
what can be extracted from it via measurements, i.e., some
information stays bounded in the environment. For that, we
developed a series of rather nontrivial and nonstandard tools,
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including a path-integral recoiless limit, a hybrid quantum-
classical extended state solution (11), and quantum Fisher
information kernel. Our results uncover the existence of a
new lengthscale, determining the information content of the
environment and complementary to the celebrated thermal de
Broglie decoherence lengthscale.

The unorthodox point of view taken here, i.e., that of
the environment instead of the the central system, was moti-
vated by the modern developments of the decoherence theory
[15,17,21], explaining the apparent objectivity of the macro-
scopic world through redundantly stored information in the
environment. From this perspective, the solution (11) can

approximate an SBS state, storing an objective position of
the central system, in the semi-classical approximation. We
hypothesize that the approach to objectivity is possible only in
such a limit, when the central system is macroscopic enough,
making objectivity a macroscopic phenomenon.
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APPENDIX A: ALTERNATIVE DERIVATION OF THE HYBRID SOLUTION

In the particular case of a linear QBM model, the hybrid SEobs solution from the main text

〈X ′|�S:Eobs (t )|X 〉 ≈
∫∫

dX0dX ′
0〈X ′

0|�0S|X0〉K sc
t (X, X0)∗K sc

t (X ′, X ′
0)F [Xcl(t ), X ′

cl(t )]
⊗

k∈Eobs

Û k
t [Xcl]�0kÛ

k
t [X ′

cl]
† (A1)

can be also obtained in the following way: Forgetting for a moment the evolution of the environment, the central system is a
forced harmonic oscillator with a well-known solution for the propagator [39]. It is determined by the action

S[x(t )] = M�

2 sin �t

[(
X 2 + X 2

0

)
cos �t − 2XX0

]+ 1

sin �t

∑
k

Ck

∫ t

0
dτ [X sin �τ + X0 sin �(t − τ )]xk (τ )

− �

sin �t

∑
k,l

CkCl

M�2

∫ t

0
dτ

∫ τ

0
dτ ′ sin �τ ′ sin �(t − τ )xk (τ )xl (τ

′). (A2)

Neglecting the last term, using the resulting action to construct the propagator for the global state, and changing to the operator
picture for the environmental degrees of freedom, we obtain the solution (11).

APPENDIX B: TRACING OVER THE CENTRAL SYSTEM

Here we calculate the trace over the central system S of the
hybrid solution (11). We first assume, for simplicity, only one
observed environment and one unobserved. Generalization to
multiple environments in both groups will be obvious and we
present it at the end. The main idea is to rewrite the trace using
the no-recoil condition

Ck

M�2
 1. (B1)

First, we take the matrix elements w.r.t. the environment and
comeback from the operator form of the environment part of
(11) to the path integral one using∫

Dx(t )e
i
h̄ Senv[x(t )]e

i
h̄ Sint[Xcl (t ),x(t )] ≡ 〈x|Ût [Xcl]|x0〉. (B2)

This gives∫
dX 〈X ; x′|�S:Eobs |X ; x〉

=
∫

dX0dX ′
0dx0dx′

0〈X ′
0|�0S|X0〉〈x′

0|�0E |x0〉 (B3)

×
∫

dXK sc
t (X, X0)∗K sc

t (X, X ′
0)F [Xcl, X ′

cl] (B4)

×
∫

DxDx′ exp
i

h̄
(Senv[x] − Senv[x′]

+ Sint[Xcl, x] − Sint[X
′
cl, x′]). (B5)

Because of the tracing, the classical trajectories have the same
endpoints Xcl(t ) = X ′

cl(t ) = X , and x(0) = x0, x(t ) = x and
similarly for x′(τ ). Let us analyze the above expression term
by term. It is well known that the semiclassical propagator
Ksc

t (X, X0) for the harmonic oscillator is equal to the full
quantum one. We thus have

K sc
t (X, X0)∗K sc

t (X, X ′
0) (B6)

= M�

2π h̄| sin �t |e
iM�

2h̄ sin �t [(X ′2
0 −X 2

0 ) cos �t+2X	X0]. (B7)

There are X -dependent and X -independent parts.
The influence functional may be written using path

integrals as [40]

F [Xcl, X ′
cl] =

∫
dỹdy0dy′

0

∫
DyDy′〈y′

0|�̃0E |y0〉

× e
i
h̄ (Senv[y]−Senv[y′]+Sint[Xcl,y]−Sint[X ′

cl,y
′]), (B8)

where �̃0E is the initial state of the unobserved part of the en-
vironment Euno, which can be different from the initial state of
the observed part Eobs, �0E in (B4). The boundary conditions
are y(0) = y0, y′(0) = y′

0, y(t ) = y′(t ) = ỹ. The generaliza-
tion to multiple unobserved environments is straightforward:
the combined influence functional will be a product over
j ∈ Euno of the terms (B8) for each mode j with �0 j initial
state, F =∏ j∈Euno

Fj

The terms of the form Senv[x] − Senv[x′], appearing both in
(B5) and (B8), do not depend on the integration variable X and
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thus can pulled in from of the integral over X . The interaction
terms Sint[Xcl, y] − Sint[X ′

cl, y′] from (B5) and (B8) will have
both X -dependent and X -independent parts. To separate them,
let us parametrize the classical trajectory Xcl satisfying the
apropriate boundary conditions Xcl(0) = X0, Xcl(t ) = X , as
below

Xcl(τ ) = X0 cos �τ

[
1 − sin �τ

sin �t

]
+ X

sin �τ

sin �t
(B9)

≡ X0a(τ ) + X
sin �τ

sin �t
. (B10)

Then it is easy to see that

Sint[Xcl, x] − Sint[X
′
cl, x′]

= −C
∫ t

0
dτa(τ )[X0x(τ ) − X ′

0x′(τ )] (B11)

− CX

sin �t

∫ t

0
dτ sin �τ [x(τ ) − x′(τ )]. (B12)

We now combine the X -dependent factors from (B5), (B7),
and (B8) and integrate them over X :

M�

2π h̄| sin �t |
∫

dX exp

{
iX

h̄ sin �t

[
M�	X0 − C

∫ t

0
dτ sin �τ

[
x(τ ) − x′(τ ) + y(τ ) − y′(τ )

]]}
(B13)

= M�

2π h̄| sin �t |
∫

dX exp

{
iXM�2

h̄ sin �t

[
	X0

�
− C

M�2

∫ t

0
dτ sin �τ

[
x(τ ) − x′(τ ) + y(τ ) − y′(τ )

]]}
(B14)

≈ M�

2π h̄| sin �t |
∫

dX exp

(
iXM�	X0

h̄ sin �t

)
= δ(	X0),

(B15)

where, in the crucial step, we used the recoilless condition (13) and neglected the action integral. We can now comeback to the
main integral (B4) and (B5). The delta function (B15) forces the trajectories Xcl(τ ) and X ′

cl(τ ) to be equal as it forces X0 = X ′
0

(the endpoints are the same in this calculation as we are calculating the trace over X ). This immediately forces the influence
functional (B8) to be equal to 1 since

F [Xcl, Xcl] = Tr(Ût [Xcl]�̃0EÛt [Xcl]
†) = 1. (B16)

The X -independent part of (B7) will be equal to 1 as well since X ′2
0 − X 2

0 = 0. We are thus left with the following integral:∫
dX 〈X ; x′|�S:Eobs |X ; x〉 =

∫
dX0 p(X0)

∫
dx0dx′

0〈x′
0|�0E |x0〉 (B17)

×
∫

DxDx′ exp
i

h̄

(
Senv[x] − Senv[x′] − C

∫ t

0
dτa(τ )[X0x(τ ) − X ′

0x′(τ )]

)
(B18)

=
∫

dX0 p(X0)
∫

dx0dx′
0〈x′

0|�0E |x0〉
∫

DxDx′e
i
h̄ (Senv[x]+Sint[X 0

cl,x]−Senv[x′]−Sint[X 0
cl,x

′]) (B19)

=
∫

dX0 p(X0)〈x′|Ut
[
X 0

cl

]
�0EUt

[
X 0

cl

]†|x〉, (B20)

where in (B19) we came back to the operator picture using
(B2) and introduce

p(X0) ≡ 〈X0|�0S|X0〉, (B21)

which is the initial distribution of the central system’s posi-
tion. Above, X 0

cl is the classical trajectory with the endpoint 0:

X 0
cl(0) = X0, X 0

cl(t ) = 0. (B22)

It appears by comparing the action integral in the exponent
of (B18) to (B10) with X = 0. Having the result (B20) for
a single degree of freedom of the observed environment, we
can now apply it to the initial task with multiple environments.
Performing the above calculations for each degree of freedom
j we finally obtain

�k (t ) = TrE1...�Ek ...

∫
dX 〈X |�S:Eobs |X 〉 (B23)

≈
∫

dX0 p(X0)TrE1...�Ek ...

⊗
j∈Eobs

Û j
t

[
X 0

cl

]
�0 jÛ

j
t

[
X 0

cl

]†

=
∫

dX0 p(X0)Û k
t

[
X 0

cl

]
�0kÛ

k
t

[
X 0

cl

]†
(B24)

≡
∫

dX0 p(X0)�k
t

[
X 0

cl

]
, (B25)

where the approximation signalizes that we have used the no-
recoil condition (13) and we define

�k
t [Xcl] ≡ Û k

t [Xcl]�0kÛ
k
t [Xcl]

†. (B26)

APPENDIX C: GENERALIZED OVERLAP
FOR THERMAL QBM

For completeness’ sake, we present here the derivation
of the generalize overlap (21) from [23]. We first solve the
effective dynamics for the environmental modes, resulting
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from (8). In the case of the linear QBM considered here, the
effective Hamiltonian Ĥeff ≡ Ĥenv + Ĥint[Xcl] decomposes of
course w.r.t. the subenvironments and for the kth subeviron-
ment has a simple form

Ĥk
eff = p̂2

k

2mk
+ mkω

2
k x̂2

k

2
− CkXcl(t )x̂k, (C1)

where x̂k, p̂k are the canonical observables. This is a standard
forced harmonic oscillator. It can be solved in many ways, the
fastest being by passing to the interaction picture

Ĥk
eff(t ) = −CkXcl(t )x̂k (t ), (C2)

where x̂k (t ) = √
h̄/2mkωk (e−iωkt â + eiωkt â†

k ) with âk, â†
k be-

ing the corresponding annihilation and creation operators. Us-
ing the fact that (C2) commute for different times to a number
[Ĥk

eff(t ), Ĥk
eff(t

′)] = ic(t, t ′), one can use the Baker-Campbell-
Hausdorff formula formula to calculate the evolution via
limn→∞ (

∏n
r=1 exp[−i/h̄Ĥ k

eff(tr )	t]), 	t ≡ t/n, tr ≡ r	t :

lim
n→∞

( n∏
r=1

exp[− i

h̄
Ĥ k

eff(tr )	t]

)

= eiζ (t )exp

(
− i

h̄

∫ t

0
dτ Ĥk

eff(τ )

)
(C3)

= eiζ (t )exp

[
−i

Ck√
2h̄mkωk

(∫ t

0
dτXcl(τ )eiωkτ + c.c.

)]
,

(C4)

where ζ (t ) is some phase factor, that, as we will see below,
will be unimportant for our calculations. Defining

α(t ) ≡ − iCk√
2h̄mkωk

∫ t

0
dτXcl(τ )eiωkτ , (C5)

the exponent in (C4) becomes the standard displacement op-
erator D̂[α(t )], so that in the interactrion picture we obtain

Û k
t [Xcl ] = eiζ (t )D̂[α(t )], (C6)

which is the expression (8).
We now calculate the single system generalized overlap

(21). To simplyfy the notation, we will drop the index k in all
the objects that define (21) since the calculation is the same for
every mode. Using the definition of the generalized overlap
together with the operator identity, following from the spectral
theorem

√
UAU † = U

√
AU †, we obtain

B[	, t]

= Tr
√√

�0Ût [X ′
cl]

†Ût [Xcl]�0Ût [Xcl]†Ût [X ′
cl]

√
�0, (C7)

where we pulled the extreme left and right unitaries out of
the both square roots and used the cyclic property of the trace
to cancel them out. From (C6) we obtain that modulo phase
factors, which cancel in (C7)

Ût [X
′
cl]

†Ût [Xcl] � D̂[α(t ) − α′(t )] ≡ D̂(ηt ), (C8)

where we could use the interaction picture expression (C6)
since the free evolutions cancel and we introduced ηt ≡
α(t ) − α′(t ) for a later convenience. Next, assuming that �0

is a thermal state, we use the well-known coherent state rep-
resentation for the middle �0 under the square root in (C7)

�0 =
∫

d2γ

π n̄
e−|γ |2/n̄|γ 〉〈γ |, (C9)

where n̄ = 1/(eh̄βω − 1) is the mean excitation number at the
inverse temperature β. Denoting the Hermitian operator under
the square root in (C7) by Ât , we obtain

Ât =
∫

d2γ

π n̄
e−|γ |2/n̄√�0D̂(ηt )|γ 〉〈γ |D̂(ηt )

†√�0 (C10)

=
∫

d2γ

π n̄
e−|γ |2/n̄√�0|γ + ηt 〉〈γ + ηt |√�0. (C11)

To perform the square roots above, we now use the Fock
representation of the thermal state

�0 =
∑

n

n̄n

(n̄ + 1)n+1
|n〉〈n|, (C12)

so that

Ât =
∫

d2γ

π n̄
e− |γ |2

n̄

∑
m,n

√
n̄m+n

(n̄ + 1)m+n+2

× 〈n|γ + ηt 〉〈γ + ηt |m〉|n〉〈m| (C13)

and the scalar products above are given by the well-known
expressions of the coherent states in the Fock basis

〈n|γ + ηt 〉 = e−|γ+ηt |2/2 (γ + ηt )n

√
n!

. (C14)

The strategy is now to use this relation and rewrite each sum
in (C13) as a coherent state but with a rescaled argument,
and then try to rewrite (C13) as a single thermal state (with
a different mean excitation number than �0). To this end we
note that

e− 1
2 |γ+ηt |2

∑
n

(
n̄

n̄ + 1

) n
2 (γ + ηt )n

√
n!

|n〉 (C15)

= e− 1
2

|γ+ηt |2
n̄+1

∣∣∣∣∣
√

n̄

n̄ + 1
(γ + ηt )

〉
. (C16)

Substituting this into (C13) and reordering gives

Ât = 1

n̄ + 1
e− |ηt |2

1+2n̄

∫
d2γ

π n̄
e− 1+2n̄

n̄(n̄+1) |γ+ n̄
1+2n̄ ηt |2

×
∣∣∣∣∣
√

n̄

n̄ + 1
(γ + ηt )

〉〈√
n̄

n̄ + 1
(γ + ηt )

∣∣∣∣∣. (C17)

Note that since we are interested in Tr
√

Ât rather than Ât itself,
there is a freedom of rotating Ât by a unitary operator, in
particular, by a displacement. We now find such a displace-
ment as to turn (C17) into the thermal form. Comparing the
exponential under the integral in (C17) with the thermal form
(C9), we see that the argument of the subsequent coherent
states should be proportional to γ + (n̄ηt )/(1 + 2n̄). Simple

032221-8



COMPLEMENTARITY BETWEEN DECOHERENCE AND … PHYSICAL REVIEW A 109, 032221 (2024)

algebra gives∣∣∣∣∣
√

n̄

n̄ + 1
(γ + ηt )

〉

� D̂

(√
n̄

n̄ + 1

n̄ + 1

1 + 2n̄
ηt

)∣∣∣∣∣
√

n̄

n̄ + 1

(
γ + n̄

1 + 2n̄
ηt

)〉
,

(C18)

where we omitted the irrelevant phase factor as we are in-
terested in the projector on the above state. Inserting the
above relation into (C17), dropping the displacements, and
changing the integration variable γ → √

n̄/(n̄ + 1)[γ + (1 +
2n̄)ηt ] gives

B[	, t] = e− 1
2

|ηt |2
1+2n̄

1√
1 + 2n̄

Tr
√

�th[n̄2/(1 + 2n̄)], (C19)

where �th(n̄) is the standard thermal state with the mean
excitation number n̄. We use the Fock expansion (C12) for
�th[n̄2/(1 + 2n̄)] and obtain

B[	, t] = e− |ηt |2
2+4n̄

1√
1 + 2n̄

(C20)

×
(

1 + n̄2

1 + 2n̄

)− 1
2 ∑

n

(
n̄2/(1 + 2n̄)

1 + n̄2/(1 + 2n̄)

) n
2

(C21)

= exp

[
−1

2
|α(t ) − α′(t )|2th

(
h̄βω

2

)]
, (C22)

where in the last step, we used the definition of ηt from
(C8) and n̄ = 1/(eh̄βω − 1). Finally, using (C5), we obtain
the desired result (22). It is interesting that the overlap factor
looks very similar to the real part of the influence functional
but with the inverse temperature dependence.

APPENDIX D: MATSUBARA REPRESENTATION
OF THE QFI KERNEL

Just like in the case of the noise kernel [7], one can derive
a formal analytic expression for the QFI kernel using the
fermionic Matsubara representation [49]

th

(
β h̄ω

2

)
= 4

β h̄ω

∞∑
n=0

1

1 + (νn/ω)2
, (D1)

with fermionic frequencies

νn = (2n + 1)π

h̄β
. (D2)

Substituting this into the QFI definition (24) and integrating
term by term, we find

φ(τ ) = 4Mγ�

h̄β

∞∑
n=0

e−�|τ | − (νn/�)e−νn|τ |

1 − (νn/�)2
, (D3)

which looks identical to the expansion of the noise kernel
ν(τ ) [7], except that, instead of the bosonic frequencies νn =
2nπ/(h̄β ), we now have the fermionic (D2). In particular,
now ν0 = π/(h̄β ) �= 0 so that νn/� � 1 for any n, including
n = 0. This complicates the analysis compared to the bosonic
case, describing the influence functional, as there is now an
interplay between �, ν0, and τ . The double integral in (23),
which we denote by �[	, t]:

�[	, t] ≡
∫ t

0
dτ

∫ τ

0
dτ ′	(τ )φ(τ − τ ′)	(τ ′) (D4)

can be formally calculated term by term, using (D3) and an
explicit expression for the trajectories difference

	(τ ) ≡ Xcl(τ ) − X ′
cl (τ )

= 	X0
sin[�(t − τ )]

sin �t
+ 	X

sin �τ

sin �t
. (D5)

We first slightly rearrange the expression (D3)

φ(τ ) = 4Mγ

π

∞∑
n=0

1

(2n + 1)

�2

1 − (�/νn)2

×
(

e−νn|τ | − �

νn
e−�|τ |

)
. (D6)

We now calculate term by term the double integral

�[	, t] ≡
∫ t

0
dτ

∫ τ

0
dτ ′	(τ )φ(τ − τ ′)	(τ ′), (D7)

using elementary integrals and obtain

�[	, t] = 4Mγ

π

∞∑
n=0

1

(2n + 1)

1

1 − (�/νn)2

1

sin2 �t

× [�2[ct (νn) − (�/νn)ct (�)]
(
	X 2

0 + 	X 2
)

+ �2[dt (νn) − (�/νn)dt (�)]	X0	X
]
, (D8)

with the coefficient defined as

ct (νn) = 1

1 + (�/νn)2

[
t

2νn
− 1

4νn�
sin(2�t ) − sin2 �t

2ν2
n

]
+ 1

[1 + (�/νn)2]2

[
�2

ν4
n

− e−νnt

(
�

ν3
n

sin �t + �2

ν4
n

cos �t

)]
, (D9)

dt (νn) = 1

1 + (�/νn)2

[
− t

νn
cos �t + 1

�νn
sin �t

]
− 1

[1 + (�/νn)2]2

{
2
�2

ν4
n

cos �t + e−νnt

[
�2

ν4
n

+
(

�

ν2
n

cos �t + 1

νn
sin �t

)2
]}

,

(D10)
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and analogously for ct (�) and dt (�). The quantities that are small in the Caldeira-Leggett model are

�/νn  1, �/νn  1, �/�  1, (D11)

which can be used to simplify the above expressions.
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