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We consider few-body systems in which only a certain subset of the particle-particle interactions is resonant.
We characterize each subset by a unitary graph in which the vertices represent distinguishable particles and the
edges resonant two-body interactions. Few-body systems whose unitary graph is connected will collapse unless
a repulsive three-body interaction is included. We find two categories of graphs, distinguished by the kind of
three-body repulsion necessary to stabilize the associated system. Each category is characterized by whether the
graph contains a loop or not: for tree-like graphs (graphs containing a loop) the three-body force renormalizing
them is the same as in the three-body system with two (three) resonant interactions. We show numerically
that this conjecture is correct for the four-body case as well as for a few five-body configurations. We explain
this result in the four-body sector qualitatively by imposing Bethe-Peierls boundary conditions on the pertinent
Faddeev-Yakubovsky decomposition of the wave function.
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I. INTRODUCTION

Systems in which the two-body scattering length is con-
siderably larger than the range of the interaction are called
unitary or resonant. They show properties that are independent
of the details of their interparticle interaction (provided it has a
finite range) [1], which is why it is referred to as universality.
The reason is the presence of an exceedingly large separation
of scales: the ratio between the scattering length and any other
lengthscale of the system basically tends to infinity. As a
consequence, unitary two-body systems can be described by a
parameter-free (or universal) theory.

The consequences of universality beyond the two-body
case are more interesting and counterintuitive. Three-boson
systems for which the two-boson interaction is resonant ex-
hibit a characteristic geometric spectrum in which the ratio
of the binding energies of the nth and (n + 1)th excited
states is constant and universal. This spectrum (usually re-
ferred to as the Efimov effect) was predicted in the 1970s
[2] and confirmed experimentally a decade and a half ago
[3]. Similar geometric spectra have been predicted for larger
boson clusters [4], systems of nonidentical particles [5–7],
mass-imbalanced P- and even D-wave three-body states [8],
and so on. From the point of view of symmetry, what is
happening here is that the continuous scale invariance of uni-
versal two-body systems becomes anomalous and breaks in
the three-body case as a consequence of the quantization pro-
cess, yet it survives as discrete scale invariance. The unitary
three-body system is thus no longer parameter-free. It acquires
a three-body parameter that can be identified with the binding
energy of the fundamental three-body bound state.

This raises the question of what happens with systems of
four or more particles in the unitary limit. We know [9] that the

four-body parameter is not needed to predict the ground state
of the four-bosons system and it only appears as a perturbative
correction together with finite-range corrections. However,
this is not necessarily the case for all four-body systems if
not all particles interact resonantly. For four-body systems of
the AABB type, with A and B denoting two different species of
particles (either bosons or distinguishable) and where only the
AB interaction is resonant, the three-body parameters that are
required to define the AAB and ABB subsystems are insuffi-
cient to determine the binding energy of the ground state [10].
Expressed differently, the AABB system is a rare example in
which a four-body parameter is required.

Conversely, not all universal few-body systems acquire a
three-body parameter. The P-wave three-body system with
equal mass particles (or, equivalently, the AAB system if A are
fermions and mA = mB) does not collapse or exhibit the Efi-
mov effect. For specific mass imbalances, this system forms
three-body bound states whose binding energies depend only
on the two-body scattering length [11] and only when the
mass imbalance is large enough will it require a three-body
parameter and display a geometric spectrum. Another exam-
ple is the AABB system when the two species are fermions, in
which case there will be no bound state [12].

Going back to the nonfermionic case (here we consider
distinguishable particles), the present paper generalizes the
methods and findings of Ref. [10] as follows: instead of con-
sidering different types of two-species clusters, we will focus
on the geometry of their resonant interactions. In particular,
we will characterize few-body systems in terms of a unitary
graph, here defined as a graph whose vertices and lines repre-
sent, respectively, the particles and resonant interactions of the
system. Provided the graph is connected, the few-body system
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requires the definition of a three-body parameter. If the graph
is a tree, the required three-body parameter will be that of
the three-body system with two unitary pairs (e.g., the AAB
or ABB systems we discussed in the previous paragraph). If
the graph contains a cycle (a loop), the three-body parameter
of the unitary three-boson system will be needed instead. We
tested the previous two statements explicitly in the four- and
five-body systems.

Furthermore, we expect that all the few-body system rep-
resented by connected graphs will display the Efimov effect.
We conjecture that the geometric ratios between the binding
energies of the nth and (n + 1)th bound state will be (1986.1)2

and (22.7)2 for tree-like graphs and graphs containing cycles,
respectively. These ratios represent the ones that are found in
the three-body systems when there are two and three unitary
pairs [13]. The key assumption for this conjecture is that all
systems with the same Efimov ratios are renormalized by the
same three-body force. We provide a heuristic argument ex-
plaining the scaling behavior to be expected in certain N > 3
systems as well as the type of three-body force required to
renormalize the corresponding unitary graphs.

II. THEORY AND METHODOLOGY

A. Description of the N-body system

We consider nonrelativistic N-body systems described by
the Schrödinger equation(

− h̄2

2m

N∑
i

�∂2
i + v̂

)
�N = EN �N , (1)

where �N = �N (�r1, . . . , �rN ) is the wave function, �∂i = d
d�ri

is the derivative with respect to the coordinate of particle
i, v̂ is the potential, and EN is the center-of-mass energy of
the N-body system. We limit the discussion to distinguishable,
equal-mass m particles, and hence no permutation symmetry
is enforced on the wave function ψ1,...,N . We note that it is,
in principle, possible to extend the previous description to
systems with a mass imbalance, though we will not consider
this case in the present paper.

For a general N-body system, the interaction potential v̂

may include up to N-body forces. The unitary systems inves-
tigated here demand two- and three-body forces, only. That is,
we have

v̂ =
∑
i< j

vi j +
∑

i< j<k

wi jk, (2)

with vi j and wi jk the two- and three-body potentials
Unitary two-body systems are insensitive to the range of

their interaction, which is never probed. As a consequence, the
two-body potential is effectively reduced to a contact-range
potential, i.e., a Dirac delta in r-space. This type of potential is
singular and has to be regularized, e.g., by including a cutoff
in the calculations. For concreteness we choose a Gaussian
regulator in coordinate space

vi j = v(ri, r j ) = ci j (λ) e−λ2 (ri−r j )2

4 , (3)

where λ is the cutoff (i.e., the auxiliary range we introduce
to make numerical calculations easier) and ci j a coupling

constant. This coupling depends on the cutoff [that is, ci j =
ci j (λ)] in such a way as to keep the two-body system at unitar-
ity for arbitrary values of the cutoff λ, provided the interaction
of the particle pair i j is unitary in the first place. The coupling
and cutoff dependence is identical for every unitary two-body
subsystem, and thus we write

ci j (λ) = c(λ) fi j, (4)

with fi j = 0 or 1 for nonunitary and unitary i j, respectively.
The cutoff dependence of regularized contact interactions is
well known [14] and becomes c(λ) ∝ λ2 in our specific case
(i.e., in our normalization of the regularized Dirac delta, see
Eq. (13) for a more detailed explanation).

Due to the breaking of scale invariance, the three-body
systems are sensitive to the range of the interaction even after
the two-body system is properly renormalized. To be explicit,
while the two-body system is invariant with respect to �r → κ�r
transformations for arbitrary κ , in the three-body system this
symmetry only survives for κ = κ0 with κ0 being a specific
real number (e.g., the κ0 ≈ 22.7 scaling factor for the Efimov
effect in the three-boson system [2]). In practical terms, this
manifests as a cutoff dependence of the ground state of the
three-body system, whose binding energy will diverge as λ2.

The inclusion of a three-body force stabilizes the energy of
the three-body ground state and removes the unphysical cutoff
dependence [15,16]. With a Gaussian regulator the three-body
force reads

wi jk = w(ri, r j, rk ) = di jk (λ)
∑
cyc

e−λ2
[

(ri−r j )2

4 + (ri−rk )2

4

]
, (5)

where cyc are the cyclical permutations of i jk, and di jk (λ) and
its running are determined by the condition of reproducing the
ground state (or an arbitrary excited state) of the i jk three-
body system (this requires that at least two pairs of particles
within the i jk set are unitary). If we assume that the ground-
state energy of every bound three-body subsystem is the same,
we can make the additional simplification

di jk (λ) = d (λ) gi jk, (6)

with gi jk = 0 or 1 depending on the particular i jk three-body
subsystem under consideration (we will specify this in the
following lines).

B. Characterization of the few-body configurations
as unitary graphs

We are interested in few-body systems where not all of the
N particles interact resonantly, but only a subset of them. The
rest of the pairs (i.e., the nonunitary ones) are considered to
be noninteracting: in principle, their interaction can be treated
as a perturbative correction around the unitary limit set by
the unitary pairs. The reason is that the scattering lengths of
the nonunitary pairs are arbitrarily smaller than the scattering
lengths of the unitary pairs. However, owing to the breakdown
of continuous-scale invariance for N � 3, for the previous
expansion to be valid there is the additional proviso that the
ratio between the three-body scale (e.g., the characteristic
lengthscale or size of the three-body bound state) and any
scale associated with the residual nonresonant interactions
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lambda(Λ)

delta(Δ)

FIG. 1. Three-body systems with two (�) and three (�) resonant
pairs: the gray circles and dashed lines represent the distinguishable
particles and their unitary interactions, respectively.

(e.g., the scattering length of the nonunitary pairs of particles)
should be large.

Here, we describe (partially) unitary N-body systems in
terms of unitary graphs, a graph in which vertices correspond
to particles and lines to unitary interactions. The sets of three-
and four-body configurations we consider and their names are
shown in Figs. 1 and 5. These are all the possible connected
graphs with three and four vertices. For the graphs with three
vertices (Fig. 1) we denote them as follows:

(3a) delta or � (for its resemblance to the Greek letter),
which is also the fully connected graph with three nodes and

(3b) lambda or � (again, relating to the Greek letter).
For four-vertex graphs (Fig. 5) we introduce the follow-

ing:
(4a) the full (the fully connected graph with four nodes);
(4b) the circle-slash1 or simply slash (which is also re-

ferred to as the diamond in the literature [17]);
(4c) the circle;
(4d) the line (self-explanatory);
(4f) the paw, as it is often referred to (other names are the

3-pan graph or the (3,1)-tadpole graph2); and
(4g) the star, which we previously named dandelion in

Ref. [10], and also referred to as the claw [17].

1Of all shown graphs, this is the only one not amenable to a
straightforward N-vertex generalization.

2A k-pan is a graph with (k + 1) points, where k of the points are
connected in such a way that they form a cycle and with the odd
point connected to one of the points within that k-cycle (see Fig. 1.2
in Ref. [17]); a (k, m) tadpole is a k cycle where one of the points
within the cycle is connected to a tail of m connected points (i.e.„ an
m line).

A few of the previous graphs are easily generalizable to
the N-body case. However, if not stated otherwise, we will be
referring to the four-body version of the graph. In some cases,
we might indicate the N-body generalizations by adding the
number of points in the graph to its name, e.g., the 5-full, the
6-circle, the 7-line, or the 8-star graphs.

The N-body potential v̂ associated with these systems or
graphs is fully determined by the set of i j pairs and i jk triplets
for which the two- and three-body interaction is nonzero, i.e.,
the i j and i jk for which the fi j and gi jk factors defined in
Eqs. (4) and (6) are equal to 1, fi j = 1 and gi jk = 1. For
the two-body forces this is trivial: fi j = 1 if the pair i j are
connected by a line when we look at the corresponding unitary
graph (and fi j = 0 if the pair is not connected).

For the three-body forces, the characterization of the i jk
triplets for which gi jk = 1 is relatively simple for the � and �

three body systems: g123 = 1. However, it becomes more in-
volved in the four-body case, at least, in principle (in practice,
concrete calculations accept a very convenient simplification
that we will comment later). The explicit definition of the
gi jk coefficients depends on whether or not a particular graph
contains a � subgraph:

(i) if it contains a � subgraph, gi jk = 1 if and only if
fi j = 1, f jk = 1 and fik = 1, i.e., if the particle pairs i j, jk,
and ik are all unitary

(ii) while if there is no � subgraph, it will be only neces-
sary that two of the i j, jk, and ik pairs are unitary.

That is, there is a three-body force for each � triplet, or
if there is none, for each � triplet. Alternatively, we might
define the two following sets of relevant two- and three-body
interactions for the previous graphs

Fgraph = {(i, j) : i, j ∈ {1, . . . , N}, i < j, fi j �= 0}, (7)

Ggraph = {(i, j, k) : i, j, k ∈ {1, . . . , N}, i < j < k,

gi jk �= 0}, (8)

With Fgraph and Ggraph it is possible to redefine the potential as

v̂ =
∑

(i, j)∈Fgraph

vi j +
∑

(i, j,k)∈Ggraph

wi jk, (9)

where the definitions of vi j and wi jk do not involve depen-
dence on the indices for the couplings

vi j = c(λ) e−λ2 (ri−r j )2

4 , (10)

wi jk = d (λ)
∑
cyc

e−λ2
[

(ri−r j )2

4 + (ri−rk )2

4

]
, (11)

that is, with the definition of Fgraph and Ggraph we can now
dispense of the fi j and gi jk factors previously found in Eqs. (4)
and (6).

However, numerically we observe that the inclusion of the
three-body force on all the triplets, even the not strictly neces-
sary ones to avoid collapse, does not affect the predictions for
the four-body ground-state energies. We can explain this by
the fact that contact range three-body forces have little impact
on noncollapsing triplets of particles.
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FIG. 2. Regulator dependence of the three- and four-body
ground-state binding energies without any collapse-preventing three-
body interaction. The lines highlight the ∝ λ2 dependence of the
binding energies of the states.

C. Practical implementation

For all calculations in this work, we set h̄ = c = 1, and the
particle mass to unity: m = 1. All the momenta, included the
parameter λ are defined by the typical three-body momentum

Q3 =
√

3

2
m|E3|, (12)

and all energies can be related with the energy of the
three-body system E3. The coupling strength c(λ) is chosen
to induce an S-wave scattering length of a0 = 106 Q3. We
calibrated the three-body coupling d (λ) as to generate a three-
body ground state with binding energy E3. This numerical
value for E3 was chosen identical for both three-body con-
figurations of Fig. 1, that is, for the � (two resonant pairs)
and � (three resonant pairs) configurations.

All conclusions in this work are drawn from the depen-
dence of the ground-state solution of Eq. (1) on the cutoff
λ and on the unitary graph representing the N-body sys-
tem. We calibrate c(λ) by solving the two-body Schrödinger
equation at zero energy with a standard Numerov integration
algorithm. For the three-body coupling d (λ) and for the calcu-
lations of the ground-state energies EN for N � 3, we use two
different variational methods, both of which optimize a set
of Gaussian basis functions: the stochastic-variational method
(SVM) [18] and the refined-resonating-group method (RGM)
[19]. All N � 3 calculations employed the SVM, and we used
the RGM as an additional verification of the values of EN in
the three- and four-body systems for a subset of cutoffs.

D. Cutoff dependence of the couplings

With the parameters and methods specified, we obtain
the expected, above-mentioned cutoff dependence for the
two-body strength: c(λ) ∝ λ2. In our notation, the c absorbs
factors stemming from the Gaussian regularization of the
Dirac delta, i.e.,

vi j = C(λ) δλ(�ri − �r j )

= C(λ)
λ3 e−λ2 (�ri−�r j )2

4

8π3/2
, (13)

100
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108

0 1 2 3 4 5 6 7 ×102

d
(λ

)/
E

3

λ/Q3

dΛ(λ)

dΔ(λ)

FIG. 3. The running of the three-body coupling strength d (λ)
which renormalizes the fully resonant (filled triangles) and the two-
pair resonant (empty circles) three-body systems to a single bound
state.

from which the relation between c(λ) and the more commonly
used C(λ)

c(λ) = λ3

8π3/2
C(λ), (14)

is obtained. If we take into account that C(λ) = − 2π2

mλ
θ−1 [20],

with θ a regulator-dependent number, it is apparent that we
should indeed have c(λ) ∝ λ2.

If we use the two-body potential with the coupling of
Eq. (14) and in the absence of a three-body force, the calcu-
lated three-body ground-state energy diverges as the square of
the cutoff, i.e., E3 ∝ λ2. This is explicitly shown in Fig. 2 for
the two configurations of Fig. 1 (the � and � configurations)
where a parabolic fit to these numerical results finds that

E3�

E3�

� 505.1. (15)

That is, we find a more rapid collapse of the fully resonant �

configuration compared with the � configuration.
These three-body collapses are avoided by including the

three-body contact terms in Eq. (5). The coupling d (λ) is cal-
ibrated under the condition that the energy of the three-body
ground state remains constant with the cutoff. Numerically,
we determine d�(λ) by stabilizing E3� and d�(λ) fixing E3�.
The corresponding values can be found in Fig. 3.3

Even though we limit ourselves to the calculation of the
ground state of the � and � trimers, the excited states of these

3Our choice for the cutoff interval, λ < 1.22 Q3 for d�(λ) and
λ < 12.25 Q3 for d�(λ), follows numerical constraints. The collapse
of the unrenormalized system is expressed in separately diverging
ground-state expectation values of the kinetic energy and two-body
potential operators. The latter does so more rapidly with λ, and
hence, the diverging binding energy is itself a result of the cancel-
lation of two even larger numbers. The repulsion required thus from
a three-body counterterm demands strengths that approach numerical
limits faster for the fully resonant system (see Fig. 3).
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FIG. 4. Divergent behavior of ground-state energy E3� of the �

three-body system (three resonant pairs) when we include the three-
body force that renormalized the � three-body system (two resonant
pairs).

systems do in principle display the Efimov effect [2]. We did
not check the two geometric factors that characterize the Efi-
mov spectra specifically in this work. Yet the � configuration
collapses more rapidly than the �, which reflects the smaller
scaling factor of the first (22.7 for the �) compared to the
second (1986.1 for the �). We demonstrate this by employing
the d� to the � which yields the divergence plotted in Fig. 4.

III. FOUR-BODY SECTOR

A. Renormalization

Next, we consider all unitary four-body systems in
which the resonant two-body interactions form a connected
graph. There are six such configurations which we list in
Fig. 5.

In the absence of three-body forces, the ground-state en-
ergy of each of these four-body configurations exhibits the
quadratic collapse with respect to the regulator λ that we
encountered in the three-body case, Eq. (15). The reason is
the presence of at least one � or � subgraph in each of the
connected four-body graphs. These subgraphs will collapse in
the absence of three-body forces as discussed in the previous
section.

The inclusion of a three-body force (see Sec. II) solves the
problematic collapse. However, there is an ambiguity regard-
ing which three-body force to use: as shown in the previous
section, the three-body coupling d (λ) defined in Eq. (5) has
two possible solutions depending on whether the three-body
systems is �- or �-shaped. In our calculations, only one
choice for the running of d with λ was able to properly
renormalize the system and generate a finite binding energy.
Our numerical results for employing the two runnings in the
various graphs (Fig. 5) are summarized graphically in Fig. 6.
From these results, we infer the following correspondence
between a unitary graph and the running of the three-body
force:

(i) the full, slash, paw and circle graphs require d�(λ);
(ii) the line and the star graphs require d�(λ).

hsalslluf

enilelcric

ratswap

FIG. 5. Configurations of four distinguishable particles (gray
vertices) for which their resonant pair interactions (dashed lines)
form a connected graph.

This is a rather intuitive result, except for the circle: we
would expect that the renormalization of a four-body system
will only require a �-type three-body coupling d�(λ) if its
unitary graph contains one or more �-shaped subgraphs. Con-
versely, if there are only �-type subgraphs, a d�(λ) coupling
should suffice. This is indeed what happens in five of the six
configurations where, as we will see, this behavior can be
understood in terms of a relatively simple heuristic argument
grounded on the Bethe-Peierls boundary conditions for each
of these systems. The circle is a remarkable exception: numer-
ically we find that it requires d�(λ) (the three-body coupling
that renormalizes the �-shaped three-body system) although
it does not contain � subgraphs.

In the upper panel of Fig. 6 we show the cutoff dependence
of the four-body binding energy for the configurations that
require d�(λ). The quantitative ratios we find are

E4-full = 4.4(1) E3�, (16)

E4-slash = 1.8(1) E3�, (17)

E4-paw ≈ 1.0 E3�, (18)

E4-circle ≈ 0.2 E3�, (19)
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FIG. 6. Regulator dependence of the ground-state energy of
the six four-body configurations if the running of the three-body
counterterm is set in the fully resonant three-body system (upper
panel, d�) and in the two-pair-resonant three-body system (lower
panel, d�).

where for the full configuration we reproduce the well-known
relation between the binding energy of the unitary three-
and four-boson system. For the circle, the four-body binding
energy is smaller than the three-body �-type configuration.
This is not a problem because the circle cannot decay into a
three-body � bound system and a free particle. Notice that
the line and star configurations (including the three-body �

system) are not shown in the upper panel of Fig. 6 simply
because when d�(λ) is applied to them it happens to be too
repulsive to allow for a bound state below the three-body
threshold.

Now, if we use the d�(λ) coupling instead, only the line
and star configurations converge, while the full, slash, paw,
and circle collapse (see lower panel of Fig. 6). For the
line and star configurations, we find

E4-star = 11(1) E3�, (20)

E4-line = 8(1) E3�. (21)

These ratios are not of order one. They are also certainly larger
than the respective ratios for the full, slash, paw, and circle.

B. Combinatorial approximation to binding

The renormalized binding energy ratios that we calculated
reveal an intriguing pattern: they are proportional to the num-
ber of interacting triplets in that system. First, we consider
the �-like configurations (except the 4-circle, which is the
four-body system that behaves in a more peculiar way). The
number of interacting triplets is

4 : 2 : 1, (22)

for the full, slash, and paw configurations, respectively. This
is to be compared with the ratios of their binding energies

4.4(1) : 1.8(1) : 1. (23)

For the �-like configurations (star and line) the number of
interacting triplets is

3 : 2, (24)

while the ratios of their binding energies are

2.8(6) : 2, (25)

and thus in agreement with the ratios of interacting triplets.
The uncertainties result from propagating the errors in the
binding energies of the different configurations. The previous
ratios differ up to a certain extent from the naive approxima-
tion of counting the number of three-body subgraphs, which
is to be expected owing to the simplicity of the argument. Yet,
the concrete reasons that might explain these discrepancies in
a more quantitative manner remain an open question.

Another prediction that can be derived from the combinato-
rial argument is noteworthy: the binding energy of the N-body
full configuration. For this prediction, we have to first consider
the paw configuration, i.e., a � graph with a fourth particle
interacting resonantly with one of the particles forming the
�. Owing to the resonant nature of this interaction, the ex-
pectation is that the binding energy of the odd particle with
the � three-body subsystem will be just below the � plus
free particle threshold, which is precisely what is expressed
by Eq. (18). In fact, this argument could be extended for
an N-body system composed of a � followed by a line of
N − 3 particles (the N-paw or the (3, N − 3)-tadpole graph)
for which the binding energy will approximately be that of the
three-body � system:

EN-paw ≈ 1.0 E3�. (26)

Thus, the N-paw is stabilized very close to the decay threshold
into a � and a (N − 3) particle. This approximation assumes
that the three-body repulsion required to stabilize the N-paw
system is the same as the one of the �-system. This particular
repulsion implies that the binding energy of the subsystem
formed by the line of N − 3 particles approaches zero. We
corroborated Eq. (26) with numerical calculations for N = 4
for multiple cutoffs and N = 5 for a single cutoff λ ∼ 100 Q3

[see Eqs. (18) and (32)].
If we return now to the full N-body system, the previous

assumption together with the combinatorial hypothesis leads
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to the following ansatz:

EN-full ≈
(

N
3

)
E3� ≈ N (N − 1)(N − 2)

6
E3�

≈ {1, 4, 10, 20, 35, 56 . . . } E3�

for N = 3, 4, 5, 6, 7, 8 . . . , (27)

where in the second line we specified the values for different
numbers of particles. This approximation eventually breaks as
N increases. For contact-range forces, in general, we expect
that for high-enough N the binding energy of these systems
will display saturation, that is, a binding energy proportional
to the number of particles N . As the ground state of the full
N-body system is as bound as the unitary N-boson system,4

we can compare our results with the ratios obtained for the
latter, which have been extensively studied in the literature. If
we use the ratios obtained in Ref. [21]

EN-full = {1.0, 4.7, 10.6, 18.6, 27.9, 38.9 . . . } E3�

for N = 3, 4, 5, 6, 7, 8 . . . , (28)

then we see that even though the combinatorial argu-
ment works well for N � 6 eventually its uncertainties
end up increasing with N (about 18, 6, 7, 21, 31% for N =
4, 5, 6, 7, 8). If we use instead the more recent calculation of
the authors of Ref. [22], the ratios for N = 3, 4, 5 will be in
better agreement with our approximation

EN-full = {1.0, 4.2, 9.5, 16.3 . . . } E3�

for N = 3, 4, 5, 6 . . . , (29)

though we are limited to N � 6 in this case. Finally, as the
number of particles grows, saturation properties emerge (i.e.,
EN-full becomes proportional to N , as has been shown in
Ref. [4]) and our combinatorial approximation will cease to
be valid.

IV. 5-CIRCLE AND THE UNITARY
LOOP CONJECTURE

Next, we consider five-body unitary systems. In this case
there are a large number of connected unitary graphs (21
configurations5) and for practical reasons we will focus on a
few unitary geometries only. For the same reasons, our current
investigation is limited to less than six bodies.

The specific five-body configurations we study are the 5-
full, 5-circle, 5-star, 5-line, and 5-paw graphs as shown in
Fig. 7. The reasons for this selection are the following:

(i) to verify that the 5-full or 5-paw and 5-star or 5-line
configurations are renormalized by the d�(λ) and d�(λ) cou-
plings, respectively, and

4The reason is the permutation symmetry of the full N-body sys-
tem, which effectively implies that the N particles behave as identical
particles. Even though this allows both symmetric and antisymmetric
configurations (bosonic and fermionic behaviors), the ground state
will correspond to a fully symmetric configuration.

5The number of connected graphs for N = 2, 3, 4, 5, 6, 7, 8, . . .

is 1, 2, 6, 21, 112, 853, 11117, . . . (integer sequence A001349 in
Ref. [23]; see Ref. [24] for an explicit calculation of their number
up to N = 18).

elcric-5lluf-5

enil-5rats-5

5-paw

FIG. 7. The three connected five-body shapes considered in this
work.

(ii) to further confirm the exceptional status of the circle in
the five-body case, i.e., the fact that its proper renormalization
requires the d�(λ) coupling despite not containing any �

subgraph;
(iii) to test the conjecture that the binding energy of the

N-paw approximately coincides with that of the �, Eq. (26)
up to N = 5.

The three hypotheses do indeed hold: in the case of the
5-full and 5-circle configurations we numerically find6 the
binding energies to be

E5-full ≈ 10.8 E3�, (30)

E5-circle ≈ 0.06 E3�. (31)

We note, again, that the 5-circle cannot decay into other bound
states. Hence, there is no problem with its binding energy
being smaller than the three-body � system. For the 5-paw
we find that

E5-paw ≈ 1.0 E3�, (32)

which confirms the validity of the approximation of Eq. (26)
for the N = 5 case, with the caveat that we are actually unable

6Results in this section were obtained for a subset of cutoff values
between 10 Q3 and 100 Q3.
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to distinguish within the accuracy of our calculations whether
this is a genuine five-body state or a 3 + 1 + 1 state. For the
5-star and the 5-line we have instead

E5-star ≈ 30 E3�, (33)

E5-line ≈ 16 E3�, (34)

which follows the trend of binding energies much larger than
one, cf., the 4-star and 4-line, Eqs. (20) and (21). It is interest-
ing to notice that the ratio of their energies is

1.9 : 1. (35)

This complies with the conjecture that the ground-state energy
scales as the number of interacting triplets in the system,
which is

2 : 1, (36)

corresponding to 6 and 3 triplets in the 5-star and the 5-line,
respectively.

Both findings, those regarding the 4- and 5-circle, suggest
the following conjecture: few-body systems whose unitary
interactions form a graph containing a closed loop will be
renormalized by the three-body force that renormalizes the
three-body �-shaped system (which, incidentally, can also be
labeled as the 3-circle). Intuitively, this observations should
hold for unitary systems containing 3-, 4-, or 5-circle sub-
graphs: if the circle component is not renormalized properly,
neither will be the system of which it is a part. However, even
though the general idea does not seem implausible, we have
not found a rigorous proof yet.

Finally, a paradoxical situation is noteworthy. The N-circle
and N-lines are locally identical as N → ∞, i.e., if we only
consider a finite number of particles, there is no difference be-
tween the N → ∞ circle and line. Yet, we observe the binding
energy of the circle to decrease with N while that of the line
increases. Unfortunately, without explicitly considering the
thermodynamic limit, which requires a series of techniques
completely different to those used in our paper, it is probable
that the answer to this problem will remain elusive for the time
being.

V. EXPLAINING THE TWO FOUR-BODY
RENORMALIZATION PATTERNS

The renormalization of the four-body unitary systems falls
into two distinct patterns: �- and �-like. Here we present a
heuristic argument of why this is the case. We stress that this
is not a rigorous derivation of those renormalization patterns,
and yet, the explanation we provide, though incomplete, helps
to clarify in which cases we should expect each type of three-
body force.

For understanding the patterns we will consider a zero-
range two-body resonant interaction. That is, we will be
considering the λ → ∞ (or zero-range) limit, in which a two-
body resonant interaction is reduced to a boundary condition
of the wave function at the origin, that is,

d

drlk
[rlk�N ]

∣∣∣
rlk=0

= 0, (37)

for each l , k particle pair for which the interaction is resonant
(�rl and �rk are single-particle coordinates and �rlk = �rl − �rk).

The Faddeev-component expansion of the N-body wave func-
tion

�N =
∑

i j

ψi j (�ri j, . . . ), (38)

yields

d

drlk
[rlkψlk] +

∑
i j �=lk

ψi j (�ri j, . . . )

∣∣∣∣∣
rlk=0

= 0. (39)

In general, this set of equations will simplify owing to
symmetries that reduce the number of independent Faddeev
components. For instance, in the N-boson system or in the
full N-body unitary system, all the Faddeev components will
be identical, i.e., ψi j = ψ ; in the first case this happens be-
cause of Bose-Einstein symmetry and in the second because
of symmetry under the permutation group.

In the case of the three-body system, it is well known how
to derive the Efimov scaling from the boundary condition in
Eq. (37). We do not present here the full derivation for the
three-body case, which can be found in Ref. [25]. Instead,
we will try to understand the general patterns connecting the
discrete scaling of three- and four-body systems. We will use
the 3- and 4-full systems as a template and then discuss how
results in these two configurations extend to the other cases.
For the 3-full (i.e., �) system, we find that the boundary
condition for lk = 12 reads

d

dr12
[r12ψ (�r12, �ρ3)]

∣∣∣∣
r12=0

+ψ (�r23, �ρ1)

∣∣∣∣
r12=0

+ ψ (�r31, �ρ2)

∣∣∣∣
r12=0

= 0. (40)

Here we already took into account that the three Faddeev
components of the wave function are formally identical, and
�ρk = �rk − (�ri + �r j )/2 (plus the condition i �= j �= k) being
one of the Jacobi coordinates. After suitable manipulations,
the previous boundary condition leads to the standard Efimov
effect with a discrete scaling of 22.7 (the specific steps leading
to this result are well-known, see, e.g., Ref. [13]).

If we now consider the 4-full system, we have in principle 6
identical Faddeev components corresponding to the 6 possible
interacting pairs. The Faddeev components can be further
subdivided into Faddeev-Yakubovsky components as follows:

ψ (�r12, . . . ) = ψK (�r12, �ρ3, �σ4) + ψK (�r12, �ρ4, �σ3)

+ψH (�r12, �h12−34, �r34), (41)

plus the decompositions for all the permutations of particles
1, 2, 3, and 4, where we use the customary subscripts K and H
to indicate the K- and H-components. For the K set of Jacobi
coordinates, we have �ρk(i j) = �rk − (�ri + �r j )/2 (though usually
the i j subscript will be dropped, as it always corresponds to
that of the first coordinate �ri j) and �σl = �rl − (�ri + �r j + �rk )/3
with i �= j �= k �= l , while for the H set we only have one new
coordinate: �hi j−kl = (�ri + �r j )/2 − (�rl + �rl )/2.

Now we write down the boundary condition for the lk =
12 pair in terms of the Faddeev-Yakubovsky components and
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Jacobi coordinates defined above:
d

dr12
[r12ψK (�r12, �ρ3, �σ4)]

∣∣
r12=0 + ψK (�r23, �ρ1, �σ4)

∣∣
r12=0 + ψK (�r31, �ρ2, �σ4)

∣∣
r12=0︸ ︷︷ ︸

A

+ d

dr12
[r12ψK (�r12, �ρ4, �σ3)]

∣∣
r12=0 + ψK (�r24, �ρ1, �σ3)

∣∣
r12=0 + ψK (�r41, �ρ2, �σ3)

∣∣
r12=0︸ ︷︷ ︸

B

+ d

dr12
[r12 ψH (�r12, �h12−34, �r34) + r12 ψH (�r34, �h34−12, �r12)]

∣∣
r12=0

+ [ψH (�r23, �h23−14, �r14) + ψH (�r24, �h24−13, �r24) + ψH (�r14, �h23−14, �r23) + ψH (�r13, �h24−13, �r24)]
∣∣
r12=0

+ [ψK (�r13, �ρ4, �σ2) + ψK (�r14, �ρ2, �σ2) + ψK (�r23, �ρ4, �σ1) + ψK (�r24, �ρ3, �σ1) + ψK (�r34, �ρ2, �σ1) + ψK (�r34, �ρ1, �σ2)]
∣∣
r12=0︸ ︷︷ ︸

C

= 0.

(42)

The boundary condition is the sum of three terms (A,
B and C as defined by the underbraces) such that A + B +
C = 0. We note that C encompasses the last 3 lines of the
equation.

Contrary to what happens in the three-body system, it is far
from evident how to solve the four-body boundary condition
or what are the characteristics of its solution (e.g., its Efimov
scaling). Yet, it happens that we have a good understanding
of the spectrum of the unitary four-boson system: basically,
for each Efimov trimer there are two tetramers with known
binding energies [21,26–28]. This suggests on the one hand
that the Efimov scaling of the three- and four-boson systems is
identical and on the other that the tetramers can be understood
as a fourth particle binding to an already existing trimer.

These numerical observations can be readily explained if
we impose the assumption that A = B = C = 0 simultane-
ously (instead of the less stringent A + B + C = 0 condition).
This can be explained as follows.

(i) The conditions A = 0 and B = 0 are just Eq. (40),
except for the extra Jacobi coordinate at the end. Provided
this coordinate can be factored out, it will be irrelevant for
solving these two equations. As a consequence, if the previous
assumption about factorization is correct, the K-components
of the 4-full system will have the same Efimov scaling as the
� three-body system.

(ii) The condition C = 0 implies that the H-component is
tied to the K-components and their Efimov scalings will be
the same. The reason is that C = 0 can be understood as an
equation with two terms, one involving the H components and
a second involving the K components:

CH [ψH ] + CK [ψK ] = 0, (43)

where CH and CK represent the parts containing ψH and ψK of
the last 3 lines of Eq. (42). Here ψK plays the role of an exter-
nal term obtained from the conditions A = 0 and B = 0, while
ψH is derived from ψK . Thus, the resulting H-component
will follow the scaling of the K-component. For the 4-full
system we conjecture the existence of two different solutions
for this H-component, explaining the observed pattern of two
tetramers tied to every Efimov trimer. Yet, we notice that the
present argument does not rule out the possibility of inde-
pendent solutions of CH [ψH ] = 0, which would result in the

existence of tetramers that do not follow the discrete scaling
of the � subsystem: if anything, these tetramers might only
be discarded on the basis that they do not appear in numerical
calculations.

That is, provided the previous assumptions are correct (we
warn though that they do not necessarily apply to all unitary
configurations, as we will review in the next few paragraphs),
the conclusion will be that the 4-full system is renormalized
by the same three-body force as in the � system.

Indeed the previous two assumptions are pretty strong and
we suspect that they are not generally applicable to all unitary
geometries. Instead, they are to be taken as a tentative expla-
nation of the spectrum of the 4-full (or four-boson) system as
already calculated numerically in Refs. [21,26–28]. Yet, we
warn that other solutions might exist: for instance, we notice
that if there were to be solutions of A + B + C = 0 that do not
comply with the A = 0, B = 0 and C = 0 hypothesis, this will
likely result in a second type of tetramers that do not follow
the same scaling laws as the � system. If these additional
solutions were to exist in the 4-full configuration, it might
explain the controversy about the four-body parameter in the
four-boson system [29–31].

The same arguments can be applied mutatis mutandis to
all the other four-body configurations considered in this work,
though the manipulations required can be quite involved. Pro-
vided that the A = 0, B = 0 and C = 0 hypothesis is valid,
the general conclusion is that a unitary graph will follow the
smallest scaling of its subgraphs: if the graph contains a �

subgraph the scaling factor will be 22.7, and if not it will be
1986.1. We observe that in general this seems to be correct
(though this has only been checked for the ground state).

The exception to this rule is the 4-circle, which brings
us back to the problem of the general validity of the two
assumptions that we previously made. This configuration, de-
spite not including � subgraphs, is not renormalized by the �

three-body force. Instead, the renormalization of the 4-circle
seems to be achieved by using the � three-body force, as
shown by our calculations. This implies that the A = 0, B = 0
and C = 0 hypothesis is not valid for this configuration, where
the most probable reason for its failure is that C = 0 has by
itself zero solutions. In turn, this means that the A = 0 and
B = 0 conditions do not apply to the 4-circle (whose only
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solutions are probably those of the A + B + C = 0 condition).
This explains why it does not follow the Efimov scaling of
systems containing � subgraphs.

Previous investigations about the 4-circle are not conclu-
sive either. In Ref. [32] the 4-circle was conjectured to be
renormalized by the three-body force of the � system (and
thus have a discrete scaling of 1986.1). Yet, the ground-state
energy of the 4-circle was found to be unnaturally large,
∼400 E3, which might indicate that the system is, in fact, col-
lapsing. More recently, the authors of Ref. [31] found that the
geometric scaling of the four-body two-species system with
a mass imbalance is smaller than the corresponding scaling
of its three-body counterpart, which is consistent with our
assumption about the scaling of the 4-circle (22.7 < 1986.1).
However, the arguments in Ref. [31] depend explicitly on the
existence of a large difference in masses between the two
species and are thus not directly applicable to our 4-circle con-
figuration. Even though there are no clear-cut contradictions
in the previous two studies, we consider that more attention
to the spectral structure of the 4-circle will be needed to
determine its discrete scaling properties.

VI. CONCLUSIONS

We analyzed partially unitary few-body systems in which
all particles have the same mass but not all interparticle in-
teractions are resonant, only a subset of them. Each of these
few-body systems can be characterized by a unitary graph
whose vertices and lines represent particles and resonant
interactions, respectively. The resonant interactions can be
modeled, without loss of generality, by zero-range potentials,
which are singular and require regularization and renormal-
ization. Here, we analyzed the renormalization of the ground
states of systems with N = 3 and 4 particles (plus a few
illustrative N = 5 configurations).

From a series of numerical calculations and qualitative
arguments, we conjecture a relation between the geometry
of the unitary graph representing the partially unitary system
and its renormalization. Partially unitary few-body systems do
display Thomas collapse, i.e., the binding energies of these
systems diverge as the range of their interactions approach
zero. As in the three-body case, this collapse is avoided by the
inclusion of a zero-range, repulsive three-body force which
stabilizes the binding energy of the ground state. The type of
three-body force renormalizing a partially unitary four-body
system (of which there are six, see Fig. 5) depends on the
properties of the unitary graph of the latter:

(i) unitary tree-like graphs require the three-body force
that renormalizes the three-body system with two resonant
pairs (which we have called the � system);

(ii) unitary graphs containing closed loops are renormal-
ized instead by the three-body force of the three-body system
with three resonant pairs (which we called the � system).

We deduced (and verified) this renormalization pattern
numerically for each of the four-body unitary graphs. We
conjecture that this pattern extends to partially unitary systems
with N > 4, though we have only verified this generalization
numerically for three selected N = 5 systems.

Furthermore, we proposed a heuristic argument that ex-
ploits the representation of a resonant pair in terms of a
Bethe-Peierls boundary condition to show that the different
four-body unitary graphs are indeed expected to be renormal-
ized by the three-body force of the �- or �-shaped systems.
More specifically, what we showed is that the resonant two-
body interaction imposes a constraint on the four-body wave
function that is identical to the analogous constraint for the
three-body system (modulo the presence of an additional
coordinate for the extra particle). Incidentally, this is the
same constraint that generates the characteristic discrete scale
invariance of 22.7 and 1986.1 for the �- and �-shaped three-
body systems. Hence, we conjecture that the discrete scaling
properties of a particular unitary graph will follow one of these
two patterns (depending on whether they are renormalized by
the three-body force of the �- or �-shaped systems). How-
ever, the argument fails for the particular case of cyclic graphs
(the N-circles in the naming convention we follow) which
indicates that our explanation of this behavior is incomplete,
representing an intriguing open problem which is left to future
work.
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