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Quantum coherence, nonlocality, and contextuality are key resources for quantum advantage in metrology,
communication, and computation. We introduce a graph-based approach to derive classicality inequalities that
bound local, noncontextual, and coherence-free models, offering a unified description of these seemingly dis-
parate quantum resources. Our approach generalizes recently proposed basis-independent coherence witnesses,
and it recovers all noncontextuality inequalities of the exclusivity graph approach. Moreover, violations of certain
classicality inequalities witness preparation contextuality. We describe an algorithm to find all such classicality
inequalities, and we use it to analyze some of the simplest scenarios.
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I. INTRODUCTION

Nonclassical resources provided by quantum theory are
key to quantum advantage for information processing [1–8];
see [9–11] for comprehensive reviews of applications. Many
different nonclassical features of quantum mechanics have
been identified, studied, witnessed, and quantified [4,12–27].
It is natural to wonder to what extent different quantum re-
sources can be characterized in a unified way. Here we address
this question by proposing a single formalism that yields
inequalities bounding three different notions of classicality:
noncontextual, local, and coherence-free models.

A number of modern approaches to contextuality have suc-
cessfully incorporated nonlocality as a special case [28–31].
The relationship between this unified notion of nonclassi-
cal correlations and coherence, however, has been harder to
establish. One roadblock is that most approaches to charac-
terize coherence presuppose the choice of a fixed reference
basis [11]. Recently, different approaches have been proposed
to study a basis-independent notion of coherence [26,32],
dubbed set coherence in Ref. [26]. A recent approach, upon
which the present work builds, derives witnesses of basis-
independent coherence using only relational information
between states in the form of two-state overlaps [32]. Still, so
far there has been no clear identification between nonlocality
and contextuality on the one hand, and coherence on the other.
There are examples of models that mimic quantum coherence
without displaying contextuality or nonlocality, such as the
toy models from Refs. [33,34], while on the other hand inco-
herent states—even maximally mixed states—can of course
be used to witness state-independent quantum contextuality
[35,36]. Theory-independent approaches have been used to
compare relevant types of nonclassical resources [23,27,37],
but an understanding of the special case of coherence and
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contextuality is still lacking. A better understanding of the
relationship between these two fundamental manifestations of
nonclassicality has both important foundational impact and
potential technological applications.

Building on the study of coherence using two-state over-
laps [32], we propose a framework that associates with any
(simple) graph G a probability polytope CG of edge weight-
ings. Vertices of the graph G represent probabilistic processes,
while edges of G correspond to correlations between neigh-
boring processes. We show that the faces of the polytope CG

describe bounds on noncontextual, local, and coherence-free
models, depending on the interpretation of vertices of the
graph G as preparations and measurements. The description
of three notions of classicality under a single framework rep-
resents a significant conceptual advance towards clarifying the
source of quantum computational advantage.

II. FRAMEWORK

A. The classical polytope CG

Let G = (V (G), E (G)) be an undirected graph, which
we call the event graph. We consider edge weightings r :
E (G) −→ [0, 1], which assign a weight re = ri j to each edge
e = {i, j} of G. We regard these weightings as points forming
a polytope, the unit hypercube, r ∈ [0, 1]E (G).

To define the classical polytope CG ⊆ [0, 1]E (G), take each
vertex i ∈ V (G) to represent a random variable Ai with values
belonging to an alphabet �, and suppose these are jointly
distributed. This determines an edge weighting r where each
weight ri j is the probability that the processes corresponding
to vertices i and j output equal values, i.e.,

ri j = P(Ai = Aj ).

An edge weighting r is in the classical polytope CG if it
arises in this fashion from jointly distributed random variables
(Ai )i∈V (G). Each weight ri j is then a measure of the correlation
between the output values of Ai and of Aj . In the case of
dichotomic values � = {+1,−1}, this quantity is related to
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FIG. 1. Event graphs corresponding to bounds on classical models. Each of these graphs can be used to obtain the following nonclassicality
inequalities: (a) constrained CHSH inequality; (b),(d) CHSH Bell locality inequality; (c) new K4 classicality inequality from Eq. (2), and (e)
Klyachko, Can, Binicioğlu, and Schumovsky (KCBS) noncontextuality inequality.

the expected value of the product by 〈AiAj〉 = 2ri j − 1 [38].
An (alternative) formal description of CG is given in detail in
Appendix A.

B. Inequalities defining CG

The inequalities defining the polytope CG impose logical
conditions determining the set of classical edge weightings.
The existence of nontrivial facets of CG can be illustrated with
the example of Fig. 1(a), the three-vertex complete graph K3,
with edge weights r12, r23, r13. We cannot have, e.g.,

r12 = 1, r23 = 1, r13 = 0,

as this would contradict transitivity of equality on the deter-
ministic values corresponding to each of the three vertices:
A1 = A2 = A3 �= A1. In Ref. [32] it was shown that the only
nontrivial inequalities for the n-cycle event graph Cn are

−re +
∑
e′ �=e

re′ � n − 2, for each e ∈ E (Cn). (1)

Incidentally, these inequalities have been known at least since
the work of Boole [39–41].

We now give a high-level description of an algorithm to
completely characterize CG for general event graphs G. We
start by enumerating the vertices of CG. These are all the
“deterministic” labelings of the edges of G with values in
{0, 1} that are logically consistent with transitivity of equality.
The facets of CG can then be found using standard convex
geometry tools [42].

Whether a given deterministic edge labeling is consistent—
and therefore a vertex of CG—can be checked in linear time
on the size of G by a graph traversal. However, it is un-
necessary to generate all 2|E (G)|-many labelings and discard
the inconsistent ones. Instead, one can directly generate only
the consistent ones by searching through underlying value
assignments to the vertices of G. Despite being much more
efficient for most graphs, this also quickly becomes unavoid-
ably intractable due to the exponentially increasing number
of vertices of the polytope CG. We deepen this discussion in
Appendix A.

Using the method just outlined, we find all facets of CG for
some small graphs, including all graphs shown in Fig. 1. Inter-
estingly, already for K4, shown in Fig.1(c), a new type of facet
appears that is different from the cycle inequalities in Eq. (1).
These new facets of K4 are described by the inequalities of the
form

(r12 + r13 + r14) − (r23 + r34 + r24) � 1 (2)

up to label permutations.

In Appendix B, we prove that certain constructions of
graphs by combining smaller graphs do not give rise to
new facet inequalities, trimming the class of graphs worth
analyzing. In Appendix C, we list all facet inequalities of
the classical polytopes for the complete graphs K4, K5, and
K6. We also give numerically found examples of quantum
violations—witnessing basis-independent coherence in the
sense described in the next section—of all nontrivial facets
of K4 and K5. All the new inequalities and quantum violations
found, together with the code used to obtain them, which is
applicable to analyze CG for an arbitrary graph G, are made
available in an associated Git repository [43]. In Appendix D,
we generalize the inequalities of Eq. (2) to complete graphs
of n � 4 vertices, and we prove that these define facets of the
classical polytopes CKn for all such n. This yields an infinite
family hn of new classicality inequalities not previously de-
scribed in the literature. The first three new inequalities from
this family (h4, h5, h6) have recently been experimentally vio-
lated, serving to benchmark quantum photonic devices [44].

We now proceed to describe how the inequalities ob-
tained for the abstract scenarios considered above es-
tablish bounds both on coherence-free models and on
noncontextual/local models. Each type of operational sce-
nario suggests an interpretation for edge weights, and
naturally imposes further constraints on them, resulting in
cross-sections of the polytope CG. These cross-sections re-
cover known noncontextuality/locality polytopes, as well as
basis-independent coherence witnesses.

III. CG BOUNDS COHERENCE-FREE MODELS

Most commonly, coherence is defined for a quantum state
with respect to a fixed basis, as the presence of nonzero off-
diagonal elements in its density matrix (in that basis) [45,46].
Recently, Refs. [26,32] proposed a basis-independent notion
of coherence as a property of a set of states: this is said to
be coherent when the states in the set are not simultaneously
diagonalizable, i.e., when there is no basis in which all their
density matrices are diagonal, or equivalently, if the states in
the set do not pairwise commute. Otherwise, the set is said to
be coherence-free, or incoherent.

In Ref. [32], basis-independent coherence witnesses were
described using only pairwise overlaps ri j = Tr(ρiρ j ) among
a set of quantum states, focusing on witnesses provided by
violations of the cycle inequalities in Eq. (1). We explain
the interpretation of the facet inequalities of CG as basis-
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independent coherence witnesses, generalizing the results of
Ref. [32] to any event graph G.

Let G be any graph with n vertices. Consider a general
separable state of n quantum systems of the same type (e.g.
qudits), each associated with a vertex of the graph. Each edge
of G is given a weight equal to the overlap between the two
states of its incident vertices. These overlaps can be estimated
using the well-known SWAP test [47]. In Ref. [32] it was
shown that the facet-inequalities of CG describe necessary
conditions on the set of overlaps, i.e., on edge weightings of
G, for the set of single-system states to be coherence-free,
that is, all of them diagonal in a common single-system basis.
This is so because for such a coherence-free set of states, the
overlap ri j equals the probability of obtaining equal outcomes
in independent measurements of the states associated with
vertices i and j using the observable that projects onto the
reference basis.

IV. CG BOUNDS LOCAL AND NONCONTEXTUAL MODELS

The faces of CG can also be understood as bounds on non-
contextual models [48,49]. A simple first approach consists
in having vertices of G represent measurements, while edges
identify two-measurement contexts, i.e., pairs of observables
that can be measured simultaneously. The weight of an edge
corresponds to the probability, with respect to a given global
state, that the two incident measurements yield equal out-
comes. A necessary and sufficient condition for the existence
of a noncontextual model whose behavior is consistent with a
given edge weighting is the existence of a global probability
distribution (on outcome assignments to all measurements)
whose marginals recover the correct outcome probabilities.
This is the content of the Fine-Abramsky-Brandenburger the-
orem [29,50,51].

Such a global distribution, when it exists, can also be
interpreted as a classical coherence-free model. This dual
role of global probability distributions is the link connecting
coherence-free models and noncontextual models, and allow-
ing violations of facet inequalities of CG to witness either
property, depending on the interpretation of the scenario at
hand.

In general, this simple approach, interpreting vertices
as measurements and edges as equality of outcome in
two-measurement contexts, is not sufficient to capture con-
textuality in full generality (see [31], Section 2.5.3). Even
restricting to contextuality scenarios whose maximal con-
texts have size two, the facets of CG are not necessarily
facet, or even tight, noncontextuality inequalities, except
in the case of dichotomic measurements (see [52], Theo-
rem 38), where equality of outcomes fully determines the
measurement statistics. An important example is the Clauser-
Horne-Shimony-Holt (CHSH) inequality.

Encoding some contextuality scenarios requires the impo-
sition of further constraints, which geometrically determine
cross-sections on the classical polytope CG. These constraints
may, for example, represent operational symmetries of the
measurement scenario, e.g., making two vertices equal, or
they may encode given conditions on the compatibility of
observables. One example is the exclusivity constraint present
in the Cabello-Severini-Winter (CSW) graph approach [28].

We now show how both CHSH and the original three-
setting Bell inequality can be obtained from cycle inequalities,
before describing a more systematic approach that recovers all
noncontextuality inequalities obtainable from the exclusivity
graph approach [28,31].

We remark that we treat Bell nonlocality as an instance of
contextuality, in which measurement compatibility is ensured
by spacelike separation between various parties who locally
measure a shared multipartite system. This view of nonlocal-
ity as a special case of contextuality is well established, e.g., in
Refs. [29,30], although there are important subtle differences
when considering free transformations in a resource-theoretic
setup [53].

A. Example: CHSH inequality from the four-cycle graph C4

It is easy to check from Eq. (1) that the four-cycle graph
C4, shown in Fig. 1(b), has four nontrivial facets given by the
inequality

r12 + r23 + r34 − r14 � 2, (3)

and label permutations thereof. We translate this into the
CHSH [54] Bell scenario, with Alice locally measuring one
of two rank-1 projectors A1 or A2, and Bob locally measuring
either B1 or B2, on the singlet state |ψ〉 = 1√

2
(|01〉 − |10〉).

As a contextuality scenario, the CHSH graph C4 is a graph
with no clique with more than two vertices, and the only
nontrivial noncontextuality inequality is given in terms of
correlations. From the event graph perspective, each vertex
can be understood as a two-outcome measurement at either
Alice or Bob. It is easy to check that the overlap between
two single-qubit projectors A, B is the probability of obtaining
different outcomes [55] when measuring those projectors on
each part of the singlet state: rAB = pAB

�= = 1 − pAB
= . Using

this interpretation, the facet of CC4 given by Eq. (3) can be
rewritten as

pA1B1
�= + pA2B1

�= + pA2B2
�= − pA1B2

�= � 2, (4)

which is a well-known way to write the CHSH inequality
[56]. This same procedure can be used to obtain chained Bell
inequalities [57,58] from cycle inequalities.

B. Example: Original Bell inequality from the three-cycle
graph C3

If on the C4 graph we have just analyzed we impose the
constraint that one of the edge weights equal 1, then we
recover the nontrivial facets for the three-cycle C3, namely
r12 + r23 − r13 � 1 and label permutations. The embedded
tetrahedron with these three facets delimits the local correla-
tions in the original two-party Bell inequality [49], featuring
three settings at each party, and assuming perfect anticorrela-
tion for pairs of aligned settings. For a geometrical description
of the elliptope of quantum correlations, see Ref. [59].

C. Example: CHSH inequality from the five-vertex wheel
graph W5

An alternative way of interpreting an event graph as a
contextuality scenario involves having a single vertex, the
handle, represent a quantum state, and all the others represent
measurement operators. Take the five-vertex wheel graph W5
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of Fig. 1(d) as an instructive example. A simple calculation
shows that if we impose r12 = r34 and r23 = r14, then adding
together four three-cycle inequalities for this graph recovers
the CHSH inequality in the form of Eq. (4). The quantum
realization of this graph scenario has the central vertex 5 rep-
resenting a singlet state, with the other vertices representing
the four projectors measured jointly by Alice and Bob. The
imposed constraints reflect the fact that opposing edges repre-
sent the same quantity, the overlap between the two projectors
locally measured by one of the parties.

V. RECOVERING ALL NONCONTEXTUALITY
INEQUALITIES OF THE EXCLUSIVITY

GRAPH FORMALISM

The second approach to obtaining the CHSH inequality
does not rely on particular properties of the singlet state. The
use of a handle vertex to represent a state can be generalized
to other scenarios, as we now describe.

In the exclusivity graph approach to contextuality, one
considers a graph H whose vertices represent measurement
events [60] (in a quantum realization, projection operators),
and edges connect mutually exclusive events (in the quantum
setting, orthogonal projectors). In this formalism, the noncon-
textual behaviors are described by a well-known construction,
the stable polytope of the graph H , denoted STAB(H ) [31].
This is reviewed in detail in Appendix E. In brief, the vertices
or extreme points of the polytope STAB(H ) are (the char-
acteristic functions of) subsets of V (H ) that do not contain
any pair of adjacent vertices. More intuitively, perhaps, they
correspond to truth-value assignments to the measurement
events, i.e., functions V (H ) −→ {0, 1}, such that no two ex-
clusive events are deemed true, i.e., no two adjacent vertices
are assigned the value 1.

We can understand this setup in terms of our formalism
as follows. We define an event graph H� obtained from the
exclusivity graph H by adding a new vertex connected to all
other vertices. This new vertex is used to represent a handle
state ψ . Formally, H� is given by V (H�) := V (H ) 
 {ψ} and
E (H�) := E (H ) ∪ {{v, ψ} | v ∈ V (H )}. The structure of the
exclusivity graph H is then used to force a constraint on
edge weightings of H�, namely that all edges already present
in H be assigned zero weight. The resulting cross-section
C0

H�
:= {r ∈ CH�

| ∀e ∈ E (H ). re = 0} of the polytope CH�
,

which moreover is a subpolytope, then carries information
about the noncontextual behaviors in STAB(H ). Formally, in
Appendix E, we exhibit an isomorphism between the poly-
topes STAB(H ) and C0

H�
for any exclusivity graph H . As a

consequence, we show that the facet-defining noncontextuality
inequalities bounding noncontextual behaviors for H are pre-
cisely the facet-defining inequalities of C0

H�
. Moreover, these

inequalities can be obtained from the inequalities defining
facets of the whole classical polytope CH�

by removing (i.e.,
setting to zero) the variables re with e ∈ E (H ).

A. Example: KCBS noncontextuality inequality

We illustrate this mapping between formalisms with
the noncontextuality inequality obtained by Klyachko, Can,
Binicioğlu, and Schumovsky (KCBS) [61], and expressed in
the CSW formalism in Ref. [28].

Starting with the five-cycle graph H = C5 interpreted as an
exclusivity graph, then H∗ is the six-vertex wheel graph W6 of
Fig. 1(e). The central vertex represents a quantum state, while
neighboring vertices in the outer five-cycle represent mutually
exclusive measurement events (quantum mechanically: or-
thogonal projectors) so as to impose rvw = 0 for neighboring
v and w in this outer subgraph. The KCBS noncontextuality
inequality is a bound on weightings of the edges connected to
the central vertex:

5∑
v=1

rv6 � 2. (5)

Note that each edge weight rv6 in Eq. (5) is the probability
of successful projection of the central vertex state onto the
projector associated with vertex v.

In our framework, this inequality is obtained from a facet-
defining inequality of CW6 ,

− r12 − r23 − r34 − r45 − r15

+ r16 + r26 + r36 + r46 + r56 � 2,

by imposing the exclusivity (or orthogonality) condition of
null edge weights on the five-cycle outer subgraph.

VI. CYCLE INEQUALITIES WITNESS
PREPARATION CONTEXTUALITY

In addition to considering different approaches to Kochen-
Specker noncontextuality, one can also consider different
notions of noncontextuality. One such proposal, put forth by
Spekkens in Ref. [62], is that of preparation (generalized) non-
contextuality [7,63–66]. We consider once more a quantum
realization of the event graph representing vertices as states
and edges as two-state overlaps. In Appendix F we prove that
violations of the inequalities for the classical polytope of the
cycle event graph Cn are witnesses of preparation contextu-
ality. This result is shown for a class of prepare-and-measure
operational scenarios [63,64], which includes quantum the-
ory viewed as an operational theory. In contrast to quantum
theory, the well-known noncontextual toy theory of Ref. [33]
does not violate these event graph inequalities if vertices of
the event graph are taken to represent toy theory states.

VII. DISCUSSION AND FUTURE DIRECTIONS

We proposed a new graph-theoretic approach that uni-
fies the study of three different quantum resources, namely
contextuality, nonlocality, and coherence. Nonclassicality in-
equalities are obtained as facets of a polytope CG of edge
weightings associated with an event graph G, with suitable
constraints that depend on the chosen interpretation of ver-
tices as quantum states or measurements, as required by each
scenario.

Connections with the theory of contextuality were pre-
sented with respect to different approaches and definitions. In
particular, we recovered all inequalities of the CSW exclusiv-
ity graph approach [28], and we explicitly derived CHSH and
KCBS inequalities as examples. We also showed that for cycle
graphs the classical polytope bounds Spekkens preparation
noncontextuality.
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It would be interesting to understand whether these results
can be made more robust. In particular, we observed that
the noncontextuality inequalities for an exclusivity graph H
are obtained from the inequalities of a classical polytope CH�

by assigning weight zero to some edges. But many of these
inequalities of CH�

allow for deviations from such null weights
without leaving the classical polytope CH�

. This suggests that
perhaps those inequalities could still be interpreted as a robust
form of noncontextuality inequalities, where exclusivity is
relaxed.

Future research directions include characterizing this
framework in the landscape of general probabilistic theories
(GPTs) and understanding how this approach bounds rela-
tional unitary invariants involving three or more states, such
as Bargmann invariants [67]. It would also be interesting to
relate violation of our inequalities with advantage in quantum
protocols, as recently done by some of us in [68] for the task
of quantum interrogation.
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APPENDIX A: CHARACTERIZING
THE CLASSICAL POLYTOPE

In Ref. [32], Galvão and Brod derived the facet-defining
inequalities of the classical polytope CCn of the n-cycle event
graph Cn, as discussed in the main text. The construction
uses an argument based on Boole’s inequalities for logically
consistent processes [39]. In the main text we discuss that, in
fact, any event graph, and not only cycle graphs, can be used
to bound classicality of different forms.

In this Appendix, we consider the computational problem
of characterizing the classical polytope CG for any event graph
G. We propose a simple algorithm for computing all its ver-
tices and facets. This proceeds by first calculating the list
of vertices of CG, i.e., its V-representation, and then finding
its facet-defining inequalities, i.e., its H-representation, using
standard convex geometry tools. As discussed in the main text,
this last step is computationally efficient on the size of the
polytope. However, the overall efficiency of the procedure is
intrinsically limited by the fact that the number of vertices and
facets of CG grows exponentially on the size of G. The brunt
of this Appendix is dedicated to computing the set of vertices
of CG.

After setting out the formal definitions, we characterize
the edge {0, 1}-labelings E (G) −→ {0, 1} that respect logical
consistency conditions and thus correspond to the vertices
of CG. This characterization yields an efficient procedure for
checking whether such an edge labeling is a vertex of CG,
whose complexity we analyze.

However, when the goal is to generate all vertices of CG,
it is needlessly wasteful to generate all the 2|E (G)|-many edge
{0, 1}-labelings and then filter them one by one. Instead, we
present a procedure that generates the edge labelings that are
vertices of CG by generating vertex labelings underlying them,
thus limiting the search through the space {0, 1}E (G) of edge
labelings. Even though it might output the same vertex more
than once, the method works well, especially for dense graphs.
It is optimal for the complete graphs Kn, which, as we will
see in Appendix C, are our main examples of interest. We
observe that the number of vertices of the polytope CKn is
given by a well-known combinatorial sequence, known as the
Bell numbers [69], which count the number of partitions of
a set, precisely the space that is searched by this procedure.
Finally, we discuss an alternative method that might be more
efficient for sparse graphs.

1. Basic definitions

We start with the relevant definitions.
Definition 1. A graph G = (V (G), E (G)) consists of a fi-

nite set V (G) of vertices and a set E (G) of edges, which are
two-element subsets of V (G), i.e., sets of the form {v,w},
where v,w ∈ V (G) are distinct vertices.

Note that the graphs we consider in this text are so-called
simple graphs: they are undirected (since {v,w} = {w, v}),
have at most one edge between any two vertices v and w,
and have no loops (i.e., they have no edges from a vertex to
itself). In one well-delimited passage, however, we will need
to consider possibly loopy graphs, which may have loops.
This corresponds to dropping the requirement that v and w

be distinct in the definition above. A possibly loopy graph is
said to be loop-free if it has no loops, i.e., if is is a bona fide
(simple) graph.

Definition 2 (Labelings and coloring). A vertex labeling
by a set �, or a vertex �-labeling for short, is a function λ :
V (G) −→ � assigning to each vertex a label from �. It is
called a coloring if {v,w} ∈ E (G) implies λ(v) �= λ(w). The
graph G is said to be k-colorable for k ∈ N when it admits a
coloring by a set of size k.

Similarly, an edge labeling by a set �, or an edge �-
labeling for short, is a function α : E (G) −→ � assigning a
label from � to each edge. When � = [0, 1], we call this an
edge weighting.

Definition 3 (Chromatic number). The chromatic number
of a graph G, written χ (G), is the smallest k ∈ N such that G
is k-colorable.

In the classical, deterministic situation modeled by our
framework, we consider a vertex labeling of a graph G by an
arbitrary labeling set �. However, operationally, we do not
have access to the vertex labels, but only to the information of
whether the labels of neighboring edges are equal or different.

Definition 4. Given any vertex labeling λ : V (G) −→ �,
its equality labeling ελ is the edge {0, 1}-labeling given by

ελ : E (G) −→ {0, 1},

ελ {v,w} := δλ(v),λ(w) =
{

1 if λ(v) = λ(w),
0 if λ(v) �= λ(w). .

We are interested in characterizing the edge {0, 1}-
labelings that arise as equality labelings of vertex labelings.
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Definition 5. An edge {0, 1}-labeling α : E (G) −→ {0, 1}
is said to be �-realizable if it is the equality labeling of some
vertex �-labeling, i.e., if α = ελ for some λ : V (G) −→ �. If
� has size k ∈ N, we say that α is k-realizable.

We write Eq(G) for the set of realizable edge labelings
of G (with any �), and Eqk (G) for the set of k-realizable
ones. We have that Eqk (G) ⊆ Eqk′ (G) whenever k � k′, and
Eq(G) = ⋃

k∈N Eqk (G). Moreover, Eq(G) = Eq|V (G)|(G)
because a vertex labeling uses at most one distinct label per
vertex of the graph.

We often refer to these realizable edge {0, 1}-labelings as
the classical edge labelings. By the inclusion {0, 1} ⊆ [0, 1],
we can think of any edge {0, 1}-labeling as a (deterministic)
edge weighting. This gives an alternative description of the
classical polytope CG in the main text.

Definition 6. Given a graph G, its classical polytope CG ⊆
[0, 1]E (G) is the convex hull of the set Eq(G) seen as a set of
points in [0, 1]E (G).

2. Characterizing the vertices of CG

We now consider the question of determining whether a
given edge {0, 1}-labeling is realizable (as the equality label-
ing of some vertex labeling).

Given α : E (G) −→ {0, 1}, define a relation ∼α on the
set of vertices of G whereby v ∼α w if and only if there is
a path from v to w through edges labeled by 1, i.e., there
is a sequence e1, . . . , en ∈ E (G) such that v ∈ e1, w ∈ en,
ei ∩ ei+1 �= ∅, and α(ei ) = 1. This is easily seen to be an
equivalence relation.

It yields the following characterization of the classical edge
labelings:

Proposition 1. An edge labeling α : E (G) −→ {0, 1} is re-
alizable (i.e., classical) if and only if for all edges {v,w} ∈
E (G), v ∼α w implies α({v,w}) = 1.

In other words, an edge labeling α : E (G) −→ {0, 1} fails
to be realizable precisely when there is an edge {v,w} ∈ E (G)
such that v ∼α w and α({v,w}) = 0. In terms of the un-
derlying vertex labelings, such a situation would violate the
transitivity of equality.

A slightly different perspective is given by using α to con-
struct a new graph that “collapses” G through paths labeled by
1. Note that this construction yields a possibly loopy graph.

An edge {0, 1}-labeling α partitions the edges of G into two
sets. This determines two graphs Gα=0 and Gα=1, both with
the same vertex set as G, but each retaining only the edges of
G with the corresponding label, i.e., for each b ∈ {0, 1},

V (Gα=b) := V (G),

E (Gα=b) := {e ∈ E (G) | α(e) = b}.
A possibly loopy graph G/α is then defined as follows:

(i) Its vertices are the connected components of Gα=1, or
equivalently, the equivalence classes of ∼α .

(ii) There is an edge between two connected components
A and B of Gα=1 whenever there exist vertices v ∈ A, w ∈ B,
such that {v,w} ∈ E (Gα=0).

Lemma 1. Let α : E (G) −→ {0, 1} and � be any set. There
is a one-to-one correspondence between �-realizations of α

and �-colorings of G/α.

Proof. Let λ : V (G) −→ � such that α = ελ. If v ∼α w,
then λ(v) = λ(w) by propagating equality along the path
labeled by 1. Hence, the map κ : V (G/α) −→ � given by
κ ([v]) := λ(v) is well defined. Now, an edge e ∈ EG/α is
of the form e = {[v], [w]} for some v,w ∈ V (G) such that
α({v,w}) = 0. Since α = ελ, this means that λ(v) �= λ(w),
hence κ ([v]) �= κ ([w]). Thus, κ is a coloring.

Conversely, given a coloring κ : VG/α −→ �, set λ(v) :=
κ ([v]). Let e = {v,w} ∈ E (G). If α(e) = 1, then [v] = [w],
hence λ(v) = λ(w) because κ is a coloring. If α(e) = 0, then
{[v], [w]} ∈ EG/α , hence λ(v) �= λ(w). In either case, α(e) =
ελ(e).

The two processes just described are inverses of one an-
other. �

Corollary 1. An edge {0, 1}-labeling is �-realizable if and
only if the possibly loopy graph G/α is �-colorable. In par-
ticular, it is realizable (i.e., classical) if and only if G/α is
loop-free.

Proposition 2. Checking whether an edge {0, 1}-labeling
for a graph G is realizable can be done in time O(n + m),
where n = |V (G)| and m = |E (G)|. Checking k-realizability
in a given k � 3 is NP-complete.

Proof. For the first part, transverse the graph Gα=1 using
a depth-first search (DFS). When visiting each vertex, run
through all the departing edges of Gα=0 to see if any is linked
to an already visited vertex in the connected component of
Gα=1 currently being traversed. If any is found, reject α.

For the second part, use Corollary 1 to reduce to graph
coloring: a graph G is k-colorable if and only if the constant 0
edge labeling is realizable. �

The procedure outlined in the proof above is described
below in more detail using pseudocode.

Input: graph G with V (G) = {1, . . . , N}.
edge-labeling α : E (G) → {0, 1}

Output: whether α is realizable, hence a vertex of the polytope CG.

global variable di for each i ∈ V (G)
global variable ci for each i ∈ V (G)

procedure MAIN ()
di ← false for all i ∈ V (G)
for i ∈ V (G) do

if ¬di then
c j ← false for all j ∈ V (G)
SEARCH (i)

end if
end for
terminate with output true

procedure SEARCH (i)
di, ci ← true
for j ∈ NEIGHBORS (i) do

if α({i, j}) = 0 ∧ c j then
terminate with output false

else if α({i, j}) = 1 ∧ ¬dj then
SEARCH ( j)

end if
end for
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3. Computing all the vertices of CG

We conclude that it is computationally easy to check
whether a given edge {0, 1}-labeling, i.e., a given determin-
istic edge weighting, is classical. Nevertheless, determining
the whole set of vertices of the classical polytope is computa-
tionally hard since the number of edge labelings to be tested
grows exponentially with the number of edges of the graph.

It is interesting to note that for the complete event graph Kn

of n vertices, the number of classical edge labelings, i.e., ver-
tices of the classical polytope CKn , is given by a well-known
sequence, the Bell or exponential numbers [69,70]. The nth
Bell number is the number of partitions, or equivalence rela-
tions, of a set of size n. It is clear that edge {0, 1}-labelings of
Kn are in one-to-one correspondence with symmetric reflexive
relations on the set of vertices {1, . . . , n}, where the label of
an edge {v,w} determines whether the pairs (v,w) and (w, v)
are in the relation. Among these, the classical edge labelings
correspond to the equivalence relations (which additionally
satisfy transitivity), with the underlying vertex labeling deter-
mining a partition of the vertices. For a general graph G, it is
still true that the classical edge labelings arise from partitions,
or equivalence relations, on the set of vertices, determined by
the underlying vertex labeling. The difference is that an edge
labeling does not carry enough information to characterize a
relation fully. So, in particular, different vertex partitions may
give rise to the same classical edge labeling.

We can use this observation to propose a different method
for generating all vertices of CG by constructing vertex-
labelings of G. The procedure is given below in pseudocode.

Input: graph G with V (G) = {1, . . . , N}.
Output: vertices of the polytope CG.

global variable λi for each i ∈ V (G)
global variable αe for each e ∈ E (G)

procedure MAIN ()
GENERATE (1,1)

end procedure

procedure GENERATE (i, next )
if i = N + 1 then

output (αe)e∈E (G)

else
for x < next do

UPDATE (i, x)
GENERATE (i + 1, next )

end for
UPDATE (i, next )
GENERATE (i + 1, next + 1)

end if
end procedure

procedure UPDATE (i, x)
λi ← x
for j < i with {i, j} ∈ E (G) do

α{i, j} ← if λ j = x then 1 else 0
end for

end procedure

The procedure above has the disadvantage that it might
output the same vertex of the polytope multiple times. This

is because, as already discussed, different partitions of the
vertices of G can give rise to the same edge labeling. The
problem is especially noticeable for sparse graphs.

An alternative method for generating the vertices of CG,
which might be more efficient in the case of sparser graphs,
is to directly search through {0, 1}E (G) while checking for
consistency on the fly, in order to trim the search space so
that only the realizable edge labelings are constructed. This
can be done by keeping a representation of the current ver-
tex partition (induced by the edges labeled 1 in the edge
labeling being constructed), for example using a union-find
data structure, together with a record of forbidden merges
between partition components (induced by the edges labeled
0s in the edge labeling being constructed). The disadvantage is
that the upkeep of this representation, necessary for checking
consistency on the fly, cannot be done in constant time. This
incurs an overhead at each step in the search.

APPENDIX B: CHARACTERIZING CLASSICAL
POLYTOPES BY GRAPH DECOMPOSITIONS

In this Appendix, we prove some general facts that relate
the classical polytopes of different graphs. In particular, we
show that some methods of combining graphs to build larger
graphs do not give rise to new classicality inequalities. Or,
seen analytically rather than synthetically, that some graphs
G can be decomposed into smaller component graphs in a
way that reduces the question of characterizing CG to that
of characterizing the classical polytopes associated with these
components. These observations help trim down the class of
graphs that is worth analyzing in the search for new classical-
ity inequalities. As a by-product, we characterize the class of
graphs for which all edge weightings are classical as being
that of trees, an analog of Vorob’ev’s theorem [71] in this
framework.

Proposition 3. Let G1 and G2 be graphs, and write G1 +
G2 for their disjoint union. Then

CG1+G2 = CG1 × CG2 = {(r1, r2) | r1 ∈ G1, r2 ∈ G2}.
Proof. Given vertex labelings λi : V (Gi ) −→ �i for each

i = 1, 2, one obtains a function

λ1 + λ2 : V (G1) 
 V (G2) −→ �1 
 �2

which is a vertex labeling of G1 + G2 since V (G1 + G2) =
V (G1) 
 V (G2). The corresponding equality edge labeling,
ελ1+λ2 : E (G1 + G2) −→ {0, 1}, is precisely the function

[ελ1 , ελ2 ] : E (G1) 
 E (G2) −→ {0, 1}
given by

e �−→
{
ελ1 (e) if e ∈ E (G1),
ελ2 (e) if e ∈ E (G2),

implying the result. �
In particular, vertices of the polytope CG1+G2 are in bijec-

tive correspondence with pairs consisting of one vertex from
each of the polytopes CGi , while the facets of CG1+G2 are in
bijective correspondence with the union of the facets of CG1

and the facets of CG2 . That is, the inequalities defining CG1+G2

are those defining CG1 plus those defining CG2 . Taking the
disjoint union of event graphs thus creates no new classicality
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inequalities. As a consequence, we might as well focus solely
on studying the classical polytopes of connected graphs.

The result above considers the construction of a new graph
by placing two graphs side by side. But similar results can
be obtained for more complicated ways of combining graphs,
namely gluing along a vertex or along an edge.

Definition 7 (Gluing). Given graphs G1 and G2, and tuples
of vertices

v1 = (
v1

1, . . . , v
k
1

) ∈ V (G1)k,

v2 = (
v1

2, . . . , v
k
2

) ∈ V (G2)k,

the gluing of G1 and G2 along v1 and v2, written G1 +v1=v2 G2,
is the graph obtained by taking the disjoint union G1 + G2 and
identifying the vertices v

j
1 and v

j
2 for j = 1, . . . , k. Explicitly,

its vertices are

V (G1 +v1=v2 G2) := O1 
 O2 
 N,

where Oi := V (Gi ) \ {v1
i , . . . , v

k
i } is the set of vertices of Gi

not being identified, and N = {v1, . . . vk} is a set of “new”
vertices (i.e., not in either Gi); its edges are

E (G1 +v1=v2 G2) := E1 ∪ E2,

where Ei is equal to E (Gi ) but with occurrences of v
j
i replaced

by the new v j .
Proposition 4. Let G1 and G2 be graphs, v1 ∈ V (G1) and

v2 ∈ V (G2). Then CG1+v1=v2 G2 = CG1 × CG2 .
Proof. We proceed as in the proof of Proposition 3, us-

ing the same notation, but then we take a quotient of the
merged alphabet �1 
 �2 identifying two labels, one from
each component: λ1(v1) ∈ �1 with λ2(v2) ∈ �2. This yields a
well-defined labeling for G1 +v1=v2 G2 where the new vertex
v is labeled by the element resulting from this identification.
This does not affect the equality edge-labelings, and so we
obtain the same result. �

Read analytically, if G is a graph with a cut vertex v,
i.e., a vertex whose removal disconnects the graph into two
components with vertex sets V1 and V2, then its polytope can
be characterized in terms of the polytopes of the induced
subgraph on V1 ∪ {v} and V2 ∪ {v}. In particular, the facet-
defining inequalities of CG are those of each of these two
components.

As an aside, this result is the missing ingredient for fully
characterizing the event graphs that cannot display any non-
classicality, i.e., for which all edge weightings E (G) −→
[0, 1] are classical. This could be seen as an analog of
Vorob’ev’s [71] theorem in our framework.

Corollary 2. A graph G is such that CG = [0, 1]E (G) if and
only if it is a tree.

Proof. For the “only if” part, if G has a cycle, then any
edge labeling E (G) −→ {0, 1} that restricts to (1, . . . , 1, 0)
on said cycle is not in CG. For the “if” part, apply Proposition
4 multiple times, following the construction of a tree as a
sequence of gluings along a vertex of copies of K2, whose
classical polytope is [0,1]. �

We now move to consider gluing along an edge.
Proposition 5. Let G1 and G2 be graphs, v1,w1 ∈ V (G1)

and v2,w2 ∈ V (G2), such that ei := {vi,wi} ∈ E (Gi ). Writing

G := G1 +(v1,w1 )=(v2,w2 ) G2,

we have

CG = {r ∈ [0, 1]E (G) | r|E (G1 ) ∈ CG1 , r|E (G2 ) ∈ CG2}
∼= {(r, s) | r ∈ CG1 , s ∈ CG2 , re1 = se2}
∼= (CG1 × [0, 1]E (G2 )\{e2}) ∩ ([0, 1]E (G1 )\{e1} × CG2 ),

where for the last line we assume that CG1 is written with e1

as its last coordinate and CG2 with e2 as its first coordinate.
Proof. The proof is similar to that of Proposition 4, but now

we are forced to make two identifications between elements
of �1 and of �2 in �1 
 �2. When λ1 and λ2 are such that
ελ1 (e1) = ελ2 (e2), i.e., such that

λ1(v1) = λ1(w1) ⇔ λ2(v2) = λ2(w2),

then this yields a well-defined vertex labeling of G and the
result follows. �

Note that the result is not quite as strong as Propositions 3
and 4. While the inequalities of CG1 plus those of CG2 form a
complete set of inequalities for the classical polytope of the
resulting graph G1 +(v1,w1 )=(v2,w2 ) G2, this is not necessarily a
minimal set.

Finally, we consider what we can say in general about the
classical polytopes of subgraphs.

Proposition 6. Let G be a graph and G′ be a subgraph
of G, i.e., V (G′) ⊆ V (G) and E (G′) ⊆ E (G). Then CG is a
subpolytope of CG′ × [0, 1]E (G)\E (G′ ).

Proof. We need to show that the vertices of CG consti-
tute a subset of the vertices of CG′ × [0, 1]E (G)\E (G′ ), i.e., that
Eq(G) ⊆ Eq(G′) × {0, 1}E (G)\E (G′ ). Given a classical edge
labeling of G, i.e., an edge labeling of the form ελ for some
vertex labeling λ : V (G) −→ �, we can restrict λ to a vertex
labeling of G′ and conclude that its equality labeling is simply
the restriction of ελ : E (G) −→ {0, 1} to the subset E (G′) of
its domain. �

In particular, CKn is a subpolytope of CG × [0, 1]E (Ḡ) for
any event graph G with n vertices, where Ḡ denotes the com-
plement of G.

APPENDIX C: CLASSICAL POLYTOPE FACETS
AND QUANTUM VIOLATIONS FOR SMALL GRAPHS

In this Appendix, we study the facet-defining inequalities
of some small graphs. In particular, we analyze and clas-
sify the facet-defining inequalities for the classical polytopes
CG corresponding to complete event graphs of four and five
vertices (G = K4 and G = K5, respectively). We also find
quantum violations of these inequalities with pure states that
are sampled from the set of quantum states. For sampling, we
used the Python library QuTip [72].

Reference [32] gave a complete characterization of the
classical polytope of the graph K3 = C3, the smallest graph
with nontrivial inequalities, together with a characterization of
its maximal quantum violations, as well as applications. More
generally, Ref. [32] gave the complete set of inequalities for
the classical polytope of the cycle graphs Cn, which take the
very simple form in Eq. (1). Here, we move to consider graphs
with more than three edges and which are not cycles.
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TABLE I. Quantum violations for facet inequalities of CK5 .

Class Violation Inequality Representative for the Class Dimension

11–40 1/4 −r12 + r15 + r25 � 1 2
41–60 1/3 +r15 + r25 + r35 − (r12 + r13 + r23) � 1 3
61–65 0.243 +r12 + r13 + r14 + r15 − (r23 + r24 + r25 + r34 + r35 + r45) � 1 4
66–75 0.312 +r12 + r14 + r15 + r23 + r34 + r35 − (r13 + r24 + r25 + r45) � 2 3
76–87 0.795 +r12 + r15 + r23 + r34 + r45 − (r13 + r14 + r24 + r25 + r35) � 2 2
88–92 0.344 +2r12 + 2r23 + 2r24 + 2r25 − (r13 + r14 + r15 + r34 + r35 + r45) � 3 4
93–152 0.688 +r13 + r14 + 2r24 + r34 + 2r45 − (2r12 + 2r25 + 2r35) � 3 3
153–212 0.7306 +2r12 + 2r14 + 2r15 + r23 + r35 − (2r13 + 2r24 + r25 + 2r45) � 3 2
213–242 0.855 +2r13 + 2r14 + 2r23 + 2r24 + 3r35 + 3r45 − (2r12 + 4r15 + 4r25 + r34) � 5 3

1. Facet-defining inequalities for small complete graphs

The facet-defining inequalities of the classical polytope of
the graph C4 (the four-cycle) are those of the form given by the
CHSH inequality mentioned in the main text. If we add one
more edge to this graph, the corresponding polytope ends up
being described by three-cycle inequalities alone. Therefore,
the first interesting graph yielding nontrivial and noncycle
inequalities is K4, the complete graph of four vertices. The
classical polytope of this graph has facets defined by three-
and four-cycle inequalities, together with facets defined by
the new inequalities described in Eq. (2) in the main text, i.e.,
those of the form

(r12 + r13 + r14) − (r23 + r34 + r24) � 1.

This inequality has a structure that is present for all Kn

graphs, as will be discussed in Appendix D. Since complete
graphs have all possible edges, these are the graphs that
impose the largest number of nontrivial constraints on edge
assignments, as per Proposition 6. Therefore, it is natural to
look at those graphs first.

We addressed the complete characterization of the classical
polytopes of complete graphs, proceeding as far as the com-
putational complexity of the problem allowed. In particular,
we found complete sets of facet-defining inequalities for CK5

and CK6 . The polytope CK5 has 52 vertices and 242 facets.
These facets are divided into nine symmetry classes. Repre-
sentative inequalities from each of these classes are shown in
Table I. The polytope CK6 has 203 vertices and requires 50 652
inequalities. A list of inequalities and PYTHON code used to
obtain them can be found in Ref. [43].

2. Quantum violations

We looked for quantum violations of each inequality class
of CK5 obtained by pure states in Hilbert spaces of dimensions
2, 3, and 4. The violations found are included in Table I. The
inequality in the third row is apparently not violated by either
qubit or qutrit states. The largest violation found among all the
inequalities was 0.855, for the inequality in the last row of the
table. The sets of quantum states yielding the violations found
are presented in Ref. [43].

For some classes of inequalities, we also found violations
using pure qubit states that display interesting symmetries in
the Bloch sphere. We present those violations in Fig. 2. For
instance, consider the inequality in the fifth row of Table I. It

can be violated with the quantum states

|ψk〉 = 1√
2

(|0〉 + e2π ik/5|1〉) (C1)

with k = 0, . . . , 4. This quantum realization attains a value
of 5

√
5

4 and hence a violation of 5
√

5
4 − 2 ≈ 0.795 08.

Another interesting violation with qubits is for the inequal-
ity in the fourth row of the table. There, a maximal qubit
violation is achieved by the states depicted in Fig. 2: choos-
ing |ψ2〉, |ψ4〉, |ψ5〉 equally distributed on the equator of
the Bloch sphere, i.e., separated by angles of 2π

3 , implying
that r24 = r25 = r45 = 1

4 , and choosing |ψ1〉 = |0〉, |ψ3〉 =
|1〉, implying that r13 = 0 and all remaining overlaps are equal
to 1

2 . This set of vectors attains the value 6
2 − 3

4 = 9
4 and hence

a violation of 9
4 − 2 = 1

4 . These symmetrically arranged qubit
states are also the states used in the construction of the elegant
joint measurement of Ref. [73]. However, we could find a
higher violation of the same inequality using qutrits, as shown
in the table.

We will see in Appendix D that the inequality in Eq. (2)
generalizes to an infinite family of inequalities for the poly-
topes of Kn. The quantum violation found for this noncycle
K4 inequality used the following four qutrit states:

|ψ1〉 = |0〉 ,

|ψ2〉 =
√

5

9
|0〉 +

√
4

9
|1〉 ,

|ψ3〉 =
√

5

9
|0〉 −

√
1

9
|1〉 + i

√
1

3
|2〉 ,

|ψ4〉 =
√

5

9
|0〉 −

√
1

9
|1〉 − i

√
1

3
|2〉 .

This set of states attains a value of 4
3 and hence violation of

4
3 − 1 = 1

3 . This corresponds to the second class of inequali-
ties of CK5 in Table I.

We remark once more that the above violations are not
necessarily optimal. They were not found using, e.g., tech-
niques of semidefinite programming over the quantum set.
We found this landscape of violations by sampling quantum
states and calculating the value of the left-hand side of the
inequality, which is suboptimal. An important remark is that
the quantum violation for the three-cycle inequality class (first
row in Table I) is provably maximal, as shown in Ref. [32].
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FIG. 2. Qubit states violating classicality inequalities. Part (a) depicts the classicality inequality r12 + r23 + r34 + r45 + r15 − r13 − r14 −
r24 − r25 − r35 � 2 with edges corresponding to positive terms in green (dash-dotted lines) and to negative terms in red (dashed-only lines).
Part (b) shows a set of five pure states equally spaced over a great circle of the Bloch sphere, which violates this inequality attaining a value of
5
√

5/4 > 2. Part (c) depicts the classicality inequality r12 + r14 + r15 + r23 + r34 + r35 − r13 − r24 − r25 − r45 � 2 as in (a). Part (d) depicts
the same inequality with the graph displayed in a different geometric configuration, mirroring that of a set of states in the Bloch sphere that
largely violates it. Part (e) represents that set of five pure states in the Bloch sphere: three states equally spaced around the equator plus the two
eigenstates of the Pauli matrix σz; this set of states attains a value of 9/4 > 2 for the inequality.

APPENDIX D: INFINITE FAMILY OF CLASSICAL
POLYTOPE FACETS

Equation (2) in the main text shows a facet-defining in-
equality of the polytope CK4 that is not of the previously
known form of inequalities derived from cycles in Ref. [32]
(which were enough, incidentally, to characterize the classical
polytope of the graph K3 = C3). In this Appendix, we gener-
alize it to an infinite family of new classicality inequalities.
More concretely, we present a construction of a facet-defining
inequality of the classical polytope CKn for any n � 2. More-
over, each inequality on this family cannot be obtained from
combining prior members of the family. For n = 4, this re-
covers the just-mentioned inequality from Eq. (2), while for
n = 3 it naturally reduces to the three-cycle inequality.

Fix a natural number n � 2. Write Vn = {1, . . . , n} for the
vertices of Kn, and let En denote the set of edges of Kn, i.e., all
two-element subsets of Vn. Consider a partition of En into the
subsets Gn, Rn ⊆ En given as

Gn := {{1, i} | i = 2, . . . , n},
Rn := En \ Gn.

This is depicted in Fig. 3. The edges in Rn determine a com-
plete subgraph of Kn with one fewer vertex, i.e., a subgraph
isomorphic to Kn−1. In turn, the edges in Gn form a subgraph
isomorphic to K1,n−1, a star graph with n vertices. We use this
specific partition of En to define a generalized version of the

inequality from Eq. (2):

hn(r) :=
∑
e∈Gn

re −
∑
e∈Rn

re � 1. (D1)

We first show that this is indeed a classicality inequality for
the complete graph Kn.

FIG. 3. Depiction of the sets Rn and Gn for a given complete
graph Kn. The set Rn is always a complete subgraph (isomorphic to)
Kn−1 of Kn. Here we considered n = 4 as an example.
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Proposition 7. For any n � 2, the classical polytope CKn

of the complete event graph Kn is contained in the half-space
defined by the inequality hn from Eq. (D1), i.e., all classical
edge weightings of Kn satisfy the inequality.

Proof. It suffices to check that the inequality is satisfied by
any vertex of the polytope CKn . Recall that the vertices of this
polytope correspond to classical edge {0, 1}-labelings of the
graph Kn, that is, those realizable as the equality labeling of
some vertex labeling.

So, let λ : Vn −→ � be any vertex labeling and r ∈ [0, 1]En

be the vertex of the classical polytope corresponding to its
equality edge labeling. That is, for all e = {i, j} ∈ En,

ri j = ελ({i, j}) =
{

1 if λ(i) = λ( j),
0 if λ(i) �= λ( j).

Consider the set of vertices in {2, . . . , n} that are labeled the
same as vertex 1,

Sλ = {i ∈ {2, . . . , n} | λ(i) = λ(1)}
= {i ∈ {2, . . . , n} | r1i = 1}.

By construction, an edge in Gn, which is of the form {1, i}, is
labeled 1 or 0 depending on whether i is in Sλ or not. More-
over, by transitivity of equality, if i, j ∈ Sλ, then λ(i) = λ( j),
meaning that the edge {i, j} is also labeled 1. Writing k :=
|Sλ|, one can therefore bound the left-hand side of Eq. (D1):∑

e∈Gn

re −
∑
e∈Rn

re =
∑
i∈Sλ

r1i −
∑
e∈Rn

re

= k −
∑
e∈Rn

re

� k −
∑

i, j∈Sλ

ri j

= k −
(

k

2

)

= 1 −
(

k − 1

2

)

� 1,

where for the corner case k = 0 this still holds putting(−1
2

) = 1. �
We now state the central result of this Appendix.
Theorem 1. The inequality hn from Eq. (D1) defines a facet

of the classical polytope CKn of the complete event graph Kn

for any n � 2.
Proof. We establish this result by finding the set of ver-

tices of the polytope CKn that belongs to—and therefore
determines—this facet. In fact, it suffices to find a set of points
F in the space (of edge weightings) such that (i) all the points
in F belong to the polytope CKn , (ii) all the points in F saturate
the inequality, i.e., belong to the hyperplane determined by
it, (iii) the set F is affinely independent, and (iv) F contains
as many points as the dimension D of the polytope, so that it
generates an affine subspace of dimension D − 1. In our proof,
the chosen points are moreover vertices of the polytope, as
they are edge {0, 1}-labelings.

We construct a set F of polytope vertices. This consists
of two kinds of edge labelings: those that assign 1 to exactly

FIG. 4. The construction of the set F for the K5 graph. Each edge
is labeled 1 where explicitly noted, otherwise it is labeled 0 (to keep
the figures easy to read). The first row shows the four labelings of the
form r (i) with only one edge labeled 1 from G5. The remaining rows
show the labelings of the form r (i, j), which assign label 1 to exactly
one triangle consisting of two edges from G5 and the connecting edge
from R5.

one edge of Gn (and 0 to all other edges of En) and those that
assign 1 precisely to a triangle consisting of two edges from
Gn and another from Rn. More formally, we define a family
of edge {0, 1}-labelings indexed by subsets of size 1 or 2 of
the vertex set {2, . . . , n}, as follows: for each i = 2, . . . , n,
define the edge {0, 1}-labeling r (i) with r (i)

1i = 1 and r (i)
e = 0

for all other edges e; for each pair i, j = 2, . . . , n with i �=
j, define the edge {0, 1}-labeling r (i, j) with r (i, j)

1i = r (i, j)
1 j =

r (i, j)
i j = 1 and r (i, j)

e = 0 for all other edges e. The set F is then
given by

F := {r (i)|i = 2, . . . , n} ∪ {r (i, j)|i, j = 2, . . . , n, i �= j}.
Figure 4 depicts the construction of the set F for the case
of n = 5. We now check conditions (i)–(iv) to establish the
desired result.

For condition (i), we use Proposition 1 to show that all the
edge labelings in the set S are classical and thus vertices of
the polytope CKn . Indeed, no cycle can have exactly one edge
with label 0. In the case of the labelings of the form r (i), this
is immediate as there is only one edge not labeled 0. For the
labelings of the form r (i, j), no triangle (i.e., subgraph isomor-
phic to C3) has exactly one edge labeled 0: if one chooses two
edges labeled 1, then the remaining edge that completes the
three-cycle also has label 1. Moreover, any larger cycle can
have at most two edges labeled 1. Alternatively, we can show
this by constructing an underlying vertex labeling: for r (i) pick
λ : Vn −→ � with λ(1) = λ(i) and all other vertices labeled
differently; for r (i, j) pick λ with λ(1) = λ(i) = λ( j) and the
other vertices labeled differently.
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Condition (ii) is directly checked: for each i = 2, . . . , n we
have ∑

e∈Gn

r (i)
e −

∑
e∈Rn

r (i)
e = r (i)

1i − 0 = 1 − 0 = 1,

and for each pair i, j = 2, . . . , n with i �= j,
∑
e∈Gn

r (i, j)
e −

∑
e∈Rn

r (i, j)
e = r (i, j)

1i + r (i, j)
1 j − r (i, j)

i j = 2 − 1 = 1.

For condition (iii), affine independence can be verified by
inspecting the matrix whose columns are the vectors corre-
sponding to the edge-labelings in F . Ordering the components
of each vector (corresponding to the edges of Kn) in lexico-
graphic order and listing r (i) followed by r (i, j) also in that
order, the matrix is arranged to be triangular with diagonal
entries all equal to 1, hence its determinant is equal to 1,
implying linear independence of the vectors.

Finally, for condition (iv), as all these labelings are distinct,
one can count the number of elements of S from the way they
were constructed:

|F | =
(

n − 1

1

)
+

(
n − 1

2

)
=

(
n

2

)
= n(n − 1)

2
.

We conclude that it is the same as the dimension of the
ambient space (of edge labelings) where the polytope lives,
and thus also of the polytope itself. �

APPENDIX E: EVENT GRAPHS AND KOCHEN-SPECKER
CONTEXTUALITY

In this Appendix, we establish a formal connection be-
tween our framework and Kochen-Specker contextuality. The
central result (Theorem 2) shows how our event graph for-
malism recovers all noncontextuality inequalities obtainable
from the Cabello-Severini-Winter (CSW) exclusivity graph
approach [28].

To achieve this, we encode a contextuality setup, rep-
resented in CSW by an exclusivity graph H , by imposing
exclusivity constraints on a related event graph H�. This pro-
cess amounts to taking a cross-section yielding a subpolytope
of the classical polytope CH�

. We show that the resulting facet
inequalities bound noncontextual models for H .

In fact, we prove something stronger. We describe an
explicit isomorphism between the noncontextual polytope
associated by CSW with the exclusivity graph H and this
cross-section subpolytope of the classical polytope CH�

asso-
ciated by our approach with the event graph H�. In particular,
these polytopes have the same nontrivial facet-defining in-
equalities. These are obtainable from the inequalities that
define the full (unconstrained) classical polytope of the event
graph H� by setting some coefficients to zero. Theorem 2
thus establishes a tight correspondence between our event
graph approach and a broad, well-established framework for
contextuality.

In what follows, we introduce the relevant definitions re-
garding the exclusivity graph approach, the associated event
graphs, and the constraints to be imposed on them, before
proving the new results.

1. The exclusivity graph approach

In the CSW framework from Ref. [28], contextuality sce-
narios are described by so-called exclusivity graphs. Hence
this formalism is also known as the exclusivity graph ap-
proach; see also Ref. [31] (Chap. 3) for a recent and
comprehensive discussion.

The vertices of an exclusivity graph H represent measure-
ment events, and its edges indicate exclusivity between events,
where two events are exclusive that can be distinguished by a
measurement procedure.

Even though the CSW framework is theory-independent, it
is helpful for clarity of exposition to consider its instantiation
in quantum theory, in order to better convey the underlying
intuitions. In quantum theory, measurement events are repre-
sented by projectors (PVM elements) on a Hilbert space, or
equivalently, by closed subspaces of the Hilbert space. Exclu-
sivity is captured by orthogonality, which characterizes when
two projectors may appear as elements of the same PVM, i.e.,
events from the same measurement procedure. Given a set of
projectors {�v}v∈V on a fixed Hilbert space, the corresponding
contextuality scenario is thus described by its orthogonality
graph. This graph has a set of vertices V and an edge {u, v} if
and only if the projectors �u and �v are orthogonal to each
other, i.e., when �u�v = 0.

In this approach, a non-negative vertex weighting γ :
V (H ) −→ R�0 on the exclusivity graph H determines a
noncontextuality inequality on the probabilities P(v) of mea-
surement events v ∈ V (H ):∑

v∈V (H )

γ (v)P(v) � α(H, γ ),

where α(H, γ ) is the independence number of the vertex-
weighted graph. In the quantum case, this yields a noncontex-
tuality condition on the statistics predicted by a given quantum
state ψ : ∑

v∈V (H )

γ (v)〈ψ |�v|ψ〉 � α(H, γ ).

Such noncontextuality inequalities above determine the
polytope of noncontextual behaviors for any exclusivity graph
H . This polytope, known as the stable set polytope of H ,
STAB(H ), is most readily defined by its V-representation,
which we now present, following Ref. [31] (Chap. 3).

Definition 8. Let H be a graph. A subset S ⊆ V (H ) of ver-
tices is called a stable set if no two vertices of S are adjacent
in H , i.e., for all v,w ∈ S, {v,w} �∈ E (H ). Write S (H ) for the
set of stable sets of H .

To any subset of vertices W ⊆ V (H ) corresponds its
characteristic map, the vertex {0, 1}-labeling χW : V (H ) −→
{0, 1} given by

χW (v) :=
{

1 if v ∈ W ,
0 if v /∈ W .

Through the inclusion {0, 1} ⊆ [0, 1], one regards a vertex
{0, 1}-labeling (equivalently, a subset of vertices) as a point in
[0, 1]V (H ) ⊆ RV (H ). Those arising from stable sets S ∈ S (H )
correspond to the deterministic noncontextual models, which
determine the whole convex set of noncontextual behaviors.
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FIG. 5. Equivalence described by Theorem 2 linking contextu-
ality in the manner of CSW to event graphs. The behaviors on an
exclusivity graph are in bijective correspondence with edge weight-
ings (overlap assignments) in the related event graph subject to
constraints. In particular, the noncontextual behaviors for the exclu-
sivity graph correspond bijectively to the classical edge weightings
in the event graph with constraints.

Definition 9. The stable set polytope of a graph H , denoted
STAB(H ), is the convex hull of the points χS ∈ [0, 1]V (H ) with
S ranging over all stable sets of H ,

STAB(H ) := ConvHull{χS | S ∈ S (H )}.
To get the intuition underlying this description, one may

think of a vertex {0, 1}-labeling χW : V (H ) −→ {0, 1} as a
deterministic assignment of truth values to all measurement
events (vertices of the exclusivity graph). In this inter-
pretation, the subset of vertices W ⊆ V (H ) is the set of
measurement events that are assigned true. The stability con-
dition indicates that no two adjacent vertices of the exclusivity
graph H are labeled with 1, that is, two exclusive measure-
ment events cannot be simultaneously true. This captures the
exclusivity condition at the deterministic level, thus yielding
the deterministic noncontextual models.

2. From exclusivity graphs to constrained event graphs

We relate this approach to our framework by constructing
a new (event) graph H� from any (exclusivity) graph H . This
is obtained by adding a new vertex ψ with an edge connecting
it to all the vertices of H . See Fig. 5 for an instance of this
construction for the KCBS scenario, and Fig. 6 for a more
generic description. The construction is formally described in
Definition 10 below.

The relevance of the new vertex ψ is well known; it is
usually called the “handle” and it appears in the literature
on the graph approaches [31,74,75]. Its name comes from the
geometric arrangement of the vectors providing the maximal
quantum violation of the KCBS inequality of Eq. (5): the
quantum state resembles the handle of an umbrella made of
the vectors that describe measurement events.

Definition 10. Let H be a graph. Define a new graph H� by

V (H�) := V (H ) 
 {ψ},
E (H�) := E (H ) ∪ {{ψ, v} | v ∈ V (H )}.

FIG. 6. Translation between vertex labelings of H that are char-
acteristic maps of stable sets, hence vertices of STAB(H ), and
constrained edge labelings of H� that are classical, hence vertices
of C0

H�
. The top figure depicts a graph H , standing for a generic

exclusivity graph, and its extension H� by adjoining the handle ψ and
new edges {ψ, v} for all v ∈ V (H ). The vertices of H that are shown
in green (dashed) form a stable set S ∈ S(H ). Its characteristic map
χS : V (H ) −→ {0, 1} assigns 1 to the green (dashed) vertices and 0
to the red (solid) vertices of H . The bottom figure shows how such
a vertex {0, 1}-labeling is translated to an edge {0, 1}-labeling of H�

assigning 0 to all the edges of H (and vice-versa) as described in
the proof of Theorem 2. Green (dashed) edges are labeled 1 and red
(solid) edges are labeled 0, in accordance with the vertex labelings
from χS , complemented by the labels induced by exclusivity con-
straints, 0H , as described in the text. S being stable is equivalent to
the resulting edge labeling of H� being classical.

Moreover, define C0
H�

to consist of the classical edge weight-
ings of H� that assign value 0 to all edges in H ,

C0
H�

:= {r ∈ CH�
| ∀e ∈ E (H ). re = 0}.

The set C0
H�

is, by construction, a cross-section of the clas-
sical polytope CH�

of the event graph H�, where its intersection
with the |V (H )|-dimensional subspace is defined by the equa-
tions

∧
e∈E (H ) re = 0. Moreover, it is a subpolytope of CH�

,
i.e., the convex hull of a subset of its vertices. These vertices
are the classical edge {0, 1}-labelings that assign label 0 to
edges in H . In terms of the underlying vertex labelings (from
which classical edge labelings arise as equality labelings), the
requirement is that any two vertices adjacent in H must be
labeled differently.

3. Recovering the noncontextual polytope

The edge set of the graph H� can be partitioned into two
sets: the edges already present in H and the new edges of
the form {ψ, v} for v ∈ V (H ). The latter are in one-to-one
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correspondence with vertices of H . So, there is a bijection
E (H�) ∼= E (H ) 
 V (H ).

When considering the polytope CH�
⊆ [0, 1]E (H� ), we adopt

the convention of ordering the coordinates with the edges
already in H listed first, so that

RE (H� ) ∼= RE (H )
V (H ) ∼= RE (H ) × RV (H ).

The subpolytope C0
H�

is thus written as the set of points of
CH�

of the form (0H , r), where 0H is the zero vector in RE (H )

(corresponding to the edges inherited from H) and r is a
weighting of the remaining (new) edges. In particular, the
vertices of C0

H�
are precisely the classical {0, 1}-labelings of

H� that assign the label 0 to all the edges in H .
We can now prove our main result, showing that CH�

is in-
deed (isomorphic to) the polytope of noncontextual behaviors
for H .

Theorem 2. For any (exclusivity) graph H , there is an iso-
morphism of polytopes

C0
H�

∼= STAB(H )

between the stable set polytope (of noncontextual models) of
H and the subpolytope of the classical polytope of event graph
H� constrained by the exclusivity conditions. More explicitly,
this is given by the identification

C0
H�

= {0H } × STAB(H ),

where 0H is the zero vector in RE (H ).
Proof. To establish the result, we consider the vertices of

these polytopes. Per the above discussion, we have E (H�) ∼=
E (H ) 
 V (H ). Consequently, there is a bijection between ver-
tex {0, 1}-labelings of H [equivalently, subsets of V (H )], on
the one hand, and edge {0, 1}-labelings of H� that assign label
0 to all the edges in E (H ), on the other. Explicitly, to each
subset of vertices W ⊆ V (H ) corresponds the edge-labeling
of H�,

[0H , χW ] : E (H�) ∼= E (H ) 
 V (H ) −→ {0, 1},
as depicted in Fig. 6.

We show that this bijection restricts to a bijection between
the classical assignments in both cases. Concretely, a subset
of vertices S ⊆ V (H ) is stable, hence (its characteristic map
χS : V (H ) −→ {0, 1} is) a vertex of the polytope STAB(H ),
if and only if the corresponding edge labeling [0H , χS] of H�

is classical, hence a vertex of the polytope CH�
and thus of C0

H�
.

We establish the two directions of this equivalence si-
multaneously, recalling the characterisation of classical edge
labelings from Proposition 1. Consider H� with edge labeling
[0H , χS]. The labeling fails to be classical if and only if there
is an edge with label 0 between two vertices linked by a path
consisting of edges with label 1. Since all the edges between
vertices in H have label 0, the only way to build such a path
of 1-labeled edges is via the handle ψ : e.g., {u, ψ}, {ψ, v},
where both u and v must belong to S. So, two vertices u and
v of H� are linked by a 1-labeled path if and only if they
both belong to S ∪ {ψ}. Therefore, the labeling is classical
if and only if there is no edge with label 0 between vertices
in this set S ∪ {ψ}. To further simplify this condition, note
that edges between ψ and a vertex from S have label 1 by
construction of the second component of [0H , χS], while from

the first component, all edges between vertices in H have label
0. The classicality condition is thus equivalent to there being
no edges in H between vertices in S, which is to say that
S is stable. �

4. Recovering all noncontextuality inequalities

We established Theorem 2 in terms of the vertices of
the polytopes, i.e., by working with their V-representations.
We now consider the relationship between their H-
representations, i.e., their facet-defining inequalities [76].

Of course, there is also a bijection between the facets of
STAB(H ) and those of C0

H�
. Given the particularly simple

description of the isomorphism, whereby C0
H�

is written as
a product of polytopes, we can write this correspondence
explicitly. It turns out that the facet-defining inequalities of the
subpolytope C0

H�
are precisely the same as the facet-defining

inequalities of the stable polytope of H . Moreover, these can
be obtained from the inequalities defining the (unconstrained)
polytope CH�

of the event graph H� by setting some coeffi-
cients to zero. We thus recover the full set of noncontextuality
inequalities from our event graph formalism.

To see this, recall that if P and Q are two convex poly-
topes with H-representations P = {x | A1 x � b1} and Q =
{y | A2 y � b2}, then their product has H-representation

P × Q = {(x, y) | A1 x � b1 and A2 y � b2}.

Here, the notation A z � b describes a set of linear inequalities
on z in matrix form, with the symbol � standing for compo-
nentwise inequality � between real numbers.

Applying this to

C0
H�

= {0H } × STAB(H )

= {(x, y) | x ∈ {0H }, y ∈ STAB(H )},

we obtain that the H-representation of C0
H�

is the conjunction
of the H-representations of {0H } and of STAB(H ). The former
consists simply of the equations re = 0 for each e ∈ E (H ),
zeroing out the first components, which corresponds to the
weights of edges already in H . Thus the nontrivial inequalities
bounding C0

H�
are thus the same as the inequalities bounding

STAB(H ).
Since C0

H�
is obtained from CH�

by intersecting with the
subspace that zeroes the components corresponding to edges
in E (H ), a complete set of inequalities for C0

H�
can be obtained

from the facet-defining inequalities of CH�
by disregarding

those components, i.e., setting the corresponding coefficients
to zero.

This process is illustrated by the derivation of the KCBS
inequality presented in the main text. There, the exclusivity
graph is the five-cycle, with neighboring vertices representing
orthogonal projectors. The graph H� is then the six-vertex
wheel graph W6 of Fig. 1(e). As shown in the main text, the
KCBS noncontextuality inequality

∑
a γa|〈ψ |a〉|2 � α(H, γ )

arises as a C0
H�

inequality, being obtained from a classicality
inequality for the event graph W6 (a facet-defining inequality
of CH�

) by setting to zero the coefficients relating to edges
already in H .
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APPENDIX F: EVENT GRAPHS AND PREPARATION
CONTEXTUALITY

In this Appendix, we relate our approach to Spekkens’s
notion of preparation contextuality. This may be understood as
providing a theory-independent perspective on the use of our
formalism to witness quantum coherence. There, the vertices
of event graphs were interpreted as quantum states, and the
edges as two-state overlaps. A similar treatment can be carried
out for a certain class of operational theories which support a
notion of confusability, with vertices interpreted as (abstract)
preparation procedures.

1. Operational probabilistic theories

Spekkens’s notion of generalized contextuality is asso-
ciated with operational probabilistic theories [77–79]. The
description of an operational theory starts with a set of basic
(operational) physical processes: in the simplest scenarios,
one considers preparations and measurements. One consid-
ers experiments consisting of a preparation P followed by
a measurement M that returns an outcome k. A probability
rule associates a probability p(k | M, P) of obtaining outcome
k when performing measurement M after the preparation P.
More precisely, it associates a probability distribution over
outcomes k to each choice of preparation P and measure-
ment M. For a dichotomic measurement M, i.e., one with
only two possible outcomes 0 and 1, we simplify notation
and write p(M | P) for p(1 | M, P). A crucial—if sometimes
overlooked—aspect is that the full set of procedures includes
also classical probabilistic mixtures (i.e., convex combina-
tions) of basic procedures, with the probability rule extended
accordingly (i.e., linearly).

Given an operational theory, one defines an equivalence
relation identifying indistinguishable procedures. Following
Ref. [62], two preparation procedures are operationally equiv-
alent, written P � P′, if and only if for all measurements M
and possible outcomes k,

p(k|M, P) = p(k|M, P′).

A similar definition applies to measurement procedures, but
this will not be needed in what follows.

When one treats quantum theory as an operational theory,
quantum states |φ〉 correspond to equivalence classes of op-
erational procedures. For instance, a state |0〉 may represent
preparing a ground state of a nitrogen atom, or preparing the
horizontal polarization in photonic qubits. We relax this termi-
nology and refer to “the preparation P associated with a state
|φ〉,” even though, strictly speaking, P is only an instance of
an equivalence class of procedures. Such relaxation is safe for
our purposes. In effect, it corresponds to treating pure quan-
tum states as the basic procedures. The interesting operational
equivalences relevant for preparation contextuality go beyond
these, holding between classical mixtures of basic procedures.
For example, in quantum theory, the preparation procedure
corresponding to an equal mixture of pure qubit states |0〉
and |1〉 is operationally equivalent to that corresponding to an
equal mixture of states |+〉 and |−〉. Indeed, both these clas-
sical mixtures define the same qubit mixed state, the totally
mixed state.

2. LSSS operational constraints

We wish to generalize the situation in which our graph-
theoretic framework is used to witness quantum coherence.
There, vertices of an event graph G are interpreted as repre-
senting vectors {|φi〉}i∈V (G) in some Hilbert space H, i.e., pure
quantum states. Edge weights then correspond to two-state
quantum overlaps, |〈φi|φ j〉|2. Such overlaps can be accessed
empirically by, e.g., measuring one of the states on a measure-
ment basis that includes the other.

Abstracting from this, we consider a situation in which
we associate a preparation procedure Pi with each vertex
i ∈ V (G) of a given graph G. But in order to emulate
the setup above for more general operational theories, it
is necessary to impose some additional operational con-
straints. These constraints distill the aspects of quantum
theory that make this work, allowing (a theory-independent
version of) two-state overlaps. We shall refer to them as the
Lostaglio-Senno-Schmid-Spekkens (LSSS) operational con-
straints, after Refs. [63,64]. Note that these constraints apply
to preparation procedures; we need not assume any opera-
tional equivalences for measurement procedures. Therefore,
the scenarios under consideration aim to probe preparation
contextuality only.

First, for any preparation Pi, we assume that there is a
corresponding “test measurement” Mi with outcomes {0, 1}
satisfying the operational statistics p(Mi | Pi ) = 1. In quan-
tum theory, if Pi is the preparation associated with state
|φi〉, then Mi is realized by the projective measurement
{|φi〉〈φi| , 1 − |φi〉〈φi|}, where the first projector corresponds
to the outcome k = 1.

Moreover, for any edge {i, j} ∈ E (G), whose incident
vertices have preparations Pi and Pj , we assume that there
exists another pair of preparations Pi⊥ and Pj⊥ satisfying
p(Mi | Pi⊥ ) = 0, p(Mj | Pj⊥ ) = 0, and the operational equiv-
alence 1

2 Pi + 1
2 Pi⊥ � 1

2 Pj + 1
2 Pj⊥ . In quantum theory, this is

always satisfied: given a pair of pure states |φi〉 and |φ j〉, one
picks |φi⊥〉 to be the vector orthogonal to |φi〉 living in the
two-dimensional space spanned by {|φi〉 , |φ j〉}, and similarly
for |φ j⊥〉.

The probabilities p(Mi | Pj ) are usually called the con-
fusability [7,64], because they may be interpreted as the
probability of guessing incorrectly that the preparation per-
formed had been Pi instead of Pj . These probabilities provide
a theory-independent, operational treatment of two-state over-
laps, which reduces to the familiar notion in the case of
quantum theory viewed as an operational theory:

p(Mi | Pj )
QT= Tr

(|φi〉〈φi| |φ j〉〈φ j |
) = |〈φi|φ j〉|2.

Therefore, we use these confusability probabilities to provide
edge weights ri j = p(Mi | Pj ) in our framework. In summary,
an assignment of preparation procedures to the vertices of G,
such that the LSSS operational constraints are satisfied for the
pairs of preparations associated with each edge, determines an
edge weighting r : E (G) −→ [0, 1].

3. Preparation noncontextuality

When faced with an operational theory, a natural question
is whether it admits a (noncontextual) hidden-variable expla-
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nation, that is, whether it can be realized by a noncontextual
ontological model. In general, an ontological model consists
of a measurable space (�,F�) of ontic states equipped with
ontological interpretations for preparation and measurement
procedures: preparation procedures P determine probability
measures μP on �, whereas measurement procedures M de-
termine measurable functions ξM mapping each ontic state
λ ∈ � to a distribution on outcomes, i.e., Markov kernels from
� to the space of outcomes. Note that the interpretation of
classical mixtures of procedures must be determined linearly
from that of basic procedures, e.g., μ 1

2 P+ 1
2 Q = 1

2μP + 1
2μQ.

The composition of the interpretations of a preparation and
a measurement (going via the ontic space �) is required to
recover the empirical or operational predictions, i.e.,

p(· | M, P) =
∫

�

ξM dμP,

or with variables,

p(k | M, P) =
∫

�

ξM (k | λ) dμP(λ).

Such a realization by an ontological model is said to be
noncontextual if operationally equivalent procedures are given
the same interpretation. For preparations, the requirement is
that two operationally equivalent preparation procedures de-
termine the same probability measure on �. We refrain from
going into detail on the general definition, as the characteriza-
tion that follows suffices.

In Refs. [63,64], it was shown that the LSSS constraints
imply that any preparation noncontextual model explaining
preparation procedures Pi as probability measures μi on �

must satisfy

p(Mi | Pj ) = 1 − ‖μi − μ j‖TV , (F1)

where ‖ · − · ‖TV denotes the total variation distance between
probability measures, given for an arbitrary measurable space
(�,F�) by

‖μi − μ j‖TV = sup
E∈F�

|μi(E ) − μ j (E )|.

In the case when � is discrete (which is effectively all we
actually need), this distance is related to the l1 norm [80]:

‖μi − μ j‖TV = 1

2
‖μi − μ j‖1 = 1

2

∑
λ∈�

|μi(λ) − μ j (λ)|.

We can take that as a definition of preparation noncontex-
tual edge weightings.

Definition 11. Let G be an event graph. An edge weighting
r : E (G) −→ [0, 1] is said to be preparation-noncontextual
if the edge weights are of the form in the right-hand side of
Eq. (F1), i.e., ri j = 1 − ‖μi − μ j‖TV , for some choice of an
(ontic) measurable space � and of probability measures μi on
� for each vertex i ∈ V (G).

4. Cycle inequalities witness preparation contextuality

We now show how in the case of cycle graphs the in-
equalities derived from our framework serve as witnesses of
preparation contextuality for operational theories satisfying
the LSSS constraints.

The technical result is stated in the following proposition;
it follows from the triangle inequality.

Proposition 8. Any inequality bounding the set CCn cannot
be violated by a preparation noncontextual edge weighting
(Definition 11).

Proof. For simplicity, we use addition modulo n when
labeling the vertices of the cycle graph Cn, meaning that
i = i + n. From the triangle inequality of the norm ‖ · ‖TV it
follows that

‖μi − μi+n−1‖TV

=‖μi −μi+1 + μi+1 − · · · − μi+n−2 + μi+n−2︸ ︷︷ ︸
n−2 zeros

−μi+n−1‖TV

� ‖μi − μi+1‖TV + · · · + ‖μi+n−2 − μi+n−1‖TV .

Therefore, writing ‖μi, j‖TV := ‖μi − μ j‖TV for clarity,

‖μi,i+n−1‖TV − ‖μi,i+1‖TV − · · · − ‖μi+n−2,i+n−1‖TV � 0.

We must now add 1 to each term to recover the noncontextual
overlaps of Eq. (F1). We have n terms, but since the first term
has a different sign, two of these 1’s will cancel, leaving n − 2
added to both sides of the inequality:

−1 + ‖μi,i+n−1‖TV + 1 − ‖μi,i+1‖TV

+ · · · + 1 − ‖μi+n−2,i+n−1‖TV � n − 2.

Recalling that ri j = 1 − ‖μi, j‖TV , we recover a cycle inequal-
ity for any chosen vertex i:

−ri,i+n−1 + ri,i+1 + · · · + ri+n−2,i+n−1 � n − 2.

�
We may see this result from two perspectives. We can

take a theory-dependent perspective and look for what in-
formation we can extract assuming quantum theory as the
relevant operational theory; this proposition then shows that
pure quantum states that violate the n-cycle inequalities can
be used to construct a proof of quantum preparation con-
textuality. The construction is done by constructing states
and measurements that represent a realization of the prepare-
and-measure scenario described by the LSSS constraints. In
summary, violations of these inequalities serve as witnesses of
quantum preparation contextuality.

In light of this result, the experiment of Ref. [81] can be
understood as an experimental test that witnessed preparation
contextuality of quantum theory; however, since the purpose
was not to witness preparation contextuality, the authors have
not experimentally probed the relevant operational equiva-
lences, and they have not ruled out loopholes for such a test.

We can also take a theory-independent perspective. If a
given operational theory satisfying the LSSS constraints for
some cycle graph admits a preparation noncontextual on-
tological model, then the confusabilities ri j = p(Mi|Pj ) are
bounded by the cycle inequalities. For instance, the Spekkens
Toy Theory [33] satisfies the LSSS constraints for any pair
of preparation procedures. Since it admits a noncontextual
ontological model, it cannot violate the cycle inequalities.
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