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Hamiltonian mechanics describes the evolution of a system through its Hamiltonian. The Hamiltonian
typically also represents the energy observable, a Noether-conserved quantity associated with the time invariance
of the law of evolution. In both quantum and classical mechanics, Hamiltonian mechanics demands a precise
relationship between time evolution and observable energy, albeit using slightly different terminology. We distill
basic conditions satisfied in both quantum and classical mechanics, including canonical coordinate symmetries
and inner product invariance. We express these conditions in the framework of generalized probabilistic theories,
which includes generalizing the definition of energy eigenstates in terms of time-invariant properties of the
Hamiltonian system. By postulating these conditions to hold, we derive a unified Hamiltonian system model.
This unified framework describes quantum and classical mechanics in a consistent language, facilitating their
comparison. We moreover discuss alternative theories: an equation of motion given by a mixture of commutation
relations, an information-restricted version of quantum theory, and Spekken’s toy theory. The findings give a
deeper understanding of the Hamiltonian in quantum and classical theories and point to several potential research
topics.
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I. INTRODUCTION

Hamiltonian mechanics, whether in classical or quantum
cases, describes the time evolution of systems through their
Hamiltonian [1–3],

∂ρ(q, p)

∂t
= {H, ρ}, ∂ρ̂

∂t
= {Ĥ , ρ̂}h̄. (1)

Here H is the classical Hamiltonian and Ĥ its quantum
counterpart. The classical Liouville density ρ and the quan-
tum mechanical density operator ρ̂ evolve via their Poisson
bracket with the Hamiltonian. In the quantum case the bracket
is defined as {Â, B̂}h̄ := [Â, B̂]/(ih̄) [3]. The time-independent
Hamiltonian represents energy, which is a conserved dynam-
ical quantity or quantum observable corresponding to time
translation symmetry according to Noether’s theorem [4].
Therefore, the Hamiltonian formalism establishes a connec-
tion between energy and the time evolution.

Work in the foundations of quantum mechanics led to
the development of the theoretical framework of general-
ized probability theories (GPTs). Systems’ states in a GPT
are represented as probability vectors (or other real vec-
tors) from which probabilities can be extracted [5–9]. The
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state depends on the system preparation and any subsequent
dynamical transformations. A key goal of GPTs is to un-
derstand the structure of quantum theory, particularly which
elements necessarily follow from its probabilistic nature, and
to elucidate the relations between classical and quantum me-
chanics [5–7,10]. Classical and quantum theories, as well as
classical-quantum hybrid models [11,12], appear as special
cases.

Using the GPT framework, the notion of a Hamiltonian has
been generalized in finite dimensions [13,14]. There is also
a long-running interest in unifying and comparing quantum
and classical mechanics [12,15], as well as efforts to explore
potential new theories via the creation of toy theories that
are not classical or quantum [16–18]. Taken together, these
results give hope that a more fully generalized Hamiltonian
mechanics can be created, encompassing classical and quan-
tum mechanics and more.

Here we accordingly aim to create a framework for gener-
alized Hamiltonian systems, giving full details of the results
in Ref. [19]. Figure 1 depicts the interrelations between the
concepts we discuss in this work. These are foundational
efforts, strengthening our understanding of quantum and clas-
sical mechanics and what may lie beyond.

We generalize the phase space representation of quantum
mechanics [20,21], specifically the Wigner function [21–24].
The phase space formalism models quantum and classical me-
chanics in a similar manner. Quantum states are described by
real quasiprobability distributions of position and momentum
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FIG. 1. Relations between our key concepts.

W (q, p). We make use of the fact that the Wigner function
framework may be viewed as a continuous variable general-
ized probabilistic theory [25].

We establish a Hamiltonian formalism for GPTs based on
postulates that are satisfied by both quantum and classical
theories. Through these postulates, we obtain a generalized
measurement of energy and a generalized equation of motion.
A specific theory, such as quantum or classical mechanics, is
obtained by completing the system of axioms in a way that is
described below.

A fundamental aspect of this framework is the observation
that both quantum and classical evolutions can be generated
by pure stationary states, which then serve as the generalized
energy eigenstates within our framework. We define these to
be the most pure stationary states, a definition that leads to
simple expressions for the generalized mechanics. The set
of stationary states is a time-independent characteristic of
the system and encodes the key part of the time-independent
evolution rule.

The Planck constant plays a crucial role in distinguishing
between quantum and classical theories. In the generalized
framework, we find that h̄ has two distinct roles. One role
pertains to the uncertainty of the state, which we refer to as
the state or effect volume, while the other role appears in the
equation of motion via a nonlocalized dynamics integration
kernel. Although these quantities coincide in quantum and
classical mechanics, they may have different values in gen-
eralized theories, such as in epistemically restricted classical
theory and quantum mechanics with a particular information
restriction.

Furthermore, an intriguing finding beyond quantum and
classical mechanics is an equation of motion. It is given by a
series of commutators with the Hamiltonian for which each
commutator can be different, resulting in a nonassociative
algebra. This evolution rule, derived here from reasonable
postulates, happens to provide a restricted version of the
“generalized Moyal bracket” proposed in Ref. [18].

As an application of our model, we demonstrate how the
concept of state volume helps to understand the possibility of
chaos in the sense of strong sensitivity to initial state pertur-

bations [26,27]. The contrasting chaotic behaviours observed
in quantum and classical cases can be attributed to differences
in the volumes of pure states. As well, despite developing the
model within the framework of continuous phase space, we
discover that certain concepts, such as state or effect volume,
can also be extended to discrete systems, such as Spekken’s
toy model [16].

II. PRELIMINARIES

In this section we summarize some key results central to
this paper from generalized probabilistic theories, the phase
space formalism, and the action-angle formalism of classical
mechanics.

A. Phase space representation

Classical models that we consider describe nonconstrained
systems with a finite number of n degrees of freedom. Its
states and (the algebra of) observables are smooth functions
on the phase space P [1–3], which is then a 2n-dimensional
symplectic manifold that is a cotangent bundle of the con-
figuration space. (Some mathematical aspects of the phase
space formalism as summarized in Appendix A). The local
coordinates on P are z = (q, p), where q are the generalized
coordinates and the p are the canonical conjugate momenta.
Pure states represent the perfect knowledge of position and
momentum and are thus δ distributions, ρz0 = δ(q − q0)δ(p −
p0). In situations of incomplete knowledge about a system’s
state, like in statistical mechanics, the state is represented as a
probability (Liouville) density ρ(q, p).1

The evolution of the state is generated by the Hamiltonian
H (q, p) according to the Hamilton equations q̇ = ∂H

∂ p and ṗ =
− ∂H

∂q . A probability density ρ(q, p) then evolves according to

1Notice that the density matrix ρ̂ has the unit of probability instead
of density, while we choose ρ to represent probability densities.
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the Liouville equation,2

∂ρ(q, p)

∂t
= ∂ρ

∂ p

∂H

∂q
− ∂ρ

∂q

∂H

∂ p
= {H, ρ} = −H�ρ, (2)

where H is the Hamiltonian and {, } is the Poisson bracket.

The operator (symplectic matrix) � := ←−
∂
∂ p

−→
∂
∂q − ←−

∂
∂q

−→
∂
∂ p pro-

vides an alternative form of the Poisson bracket. The right and
left arrows on the operators mean that the derivative will act

on the right and left side’s function: f
←−
∂
∂ p

−→
∂
∂q g = ∂ f

∂ p
∂g
∂q .

The phase space formalism can be generalized to quan-
tum states. There are different approaches to quantum phase
spaces [20]. One of the most common versions is the Wigner
function W (q, p) [21–24,28]. Wigner functions are real func-
tions of canonical coordinates (q, p). They are obtained via
the Wigner transform of density matrices

W (q, p) = 1

π h̄

∫
dy〈q − y|ρ̂|q + y〉e2ipy/h̄, (3)

with an obvious extension to n degrees of freedom. Consider
the eigenstates of a simple harmonic oscillator with H = q2 +
p2 as an example. Their Wigner functions are given by

WEn (q, p) = (−1)n

π h̄
Ln

[
2(q2 + p2)

h̄

]
e−(q2+p2 )/h̄, (4)

where Ln are the Laguerre polynomials. Wigner functions are
normalized, ∫

dqd pW (q, p) = 1, (5)

but not necessarily positive. Some example distributions are
depicted in Fig. 2.

The Born rule is reproduced by the following inner
product:

Tr(ρ̂1ρ̂2) = h
∫

W1W2 dq d p, (6)

where W1,W2 are Wigner functions corresponding to ρ̂1, ρ̂2

and h is Planck’s constant.
Unlike classical probability densities, many Wigner func-

tions have some small areas with negative values and are
thus called quasi probability distribution. The probabilities of
any allowed measurement outcome are nevertheless positive,
which can be understood as the uncertainty principle rescuing
positivity by banning measurements that would single out
small phase space regions.

The inverse map that takes a phase space function to an
operator is called the Weyl transform [29]. The Weyl-Wigner
transforms provide a mathematical method that connects
phase space functions and noncommutative operators:

Wigner{Â}(q, p) = 2
∫

dzei 2pz
h̄ 〈q − z|Â|q + z〉. (7)

2Consider time t → t + dt , where dt is sufficiently small. Then,
under the tangential approximation, ρ(q, p, t ) → ρ(q + ∂q

∂t dt, p +
∂ p
∂t dt, t + dt ), dρ = ∂ρ

∂q
∂q
∂t dt + ∂ρ

∂ p
∂ p
∂t dt + ∂ρ

∂t dt . By Liouville’s
theorem, dρ = 0. Combining this with Hamilton’s equations gives
the Liouville equation.

FIG. 2. Wigner functions for the n = 0, 1, 50 eigenstates of a
simple harmonic oscillator. H = k(q2 + p2), where k is an arbitrary
positive constant with the dimension of [ 1

t ]. Both q and p are plotted

in units of h̄
1
2 , and the Wigner function is plotted in units of 1

h̄ .

In the other direction,

Â = 1

4π2h̄2

∫
Wigner{Â}(q, p)ei a(q−q̂)+b(p− p̂)

h̄ dq d p da db, (8)

where Wigner{ ·} labels the Wigner transform.3

One sees that the Wigner function of Eq. (7) is the Wigner
transformation of density matrices of Eq. (3) with an ex-
tra factor: W (q, p) = 1

h Wigner{ρ̂}. This is consistent with
the Wigner function having the unit of probability density
(probability per phase space area), whereas the Wigner trans-
formation does not change the dimensionless unit of the
density matrix.

3The Weyl-Wigner transform implies a one-to-one correspondence
between real power functions qn pm with the same power function of
operators in a certain order. This order is called the Weyl ordering
[23]: qn pm ↔ 1

2n

∑n
i=0 Ci

nq̂n−i p̂mq̂i = 1
2m

∑m
j=0 C j

m p̂m− j q̂n p̂ j .
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The (noncommutative) product of operators appears in the
Wigner function representation as

Wigner{ÂB̂} = Wigner{Â} � Wigner{B̂},
where

� := exp

(
− ih̄

2
�

)
,

(9)

and � is the Moyal (star) product.
One can deduce the evolution of the Wigner function [23]

by applying the Wigner transform and Moyal product to
ih̄ ∂ρ̂

∂t = [H, ρ̂], which gives

∂W

∂t
= 2

h̄
W (q, p) sin

(
h̄

2
�

)
H (q, p), (10)

where H (q, p) is the Hamiltonian in phase space obtained
by the Wigner transform. When h̄ → 0, Eq. (10) transforms
to the classical Poisson bracket of Eq. (2): ∂ρ

∂t = ρ�H =
−{ρ, H}P.B..

The time evolution can be written in another way (the
Wigner transport equation) for the case of H = P2

2m + V (q)
[23]:

∂W

∂t
= − p

m

∂W

∂q
+

∫
d jW (q, p + j)J (q, j),

where J (q, j) = i

π h̄2

∫
dy[V (q + y) − V (q − y)]e−2i jy/h̄.

(11)

The − p
m

∂W
∂q term is contributed by the kinetic energy term of

the Hamiltonian, while
∫

d jW (q, p + j)J (q, j) is contributed
by the potential energy term. The kinetic term is the same as in
classical mechanics, but the potential term contains an integral
over all momenta, implying that the distribution “jumps” in
the momentum direction. The jumping in Eq. (11) is associ-
ated with the infinite orders of derivatives in Eq. (10), since
an infinite-order Taylor expansion enables the expansion to an
arbitrary distance with arbitrary precision. We will return to
this point in Sec. VI B and Appendix B.

B. Action-angle variables

Action-angle variables are useful in the analysis of classi-
cal systems [1,2]. The action, also called abbreviated action I
is a number associated with an orbit defined as [1]

I = 1

2π

∮
p dq. (12)

This quantity gives the phase space volume (enclosed by the
orbit up to 1

2π
).4

The angle variable θ specifies where the phase space point
is along the orbit, as illustrated by the simple harmonic os-
cillator case depicted in Fig. 3. (θ , I) can be obtained, at
least in certain cases, for a given Hamiltonian via a canon-
ical transformation from (q, p) [1]. More specifically, the

4The historically significant “Sommerfeld” quantization condition
is that 2π I = nh where n is an integer.

FIG. 3. Action contour lines of a harmonic oscillator whose H =
k(q2 + p2). Both q and p are plotted in units of h̄

1
2 . Their actions

from outside to inside are 25h̄
2π

, 16h̄
2π

, 9h̄
2π

. The action contour lines
correspond to orbits in phase space. The angle alone changes during
the evolution.

Liouville-Arnold theorem says that an action-angle coordi-
nate system exists for all completely integrable systems [1].
Harmonic oscillators are prominent examples of completely
integrable systems.

The canonical equation for action-angle coordinates is

∂I

∂t
= −∂H

∂θ
= 0,

∂θ

∂t
= ∂H

∂I
, (13)

where H depends only on action. While the action is invariant
for the time-independent Hamiltonian, the angle θ evolves at
a constant speed: θ̇ (I, t ) = ∂H

∂I , indicating the phase of the
periodic motion.

By the Liouville equation, Eq. (2), the evolution of the
distribution f under these coordinates is given by

∂ f

∂t
= −∂ f

∂θ

∂H

∂I
. (14)

C. Generalized probabilistic theories

Generalized probabilistic theories (GPTs) express the idea
that at the operational level, only statistics of measurement
outcomes conditional on preparations and measurement pro-
cedures form the empirical basis of a theory, in contrast
with indirect concepts like force. Therefore, GPTs are also
called operational probabilistic theories. GPTs associate ex-
periments on a system with real vectors, e.g., the probability
vectors �f corresponding to the individual measurements and
outcomes [6,7,30], such as

�f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

P( j| f , Mi )

P( j + 1| f , Mi )
...

P(k| f , Mi+1)

P(k + 1| f , Mi+1)
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

where P( j| f , Mi ) represents the probability of the jth out-
come of the ith measurement on a state f .
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Mixed states are represented by the linear combinations of
state vectors. For example, �f ′ = p �f1 + (1 − p) �f2, p ∈ [0, 1]
represents a probabilistic mixture of state �f1 and �f2 with
weights p and 1 − p respectively. As a result state spaces are
always convex sets. Given a set of states, the states that cannot
be obtained as a mixture of other states are, as in quantum and
classical theories, called pure states.

The states are assumed to transform linearly. The transfor-
mations are modeled as real matrices T such that they respect
probabilistic mixtures: T (p �f1 + (1 − p) �f2) = pT �f1 + (1 −
p)T �f2. The set of allowed transformations must be such that
allowed states are taken to allowed states by them. If the
inverse matrix T −1 exists and is an allowed transform one says
the transformation T is reversible.

The measurements are represented by the dual elements
of state space in a certain sense. One can introduce linear
operators eM, j so that eM, j ( f ) = P( j| f , M ) gives the proba-
bility of the jth outcome in measurement M. These operators
are called effects in GPTs. For instance, the Born rule P =
Tr(Ê j ρ̂) in quantum mechanics can be understood as an ef-
fect Tr(Ê j . . .) applied on the state ρ̂. Every measurement
always ends with a result, which requires the set of effects
corresponding to the measurement to be complete. The com-
pleteness of effects means that for arbitrary states f and
measurement M, ∑

j

eM, j ( f ) = 1. (16)

This work treats the phase space formalism as a continu-
ous variable case of a general GPT formalism, following
the connection between these two frameworks established in
Ref. [25]. A generalized phase-space-like formalism was also
employed recently in Ref. [17].

In the following we assume that in a given GPT valid states
are normalized functions (or distributions) on P. Convex
combinations of states are also states. As part of specifying
a given theory the state space will in general have further
restrictions.

In GPTs, effects are linear functionals of states, such that
probabilistic mixtures of states lead to corresponding proba-
bilistic mixtures of measurement outcomes. In phase space,
effects are described as

P(i| f ) = ei( f ) =
∫

hi f dq d p, (17)

where hi is some function of q, p.
The completeness condition

∑
i ei( f ) = 1 for arbitrary f

requires ∑
i

hi = 1. (18)

If only a finite region D ⊂ P is of concern, the completeness
condition becomes ∑

i

hi = 1D, (19)

where 1D is a function that equals one when (q, p) ∈ D and
zero otherwise.

For continuous effects labeled by a continuous variable
μ, the probability of the outcome falling into a continuous

interval (μ,μ + dμ) is dP(μ; dμ| f ) = ρ(μ| f )dμ, where
ρ(μ| f ) is the probability density for the outcome μ given the
state f . The most general expression is

ρ(μ| f ) =
∫

f (q, p)hμ(z) dq d p. (20)

For example, classical (sharp) phase space localization
has μ = (q, p) ∈ P. The state is given by the Liouville
density f = ρ(q, p). The probability of being within the
volume dq0d p0 around the point (q0, p0) in P is dP =
ρ(q0, p0)dq0d p0. In this case, h(q0,p0 )(q, p) = δ(q − q0)
δ(p − p0).

GPTs also include the conditional update rule after mea-
surements

f
i−→ g( f ,i) (21)

of the measured state f if the outcome i was registered.
For example, the sharp classical measurement with the out-
come (q0, p0) leads to the update ρ → δ(q − q0)δ(p − p0).
In quantum mechanics, von Neumann measurement collapses
the wave function to the projector that describes the effect,
while the most general state transformer is given by the Kraus
matrices [31,32]. The state update rule after measurements
will not be discussed in this paper.

III. GENERALIZED CANONICAL COORDINATE
SYMMETRIES WITH A UNIQUE INNER PRODUCT

In this section, we demand certain symmetries on P and
derive an inner product for quasiprobability distributions on
P. The inner product will provide a generalization of the Born
rule (up to a constant which is determined in the subsequent
section). The rule gives the operational meaning to states in
terms of probabilities of measurement outcomes for given
system preparations. The symmetries restrict the Born rule
to a natural mathematical generalization of the classical and
quantum cases.

We shall demand certain elementary symmetries to narrow
both the Born rule and the time evolution. For simplicity, we
focus on the case of a two-dimensional phase space with the
coordinates (q, p). At a minimum, valid states need to be
normalized functions in state space. Convex combinations of
valid states are also valid states. As part of specifying a given
theory the state space will in general have further restrictions.

We demand that there exists a coordinate system of gen-
eralized position and momentum, (q, p), that satisfies the
following “canonical” coordinate symmetries.

Postulate 1 (Canonical coordinate symmetries). There ex-
ists such a coordinate system (q, p) where the physical laws
manifested by equations of motion and measurement are in-
variant under the following coordinate transformations:

(1) Translation: (q, p, t ) �→ (q + a, p + b, t+c), for any
a, b, c ∈ R. We represent its action on functions via
(T̂a,b,c f )(q, p, t ) = f (q + a, p + b, t + c).

(2) Switch: (q, p, t ) �→ (C p, q/C,−t ), where C is an arbi-
trary constant with units [C] = [q/p].

(3) Time reversal: (q, p, t ) �→ (q,−p,−t ) [equivalent to
(q, p, t ) �→ (−q, p,−t ) by switch].

Invariance under spacetime translations and boosts are one
of the basic symmetries of nature, and time reversal symmetry,
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while approximately correct in low-energy physics, is a useful
computational tool [33]. The switch symmetry is not usually
explicitly presented, though it exists in classical mechanics
(via canonical transformations [1,34]) and quantum mechan-
ics (via corresponding unitary and antiunitary transformations
[32,33]). It can be viewed as placing position and momen-
tum on an equal footing. Together, the symmetries physically
define a canonical coordinate system. These symmetries gen-
erate a group that includes other symmetries. For example,
we will utilize parity symmetry implied by time reversal and
switch symmetry in Appendix C.

In a coordinate system obeying these canonical symme-
tries, we can get a unique inner product by introducing an
additional natural restriction, namely, the inner product be-
tween two states goes to zero with increasing separation
between the configurations they describe.

Postulate 2 (Local inner product). The inner product is
local which means for two arbitrary quasiprobability distri-
butions f1 and f2,

lim
a→∞〈 f1, T̂a,0,0 f2〉 = 0. (22)

These postulates identify the inner product.
Theorem 1 (Generalized inner product). Consider an in-

ner product of two arbitrary quasiprobability distributions
f1, f2 of an elementary two-dimensional system. If the inner
product is local and the generalized coordinates obey the
canonical symmetries, then

〈 f1, f2〉 ∝
∫

f1(q, p) f2(q, p) dq d p. (23)

Proof. An inner product is a bilinear symmetric function of
two states. For phase space distributions f1 and f2, a general
form of a bilinear function is∫

M(q, p,	q,	p) f1(q, p) f2(q + 	q, p + 	p)

× dq d p d	q d	p, (24)

where M is an arbitrary function. The symmetric condition on
the inner product 〈 f1, f2〉 = 〈 f2, f1〉 further requires

M(q, p,	q,	p) = M(q, p,−	q,−	p) (25)

for arbitrary a, b, c, d ∈ R.

Translation symmetry requires 〈 f1(q, p), f2(q, p)〉 =
〈 f1(q + a, p + b), f2(q + a, p + b)〉 such that∫

M(q, p,	q,	p) f1(q, p) f2(q + 	q, p + 	p) d


=
∫

M(q, p,	q,	p) f1(q + a, p + b)

× f2(q + a + 	q, p + b + 	p) d
, (26)

where d
 = dqd pd	qd	p. Equation (26) holds for arbi-
trary f1, f2, so

M(q, p,	q,	p) = M(q − a, p − b,	q,	p) (27)

for all a, b ∈ R. Therefore, M depends on only the relative
distance 	q,	p,

M(q, p,	q,	p) = M(	q,	p). (28)

FIG. 4. Contour plot of M(	q,	p), a function that appears in
the initially general form of the inner product as in Eq. (24). Both
q and p are plotted in units of h̄

1
2 , but they can have different units

as long as [qp] = [h̄]. The points in a pair of hyperbolas (|	q	p| =
c, c > 0) share the same value of M, and so does the 	q, 	p axis
(except the origin). The origin is an isolated point in the contour plot
because it represents the inner product contributed by the point itself,
unaffected by any symmetry operations.

Similarly, switch symmetry with dimensional constant
C requires 〈 f1(q, p), f2(q, p)〉 = 〈 f1(p/C,Cq), f2(p/C,Cq)〉,
which leads to

M(	q,	p) = M(	p/C,C	q). (29)

Time reversal symmetry requires 〈 f1(q, p), f2(q, p)〉 =
〈 f1(q,−p), f2(q,−p)〉, which leads to

M(	q,	p) = M(	q,−	p). (30)

Equations (25), (28), (29), and (30) imply that
M(q, p,	q,	p) is constant when |	p	q| = c for arbitrary
c � 0, except at the origin (	q = 	p = 0). All these contour
lines extend to infinity, as illustrated in Fig. 4. Nevertheless,
under Postulate 2, 〈 f1, f2〉 = 0 for infinitely separated states,
M(	q,	p) must go to 0 when 	q → ∞. This implies that
M(	q,	p) = 0 except for at the origin (	q = 	p = 0).
Thus, M(	q,	p) ∝ δ(	q)δ(	p), and the inner product
must have the form

〈 f1, f2〉 ∝
∫

f1(q, p) f2(q, p) dq d p. (31)

�
The inner product of two density matrices or Wigner functions
gives the measurement probability under the standard Born
rule. We present a similar measurement formula in the gener-
alized framework in Sec. IV, which determines the constant
factor in the generalized Born rule and its relation to the
Planck constant h.

IV. GENERALIZED PLANCK CONSTANT OF
UNCERTAINTY: EFFECT AND STATE VOLUME

In this section, we introduce a property of effects that can
be interpreted as the phase space volume they effectively oc-
cupy, which is called “effect volume.” Then, we introduce the
generalized Born rule for a type of state-associated measure-
ment, which is fundamental in quantum and classical theories.
In this case, the effect volume can also be called state volume.
The volume equals the Planck constant h for quantum pure
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states and is zero (in a suitable limiting sense) for classical
pure states.

A. Effects and their phase space volume

Recall that the completeness of a measurement inside a
region D gives ∑

i

hi = 1D. (32)

Integrating both sides results in∫ ∑
i

hi dq d p =
∫

1D dq d p = VD, (33)

where VD is the volume of the phase space region D.
We can factorize the hi as

hi = cigi, (34)

where gi is a normalized quasiprobability distribution,∫
gi dq d p = 1, and ci is some constant weight. Then inter-

changing summation and integration in Eq. (33) results in∑
i

ci = VD. (35)

Equation (35) identifies the sum of the weights ci with the
phase space volume, inspiring the following.

Definition 1 (Effect volume). For the phase space represen-
tation of a discrete effect ei = (gi, ci ) the effect volume is
defined as its weight,

Vi := ci. (36)

Hence the probability of the outcome i can be written as

ei( f ) = Vi

∫
f gi dq d p. (37)

Note that, despite its normalization, gi does not necessarily
represent a valid state in a GPT.

Aggregating different outcomes and thus combining dif-
ferent effects we count the total probability of the aggregate,
arriving at a coarse-grained measurement. We can check that
the effect volume is additive like “volume” in the sense that
the coarse-grained effect volumes are the sum of aggregated
effects’ volumes.

Theorem 2 (Coarse-grained measurement). Consider a
coarse-grained measurement effect, whose outcome
probability is given by

eC.G.( f ) =
∑
i∈K

ei( f ), (38)

where K is a set of undistinguished results. Then its effect
volume VC.G. is given by VC.G. = ∑

i∈K Vi.
Proof.

eC.G.( f ) =
∫

hC.G. f dqd p =
∑
i∈K

Vi

∫
gi f dq d p, (39)

where we defined hC.G. = ∑
i∈K Vigi. We factorize hC.G.:

hC.G. =
∑
j∈K

Vj

∑
i∈K

Vigi∑
j∈K Vj

. (40)

By Eq. (34), hC.G. = VC.G.gC.G. where
∫

gC.G. dq d p = 1.
Notice ∫ ∑

i∈K

Vigi∑
j∈K Vj

dq d p = 1, (41)

so the integrated function is gC.G. Consequently, VC.G. =∑
i∈K Vi. �

B. Effect volume in state-dual measurements: State volume

We now consider an important special case of effect vol-
ume, concerning effects that are associated with valid states.
In this case, the effect volume can also be termed a state
volume. We show that such a state volume is given by the
inverse 2-norm of the distribution. We discuss the implica-
tions, including how the minimal state volume can be viewed
as a generalization of the Planck constant associated with
uncertainty.

Definition 2 (State-dual measurements). If all the effects
{ei} of a measurement satisfy

(1) ei( f ) ∝ 〈 f , gi〉, where gi is a valid state
(2) ei(gi ) = 1

we call it a state-dual measurement.
Definition 2 leaves the measurement update rule of self-

dual measurements general, e.g., it is not required that the
measurement is repeatable (such that an iterated application
always leads to the same result [19,31]).

State-dual measurements are particularly fundamental
in self-dual theories, which roughly means a one-to-one
correspondence between states and effects [6,7] up to nor-
malization. Both quantum and classical theories are self-dual.
Another motivation for state-dual measurement comes from
the dual role of Hamiltonian. While the Hamiltonian describes
the evolution of states (property of states), it is also an observ-
able (with effects), so it must bridge the states and effects. and
we shall later use the generalized energy eigenstates to form a
state-dual energy measurement just like the quantum case.

Physically, state-dual measurement effects can be under-
stood as determining “Is the system in a state gi?” More
specifically, the definite outcome ei(gi ) = 1 implies that other
outcomes must have zero probability: ei(g j ) = 0 when i �= j.
Consequently, states gi associated with a state-dual measure-
ment must be orthogonal to each other:

〈gi, g j〉 = 0, when i �= j. (42)

Definition 2 restricts the effect volume of state-dual effects.
First, note that, since Theorem 1 has derived a unique in-
ner product, condition (1) in Definition 2 means ei( f ) ∝∫

f gi dq d p. The probability of an outcome i is given by
Eq. (37) but its volume Vi is still undefined. Condition (2)
identifies Vi.

Theorem 3 (Volume of state-dual effects). The volume of a
state-dual measurement effect associated with state gi is given
by Vi = 1/

∫
g2

i dq d p.
Proof. By condition (2) of Definition 2,

ei(gi ) = Vi

∫
g2

i dq d p = 1. (43)
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Therefore,

Vi = 1/

∫
g2

i dq d p. (44)

�
The Vi of Eq. (44) depends on only the state gi, therefore we
similarly term Vi the state volume of gi. For normalized distri-
butions, the larger the 2-norm, the more peaked the function
is. Thus the volume of a state, the inverse of the 2-norm, intu-
itively reflects the uncertainty of outcomes given that state. We
shall later show how the state volume, minimized over states,
becomes the Planck constant in the case of quantum theory.

The state volume is closely connected to the number
of distinguishable states. Consider a complete state-dual
measurement (or complete inside region D ⊂ P) with the
associated set of states {gi}. This measurement can distinguish
these {gi} in a single shot. States and effects are symmetric in
state-dual measurements, so we can apply the completeness
condition of effects to states,∑

i

Vigi = 1
(
or1D

)
, (45)

when gi are associated with a complete set of state-dual mea-
surements (or complete inside region D). [The functions 1
or 1D on the right-hand side represent the (unnormalized)
maximally mixed state. When we know nothing about a
system, it is in the maximally mixed state, which is the prob-
abilistic mixture of all possible results by Eq. (45)].

Repeating the analysis of Sec. IV, we know
∑

i Vgi = VD

when completeness is inside region D. If Vgi equals a constant
Vg for all i, then we can count the total number Ng of states
inside {gi} by

Ng = VD

Vg
. (46)

Thus, the state volume determines how many orthogonal
states can be stored in a finite phase space region.

These arguments can be extended to the case where
the completeness condition is approximately defined
(
∑

i Vigi � 1D).

C. Examples

In quantum mechanics, projective measurements are state-
dual measurements. Their probabilities are given by

P(φ|ψ ) = eφ (ψ ) = |〈φ|ψ〉|2 = h
∫

WφWψ (47)

or the coarse graining of the above outcomes.
The state or effect volume is associated with the purity of

quantum states by

tr(ρ̂2) = h
∫

W 2 dq d p = h/V. (48)

Therefore, pure states have a minimal volume h. All the mixed
states have a larger state volume. This also provides a re-
flection of the uncertainty principle in the Wigner function
formalism.

The Eq. (47) implements the so-called reciprocity law of
quantum mechanics [28], which states that for two pure states

φ and ψ the probability of observing outcome φ in a maximal
test following preparation of state ψ equals to the probabil-
ity of observing outcome ψ in a maximal test following a
preparation of state φ. If a GPT has two or more sets of
state-dual effects, e = (gi,Vi ), e′ = (g′

i,V ′
i ), . . . that satisfy

the reciprocity relation in the form

P(i| j′) = P( j′|i), (49)

then all effects of all these measurements have the same
volume. This follows from the application of Eq. (37) twice,
reversing the roles of the state and the effect for the effects of
two measurements.

Position and momentum eigenstates have state volumes
different from “regular” pure quantum states consistent with
the fact that they are actually outside the Hilbert space. They
are unnormalizable delta functions. One may approximate
them by Gaussians with finite width, in which case the state
volume is still h.

The classical sharp phase space localization has μ =
(q0, p0) ∈ P. As we have seen in Sec. IV the effect (q0, p0)
(with the “uncertainty” dq0d p0) is represented by a nor-
malized distribution g(q0,p0 )(q, p) = δ(q − q0)δ(p − p0) on P

with c(q0,p0 ) = 1. As a result,

dV(q0,p0 ) = dq0d p0. (50)

The coarse-grained version of such sharp effects provides
another example. As a simple example consider the box mixed
state:

g0(q, p) =
{

(εδ)−1, q ∈ (q0, q0 + ε) and p ∈ (p0, p0 + δ)

0, otherwise
.

(51)

The state volume that is occupied by each of these states is
Vg = εδ → 0, and a domain D contains

Ng = VD/(εδ) → ∞ (52)

orthogonal states.

V. GENERALIZED ENERGY EIGENSTATES:
PURE STATIONARY STATES

The concept of eigenstate appeared with the foundations
of quantum mechanics; it also appears in the quantum-like
Koopman formalism of classical mechanics [12,28,35–37].
However, here we will define the energy eigenstates from a
slightly different perspective, which also works for general-
ized theories. We define the generalized eigenstates via the
dynamic features of states: the purest stationary states. The
Noether theorem inspires this: the energy directly represents
the time-invariant feature. These states are a cornerstone to
put quantum and classical mechanics in the same framework.

A. Definition

Definition 3 (Stationary states). Given a time evolution
rule, stationary states are states represented by time-
independent phase space functions.
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Probabilistic mixtures of stationary states are, by inspec-
tion, also stationary, so there is a convex set of stationary
states.

Definition 4 (Pure stationary states). Pure stationary
states
are states in the set of stationary states that cannot be
represented as nontrivial probabilistic mixtures of other
stationary states.

Note that pure stationary states are not necessarily pure
states of the convex set of all allowed states of a GPT.

We will identify pure stationary states with the generalized
energy eigenstates. We show in subsequent sections that they
satisfy three natural desiderata:

(1) Pure stationary states can be assigned sharp energy
values, always giving the same value in energy measurement.

(2) They describe the time evolution of the system.
(3) They coincide with the standard quantum energy states

in the case of quantum mechanics.

B. Examples

In the classical case orbits in phase space describe the time
evolution, and uniform distributions over orbits are the only
stationary states. More specifically, stationary states by defi-
nition obey ∂ f

∂t = 0. In the action-angle coordinates described
in Sec. II B,

∂ f

∂t
= ∂ f

∂θ

∂H

∂I
. (53)

Consider the case of ∂H
∂I �= 0 first. Then a stationary state

requires ∂ f
∂θ

= 0 for all θ , so

f (I, θ ) = f (I ) =
∫

ρ(Ii ) fi dIi, (54)

where

fi(I ) = 1

2π
δ(I − Ii ) (55)

are thus (normalized) pure states of the set of stationary states.
We see that these states are not pure in the set of all states.
As an illustrative example, the delta functions in Fig. 3 are
examples of pure stationary states in harmonic oscillators. The
state-dual measurement of I is given by

P(I0, dI0| f ) = p(I0| f ) dI0 = 2π dI0

∫
f

1

2π
δ(I − I0) dq d p.

(56)

Therefore, pure stationary states have infinitesimal volume,

dVI0 = 2π dI0, (57)

in agreement with the usual geometric interpretation of the
action variables [1,2].

Finally, consider the case when ∂H
∂I = 0, for some values of

I , such that any distribution over θ for those values of I is sta-
tionary. Hence, the associated classical pure stationary states
become pure states δ(I − I0)δ(θ − θ0), where I0 ∈ {I ′| ∂H

∂I |I ′ =
0}, θ0 ∈ [0, 2π ). (The state volume is V = dq0 d p0 = dI0 dθ0

by the same reasoning as above.)
Classical pure stationary states correspond to “eigen-wave

functions” in the Koopman–von Neumann formalism [35,38],

where the classical states are described by wave functions like
quantum mechanics. Koopman mechanics describes classical
states by probability amplitudes φ(q, p, t ), and the probabil-
ity density ρ(q, p) = |φ(q, p)|2. The evolution of φ(q, p, t )
is given by i ∂φ

∂t = L̂φ, where L̂ = −i ∂H
∂ p

∂
∂x + i ∂H

∂x
∂
∂ p , named

the Liouvillian operator, is a generator of time translations,
analogous to the quantum Hamiltonian operator. The classical
Hamiltonian H that enters the expression for L̂ is the energy
observable. For example, (unnormalized) eigenfunctions of a
free particle Liouvillian are φp0,λ = eiλqqδ(p − p0), where λq

and p0 can be arbitrary real numbers. However, the corre-
sponding probability distributions containing δ2(p − p0) are
ill-defined. Instead, pure stationary states are effectively |φ|
up to normalization in this case. Moreover, a conceptual sepa-
ration between the energy observable and the time translations
generator puts the Koopmanian formalism outside the GPTs
we consider.

For quantum mechanics, the time evolution can be de-
scribed by the commutator of the density matrix and the
Hamiltonian. Therefore, stationary states must have diagonal
density matrices in the energy basis. Pure states among sta-
tionary states are just energy eigenstates, including in cases
of degeneracy. Hence, the pure stationary state is just another
name for the energy eigenstate in the quantum case.

By inspection, both quantum and classical pure stationary
states have sharp energy values. This provides a vehicle to
define energy measurement, which associates measurements
with states. Whether the pure stationary states can provide
an energy measurement in generalized theories will be estab-
lished in Sec. VII.

The next section shows how pure stationary states relate to
time evolution in generalized theories. The dynamical symme-
try represented by pure stationary states is connected to energy
as a conserved quantity. This is consistent with Noether’s
theorem, as will be explained later.

VI. GENERALIZED EQUATION OF MOTION
FROM POSTULATES

We will now derive the equation of motion in terms of
generalized eigenstates.

A. Evolution based on pure stationary states

As an analogy of quantum energy eigenstates, we introduce
the following nontrivial postulates.

Postulate 3 (Evolution dependence). The time evolution of
a state only linearly depends on the pure stationary states,
up to some dimensional factors Ei to keep the dimensions
identical,

∂ f

∂t
= G

(
f ,

∑
i

Eigi

)
=

∑
i

EiG( f , gi ), (58)

where gi is a set of pure stationary states and Ei are corre-
sponding parameters and G is some bilinear functional.

There are several reasons for Postulate 3. First, stationary
states are the only choice of states, under time translation
symmetry, to depict the time evolution without external fac-
tors because they are the only states independent of time.
Second, using pure stationary states gives the evolution as
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much freedom as possible. If we used some mixtures of sta-
tionary states instead of pure stationary states, the evolution is
equivalent to a specific linear combination of pure stationary
states, which is just a special case of this postulate. Finally,
the pure stationary states contain only time-independent infor-
mation, while ∂ f

∂t contains the dimension of time. Hence, we
must have some parameters Ei containing the dimension of the
inverse time (which will later turn out to be proportional to the
energy value).

Postulate 4 (Independence of stationary states). The pure
stationary states are independent in the sense that G(gi, g j ) =
0 holds for arbitrary i, j.

When you change the value of Ei, in principle, the orig-
inal pure stationary states may not be stationary anymore.
Postulate 4 aims to avoid such a complex situation. All the
pure stationary states are stationary under other pure station-
ary states’ impact so that their stationarity is independent of Ei

(energy values). Both quantum and classical mechanics satisfy
this postulate by inspection.

B. Localized and nonlocalized evolution expressions

Before deriving the equation of motion, we will introduce a
different perspective to describe the time evolution, which will
benefit later work. We will discuss the idea of the evolution
of the phase space state distribution being localized in phase
space.

Often time evolution is written as an apparently localized
expression. For example, in the continuity equation ∂t f +
�∇ · (�v f ) = 0 for conserved distributions evolution of f at a
point being determined locally depends on the velocity field
v at this point. In general, an apparently localized expression
(of evolution) means the state update at one point depends
only on quantities (derivatives) at this point. The Liouville
equation (2) is an apparently localized expression in classical
mechanics. On the other side, Eq. (10) is an apparently local
expression to describe quantum evolution.

In contrast, the Wigner transport equation (Eq. (11)) as-
sociates the evolution of one phase-space point evolution
with nonadjacent Wigner function points. When the evolu-
tion equation at one point contains terms at other points,
we call the equations apparently nonlocalized expressions (of
evolution). An important example is Eq. (11). The original
Eq. (11) works for the special case H = p2/2m + V (q). We
may generalize it to arbitrary Hamiltonians:

∂W

∂t
(q, p) =

∫
W (q + l, p + j)J (q, p, l, j) d j dl,

J (q, p, l, = i

π2h̄3

∫
[H (q − y, p + z) − H (q + y, p − z)]

× e−2 i
h̄ ( jy+lz) dy dz. (59)

Equation (59) is equivalent to the quantum Liouville equa-
tion (10) (as shown in Appendix B). From the Eq. (59)
representation of time evolution, we find the evolution at
(q, p) to depend on the distribution at (q + l, p + j) (and
thus everywhere). The probability conservation is guaranteed
by J (q, p, l, j) = −J (q + 2l, p + 2 j,−l,− j), so the term
W (q + l, p + j)J (q, p, l, j) actually contributes to ∂W (q,p)

∂t

and − ∂W (q+2l,p+2 j)
∂t . The distribution W (q + l, p + j) in that

sense plays the role of a porter, transferring other distributions
from (q + 2l, p + 2 j) to (q, p). This differs from the standard
classical stochastic evolution wherein the probability current
from A to B is always proportional to P(A).

A general apparently nonlocalized expression (only assum-
ing ∂ f

∂t is linear in f ) is as follows:

∂ f

∂t
(q, p) =

∫
f (q + l, p + j)J (q, p, l, j) dl d j, (60)

where the state update is described by a nonlocalized gener-
ator J . In quantum and classical theories, J depends on the
Hamiltonian. We will apply the apparently nonlocalized ex-
pression in the following derivations. By inspection, Eq. (60)
assumes only that the evolution is linear in f , respecting the
property of (quasi)probability distributions.

Apparently localized and nonlocalized expressions them-
selves do not imply any physical difference, they are just
two different languages to express the evolution rule. The
apparently nonlocalized Eq. (60) can transform to an ap-
parently localized expression like Eq. (10) and vice versa
(for well-behaved functions). Consider classical free particles
as an example, H = p2

2m , ∂ f
∂t = − ∂ f

∂q
p
m . We can express the

same evolution by J (q, p, l, j) = δ′(l )δ( j) p
m in the nonlocal-

ized expression [δ′(· ) is the derivative of the delta function;
Appendix B shows the derivation].

We introduce the apparently nonlocalized expression
because it is more convenient for describing physically
nonlocalized evolution. The physically nonlocalized evolu-
tion here denotes the appearance of infinite-order derivative
[39,40] in the apparently localized expression. Quantum me-
chanics has a physically nonlocalized evolution, which can be
seen from the sin(�) term of Eq. (10).

On the other hand, if the evolution can be described by
finite-order derivatives in the apparently localized expression,
then we call it physically localized evolution. Classical me-
chanics has physically localized evolution since the Liouville
equation (2) is an apparently localized expression that only
contains first-order derivatives.

When describing physically nonlocalized evolution by
apparently localized expressions, we have to deal with
infinite-order derivatives and their physical meaning is ab-
stract. However, beginning with an apparently nonlocalized
expression like Eq. (60) can explicitly demonstrate the
“jumping” in phase space, which has a clear physical pic-
ture. Since our generalized framework may contain physically
nonlocalized evolution, we choose apparently nonlocalized
expressions to derive the generalized equation of motion. We
also find it eases the derivation process.

C. Conditions to derive the equation of motion

Before deriving the equation of motion, we will present
several physical requirements and see how these restrict
J (q, p, l, j) in the equation of motion.

Postulate 3 says the evolution linearly depends on pure
stationary states, which is the core of our framework. We also
have the canonical coordinate symmetries introduced in the
Postulate 1. We further require the following postulate.
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Postulate 5 (Inner product invariance). The time deriva-
tive of inner products ∂

∂t

∫
f1(t ) f2(t ) dq d p = 0 for arbitrary

states f1, f2 and time point t .
The postulate has several consequences. First, combined

with Definition 2, it implies that applying a state-dual mea-
surement on another state has a time-independent probability
when both states evolve under a given evolution. For exam-
ple, if initially you know a system has a 50% probability of
being state f (t = 0), then during the evolution, we expect the
system to still have a 50% probability of being f (t ). This is a
physical motivation of Postulate 5. Second, ∂

∂t

∫
f 2 dq d p = 0

for any f , which means the state volume does not change.
Third, the maximally mixed state is the state that maximizes
the state volume, so it has to be stationary. Thus it is a convex
combination of pure stationary states and accordingly the pure
stationary states satisfy the completeness condition. Finally,
any state f ’s inner product with the maximally mixed state
is invariant under time evolution, ∂

∂t

∫
f 1 dq d p = 0, which

means the total probability is conserved. The inner product
invariance is the only use of the inner product in the derivation
of the equation of motion.

D. Restrictions to the nonlocalized generator J

Next, we will restrict the nonlocalized generator
J (q, p, l, j) by the above requirements.

Postulate 3 says the evolution linearly depends on pure sta-
tionary states, therefore J linearly depends on pure stationary
states g. It gives us

Jg(q, p, l, j) =
∫

g(q + x, p + y)A(q, p, x, y, l, j) dx dy,

(61)

where A is some unsettled function. What appears in the final
equation of motion is J∑

i Eigi
, but here we focus only on the

functional J . This is similar to Eq. (60) for the same reason:
this is the most general form of linear dependence. However,
we step further and argue the following.

Lemma 1 (J’s dependence on g).

Jg(q, p, l, j) =
∫

g(q + x, p + y)A(x, y, l, j) dx dy. (62)

A is some unsettled function and cannot depend on q, p and
state g.

The reason that A cannot depend on q, p is the following:
The coordinates themselves are physically meaningless; all
the dependence on (q, p) means dependence on some state.
We have already assumed that the dynamics are independent
of time (Postulate 1), and the only states independent of time
are pure stationary states or linear combinations of them. If
A depends on pure stationary states, it breaks the linearity
relation between J and g. Therefore, there is no space for A to
depend on q, p.5 Equation (62) gives a general form of J under

5Whenever we utilize symmetries to restrict some function, we
always implicitly assume the function depends only on the elements
that we are aware of in this issue. Otherwise, arbitrary symmetry can
be achieved by introducing a new degree of freedom, just like gauge
fields.

Postulate 3. An equivalent statement is that if we translate
all the pure stationary states, g′(q, p) = g(q + 	q, p + 	p)
without changing anything else, then Jg′ (q, p, l, j) = Jg(q +
	q,+	p, l, j).

Then, to keep the inner product invariance of Postulate 5,

0 =
∫

∂ f1

∂t
f2 + ∂ f2

∂t
f1 dq d p

=
∫

f1(q + l, p + j)J (q, p, l, j) f2(q, p)

+ f2(q + l, p + j)J (q, p, l, j)

× f1(q, p) dq d p d j dl

=
∫

f1(q + l, p + j)J (q, p, l, j) f2(q, p)

+ f2(q − l, p − j)J (q, p,−l,− j)

× f1(q, p) dq d p d j dl

=
∫

f1(q + l, p + j)J (q, p, l, j) f2(q, p)

+ f2(q, p)J (q + l, p + j,−l,− j)

× f1(q + l, p + j) dq d p d j dl. (63)

[When the dependence on g is not emphasized, we
write J (q, p, l, j) instead of Jg(q, p, l, j)]. We require the
following.

Lemma 2 (Requirement from inner product invariance).

J (q, p, l, j) = −J (q + l, p + j,− j,−l ). (64)

This is consistent with the known fact that the generator of
an orthogonal group, i.e., the group keeping the dot product
invariant, is antisymmetric.

Subsequently, we utilize the canonical coordinate symme-
tries introduced in Postulate 1. Due to translation symmetry,
we can focus, without loss of generality, on the evolution of
one point (q = 0, p = 0) defining a functional:

J0
g (l, j) = Jg(q = 0, p = 0, l, j). (65)

For the equation of motion

∂ f

∂t
(0, 0) =

∫
J0

g(l, j) f (l, j) dl d j, (66)

we apply a transformation to it,6

∂ f ′

∂t
(0, 0) =

∫
J0′

g′ (l, j) f ′(l, j) dl d j. (67)

A symmetry means that the functional is invariant under
a transformation: J0′ = J0. The canonical symmetries will
restrict J in such a way. The concrete derivation is in
Appendix C. In the end, we find the canonical symmetries
(Postulate 1) require the following.

6We can write (q, p, r) �→ (q′, p′, t ′), or equivalently
f (q, p, t ), g(q, p, t ) �→ f ′(q, p, t ), g′(q, p, t ). We choose the
latter one here.
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FIG. 5. The symmetry restrictions that Lemmas 2 and 3 im-
pose on the nonlocalized generator J . There are three phase
space points: (q, p), (q + 	q, p + 	p), (q − 	q, p − 	p). The
restriction is that for any q, p, 	q and 	p, J (q, p, 	q,	p) =
−J (q, p, −	q, −	p) = −J (q + 	q, p + 	p,−	q, −	p).

Lemma 3 (Requirement from canonical coordinate
symmetries).

J (q, p, l, j) = −J (q, p,−l,− j). (68)

Lemmas 2 and 3 (the requirements of J from the inner
product invariance and the canonical symmetries) are illus-
trated by Fig. 5.

E. Derivation of the equation of motion

We already have all the ingredients on the table to derive
the functional Jg(q, p, l, j). By the end of this section, we will
find that the evolution is similar to the quantum evolution but
with extra degrees of freedom.

Figure 5, which combines Lemmas 2 and 3, shows that

J (q, p, l, j) = J (q + l, p + j, l, j), (69)

which means that J is periodic in q, p space. Therefore, J has
only the components that satisfy kql + kp j = 2πn (n ∈ Z ) in
the frequency domain (kq, kp are the angular frequency of q, p,
respectively).

An observation will simplify the calculation: Eq. (62) is a
convolution between g and A. The convolution theorem gives

J (q, p, l, j) = Re
∫

g̃(kq, kp)A′′′′(kq, kp, l, j)

× ei(kqq+kp p) dkq dkp, (70)

where g̃ is the Fourier transform of g. (All the A with primes
are unsettled functions, which help to absorb unimportant
parameters.)

The periodic property leads to a
∑

n δ(kql + kp j − 2πn)
term in the frequency domain:

J (q, p, l, j) = Re
∫

g̃(qk, pk )A′′′(kq, kp, l, j)
∑

n

δ(kql + kp j − 2πn)ei(kqq+kp p) dkq dkp

= Re
∫

g(q + y, p + z)
∑

n

A′′
(

2πn − kp j

l
, kp, l, j

)
ei(

2πn−kp j
l y+kpz) dkp dy dz

= Re
∫

g(q + y, p + z)
∑

n

A′(n, k′, l, j)ei 2πny
l e−ik( jy−lz) dk′ dy dz, (71)

where we relabeled kp

l by k′. The term ei 2πny
l is not well defined when l = 0, but this term will vanish later.

The antisymmetric condition Lemma 3 requires that J is an odd function of l, j, so

Jg = Im
∫

gi(q + y, p + z)
∑

n

A′(n, k′, l, j)ei 2πny
l e−ik′( jy−lz) dk′ dy dz, (72)

and A′(n, k′, l, j) = A′∗(n, k′,−l,− j).
One more requirement is that Jg must keep g itself stationary (Postulate 4), i.e., that∫

g(q + l, p + j)Jg(q, p, l, j) dl d j = Im
∫

g(q + l, p + j)g(q + y, p + z)
∑

n

A′(n, k′, l, j)ei 2πny
l e−ik′( jy−lz) dk′ dy dz dl d j

= 0. (73)

Observe that the equation can be written in the matrix form

gl jM
l jyzgyz = 0, (74)

where Ml jyz = Im
∫ ∑

n A′(n, k′, l, j)ei 2πny
l e−ik′( jy−lz) dk′.

This relation holds for arbitrary vector g, the matrix M
turns every vector into an orthogonal vector. It means M
must be a generator of the orthogonal group, which is
antisymmetric, Ml jyz = −Myzl j , swapping yz with lz changes
its sign. Therefore, we require that n can only equal zero and

A′(n, k′, l, j) = A′(k′). Now the form of J is

Jg(q, p, l, j) = Im
∫

g(q + y, p + z)A′(k′)

× e−ik′( jy−lz) dk′ dy dz dl d j. (75)

The equation is already very similar to the generalized Wigner
equation (59) (taking the imaginary part of the whole equa-
tion is equivalent to taking the odd part of the integrand).
To harmonize the notation with the standard formulation
quantum equation, we relabel 2/k′ = k and replace A′(k′) by
K (k) such that K (k)dk = A′(k′) dk′.
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Theorem 4 (Generalized equation of motion). Given that
(i) the evolution depends linearly on the generalized energy
eigenstates (Postulates 3 and 4), (ii) inner product invariance
(Postulate 5), and (iii) the symmetries of phase space
(Postulate 1), the equation of motion has the following form:

∂ f

∂t
=

∑
i

EiIm

{∫
f (q + l, p + j)gi(q + y, p + z)

× K (k)e−i 2( jy−lz)
k d


}

= −i
π2

2

∑
i

Ei

∫
k2K (k)Wignerk{[ f̂k, ˆ(gi )k]} dk, (76)

where d
 = dkdydzdld j, the Ei are temporary parameters
mentioned in Postulate 3, K (k) is a theory-specific distri-
bution, Wignerk{ } represents the h̄ = k Wigner transform,
and f̂k, ˆ(gi )k are operators corresponding to f , g under the
h̄ = k Weyl transform (8) (their units are different from den-
sity matrices). (Appendix D derives the operator form of the
equation of motion).

In the second line of Eq. (76), we use the Wigner-Weyl
transform [Eqs. (7) and (8)] to highlight the similarity to the
common quantum expression in terms of commutator ∂ρ̂

∂t =
i
h̄ [ρ̂, H] for which there is no integral over k.

A key generalization relative to the quantum and clas-
sical cases is the extra factor K (k). In the quantum case,
K (k) = δ(k − h̄), and in the classical case K (k) → δ(k). A
nontrivial K (k) can thus be interpreted as a linear combination
of commutation relations instead of a single one in quantum
mechanics. In quantum mechanics, this commutator gives h̄
in quantum mechanics, so one may interpret this loosely as
a linear combination of different h̄s. To understand the qual-
itative meaning of k, notice that k appears only in e−i 2( jy−lz)

k

in Eq. (76), namely, k is proportional to the jumping distance
(l, j) in phase space, so K (k) represents the jumping ability
during evolution; hence we call it the nonlocalized dynamics
kernel.

F. Examples

Now we will discuss the dynamics corresponding to dif-
ferent nonlocalized kernels K (k). For the case that K (k) is
a single delta function K (k) = δ(k − κ ), the second line of
Eq. (76) is just a commutator in phase space, and the first
line is, up to the appearance of the Hamiltonian, the quantum
expression of Eq. (59) with h̄ = κ:

∂ f

∂t
=

∫
f (q + l, p + j)J (q, p, l, j) d j dl,

J (q, p, l, j) =
∫ ∑

i

Eigi(q − y, p + z)e−2 i
κ

( jy+lz) dy dz.

(77)

(The Fourier transform of the odd part functions is equiv-
alent to the imaginary part of the Fourier transform.) The
Hamiltonian will be defined from Ei, gi later.

When κ → 0, like in path integrals, the phase oscillates so
fast that only the first-order derivatives of f (q, p) and gi(q, p)

contribute to the imaginary part of the integral. When K (k) →
δ(k) the equation returns to the classical case with physically
localized evolution [Eq. (2)].

∂ f

∂t
∝

{∑
i

Eigi, f

}
. (78)

However, even with the same equation of motion,
quantum/classical mechanics are not the only possible
theories because the state space could differ. In Sec. IX we
will introduce information-restricted quantum mechanics as
an example.

The structure of stationary states can determine the value
of κ . The Weyl transform under κ can simultaneously diago-
nalize all the stationary states. However, κ could differ from
the state volume of stationary states divided by 2π , like in
information-restricted quantum mechanics. It can neither be
understood as the “theoretically” (all the states without neg-
ative probability are allowed) minimal volume of stationary
states.7 Take quantum harmonic oscillators as an example.
The evolution of the Wigner function is completely classical
and independent of h̄. It means that the theoretically minimal
stationary state can be arbitrarily small.

Another unexpected possibility is that K (k) is not a delta
function.8 A distribution of hybrid commutators describes
the evolution. In such a case, the Wigner function’s as-
sociative Moyal product (star product) A � B = Aei h̄

2 �B, is
replaced by a nonassociative hybrid Moyal product A �H B =∫

AK (k)ei k
2 �B dk (see Appendix E for the proof). Conse-

quently, when we do a Weyl transform to rewrite everything
in the operator form, the operator product is nonassociative.
Moreover, the dynamics do not allow for the decomposition
of density matrices by wave functions. We can give a trivial
example of where such dynamics work. In harmonic oscilla-
tors, the evolution for arbitrary K (k) is completely classical;
there can be an orthogonal and complete set of pure stationary
states without negative probability.

It is interesting but less rigorous to apply Eq. (76) directly
to the I − θ coordinates (which do not rigorously satisfy our
canonical symmetries). This equation of motion implies that
if one canonical coordinate θ is periodic, then jumping in
the I direction has to be discrete. This strongly suggests that
I itself is discrete, consistent with the result of the discrete
action-angle Wigner function in [41] and the Sommerfeld
quantization condition that 2π I = nh where n is an integer.

VII. GENERALIZED HAMILTONIAN

After setting down the equation of motion, we would like to
reconstruct the Hamiltonian. We will then have Hamiltonian
mechanics that can apply to quantum and classical theories

7Actually, 2πκ is indeed the theoretically minimal average volume
of stationary states for finite-dimensional cases, but we cannot apply
this statement to phase space.

8Reference [18] has proposed a similar but weaker (less restricted)
equation independently, called the generalized Moyal bracket by the
authors.
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and, in principle, more. Besides the generator of time evo-
lution, the Hamiltonian also represents an observable, which
contains the measurement effects and the energy value. We
discuss each concept in turn before defining the Hamiltonian.

A. Energy measurement effects

Energy eigenstates provide the energy measurement effects
in quantum mechanics. Generalizing this idea, we wish to
define the measurement effects by the generalized energy
eigenstates. However, pure stationary states do not always, for
any GPT, provide a set of effects for state-dual measurement.
Section IX will give an example: Spekkens’ toy model [42].
Therefore, we have to postulate the following.

Postulate 6 (Existence of energy measurement). There ex-
ists a state-dual measurement whose effects all correspond to
pure stationary states.

The postulate guarantees that pure stationary states can
construct a complete and orthogonal set and the correspond-
ing state-dual measurement exists. The energy measurement
constructed from pure stationary states provides all the in-
formation we can learn that is irrelevant to the time point
and induces a conserved observable. The time translation
symmetry, along with the inner product invariance, ensures
that there always exists stationary states. Postulate 6 ensures
that there is always a state-dual measurement corresponding
to pure stationary states. When stationary states give the set
of measurement effects and any state’s inner product with
these stationary states is invariant (Postulate 5), then this set

of effects always gives a conserved observable. Therefore, the
energy measurement here agrees with the definition given by
the Noether theorem: it is the conserved observable promised
by the time translation symmetry.

B. Energy value

Next, we will determine the value of energy. Energy is
usually associated with the timescale in the case of natural
units (h̄ = c = 1). This is also true for the Ei, which appears
in Postulate 3 and the equation of motion (76) representing the
speed of evolution. We, therefore, anticipate that the energy
associated with stationary state gi, which we shall call Ei, is
proportional to Ei.

The probabilities of energy eigenstates are always invariant
by inner product invariance, so any time-independent function
of Ei is conserved. To further constrain the definition of the
energy value Ei, we demand that it is an extensive quantity
(it adds under an independent composition of systems). To
construct an extensive quantity, consider a composite system
with two independent subsystems (labeled by 1,2) without any
interaction and correlation, which means

f12 = f1 f2, g12i j = g1ig2 j (79)

and
∂ f12

∂t
= ∂ f1

∂t
f2 + ∂ f2

∂t
f1. (80)

We expect the energy in the composite system’s equation of
motion to be the sum of the subsystems’ energy. Substituting
the equation of motion Eq. (76) into Eq. (80) gives

∂ f12

∂t
=

∑
i

E1iIm
∫

f2(q2, p2) f1(q1 + l1, p1 + j1)g1i(q1 + y1, p1 + z1)K1(k1)ei2( j1y1−l1z1 )/k dy1 dz1 dl1 d j1 + 1 � 2, (81)

where the 1 � 2 term is the same as the first term on the r.h.s. except that indices 1 and 2 are interchanged. We next introduce
the following identity:

f (q, p) =
∫

f (q + l, p + j)δ(l )δ( j) dl d j = 1/(π2k̄2)
∫

f (q + l, p + j)
∑

i

VigiK (k)ei2( jy−lz)/k dl d j dy dz dk, (82)

where k̄2 = ∫
k2K (k) dk, and we have used δ(x) = 1

2π

∫
eikx dk,

∑
i Vigi = 1. Replacing f2 in Eq. (81) by Eq. (82) gives

∂ f12

∂t
=

∑
i j

E1i

k̄2
2π2

V2 jIm
∫

f2 f1g1ig2iK1(k1)K2(k2)ei2( j1y1−l1z1 )/k1+( j2y2−l2z2 )/k2 (dy dz dl d j)1,2 + 1 � 2

=
∑

i j

(
E1i

k̄2
2π2

(V2 j ) + E2i

k̄2
1π2

(V1 j )

)
Im

∫
f2 f1g1ig2iK1(k1)K2(k2)ei2[( j1y1−l1z1 )/k1+( j2y2−l2z2 )/k2](dy dz dl d j)1,2, (83)

where all the f depends on (q + l, p + j) and all the g depend on (q + y, q + z) with the corresponding subscript. On the other
hand, the equation of motion for the composite system should have a consistent form

∂ f12

∂t
=

∑
i j

E composite
i j Im

∫
f1 f2g1ig2 jK1(k1)K2(k2)ei2[( j1y1−l1z1 )/k1+( j2y2−l2z2 )/k2](dy dz dl d j)1,2. (84)

Comparing Eqs. (83) and (84), we find that if Ei ∝ EiVi

k̄2 (we

omit thesubscript for subsystems), then E composite
i j ∝ (E1i +

E2 j )
V1iV2 j

k̄2
1 k̄2

2
, i.e., E is an additive quantity.

However, Ei k̄2

Vi
has the unit (not natural units) [ 1

t ] ([Ei] =
[ 1

qpt ], [k̄2] = [q2 p2], [V ] = [qp]) instead of the conventional
quantum and classical unit for energy of [ qp

t ]. Of course, we
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may multiply an arbitrary constant with the unit [qp] without
breaking conservation. However, there may not exist a simple
choice of such parameters in generalized theories because Vi

can be different for different states and K (k) can be different
for different subsystems; there is no unique constant like h̄ in
our framework.

We need an extra assumption to construct energy with [ h̄
t ],

for example: the pure states share the same state volume Vp

in a theory.9 This assumption is plausible though a priori not
necessary for a theory to be self-consistent. Otherwise, we can
also accept the generalized energy with dimension [ 1

t ].
To restore the classical and quantum energy value, we de-

fine the energy of the ith pure stationary state Ei to be related
to Ei via

Ei = πEiVpk̄2

4Vi
, (85)

where k̄2
n = ∫

k2K (k)dk as above.
In the quantum case, k̄2 = h̄2, Vp = Vi = 2π h̄. Thus, the

relation between Ei and Ei is : Ei = π h̄2Ei
4 . In the classical case,

the energy eigenstates are continuous and the label i can natu-
rally be replaced by the action I of the phase space orbit. The
energy E (I ) of the given eigenstate also obeys the Eq. (85)
relation with the corresponding E (I ). The E (I ), which do not
have a clear meaning in classical mechanics, usually diverge.
Otherwise, the corresponding E (I ) equals zero, which does
not contribute to the evolution. We conclude that the definition
of energy eigenvalue Ei from quantum theory is consistent
with the definition of classical mechanical energy E (I ) within
this framework. They are both special cases of Eq. (85).

C. Definition of Hamiltonian

Finally, we can define a function in phase space corre-
sponding to a generalized Hamiltonian.

Definition 5 (Hamiltonian). The Hamiltonian is a phase
space function H (q, p). For a specific system it is given by

H (q, p) :=
∑

i

EiVgi gi, (86)

where gi are pure stationary states, with state volume Vgi , and
Ei are energy values corresponding to gi.10 Vigi is dimension-
less so H has the dimension of Ei as expected.

Applying the Hamiltonian definition to the equation of
motion (76) gives the following.

9When considering the interaction between quantum and classical
systems, people tried to assign different Planck constants to differ-
ent subsystems, but this has been argued to be impossible [43,44].
Nevertheless, there is also work pointing out special cases that avoid
the prohibition [45]. Our model allows a nonassociative algebra
which is seldom considered in the previous works, so we cannot
directly apply the above results.

10Why is the quantum Hamiltonian only the combination of eigen-
values and eigenstates, but here we have an extra Vgi ? Recall that the
Wigner function is the Wigner transformation of density matrices
with an extra factor, W (q, p) = 1

h Wigner{ρ̂}. We always have an
extra factor in phase space.

Theorem 5 (Equation of motion in terms of Hamiltonian).
The time evolution of a state f (q, p) can be represented by

∂ f

∂t
=

(
4

πVpk̄2

)
Im

∫
f (q + l, p + j)H (q + y, p + z)

× K (k)ei2( jy−lz)/k d
, (87)

where d
 = dydzdld jdk and the nonlocalized dynamics
kernel K (k) is a theory-specific function specifying the jump-
ing in phase space, as we discussed below Eq. (76). Again
k̄2 = ∫

k2K (k)dk. An equivalent expression is

∂ f

∂t
= 4π

Vpk̄2

∫
K (k)k2 f sin

(
�k

2

)
H dk. (88)

We can compute the expectation value of energy by 〈E〉 =∑
i P(i| f )Ei, where P(i| f ) is the probability of measuring

the pure stationary state effect gi given that the system is
in the state f . By Definition 2 of state-dual measurements,
P(i| f ) = ∫

Vgi gi f dq d p. Combining that with the definition
of the Hamiltonian (Definition 5), we have the following.

Theorem 6 (Energy measurement in terms of Hamiltonian).
The expectation value of energy for state f is given by

〈E〉 =
∫

H f dq d p. (89)

D. Examples

In quantum mechanics, the K (k) is a single delta func-
tion K (k) = δ(h̄ − k), and Vp = Vi = 2πh. The Hamiltonian
is given by H = ∑

i hEigi, where gi are the Wigner functions
of energy eigenstates with eigenvalues Ei.

Equation (87) becomes

∂ f

∂t
=

(
2

π2h̄3

)
Im

∫
f (q + l, p + j)

× H (q + y, p + z)ei2( jy−lz)/h̄ d
. (90)

This is equivalent to the original quantum equation of motion
(59). (Taking the imaginary part is equivalent to taking the odd
part inside the Fourier transform.)

Similarly, in the quantum case, Eq. (88) becomes

∂ f

∂t
= 2

h̄
f sin

(
h̄

2
�

)
H, (91)

which is exactly the quantum equation (10).
In classical mechanics, there are infinite pure station-

ary states. H (q, p) = ∫
Ei( 1

2π
δ(I (q, p) − Ii ))2π dIi, where

[ 1
2π

δ(I (q, p) − Ii )] are the normalized pure stationary states
with state volume 2πdIi. K (k) = δ(k) in the classical limit.
We can take the limit of quantum equation (91),

∂ f

∂t
= lim

h̄→0

2

h̄
f sin

(
h̄

2
�

)
H, (92)

it is obvious that only the h̄
2 � term in the sin( h̄

2 �) has a
nonzero contribution. We get

∂ f

∂t
= f �H, (93)

which is the classical Liouville equation.
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FIG. 6. A sketch of how inner product invariance together with
finite state volume restricts the evolution of perturbed states. When
there is a finite state volume, there is a nonzero overlap of a state
and a perturbed version of it. The demand that the inner product
of the two states is invariant then restricts the motion significantly,
counteracting the possibility of the final state being strongly sensitive
to initial perturbations.

The limit of the apparently nonlocalized expression
Eq. (90) is more tricky. Like in path integrals, when the phase
of the integrand is so fast, only the stagnation point will
contribute. Since the apparently localized and nonlocalized
expressions are equivalent, one finds ∂ f

∂t = f �H .

VIII. STATE VOLUME AND CHAOS

One example where quantum and classical theories appear
to differ qualitatively is chaos. A common qualitative defi-
nition of (classical) chaos is as follows. If two close states’
distance grows exponentially during evolution, we say the
system is chaotic because a small error in the initial condition
will destroy predictability [26,27]. Classical chaos is known
to be quite universal, e.g., in turbulence and weather systems.
However, although quantum chaos’ definition is still being
debated [26,27,46], it must be different from the classical
case because the Schrödinger equation is a linear function
that cannot exponentially magnify the perturbation [46]. Here
we explain the different behaviors in the chaos aspect by our
framework.

The state volume explains the lack of sensitivity to initial
state perturbation in quantum systems, as was noticed early
[47,48]. If states have finite state volume, the inner product
invariance protects the perturbation from exponential growth
(as depicted in Fig. 6). Similarly, if we consider a nonzero
state volume state, like a Gaussian distribution, in a chaotic
classical system, a perturbation to it will not lead to “chaos.”
Because the perturbed distribution value changes negligibly
at any point, you can easily estimate the evolution of the
perturbed Gaussian distribution by the known evolution of
the unperturbed state. Instead, simulating the evolution of
a single Gaussian distribution requires heavy computation
when it contains the chaotic evolution of infinite points. The
pure quantum states themselves have nonzero state volume.
Therefore we conclude that reversible quantum evolution is
stable under small perturbations to states.11 On the other hand,
when the perturbation is much larger compared with the state
volume, the restriction given by inner product invariance is
negligible.

11For a classically chaotic Hamiltonian, will it (always) be difficult
to simulate the evolution of a single quantum state? If not, how does
the quantum evolution ease the simulation? This question deserves
further study.

FIG. 7. The function between the inner product with the orig-
inal state and the disturbance 	q for Gaussian distributions
[exp( −q2−p2

h̄ )], Cauchy distribution ( h̄
q2+p2+h̄

), the nth eigenstates of

the simple harmonic oscillator [SHO, H = k(q2 + p2)]. We normal-
ized the inner products such that the inner products with themselves
equal 1. The disturbance is plotted in units of h̄

1
2 . The nonmono-

tonicity and possible zero points are interesting phenomena for future
studies.

We construct such a model: an initial state fI will evolve
to fF under some inner-product-invariant evolution. If we
perturb the initial state to f ′

I , how much do we know about
the final state f ′

F ? When the evolution is chaotic, we assume
all the information about f ′

F is given by the inner product
invariance, which says f ′

F should be as close to fF as f ′
I close

to fI in terms of inner product (Fig. 6).
For simplicity, consider a Gaussian wave packet fI =

e
−q2−p2

2VI /π and the perturbed one f ′
I = e

−(q+	x)2−p2

2VI /π . The 	x is a
random perturbation, we assume 	x ∈ [−σ, σ ], where σ rep-
resents the strength of perturbation. The perturbation 	x may
produce a set of states f ′

I , whose inner products with fI are
bounded by

〈 f ′
I , fI〉 � I

(
σ√
VI

)
. (94)

The function I for Gaussian states can be seen in Fig. 7.
The only information of the final state f ′

F comes from
the inner product bound in Eq. (94). The information can
be reflected by entropy S = ∑

i pi log2( 1
pi

), which can be
estimated by S ∼ log2(N ), where N means the number of
possible perturbed states. Since the evolution is a one-to-one
map, we can count the number of possible initial states that
satisfy Eq. (94), which is equal to the number of possible final
states that satisfy Eq. (94).

Only an area A ∼ σ 2 of states can satisfy inequality (94),
which can be counted as N = A

Vp
∼ σ

Vp
pure states. Here we

count the states by the pure state’s volume Vp and assume it
is a constant for different pure states. Notice the initial state
fI might not be a pure state; therefore, we distinguish its state
volume VI from VP.

Now we can estimate the entropy

S ∼ log2

(
VI

Vp
+ N

)
∼ log2

(
σ 2 + VI

Vp

)
, (95)

where we have added a VI term because when there is no per-
turbation at all, σ = 0, we expect the entropy S ∼ log2( VI

Vp
),
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which is the entropy of fI . the above equation shows that, for
a certain initial state with VI , the ratio σ 2

Vp
determines the upper

bound of the perturbed evolution’s uncertainty.
Above, we considered the case of finite state volume. What

is the situation in the classical case? First, as Vp → 0, the
entropy blows up, which is common in the classical state
count. However, there is another issue: originally, we estimate
the area of possible states A ∼ σ 2 under the inner product
bound Eq. (94), but Eq. (94) becomes trivial for classical pure
states. All the inner products between different delta func-
tions δ(q − q0)δ(p − p0) are 0. Therefore, we cannot learn
anything from inner product invariance, which means

A

{∼ σ 2 for VI > 0,

= ∞ for VI = 0.
(96)

This relationship does capture the sensitivity to the initial state
in classical mechanics. However, the discontinuity of A from
a very small VI to VI = 0 is disturbing. We can modify our
model to make it smooth. We introduce an uncertainty in the
inner product 	I , which is a constant that might be caused by
experimental limitations. The 	I causes an extra term d	x

dI 	I
in the perturbation. The relation between I and 	x is shown
in Fig. 7. When VI → 0, 	x√

VI
and d	x

dI go to infinity. A small
uncertainty in inner product 	I will cause a large uncertainty
area A in the classical limit.

After introducing 	I , the modified model shows

S ∼ log2

(
VI + σ 2 + (

	I d	x
dI

)2

VP

)
, (97)

where S is the upper bound entropy of the perturbed final
state constrained by inner product variance, VI is the state
volume of the initial state (can be mixed), σ represents
the strength of perturbation (	x ∼ σ ), 	I is an uncertainty
in the inner product ( ∂I

∂	x is a function of 	x, but we roughly
take it as a constant here), and VP is state volume of pure state,
which is used to count how many pure states are possible final
states. By this relation, we can see the state volume determines
the restriction given by inner product invariance. Although
choosing this specific model to do this semiquantitative anal-
ysis, we believe a similar tendency exists in the general case:
the nonzero state volume restricts the system from evolving
chaotically with the help of inner product invariance. Quan-
tum states have finite state volume, while classical pure states
have zero state volume, this difference explains why classi-
cal systems can be sensitive to the initial state, but quantum
systems are not.

IX. TWO EXAMPLES OTHER THAN CLASSICAL
AND QUANTUM MECHANICS

A. Case of information-restricted quantum mechanics

We now create another example theory and analyze how
our results apply there. In this theory, there is a limit to our
knowledge about what pure quantum state a quantum system
is in. This leads to a different relation between state volume
and the evolution-related nonlocalized dynamics kernel, i.e.,
splitting between the generalized Planck constants associated
with states and evolution, respectively. This theory can be
called information-restricted quantum mechanics.

The information-restricted quantum mechanics is one of
the postquantum theories that can also be contained in our
framework. In this theory, pure and pure stationary states have
uniform state volumes but differ from κ in K (k) = δ(k − κ ).
Consider modified quantum mechanics where all the pure
states have the following form of the density matrix (in a
particular basis):

1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

...

|a|2 0 b∗a 0
0 |a|2 0 b∗a

a∗b 0 |b|2 0
0 a∗b 0 |b|2

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

, (98)

where a, b are arbitrary complex numbers as long as the
density matrix is normalized. Repeated numbers like |a|2, |b|2
are the restriction to density matrices (“. . .” contains c, d, . . .

terms in a similar form). In quantum mechanics, such a den-
sity matrix is a uniform mixture of two orthogonal pure states,⎡

⎢⎢⎢⎢⎢⎢⎣

. . .

|a|2 0 b∗a 0
0 0 0 0

a∗b 0 |b|2 0
0 0 0 0

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .

0 0 0 0
0 |a|2 0 b∗a
0 0 0 0
0 a∗b 0 |b|2

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (99)

(We can always find a basis where arbitrary two orthog-
onal states’ density matrices have such a form.) Such a
coarse graining doubles the state volume of pure states, V =
2Vquantum pure state = 2h by Theorem 2. We assume the evolution
is the same as in the standard quantum mechanics. Then the
state volumes of pure stationary states have similarly been
doubled, while the nonlocalized dynamics kernel and equa-
tion of motion remain the same.

B. Spekkens’ toy model

Beyond the phase space formalism, the idea of generalized
energy eigenstates has broader application. Here we will dis-
cuss a discrete system Spekkens’ toy model [42], which has
also been discussed in a GPT context [16,49,50]. Spekkens’
toy model assumes four ontic states, labeled 1,2,3,4. Addition-
ally, there is an information restriction: all the measurements
can confirm a state is in only one pair of ontic states or the
other pair, for example, 1 ∨ 2 or 3 ∨ 4. Every measurement
inevitably disturbs the ontic states, ensuring that consecutive
measurements cannot gain better knowledge. Consequently,
there are six pure epistemic states, 1 ∨ 2, 1 ∨ 3, 1 ∨ 4, 2 ∨ 3,
2 ∨ 4, 3 ∨ 4. The transformation of these epistemic states
depends on the permutation of ontic states, which can be
classified by the following:

(1) All the ontic states are stationary. All the pure epistemic
states are pure stationary states.
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(2) Two ontic states are stationary. For example, only 1,2
are stationary, pure stationary states are 1 ∨ 2, 3 ∨ 4, 1 ∨ 3 +
1 ∨ 4, 2 ∨ 3 + 2 ∨ 4. (+ here represents a uniform probabilis-
tic mixture.)12

(3) One ontic state is stationary. For example, 1 is station-
ary, pure stationary states are 1 ∨ 2 + 1 ∨ 3 + 1 ∨ 4, 2 ∨ 3 +
2 ∨ 4 + 3 ∨ 4.

(4) Permutation in pairs. For example, 1,2 permute, 3,4
permute, pure stationary states are 1 ∨ 2, 3 ∨ 4.

(5) Cyclic permutation of four ontic states. The only pure
stationary state is the maximally mixed state, 1 ∨ 2 ∨ 3 ∨ 4.

Pure stationary states can determine the evolution except
for the cyclic permutation of four ontic states. The only pure
stationary state is the maximally mixed state. We cannot
distinguish whether it is 1 �→ 2 �→ 3 �→ 4 �→ 1 or 1 �→ 3 �→
2 �→ 4 �→ 1 or other possibilities. As we have mentioned,
deriving an equation of motion from pure stationary states is
generally a nontrivial task. For Spekkens’ toy model, we need
more conditions to derive a unique equation of motion.

Meanwhile, we can also find that the pure stationary states
cannot provide a state-dual measurement. For example, the
permutation of 1,2,3 has the pure stationary states 1 ∨ 2 + 2 ∨
3 + 3 ∨ 1 and 1 ∨ 4 + 2 ∨ 4 + 3 ∨ 4, which are nonorthogo-
nal, so there is no measurement can satisfy Definition 2. The
model violates the Postulate 6, measurements are so limited
that a state-dual energy measurement does not always exist.

We can also generalize the effect or state volume to
Spekkens’ toy model. It still gives a proper normalization
factor in measurement. Following Theorem 3 which gives vol-
ume, we can choose a form of the inner product to define the
state volume. The dot product is a natural choice if we hope all
the ontic states are on equal footing. (Other definitions of the
inner product also work.) Then the state volumes in Spekkens’
toy model can be defined by

Vf = 1∑4
i=1 f 2

i

, (100)

where fi represent the probabilities of the ith ontic state.
All the pure epistemic states share the same state volume
2, exactly the number of possible ontic states. Likewise, the
state volume of the maximally mixed state is 4. These particu-
lar state volumes are the consequences of the inner product,
which depends on the symmetries we demand. Finally, we
test the corresponding state-dual measurement. Consider the
probability from 1 ∨ 2 to 1 ∨ 3:

P = V1∨3 �f1∨2 · �f1∨3 = 1
2 . (101)

The effect volume which equals state volume gives the out-
come as expected. The example of Spekkens’ toy model
shows that our framework also, at least partially, works on
discrete systems.

X. SUMMARY AND OUTLOOK

We built a framework describing a generalized energy
concept and time evolution rule, which describes quantum

12Strictly speaking, we are discussing a generalized Spekkens’ toy
model with convex state space.

and classical in a unified way. We introduced six postulates:
(1) canonical symmetries; (2) local inner product; (3) pure sta-
tionary states decide the evolution; (4) pure stationary states
are independent; (5) inner product invariance; and (6) exis-
tence of energy measurement. Postulates (1) and (2) provide
a unique inner product in phase space, which helps to define
state-dual measurements. Postulates (1) and (3)–(5) derive our
generalized equation of motion (76) in phase space. Based
on the above results, (6) further guarantees the existence of a
state-dual measurement of the Hamiltonian, i.e., the conserved
observable describing time evolution. Rather than taking an
algebraic approach, we endeavored to make every postulate
have a clear physical or operational meaning. We derived a
generalized Hamiltonian system in phase space that encom-
passes quantum and classical theories but also generalizes the
original ideas. This includes generalizing Planck’s constant.

In our framework, the Planck constant provides the state or
effect volume of pure states and corresponding measurements.
It also appears in the equation of motion. In general, there is
no good limit when taking a quantum state’s volume to zero to
get a classical state. Still, it is always possible to take the limit
of the quantum equation of motion to get the corresponding
classical evolution. The two roles are related. For example,
physically nonlocalized evolution causes a negative distribu-
tion, so we need a nonzero state volume to avoid negative
probability. However, they can have different values in general
theories. This framework possesses the potential for applica-
tion and advancement in various directions. First, there exists
an intriguing connection between contextuality and evolution.
Specifically, when K (k) is not directly proportional to δ(k),
the evolution associated with infinite-order derivatives [39,40]
emerges alongside a negative distribution, which could relate
to contextuality [51].

Second, it is possible to construct alternative forms of
mechanics that do not conform to classical or quantum
paradigms. One approach involves considering different val-
ues of the Planck constant in the equation of motion compared
to its value in uncertainty. Another possibility entails selecting
a non-delta function for K (k), which can be interpreted as
a probabilistic combination of diverse commutation relations
during the process of evolution.

Third, this framework facilitates clear analogies and
comparisons between quantum and classical dynamics. For
instance, it can be employed to elucidate the apparent accel-
eration exhibited by quantum walks in contrast to classical
walks [52].

Last, it is natural to utilize this framework to formulate a
theory of thermodynamics that is not reliant on the underlying
choice of mechanics.
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APPENDIX A: SOME MATHEMATICAL ASPECTS
OF THE PHASE SPACE FORMALISM

In the settings we consider the 2n local coordinates z =
(q, p) on P are given by the generalized coordinates of the
configuration space q = {qa} and the generalized momenta
p = {pa}, a = 1, . . . , n. These momenta are related to the co-
ordinates q and velocities q̇ via qa := ∂L/∂ ẋa, where L(q, q̇)
is the system’s Lagrangian. As the system is unconstrained,
the n equations for momenta can be inverted to express the
velocities as functions of positions and momenta.

P is a symplectic manifold as a nondegenerate closed
2-form is defined on it. It can always be written in local
coordinates as

ω(2) = d pa ∧ dqa ≡ d p ∧ dq, (A1)

and in these coordinates, it is represented as a 2n × 2n matrix

J =
(

0 I
−I 0

)
. (A2)

The symplectic form establishes the isomorphism between
vectors and 1-forms (covectors) on P by matching a vec-
tor η with the form ω(1)

η via ω(1)
η (ξ) := ω(2)(η, ξ). Hence the

Hamilton (canonical) equations of motion are written as

ż(t ) = ξH (z(t )), (A3)

representing the Hamiltonian phase flow

ξH = J �∇zH. (A4)

The Poisson brackets of Eq. (2) are then

{ f , g} = −ω(2)( �∇z f , �∇zg) = ( �∇z f )T · J · �∇zg. (A5)

Classical observables are smooth functions on the phase
space and form the algebra. The Poisson bracket can be
defined more abstractly as a Lie bracket on the underlying
manifold: it is linear and antisymmetric and satisfies the
Jacobi identity

{ f , {g, h}} = {{ f , g}, h} + {g, { f , h}}. (A6)

In addition, it satisfies the Leibnitz rule with respect to the
product defining the algebra, f ◦ g(q, p) := f (q, p)g(q, p),

{ f , gh} = { f , g}h + g{ f , h}. (A7)

Technically this is the Jordan-Lee algebra with associative
multiplication, i.e., the Poisson algebra.

APPENDIX B: WIGNER TRANSPORT EQUATION IN
QUANTUM THEORY FOR GENERAL HAMILTONIAN

In this Appendix, we describe how to convert between
different expressions of the time evolution in the quan-
tum case. The original Wigner transportation function (11)

provides jumping only in the momentum direction. In that
case, J (q, j) can be viewed as a Fourier transform of the odd
part of the potential, so strictly speaking, it is well defined only
for restricted Hamiltonian. However, if you accept derivatives
of delta functions as the Fourier transform of polynomials,
this formula can give a reasonable description for general
Hamiltonians.

1. Case of H = p2/2m

As an example, we can first generalize this idea to the
kinetic term of Hamiltonian H = p2/2m. We attempt to find
an apparently nonlocalized expression that

∂W

∂t
=

∫
W (q + j, p)Jq(p, j) d j = − p

m

∂W

∂q
. (B1)

(It is also the equation of motion for classical free particles.)
The delta function’s derivatives can be defined through partial
integral, ∫

δ′(x − x0) f (x) dx = − f ′(x0). (B2)

Therefore, the kinetic effect can be expressed by

∂W

∂t
= p

m

∫
W (q + l, p)δ′(l ) d j. (B3)

After this, we check if the Wigner transportation function also
works for the kinetic term:

Jq(p, l ) = p

m
δ′(l ) = p

2πm

∫
(−2iy/h̄)e−2ily/h̄ d (−2y/h̄)

(B4)

= −i

2π h̄

∫
4py

2m
e−2ily/h̄ d (−2y/h̄) (B5)

= i

π h̄2

∫
[T (p + y) − T (p − y)]e−2ily/h̄ dy (B6)

[
δ(x) = 1

2π

∫
eikx dk, δ′(x) = 1

2π

∫
ikeikx dk

]
.

Therefore, we can see that the Wigner transportation func-
tion also works for the power series once we introduce the
derivatives of the delta function as the Fourier transform of
the power series.

2. General H

Based on the above idea, we check the generalized ap-
parently nonlocalized Eq. (59) to see if it can convert to the
original apparently localized Eq. (10). Use the Taylor ex-
pansion of multivariate function to expand H (q − y, p + z) −
H (q + y, p − z) terms in Eq. (59):

H (q − y, p + z) − H (q + y, p − z)

= −2y
∂H

∂q
+ 2z

∂H

∂ p
+ · · ·

=
∑

m,n|m,n∈N,m+n∈odd

2((−y)mzn)
Cm

m+n

(m + n)!

∂m+nH

∂qm∂ pn
, (B7)
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J =
∑

m,n|m,n∈N,m+n∈odd

2
i

h̄

(
ih̄

2

)m+n

(−1)mδ(m)( j)

× δ(n)(l )
Cm

m+n

(m + n)!

∂m+nH

∂qm∂ pn
, (B8)

∂W

∂t
=

∑
m,n|m,n∈N,m+n∈odd

2
i

h̄

(
ih̄

2

)m+n

(−1)m(−1)m+n

× ∂n+mW

∂qn∂ pm

Cm
m+n

(m + n)!

∂m+nH

∂qm∂ pn
, (B9)

∂W

∂t
= −2

h̄

∑
m,n|m,n∈N,m+n∈odd

(
h̄

2

)m+n

(−1)
m+n+1

2 (−1)m

× ∂n+mW

∂qn∂ pm

Cm
m+n

(m + n)!

∂m+nH

∂qm∂ pn
. (B10)

On the other side, expand Eq. (10)

∂W

∂t
= −2

h̄
H sin

(
h̄�

2

)
W (q, p)

= −2

h̄

∑
a,b|a,b∈N,a+b∈odd

Ca
a+b

(a + b)!

(
h̄

2

)a+b

(−1)
a+b−1

2

× (−1)b ∂a+bH

∂qb∂ pa

∂a+bW

∂qa∂ pb
. (B11)

Notice that m + n is odd, so (−1)m = −(−1)n, two equa-
tions [(10) and (59)] are completely equivalent.

APPENDIX C: SYMMETRY IN THE EQUATION
OF MOTION

We first take time-reversal symmetry as an example to
show how it restricts J0. The reversal symmetry opera-
tion changes the following elements: ∂ f ′

∂t (0, 0) = − ∂ f
∂t (0, 0),

g′(q, p) = g(q,−p), f ′(l, j) = f (l,− j). Substitute them into
Eq. (67), ∂ f ′

∂t ′ (0, 0) = ∫
J0′

g′ (l, j) f ′(l, j) dl d j:

−∂ f

∂t
(0, 0) =

∫
J0

g′ (l, j) f (l,− j) dl d j, (C1)

∂ f

∂t
(0, 0) =

∫
(−J0

g′ (l,− j)) f (l, j) dl d j. (C2)

Since f can be an arbitrary function,

−J0
g′ (l,− j) = J0

g(l, j). (C3)

The symmetry operation has transformed g → g′. We can
decompose g by eigenstates of the operation g1(q, p) =
g1(q,−p) and g2(q, p) = −g2(q,−p), and the corresponding
J0 has the symmetry

J0
g1 (l,− j) = −J0

g1 (l, j), J0
g2 (l,− j) = J0

g2 (l, j).

(C4)

We have learned the symmetry of J corresponding to eigen-
states of symmetry operation.

We consider three symmetry operations in total: time re-
versal, parity (the composition of time reversals and switches,
(q, p, t ) �→ (−q,−p, t )), and switch+time reversal+switch

FIG. 8. The black +, − notations donate the delta functions as
components of the pure stationary state, and blue +, − with gray
shading donate the required symmetry of J0(l, j). The first picture
shows the symmetry of J̃ required by parity, and the following
pictures show the requirement by time reversal and switch+time
reversal+switch given even and odd pure stationary states. The left
and right figures show different eigenstates with eigenvalue ±1, re-
spectively. We find for an even pure stationary state, the time-reversal
symmetry contradicts the switch+time-reversal+switch symmetry
unless J0

geven = 0.
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(q, p, t ) �→ (−q, p,−t ). We decompose pure stationary states
g by joint eigenstates of symmetry operations with eigenvalue
±1. First, even and odd functions (eigenstates of parity):

g =godd + geven,

where

godd(a, b) = −godd(−a,−b),

geven(a, b) = geven(−a,−b).

(C5)

We can further decompose the odd and even parts by the
joint eigenstates of parity, time reversal, and switch+time
reversal+switch. The even part can be decomposed by delta
functions:

geven =
∫

ρ1(q0, p0)ge1 + ρ2(q0, p0)ge2 dq0 d p0,

where ge1(q, p, q0, p0)

= δ(q − q0)δ(p − p0) + δ(q − q0)δ(p + p0)

+ δ(q + q0)δ(p − p0) + δ(q + q0)δ(p + p0),

ge2(q, p, q0, p0)

= δ(q − q0)δ(p − p0) − δ(q − q0)δ(p + p0)

− δ(q + q0)δ(p − p0) + δ(q + q0)δ(p + p0),
(C6)

ρ1 and ρ2 are corresponding weight of ge1 and ge2. The
odd part can be decomposed by similar delta functions.

Figure 8 illustrates the eigenstates of parity, time reversal, and
switch+time reversal+switch symmetry, and how their J0 is
restricted from symmetries. For an even pure stationary state,
the time-reversal symmetry contradicts the switch+time-
reversal+switch symmetry unless J0

geven = 0. For an odd pure
stationary state, the requirements are consistent. J0

godd (l, j)
only has to be an odd function due to the parity symmetry.

Therefore, only the odd part of the pure stationary state
contributes to the J , and

J0(l, j) = −J0(−l,− j) (C7)

for arbitrary pure stationary states. We get Lemma 3.

APPENDIX D: OPERATOR FORM
OF THE EQUATION OF MOTION

The Wigner transform is

A(q, p) =
∫

dzei 2
h̄ pz〈q − z|Â|q + z〉. (D1)

However, we can use an arbitrary factor labeled by μ instead
of h̄ to do the Wigner transform. Consider the following ex-
pression: ∫

A(q + l, p + j)B(q + y, p + z)K (k)

× e−i 2
k ( jy−lz)dk dy dz dl d j, (D2)

We replace phase space functions A and B by their operator
forms:

=
∫

〈q + l − m|Âμ|q + l + m〉eim 2
μ

(p+ j)〈q + y − n|B̂μ|q + y + n〉ein 2
μ

(p+z)K (k)e−i 2
k ( jy−lz) dk dy dz dl d j dn dm, (D3)

=
∫

〈q + l − m|Âμ|q + l + m〉〈q + y − n|B̂μ|q + y + n〉ei 2
μ

(m+n)pK (k)ei( 2
μ

m− 2
k y) jei( 2

μ
n+ 2

k l )z dk dy dz dl d j dn dm, (D4)

= 4π2
∫

〈q + l − m|Âμ|q + l + m〉〈q + y − n|B̂μ|q + y + n〉ei 2
μ

(m+n)pK (k)δ

(
2

μ
m − 2

k
y

)
δ

(
2

μ
n + 2

k
l

)
dk dy dl dn dm,

(D5)

= 4π2
∫

〈q − kn

μ
− m|Âμ|q − kn

μ
+ m〉〈q + km

μ
− n|B̂μ|q + km

μ
+ n〉ei 2

μ
(m+n)pK (k)

(
k

2

)2

dk dn dm. (D6)

The notations like Âμ mean A = ∫
dzei 2

μ
pz〈r − z/2|Âμ|r + z/2〉, μ take the place of h̄ in the original Weyl transform. To the

same phase space function, different μ lead to different operators. We are free to choose the value of μ, let μ = k:

= 4π2
∫

〈q − n − m|Âk|q − n + m〉〈q + m − n|B̂k|q + m + n〉ei 2
k (m+n)pK (k)

(
k

2

)2

dm dn dk. (D7)

Let m + n = a, m − n = b, and then replace q + b by r′:

= 4π2
∫

〈q − a|Âk|q + b〉〈q + b|B̂k|q + a〉ei 2
k bpK (k)

(
k

2

)2

da db dk

= 4π2
∫

〈q − a|Âk|r′〉〈r′|B̂k|q + a〉ei 2
k bpK (k)

(
k

2

)2

dadr′dk. (D8)

Compare the result with the Wigner transform of the product ÂB̂:

AB =
∫

dz dr′ei 2
h̄ pz〈q − z|Â|r′〉〈r′|B̂|q + z〉, (D9)
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we find ∫
A(q + l, p + j)B(q + y, p + z)K (k)e−i 2

k ( jy−lz) dk dy dz dl d j = π2
∫

k2K (k)Wignerk{ÂkB̂k} dk. (D10)

The l.h.s. of Eq. (76) takes only the imaginary part, which can be computed by Im f = f − f ∗
2i . Therefore, the overall result leads

to a commutator-like equation, where the commutation relation is given by the distribution K (k):

Im
∫

f (q + l, p + j)g(q + y, p + z)K (k)e−i 2( jy−lz)
k dk dy dz dl d j

= 1

2i

∫
[ f (q + l, p + j)g(q + y, p + z) − f (q + y, p + z)gi(q + l, p + j)]K (k)e−i 2( jy−lz)

k dk dy dz dl d j

= −i
π2

2

∫
k2K (k)Wignerk{[ f̂k, ĝk]} dk. (D11)

APPENDIX E: ASSOCIATIVE MOYAL PRODUCT AND NONASSOCIATIVE HYBRID MOYAL PRODUCT

Observe that

∂x( f (x, y)|x=y) = ((∂x + ∂y) f (x, y))|x=y.

We introduce an notation E (∂x, ∂y) f (x)g(y)|x=y := f (q, p)ei k
2 �g(q, p), where x, y represent the vector (q, p).

We consider an example of the hybrid Moyal product, K (k) = δ(k − k1) + δ(k − k2), f �H g := E1(∂x, ∂y) +
E2(∂x, ∂y) f (x)g(y).

Compute

( f �H g) �H h = [E1(∂x, ∂z ) + E2(∂x, ∂z )]{[E1(∂x, ∂y) + E2(∂x, ∂y)] f (x)g(y)|x=y}h(z)|x = z (E1)

= [E1(∂x + ∂y, ∂z ) + E2(∂x + ∂y, ∂z )][E1(∂x, ∂y) + E2(∂x, ∂y)] f (x)g(y)h(z)|x=y=z (E2)

= [E1(∂x, ∂z )E1(∂y, ∂z ) + E2(∂x, ∂z )E2(∂y, ∂z )][E1(∂x, ∂y) + E2(∂x, ∂y)] f (x)g(y)h(z)|x=y=z (E3)

= [E1(∂x, ∂z )E1(∂y, ∂z )E1(∂x, ∂y) + E2(∂x, ∂z )E2(∂y, ∂z )E2(∂x, ∂y) (E4)

+ E1(∂x, ∂z )E1(∂y, ∂z )E2(∂x, ∂y) + E2(∂x, ∂z )E2(∂y, ∂z )E1(∂x, ∂y)] f (x)g(y)h(z)|x=y=z. (E5)

Similarly,

f �H (g �H h) = [E1(∂x, ∂z )E1(∂y, ∂z )E1(∂x, ∂y) + E2(∂x, ∂z )E2(∂y, ∂z )E2(∂x, ∂y)

+ E1(∂x, ∂y)E1(∂x, ∂z )E2(∂y, ∂z ) + E2(∂x, ∂y)E2(∂x, ∂z )E1(∂y, ∂z )] f (x)g(y)h(z)|x=y=z. (E6)

If E1 �= 0, E2 = 0, namely, a conventional Moyal product, we find the two results coincide, so the Moyal product is associative.
However, the hybrid Moyal product is not associative in general.
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