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Analyzing the nonclassicality of correlations generated in n-local quantum networks is an important branch
of study in quantum information theory. Speaking of nonclassicality, violation of an n-local inequality ensures
non n-locality of corresponding network correlations. Being correlation-based, violation of any such inequality
is experimentally feasible. The present work explores whether applying suitable local unitary operations can aid
violation of any n-local inequality. Observations have ensured the utility of local unitary operations in enhancing
the detection efficiency of bilocal inequality and n-local inequality (for n = 3, 4) in the star configuration. In an
n-local quantum network, such operations correspond to local basis change applied by at least one party over its
joint state of qubits received from the sources. In an n-local network, with all the parties performing any possible
local unitary operation, correlations not violating an n-local inequality (compatible with the network considered),
are first characterized. Such characterization is then exploited to provide examples of local unitary operations
aiding violation of existing n-local inequalities for n = 2, 3, and 4, specifically. Interestingly, there exist two qubit
unitary operations, for which nontrilocal correlations can be simulated even when one of the sources distribute
pure product state in star network. Quantum gates associated with the useful unitary operations are provided.
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I. INTRODUCTION

The seminal work of Bell in 1964 [1] constitutes one of
the most important ingredients in the development of quantum
theory [1,2]. Violation of Bell’s inequalities by any set of
measurement correlations implies inexplicability of such set
in terms of any physical model relying solely on local hidden
variables. Such a type of correlation is commonly termed
Bell nonlocal correlations and the corresponding experimental
setup is usually known as a standard Bell experiment [3]. In
such a scenario, a single source distributes particles between
two or more distant parties

With increasing complexity in different correlations based
practical tasks [4–7], it has become important to analyze
quantum correlations arising in different network topologies.
For past few years, study of nonlocality has thus undergone
remarkable development beyond the purview of Bell scenario.
In contrast with a standard Bell experimental setup, a network
scenario involves multiple independent sources [8–10].

The assumption of source independence is significant in
analyzing nonclassicality of network correlations. Such an
assumption is often referred to as an n-local constraint [8,9]
and an associated network is termed an n-local network (see
Fig. 1). An n-local constraint helps in exploiting some novel
features of multipartite nonlocality which cannot be witnessed
in a standard Bell scenario. First, nonclassicality can be gen-
erated between parties who do not share any common past [9].
This phenomenon of generating nonclassicality among ini-
tially uncorrelated distant parties cannot be witnessed in any
standard tripartite Bell scenario where nonlocality is obtained
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under the assumption that all the parties share a common
past [3]. Second, non-n-locality can be observed when a
subset or all the parties in the network performs fixed local
measurement on their respective subsystems [9,11–14]. Such
a measurement scenario is often referred to as a fixed input
scenario [13] and the corresponding notion of nonclassicality
as nonlocality without inputs [13]. This contributes to another
interesting difference with multipartite Bell scenario where
randomness in choice of local inputs by each party plays a
crucial role in exploiting nonlocality [3].

Starting from the simplest network structure with two in-
dependent sources (bilocal network [8]), the study of the
source-independence assumption has undergone multifaceted
development, such as generalization of network structure in
multiple aspects [11–13,15,16], framing closed forms of up-
per bound of violation of n-local inequalities [17,18], analysis
of the concept of full network nonlocality [19], and many
others [20–28]. In general, n-local networks are compatible
with repeater networks [5–7] where entanglement distribution
among initially uncorrelated nodes is based on entanglement
swapping procedures. Hence, apart from theoretical signif-
icance, the study of non-n-locality is also important from
experimental perspectives.

The nature of particles distributed by the sources along
with local measurement contexts of the parties play a crucial
role in exploiting non-n-locality in any network. Violation of
an n-local inequality serves as a sufficient criterion to detect
non-n-locality. In case all the sources distribute pure bipartite
entangled states, under suitable local measurements, violation
of n-local inequality is observed in both linear and nonlinear
(star-shaped configuration) n-local networks [13,17]. How-
ever, if one of the sources sends two qubit product states,
then no such violation is observed. If mixed entanglement
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distribution is considered, violation of n-local inequality is not
always observed [17]. In this context, one may ask whether
application of unitaries on the state of some of the particles
distributed by the sources, aids for observing violation of
an n-local inequality. The present discussion will provide an
affirmative response to this query.

Over the past few years, the effect of unitary operations
in exploiting Bell nonlocality has been studied [29–32]. Con-
sider a bipartite state ρAB (say) shared between two parties
Alice and Bob. Let ρAB not violate the Bell–Clauser-Horne-
Shimony-Holt (Bell-CHSH) inequality [33] and therefore not
be Bell-nonlocal in the two-input, two-output bipartite mea-
surement scenario. Let Alice and Bob apply local unitary
operations over their respective subsystems. The state ρ ′

AB
(say) obtained from ρAB under local basis change does not
show any Bell-CHSH violation. However, if global unitary
operation is applied over ρAB, the resulting state ρ ′′

AB (say)
may show Bell-CHSH violation [30]. Application of suitable
global unitary operations turn out to be useful in exploiting
not only standard Bell nonlocality but also other forms of
nonclassicality of bipartite states, such as entanglement [29],
steering nonlocality, conditional negative entropy, and many
others [31,32]. To this end, it may be noted that for applying
global basis change on a bipartite state ρAB, both the particles
forming the state and hence both Alice and Bob, sharing ρAB,
must be at the same place. But under such circumstance,
ρAB can be considered as a higher-dimensional single-particle
state. Consequently, such a situation becomes incompatible
for testing nonclassical features such as entanglement or any
notion of nonlocality of a bipartite quantum state. In the cur-
rent discussion, the effect of unitary operations in network
scenario has been analyzed by avoiding such nonphysical
situations.

Consider, for example, a bilocal network where each of two
sources distribute a two-qubit state. Let each of the parties
first apply local basis change on their respective subsystems
and then perform local measurements (see Sec. III D). Cor-
responding tripartite correlations violate bilocal inequality
[Eq. (8)]. It may be noted that violation of the same inequality
is impossible if none of the parties apply a local basis change.
Such an observation clearly points out the utility of applying
suitable unitary operations locally by the parties. Specific
instances are provided in support of this claim. Examples
pointing out the effectiveness of local unitary operations are
also obtained for the star network.

To explore the effect of unitary operations in exploiting
non-n-local correlations, the notion of IT -type absolute n-
local correlations (see Sec. IV for details) has been introduced.
The set of such correlations has been characterized. Given a
specific network scenario with the independent sources gen-
erating a specific set of two qubit quantum states, the utility
of unitary operations is implied by the simulation of correla-
tions lying outside this set. Different examples pertaining to
effectiveness of local unitary operations have been obtained
in bilocal and star networks. Interestingly, on application of
suitable local unitary operations, nontrilocal and also non
4-local correlations are generated in star network involving
a two-qubit pure product state. The existing bilocal inequality
[Eq. (8)] and trilocal inequality [Eq. (11)] become more resis-
tant to noise when at least one of the parties in the network

perform suitable local unitary operations. The effect of a local
unitary operation can be realized by applying a reversible
quantum gate [34]. Circuit implementation is provided for
useful unitary operations.

The rest of the work is organized as follows: in Sec. II, the
motivation of the present discussion is provided. In Sec. III,
some prerequisites are given. Characterization of IT -type ab-
solute n-locality is provided in Sec. IV. The effect of unitary
operations in aiding nonbilocality and nontrilocality detection
is discussed in Sec. V. Resistance to noise is discussed in
Sec. VI. Comparison between the present network scenario
with that of the existing n-local networks is discussed in
Sec. VII. Circuit implementation of the unitary operations
used is provided in Sec. VIII. The discussion ends with some
concluding remarks in Sec. IX.

II. MOTIVATION

Let ρ be a two-qubit entangled state shared between Alice
and Bob in a standard bipartite Bell scenario [3]. Before
performing measurements, Alice and Bob may apply local
basis changes on their respective subsystems. Upon applica-
tion of a suitable single-qubit unitary operation, the resulting
measurement correlations may show Bell inequality viola-
tion [3]. Single-qubit unitary operations may thus help in
exploiting Bell nonlocality in a standard Bell setup. Now, if
ρ is Bell-CHSH local, then a violation of CHSH inequality is
impossible irrespective of any single-qubit unitary operation
applied by one or both of Alice and Bob on their respective
share of ρ. However, from such a state, Bell nonlocality can
still be exploited if ρ is subjected to a suitable two-qubit
unitary operation [29]. Such a form of nonlocality is referred
to as not absolute Bell-CHSH nonlocality and the two-qubit
unitary as nonlocal unitary operation [29]. Application of
two-qubits unitary operations may thus enhance violation of
Bell inequality.

Now, for exploiting Bell nonlocality, the quantum state
must be shared between physically distant parties. But, for
applying a nonlocal unitary operation (global basis change),
all parties must be in the same place, resulting in a non-
physical situation. This forms a major drawback in any study
analyzing the effectiveness of two-qubit unitary operations in
the standard Bell scenario. Such a compatibility issue can be
avoided if one considers a quantum network structure. In a
network, at least one of the parties, say P , receives more than
one qubit. P can now perform multiqubit unitary operations
on the joint state of the subsystems received from multiple
sources. Consequently, effectiveness of applying multiqubit
unitary operations in exploiting nonclassicality can be tested
in quantum networks. This motivates the entire discussion in
the present work. To this end, it may be noted that the existing
upper bounds of quantum violation of n-local inequalities
in Nlinear and Nn-star (see Sec. III for details) were derived
under the assumption that the parties can perform single-qubit
unitary operations prior to measurements. It thus becomes
imperative to explore whether such bounds can be altered
when any of the parties receiving more than one qubit per-
forms multiqubit unitary operations. Although analysis of the
n-local bounds in this context remains outside the scope of the
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present discussion, the findings to be discussed in upcoming
sections clearly ensure that such alternation is possible.

For analyzing the utility of applying multiqubit unitaries,
the notion of IT -type absolute n-locality will be introduced so
as to categorize the entire set of network correlations from the
perspective of n-local inequality IT violation (see Sec. IV).
The utility of such a characterization is twofold: First, it helps
to segregate quantum states which are useless in the sense
that non-n-locality cannot be observed via violation of n-local
inequality IT (compatible with NT ) even if all the parties per-
form all possible forms of local basis change (see Sec. IV A).
Second, it points out the existence of two-qubit states which
can show n-local inequality violation in the network only
when the parties perform suitable unitary operations before
measuring the states.

n-local networks form the basis of multiple practical
tasks [4–7,35]. Due to the non-n-local feature of quantum
correlations, quantum resources perform better than their
classical counterparts in all such tasks [26]. With increas-
ing development in technology, scalable quantum networks
are now becoming practically implementable [5,7,36]. Now,
violation of any n-local inequality detects non-n-local cor-
relations. Being correlator-based, such a detection procedure
is experimentally feasible. However, such detection criterion
is only sufficient. Hence, non-n-local correlations may not
always be detected. Consequently, quantum states used in the
corresponding networks may seem useless. In this respect,
it becomes important to search for any practically feasible
procedure via which detection can be enhanced at least in
some cases. Exploration for such procedures motivates the
present discussion. It will be interesting to search for suitable
multiqubit unitaries that will help in simulating more noise
resistant quantum network correlations considering different
types of noisy environments.

Before the onset of the main discussion, some basic ideas
are discussed in the next section.

III. PRELIMINARIES

A. Density matrix representation of arbitrary two-qubit state

Let �12 denote a two-qubit state. The density matrix of �12

in terms of the Bloch sphere parameters is given by

�12 = 1

4

⎛
⎝I2 × I2 + �a · �σ ⊗ I2 + I2 ⊗ �b · �σ

+
3∑

j1, j2=1

w j1 j2σ j1 ⊗ σ j2

⎞
⎠, (1)

where �σ = (σ1, σ2, σ3), and σ jk labels Pauli operators along
three mutually perpendicular directions ( jk = 1, 2, 3). �a =
(a1, a2, a3) and �b = (b1, b2, b3) denote the local Bloch vectors
(�a, �b ∈ R3) corresponding to party A and B, respectively,
with |�a|, |�b| � 1, and (wi, j )3×3 denotes the correlation tensor
W (real). The matrix elements w j1 j2 are given by w j1 j2 =
Tr[�12σ j1 ⊗ σ j2 ].

On subjecting to suitable local unitary operations, W can
be diagonalized [37,38]. The simplified expression is then

FIG. 1. Schematic diagram of a 5-local network. Each of P1, P2,
P3, P4 is an intermediate party whereas P5 and P6 are both extreme
parties. Inputs and outputs of these two types of parties are as detailed
in Table I.

given by [38]

�′
12 = 1

4

⎛
⎝I2 × I2 + �a · �σ ⊗ I2 + I2 ⊗ �b · �σ

+
3∑

j=1

t j jσ j ⊗ σ j

⎞
⎠. (2)

T = diag(t11, t22, t33) denotes the correlation matrix in
Eq. (2) where t11, t22, t33 are the eigenvalues of (T TT )1/2, i.e.,
singular values of T .

B. n-local networks

Consider a network involving n independent sources
S1,S2, . . . ,Sn and n + 1 parties P1,P2, . . . ,Pn+1 (for exam-
ple, see Fig. 1). For all j, let S j distribute physical systems
to two parties P j and P j′ ( j, j′ ∈ {1, 2, . . . , n + 1}). The
network is referred to as an n − local network [26]. Such a
network (for example, see Fig. 1) can be of any configuration.
Let NT denote an n-local network having configuration T
(say). Depending on the number of particles received from

TABLE I. For any party P j ( j ∈ {1, 2, . . . , n + 1}) in NT , de-
tails of the input and outputs are enlisted here.

No. of particles
Type received Inputs and Outputs

Extreme Single Chooses an input from
two dichotomous inputs z j ∈ {0, 1}.

outputs are binary valued
denoted as oj ∈ {±1}.

Intermediate m (say) Single input y j having m binary
valued outputs labeled as a string:

2 � m � n ō j = (o(1)
j , o(2)

j , ..., o(m)
j ) with

o(k)
j ∈ {±1}.
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the sources, the parties are of two types: intermediate and
extreme. Details of these two types of parties are provided in
Table I.

The source-independence criterion is given by the n-local
constraint [9]:

χ (λ1, λ2, . . . , λn) = �n
j=1χ j

(
λ j

)
, (3)

where, for all j, λ j denotes the hidden variable characterizing the physical system generated from S j and χ j denotes the
normalized distribution of λ j .

(n + 1)-partite measurement correlations are local if

P
(
oi1 , oi2 , . . . , oir , ō j1 , ō j2 , . . . , ō jr′ |zi1 , zi2 , . . . , zir , y j1 , y j2 , . . . , y jr′

) =
∫

�1

∫
�2

. . .

∫
�n

dλ1dλ2 . . . dλnχ (λ1, λ2, . . . λn)P, (4)

with P = �r
s=1P(ois |zis , λis )�

r′
t=1P(ō jt |y jt , L̄t ), where 1 �

r, r′ � n + 1 such that r + r′ = n + 1 for all s and t , indices
is, jt ∈ {1, 2, . . . , n + 1}, and

L̄t = (
λp1 , λp2 , . . . , λpm

) ⊂ {λ1, . . . , λn}, (5)

such that each of Sp1 ,Sp2 , . . . ,Spm sends particles to P jt .
(n + 1)-partite correlations that satisfy both Eqs. (3) and (4)
are termed n-local correlations. So, any set of correlations
that do not satisfy Eqs. (3) and (4) simultaneously are termed
non-n-local [9].

Let Pn+1 denote the set of measurement correlation terms
generated in NT . Consider the inequality

f (Pn+1) � 1, (6)

where f (.) denotes any function of the correlation terms in
NT . If any set of n-local correlations in NT satisfy Eq. (6),
then this inequality is referred to as an n-local inequality.
Violation of Eq. (6) thus acts as a sufficient criterion to detect
the non-n-local nature of corresponding correlations (Pn+1)
in NT .

C. Quantum n-local networks [26]

For all i = 1, 2, . . . , n, let Si distribute a two-qubit state
�i,i+1. Let ρin denote the overall state in the network:

ρin = ⊗n
j=1ρ j, j+1. (7)

As discussed in Table I, for any j ∈ {1, 2, . . . , n + 1}, P j re-
ceives m qubits where m = 1 (2 � m � n) if P j is an extreme
(intermediate) party in NT . Let an extreme party perform
projective measurement in any one of two arbitrary directions
whereas an intermediate party performs single projective mea-
surements in a basis B (say) of m qubits [26]. Let M j denote
the local measurement of P j ∀ j = 1, 2, . . . , n + 1.

Two specific n-local networks of different configurations
are discussed next.

D. Linear n-local network [11]

n independent sources and n + 1 parties are arranged in
a linear pattern (see Fig. 2). Let the network be denoted by
Nlinear. Here P2,P3, . . . ,Pn−1 are the intermediate parties and
P1,Pn+1 are the extreme parties. (n + 1)-partite correlations
are n-local if those satisfy both Eqs. (3) and (4). So, any set of
(n + 1)-partite correlations not satisfying both restrictions (3)
and (4) are termed non-n-local. The existing n-local inequality

is given by [11]√
|In| +

√
|Jn| � 1, where

In = 1

4

∑
y1,yn+1

〈
O1,y1 O0

2O0
3 . . . O0

n−1On+1,yn+1

〉
,

Jn = 1

4

∑
y1,yn+1

(−1)y1+yn+1
〈
O1,y1 O1

2O1
3 . . . O1

n−1On+1,yn+1

〉
, with

〈
O1,y1 Oi

2Oi
3 . . . Oi

n−1On+1,yn+1

〉 =
∑
D1

(−1)o1+on+1+
∑n−1

j=2 o jk N1,

where N1 = p(o1, o2, . . . , on−1on+1|y1, yn+1, z2, . . . , zn),

i = 0, 1,

k = i + 1 and D1 = {o1, o21, o22, . . . , o(n−1)1, o(n−1)2on+1}.
(8)

Violation of Eq. (8) guarantees that the corresponding correla-
tions are non-n-local. Equation (8) being a sufficient criterion,
no definite conclusion can be given if this inequality is
satisfied.

Now, for all i, let Si distribute an arbitrary two-qubit state
ρi,i+1 [Eq. (2)]. Let each of n − 1 intermediate parties perform
Bell basis measurements [9]. As discussed in Sec. III C, each
of the two extreme parties performs projective measurements.
To be precise, P1 performs any one of �m0 · �σ , �m1 · �σ and
similarly Pn+1 performs any one of �n0 · �σ , �n1 · �σ In such mea-
surement context, the upper bound of Eq. (8) is given by [17]
(�n

j=1t j11 + �n
j=1t j22)1/2, where t j11, t j22 are the largest two

singular values of correlation tensor (Tj , say) of ρ j, j+1 ( j =
1, . . . , n). The n-local inequality (8) is thus violated if√

�n
j=1t j11 + �n

j=1t j22 > 1. (9)

So, if Eq. (9) is not satisfied, then corresponding tripartite
correlations turn out to be n-local as per the n-local inequality
[Eq. (8)]. For the present purpose, the above inequality for

FIG. 2. Schematic diagram of an n-local linear network (Nlinear).
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FIG. 3. Schematic diagram of an n-local nonlinear network in the
star configuration (Nn-star).

n = 2 will be used:√
�2

j=1t j11 + �2
j=1t j22 > 1. (10)

E. Star network [12]

The star network is a nonlinear n-local network consisting
of a single intermediate party (often referred to as the central
party) P1 and n extreme parties P2, . . . ,Pn+1 (see Fig. 3). Let
the network be denoted by Nn-star. (n + 1)-partite correlations
are said to be n-local if those satisfy both Eqs. (3) and (4).
So, any set of (n + 1)-partite correlations not satisfying both
of these restrictions [Eqs. (3) and (4)], are termed non-n-local.
The existing n-local inequality for Nn-star is given by [17]

2n−1∑
i=1

|Ji| 1
n � 2n−2, where (11)

Ji = 1

2n

∑
y2,...,yn+1

(−1)hi (y2,...,yn+1 )〈A(i)
(1)A

(2)
y2

. . . A(n+1)
yn+1

〉
,

〈
A(i)

(1)A
(2)
y2

. . . A(n+1)
yn+1

〉 =
∑
D2

(−1)õ
(i)
1 +o2+...+on+1 N2, (12)

where N2 = p(o1, o2, . . . , on+1|z1, y2, . . . , yn+1), j =
1, . . . , n, and D2 = {o11, . . . , o1no2, . . . , on+1}.

In Eq. (11), for all i = 1, 2, . . . , 2n−1, õ(i)
1 represents an out-

put bit generated by classical postprocessing of the raw output
string o1 = (o11, . . . , o1n) of P1. In Eq. (11), for all i, hi are
functions of the input variables y2, . . . , yn+1 of the extreme
parties [12]. Each hi contains an even number of y2, . . . , yn+1.

For n = 3, 4, classical postprocessed bits ˜
o

(i)
1 from the output

string o1 and corresponding functions hi(y2, y3, . . . , yn+1) are
specified in Table II.

TABLE II. Details of the classically postprocessed bits õ
(i)
1 and

the functions hi(y2, y3, . . . , yn+1) for n = 3, 4 in Eq. (11).

n õ
(i)
1 hi(y2, y3, ..., yn+1)

3 õ
(1)
1 = o11, õ(2)

1 = o11 ⊕ o12 ⊕ 1 h1 = 0, h2 = y2 + y3

õ
(3)
1 = o11 ⊕ o13 ⊕ 1 h3 = y2 + y4

õ
(4)
1 = o11 ⊕ o12 ⊕ o13 ⊕ 1 h4 = y3 + y4

õ
(1)
1 = o11, õ(2)

1 = o11 ⊕ o12 ⊕ 1 h1 = 0, h2 = y2 + y3

4 õ
(3)
1 = o11 ⊕ o13 ⊕ 1 h3 = y2 + y4

õ
(4)
1 = o11 ⊕ o14 ⊕ 1 h4 = y2 + y5

õ
(5)
1 = o11 ⊕ o12 ⊕ o13 ⊕ 1 h5 = y3 + y4

õ
(6)
1 = o11 ⊕ o12 ⊕ o14 ⊕ 1 h6 = y3 + y5

õ
(7)
1 = o11 ⊕ o14 ⊕ o13 ⊕ 1 h7 = y4 + y5

õ
(8)
1 = o11 ⊕ o12 ⊕ o13 ⊕ o14 h8 = y2 + y3 + y4 + y5

Let each of the n independent sources distribute an arbi-
trary two-qubit state [Eq. (2)]. Let P1 perform Greenberger-
Horne-Zeilinger (GHZ) basis measurements [12]. Each of the
extreme parties performs projective measurements. In such a
measurement context, the upper bound of Eq. (11) is given
by [18] [(�n

j=1t j11)
2
n + (�n

j=1t j22)
2
n ]1/2. The n-local inequal-

ity [Eq. (11)] is thus violated if

2n−2

√(
�n

j=1t j11
) 2

n + (
�n

j=1t j22
) 2

n > 2n−2. (13)

So, if Eq. (13) is not satisfied, then the corresponding (n + 1)-
partite correlations turn out to be n-local, as per the n-local
inequality [Eq. (11)]. For present discussion, mainly the upper
bound of Eq. (11) in N3-star and N4-star will be used:

2

√(
�3

j=1t j11
) 2

3 + (
�3

j=1t j22
) 2

3 > 2, (14)

4

√(
�4

j=1t j11
) 1

2 + (
�4

j=1t j22
) 1

2 > 4. (15)

F. Application of unitary operations

Let �1,2 denote a two-qubit state. In general, the application
of a qubit unitary operation on �1,2 consists in applying single-
qubit unitary operations separately on each of the two qubits
and a two-qubit unitary operation on the joint state of both
qubits [38]. A single unitary operation, say L(θ, �η ) or simply
L corresponds to rotation of a qubit through an angle θ about
any axis �η = (η1, η2, η3). The general form of such a unitary
operation is given by [38]

L = cos

(
θ

2

)
σ0 − i sin

(
θ

2

) 3∑
i=1

ηiσi, ηi ∈ R. (16)

Let U (φ1, φ2, φ3) denote a 4 × 4 unitary matrix. Such a
matrix corresponds to a two-qubit unitary operation. Three
specific forms of two-qubit unitary operations will be used in
the present discussion. These are listed below:

U (φ1, φ2, φ3) = �3
i=1(cos φiσ0 ⊗ σ0 − i sin φiσi ⊗ σi ),

φi ∈ R, (17)
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U (β1, β2, β3) = (cos β1σ0 ⊗ σ0 − i sin β1σ1 ⊗ σ2),

(cos β2σ0 ⊗ σ0 − i sin β2σ2 ⊗ σ3),

(cos β3σ0 ⊗ σ0 − i sin β3σ3 ⊗ σ1), (18)

U (ν1, ν2, ν3, ν4) = exp (iν4)M, where

M =

⎛
⎜⎜⎝

1 0 0 0
0 cos ν2

2 0 − exp iν1 sin ν2
2

0 0 1 0
0 exp iν3 sin ν2

2 0 exp i(ν1 + ν3) sin ν2
2

⎞
⎟⎟⎠.

(19)

After applying the unitary operations on ρ12, the transformed
state ρ ′

12 (say) is given by [38]

ρ ′
1,2=�2

j=1L(2)
j U1,2�

2
j=1L(1)

j · ρ12 · (
�2

j=1L(1)
j

)†
U †

1,2

(
�2

j=1L(2)
j

)†
,

(20)

where (θ (i)
j , �η (i)

j ) denote the parameters of single-qubit unitary

L(i)
j [Eq. (16)] and U1,2 denote a two-qubit unitary operation.

Let Ui,i+1 denote a two-qubit operation applied over qubits i
and i + 1. Application of the two-qubit unitary operation on
a two-qubit state corresponds to global basis change of the
state and is referred to as a nonlocal unitary operation [38]. At
this point, noted that, for the purpose of the present analysis,
the context will be different. The term “nonlocal unitary op-
eration” will be incompatible. This is because, in the present
scenario, such an operation will be applied locally by a single
party on its share of two qubits (for details, see Sec. IV).

G. Hamiltonian gate

A Hamiltonian gate U (H ) is a unitary gate exp(−itH )
corresponding to time evolution of a quantum system with
hermitian Hamiltonian H [34,39]. For both single and two-
qubit Hamiltonians H , a Hamiltonian gate can be decomposed
into basis gates [39].

H. Imperfect measurements

For all i = 1, 2, . . . , n + 1, let party Pi perform measure-
ments in imperfect devices that fail to detect particles with
some probability. For Pi, denoting M ideal

i,o as the projector
corresponding to output string o in ideal qubit projective
measurements, the positive operator-valued measure (POVM)
elements corresponding to the noisy measurement are
given by

Mnoisy
i,o = βiM

ideal
i,o + 1 − βi

2m
(I2)⊗

m
k=1 ∀ i = 1, 2, . . . , n + 1,

(21)

where βi ∈ [0, 1] is the noise parameter, and o =
(o1, o2, . . . , om) is the output string of length m. Details
of the imperfect measurements to be used in the paper are
given in Table III.

IV. CHARACTERIZING IT -TYPE ABSOLUTE
n-LOCALITY

A. IT -type absolute n-local correlations

Consider an n-local quantum network NT (see Secs. III B
and III C). Let IT denote an n-local inequality [Eq. (6)]

TABLE III. Details of the noisy Bell basis, n-qubit GHZ basis,
and projective measurements.

Noise POVM
Measurement parameter elements in Eq. (21)

Bell basis β
(n)
i M ideal

i,( j1, j2 ) j1, j2 ∈ {0, 1}
corresponding to
four Bell states

n-qubit GHZ basis γ
(n)

i M ideal
i,( j1, j2,..., jn ) j1, j2, ..., jn ∈ {0, 1}

corresponding to
2n GHZ states

Projection along δ
(n)
i M ideal

i,(0) = 1
2 (I + �s · �σ )

arbitrary direction �s Mi,(1) = 1
2 (I − �s · �σ )

associated with NT . After the sources distribute the particles
in the network, let each of the parties perform local unitary
operations on their respective subsystems. Each of the extreme
parties, receiving single particle, can perform a single-qubit
unitary operations [Eq. (16)]. Each of the intermediate parties
receiving m (2 � m � n) can perform both 1-qubit [Eq. (16)]
and (m′ � m)-qubit unitary operations on the joint state of m
qubits received from the sources. The parties then perform
local measurements M j ( j = 1, 2, . . . , n + 1) on their parti-
cles (as detailed in Sec. III C). Correlations generated at the
end of the measurements are then used to test violation of
the correlators based inequality IT . It may happen that the
correlations fail to violate any n-local inequality associated
with the network. This forms the basis of defining the notion
of IT -type absolute n-locality.

Definition. In NT , given an n-local inequality (IT ), when
all the parties perform local unitary operations on their
respective subsystems, if the (n + 1)-partite measurement
correlations do not violate IT , then such correlations are
defined to be IT -type absolute n-local correlations and the
corresponding nature of such correlations is termed IT -type
absolute n-locality.

Given any configuration T and any n-local inequality IT ,
let AIT denote the set of IT -type absolute n-local correlations
in NT . Clearly, in any NT , correlations having n-local models
[Eq. (4)] are members of AIT for any IT associated with
NT . For example, in an n-local linear network (Nlinear), if
all the sources generate Werner states [40] with visibility less
than or equal to 1/2, correlations, generated in the network,
have an n-local model [9]. Such correlations can never violate
any n-local inequality compatible with Nlinear. Hence, these
correlations belong to AIlinear for any n-local inequality Ilinear

compatible with Nlinear.
Having introduced the notion, the associated mathematical

formalism is discussed below.

B. Mathematical formalism

for all i = 1, 2, . . . , n, let source Si generate a state ρi,i+1.
After distribution of particles from the sources, ρin (Eq. (7)
is the overall state of the network. Each of the parties then
perform local unitary operations on its respective share of ρin.
After local basis change applied by the parties, let ρ f denote
the transformed state in the entire network:

ρ f = (⊗n+1
j=1U j

) · ρin · (⊗n+1
j=1U j

)†
, (22)
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where

U j = 1-qubit unitary Lj (23)

[Eq. (16)] if P j is an extreme party, and

U j = �k j L
(2)
k j

· Um′
j
· �k j L

(1)
k j

(24)

if P j is an intermediate party with k j ∈ {1, 2, . . . , 2n} la-
beling the qubit received by P j , L(1)

k j
, L(2)

k j
denoting 1-qubit

unitaries [Eq. (16)], and m′
j denoting the set of qubits received

by P j such that over the joint state of these qubits P j applies
Um′

j
, where Um′

j
denotes |m′

j |-qubit unitaries with |m′
j | � m

denoting cardinality of the set m′
j .

Let CIT denote the collection of correlation terms resulting
due to measurements on ρ f [Eq. (22)]. CIT is used to test the
n-local inequality IT . In case, these terms satisfy IT for any
possible unitary operations and measurement settings, then
CIT ∈ AIT . The set of IT -type absolute n-local correlations
is thus given by

AIT =
{
CIT |CIT satisfy IT ∀ Lj, L(1)

k j
, L(2)

k j
,Um′

j

}
. (25)

Correlations lying outside AIT are thus non-n-local. Such
types of non-n-local correlations, residing outside AIT , may
be referred to as not-IT -type absolute n-local correlations.

C. Examples in Nlinear [11]

Consider the n-local inequality given by Eq. (8) in the
n-local linear network (Nlinear). To date, Eq. (8) is the only
existing Ilinear. In case only pure product states are involved,
correlations generated in Nlinear do not violate Ilinear Eq. (8)
even when all parties perform local basis change. The follow-
ing theorem justifies the claim.

Theorem 1. Ilinear-type absolute n-local correlations are
generated in Nlinear if each of the sources distributes a two-
qubit pure product state when Eq. (8) is considered as the
Ilinear.

Proof. See Appendix A. �

D. Examples in a nonlinear network [12]

Consider Nn-star (Fig. 3). The existing n-local inequality for
Nn-star is given by Eq. (11). Compared with Nlinear, similar
results hold in Nn-star.

Theorem 2. Considering Eq. (11) as In-star, in Nn-star,
In-star-type absolute n-local correlations are generated when
each of the sources distributes a two-qubit pure product state.

Proof: Similar to Theorem 1. �

E. Utility of characterization

In NT , let BT denote the set of all n-local inequalities IT
compatible with NT . Let � denote the set of all two-qubit
states. Let us fix an inequality I from BT . Members of � can
be categorized as follows (see Fig. 4):

(1) For some states, correlations generated in NT admit
n-local model [Eqs. (3) and (4)]. Let R1 denote the corre-
sponding subset of �.

(2) Let all the parties perform any possible form of local
unitary operations on their respective share of qubit(s). Un-
der such assumption, for some members from �, resulting
measurement correlations do not violate the n-local inequal-
ity I. Let R2 denote the collection of such states. Clearly,

FIG. 4. Categorization of two-qubit state space.

R1 ⊆ R2 ⊆ �. Correlations generated from the states in R2 lie
in AI [Eq. (25)].

(3) Under the same assumption, violation of I may be
observed for some members of �. Clearly � \ R2 = R3 (say)
denote the collection of such states. Correlations generated
from the members of R3 are not-I-type absolute n-local
correlations.

For states lying in R2 \ R1, violation of I cannot be ob-
served though corresponding correlations (generated in NT )
do not admit any n-local hidden variable model and hence are
non-n-local. Such states are thus useless. R3 being a subset of
�, members from R3 do not violate I if the parties are not al-
lowed to perform any unitary operation. Utility of such states
in simulating detectable non-n-locality can be exploited only
by applying suitable local basis change. The present study
thus stresses overanalyzing R3 because this region clearly
points out the efficacy of applying suitable local unitary
operations in this context.

V. EFFECTIVENESS OF UNITARIES

For further investigation, the bilocal network (n = 2 in
Fig. 2) and trilocal network in the star configuration (n = 3
in Fig. 3) are considered. Let Nbilocal and N3-star denote the
bilocal network and trilocal star network, respectively. These
two are the simplest n-local networks of linear and nonlinear
types, respectively. The solo motivation of the present study
is to explore the utility (if any) of local unitary operations
in exploiting non-n-locality both in linear and nonlinear net-
work configurations. So, obvious complexity (for large n) has
been avoided by confining to the simplest linear (for n = 2)
and nonlinear (for n = 3) n-local networks. However, few
instances of non-4-locality are also provided in N4-star.

Bilocal inequality [Eq. (8)] and n-local inequality
[Eq. (11)] have been considered for Nbilocal and Nn-star(for
n = 3, 4), respectively. For the specific measurement contexts
(see Sec. III D, Fig. 3), Eqs. (8) and (11) are the only ex-
isting n-local inequalities compatible with these two specific
networks. The upper bounds [Eqs. (10) and (14)] of each of
Eqs. (8) and (11) exist in the literature. As discussed before,
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violation of Ibilocal is observed in Nbilocal if Eq. (10) is satis-
fied. Similarly in N3-star (N4-star ), violation of I3-star (I4-star ) is
observed if Eq. (14) [Eq. (15)] is satisfied.

To this end, it must be pointed out that these upper bounds
were derived under the assumption that the parties perform
suitable single-qubit local unitary operations [Eq. (16)]. In
this context, it becomes imperative to explore whether mul-
tiqubit unitaries can provide more advantages in simulating
detectable nonbilocality and non-n-locality in Nbilocal and
Nn-star, respectively. Affirmative findings are discussed next.

A. Instances of not-Ibilocal-type absolute bilocality

1. Strategy for detection

Let two states ρ1,2, ρ2,3 used in Nbilocal be such that Eq. (10)
is violated. This implies that violation of Ibilocal is not possible
even if the parties are allowed to perform only single-qubit
unitary operations. Such an observation consequently points
out the impossibility of violation of Ibilocal when the parties do
not perform any local unitary operations. Now, let the parties
perform any possible form of local unitary operations. Under
such an assumption, if the resulting tripartite measurement
correlations violate Ibilocal [Eq. (10)], then ρ1,2, ρ2,3 have
generated not-Ibilocal-type absolute bilocality.

Equation (10) is satisfied if both S1, S2 distribute pure
entangled states in Nbilocal [17]. However, in case one of the
sources distribute a mixed entangled state, no definite conclu-
sion exists. Nbilocal, where one or both the sources distribute
mixed two-qubit entangled state(s), is thus considered next.

2. One source generating a mixed entangled state

Let S1 send a pure entangled state [34]

ρ1,2 = (sin μ1|01〉 + cos μ1|10〉)(sin μ1〈01| + cos μ1〈10|),
(26)

with μ1 ∈ (0, π/2). Let the other source distribute states from
the following class of mixed entangled state [41,42]:

ρ2,3 = ω2|00〉〈00| + (1 − ω2)(sin α2|01〉
+ cos α2|10〉)(sin α2〈01| + cos α2〈10|), (27)

with ω2 ∈ [0, 1] and α2 ∈ [0, π
4 ]. There exist members from

these two families [Eqs. (26) and (27)] for which viola-
tion of Ibilocal is observed if P2 applies suitable single-qubit
[Eq. (16)] and two-qubit unitaries [Eq. (17)] on its share of
two qubits [see Fig. 5(a)]. Details of a particular instance of
such violation are given in the second row of Table IV.

3. Both sources generating mixed entangled states

For i = 1, 2, let Si distribute a state from the above
class of mixed entangled states [Eq. (27), for parameters
ω1, ω2, α1, α2]. For some members from these classes of
states [Eq. (27)], the upper bound of Eq. (8) is �1. But for
suitable local unitary operation [Eq. (19)] applied by the inter-
mediate party, violation of Ibilocal is observed [see Fig. 5(b)].
A particular instance of not-Ibilocal-type absolute bilocality is
detailed in the third row of Table IV.

Instances of violation discussed so far occur in the network
when both sources generate entangled two-qubit states. In this
context, an obvious query arises: in the presence of suitable
local unitaries, can nonbilocality be detected if one of the

(a)

(b)

FIG. 5. Shaded region in both panels give the range of state
parameters for which not absolute Ibilocal-type bilocal correlations
are simulated. Details of the local unitary operations applied by P2

corresponding to panels (a) and (b) are provided in the second and
third rows of Table IV, respectively. Panel (a) gives the range of state
parameters when only one pure entangled state is used in Nbilocal.
Panel (b) shows the corresponding range of parameters for two mixed
entangled states [Eq. (27)] with ω1 = 0.005. It may be noted that
none of these states satisfy the relation given by Eq. (10).

sources distributes a product state? The following theorem
provides a negative response to this query.

Theorem 3. Ibilocal-type absolute correlations are gener-
ated in Nbilocal if at least one of the sources distributes a
two-qubit pure product state.
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TABLE IV. Details of violation instances of Ibilocal [Eq. (8)], I3-star, and I4-star [Eq. (11)] are enlisted here. Second and third rows contain
details related to Nbilocal while the remaining rows correspond to that in N3-star and N4-star Here, in all these networks, only the intermediate
party (P2 in Nbilocal and P1 in N3-star and N4-star) performs local unitary operations. Details of all the nonidentity unitary operations are given
in the second and third columns. The states considered here cannot show the violation of Ibilocal [Eq. (8)] or In-star [Eq. (11)] for n = 3, 4)
if none of the parties are allowed to perform any local unitary operation. As discussed in Sec. V A, this fact is implied by fourth column of
the table.

State 1-qubit 2-qubit L.H.S. L.H.S.
value value

parameters unitary Eq. (16) unitary of Eq. (10) of Eq. (8)
or Eq. (14) or Eq. (11)
or Eq. (15)

μ1 = π/4 (θ (2)
2,2, θ

(2)
2,3 ) = (−1.05316, −0.00039) (φ1, φ2, φ3) = 0.99996 1.02142 in

Eq. (8)
in Eq. (26) and �η(2)

2 = (−0.99220, 0.12067, −0.013127) (−0.03753, 0, −1.40698) in Eq. (10)
(α2, ω2) = (0.152, 0.13) �η(2)

3 = (−0.92711, 0.19909, 0.31754) in Eq. (17)
in Eq. (27)

(α1, ω1) = (0.6, 0.005), (ν1, ν2, ν3, ν4) = 0.99840 1.01677
in Eq. (8)

(α2, ω2) = (0.24, 0.175) (2, 0.50001, 0.90421, 0) in Eq. (10)
in Eq. (27) in Eq. (19)

(μ1, μ3) = (π/4, π/4) (β1, β2, β3) = (π/2, π/2, 0) 2 2.24492
in Eq. (26) in Eq. (18) in Eq. (14) in Eq. (11)

for n = 3

(v1, v3) = (0.89, 0.87) (β1, β2, β3) = (π/2, π/2, 0) 2 2.06144
in Eq. (29) in Eq. (18) in Eq. (14) in Eq. (11)

for n = 3

(α1, ω1) = (0.785, 0.1), (ν1, ν2, ν3, ν4) = 1.99288 2.01637
(α2, ω2) = (0.053176, 0.07) (2.90996, 1.28896, −0.281838, 0) in Eq. (14)
(α3, ω3) = (0.785, 0.07) in Eq. (19) in Eq. (11)

for n = 3
in Eq. (27)

(μ1, μ3, μ4) = (π/4, π/4, π/4) (β1, β2, β3) = (π/2, π/2, 0) 4 4.75863
in Eq. (26) in Eq. (18) in Eq. (15) in Eq. (11)

for n = 4

(ε1, ε2, ε3) =
(0.99, 0.0029, 0.99)

(ν1, ν2, ν3, ν4) = 1.9998 2.2076

δ1 = δ2 = δ3 = 0.99 (1.84378,3.14,0.27298,0) in Eq. (14) in Eq. (11)
for n = 3

in Eq. (31) in Eq. (19)

γ1 = γ5 = 0.1, γ3in[0, 1] (ν1, ν2, ν3, ν4) = 2 2.0926
μ1 = μ3 = π/4, μ2 = 0 (0.7448, −0.2231, −3.14, 0) in Eq. (14) in Eq. (11)

for n = 3
in Eq. (32) in Eq. (19)

(γ1, γ5, γ7) =
(0.01, 0.05, 0.1), γ3 ∈ [0, 1]

(ν1, ν2, ν3, ν4) = 4 5.426

μ1 = μ3 = μ4 = π/4, μ2 = 0 (−0.7070, 0.9344, −3.14, 0) in Eq. (15) in Eq. (11)
for n = 4

in Eq. (32) in Eq. (19)

Proof. If both ρ1,2 and ρ2,3 are pure product states then this
theorem is same as Theorem 1 for n = 2.

If a single two-qubit pure product state is involved in
Nbilocal, the proof of this theorem is given in Appendix B.

Theorem 3 thus prescribes an entanglement detection cri-
terion in Nbilocal provided the network only involves pure
two-qubit states.

In N3-star, N4-star, a contrasting result is observed.
There, non-n-locality (n = 3, 4) can be detected involving a
two-qubit pure product state when P1 performs suitable two-
qubit unitary operations on the joint state of its three qubits.
Violation of In-star [Eq. (11) for n = 3, 4] in presence of local
unitary operations are discussed next. �
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B. Instances of not-In-star-type absolute trilocality for n = 3, 4

1. Detection strategy

A strategy similar to that followed for Nbilocal will be
adopted here. Let Si distribute a two-qubit state ρi,i+1 (i =
1, 2, 3) such that corresponding correlations violate the rela-
tion given by Eq. (14). Now, when all the parties are allowed
to perform local unitary operations, if resulting measurement
correlations violate I3-star [Eq. (11), n = 3], then ρ1,2, ρ2,3,
ρ3,4 have generated not-In-star-type absolute trilocality. Sim-
ilarly, in N4-star, if violation of I4-star [Eq. (11), n = 4] is
observed then ρi,i+1 (i = 1, 2, 3, 4) have generated not-I4-star-
type absolute 4-locality.

2. N3-star involving two entangled and one pure product state

First, let each of S1,S3 distribute a pure entangled state
[Eq. (26) with parameters μ1, μ3 for ρ1,2 and ρ3,4, respec-
tively], Let S2 generate a two-qubit pure product state:

ρ2,3 = 1

4

1∑
i, j,k,l=0

|i j〉〈kl|. (28)

Let P1 perform two-qubit unitary operation of the form given
by Eq. (18). There exist members from these families of
states [Eqs. (26) and (28)] for which four-partite correlations
generated in N3-star fall outside AI3-star [Fig. 6(a)].

Next, let each of S1,S3 generate states from the Werner
family of two-qubit mixed entangled states [40]:

ρi,i+1 = (1 − vi )

4
I2×2 + vi[|01〉〈01| + |10〉〈10|

− (|01〉〈10| + |10〉〈01|)], vi ∈ [0, 1), i = 1, 3.

(29)

Let S2 distribute a pure product state [Eq. (28)]. Over some
range of noise parameters v1, v3 [Fig. 6(b)], violation of I3-star

[Eq. (11)] is observed when P1 perform suitable two-qubit
unitary operation [Eq. (18)]. Particular instances of violation
for both these cases (pure and mixed entanglement), are en-
listed in the fourth and fifth rows of Table IV.

3. N4-star involving three entangled and one pure product state

Let each of Si(i = 1, 3, 4) distribute the maximally entan-
gled state [Eq. ] for μ1 = μ2 = μ4 = π/4 with S3 generating
a two-qubit pure product state [Eq. (28)]. Let P1 perform a
two-qubit unitary operation of the form given by Eq. (18).
Violation of 4-local inequality [Eq. (11), n = 4] is observed
(see seventh row of Table IV).

4. N3-star involving only mixed entanglement

For all i = 1, 2, 3, let ρi,i+1 be a state from the class of
mixed entangled states given by Eq. (27) with state parameters
ωi, αi. Let the intermediate party P1 perform the unitary
operation given by Eq. (19).

For some members from this family [Eq. (27)], correlations
generated fall outside the set AI3-star (Fig. 7). One such exam-
ple is given in the sixth row of Table IV.

VI. RESISTANCE TO NOISE

An n-local quantum network is compatible with any entan-
glement distribution protocol. In an ideal situation, any such

(a)

(b)

FIG. 6. Shaded region is a subspace of the parameter space for
entangled states (Eq. (26)] and Werner class of states [Eq. (29)] in
panels (a) and (b), respectively. In panel (a), corresponding to any
point from the shaded region, the entangled states used in N3-star

[involving a pure product state (28)] can generate not-I3-star-type
absolute trilocality. Same is the case in panel (b) with now two
states considered from the Werner family [Eq. (29)] along with the
pure product state [Eq. (28)]. Details of the local unitary operations
applied by P1 corresponding to panels (a) and (b) are provided in the
fourth and fifth rows of Table IV, respectively. None of these states
satisfy the relation given by Eq. (14) if the parties do not perform any
local basis change.

protocol is supposed to use pure entanglement only. However,
due to the unavoidable interaction of the quantum states with
the environment, noisy entangled states are involved in such
protocols. From a practical viewpoint, it thus becomes im-
portant to analyze whether the application of suitable local
unitaries can enhance the visibility of noisy quantum states to
simulate non-n-locality in any such network scenarios. Two
potent factors of noise are considered for further analysis.

A. Noisy entanglement generation

In an ideal N3-star, initially, let each of the three sources
have the state ρ = |01〉〈01|. The Bell state |φ−〉〈φ−| is cre-
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FIG. 7. Shaded region specify members from a family
of mixed entangled states [Eq. (27)] with (α1, α2, α3) =
(0.785, 0.053176, 0.785). Not-absolute I3-star-type trilocal
correlations are generated when these members are used in
N3-star. Details of the local unitary operations involved are provided
in the sixth row of Table IV. None of these states satisfy the relation
given by Eq. (10).

ated [6] by applying the Hadamard gate H on the first qubit
followed by the CNOT (CNOT ) gate (considering first qubit as
control qubit). In practical situations, owing to imperfections
in both one and two-qubits operations, noisy entanglement is
generated. At each source, let ε and δ denote the parameters
characterizing imperfections in H and CNOT , respectively.
State (ρ ′) resulting from the application of a noisy Hadamard
gate is given by [43]

ρ ′ = ε
(
H ⊗ I2 · ρ · H† ⊗ I2

) + 1 − ε

2
I2 ⊗ ρ2,

where ρ2 = Tr1(ρ).

= 1

2
(|00〉〈00| + |10〉〈10|) − ε

2
(|00〉〈10| + |10〉〈00|). (30)

After applying the noisy CNOT , ρ ′ becomes [43]

ρ ′′ = δ
(
CNOT · ρ ′ · (CNOT )†

) + 1 − δ

4
I2 ⊗ I2

= 1

4

⎡
⎣ 1∑

i, j=0

(1 + (−1)i+ jδ)|i j〉〈i j|

− 2εδ(|11〉〈00| + |00〉〈11|)
⎤
⎦. (31)

In realistic situations, for all i, let Si distribute ρ ′′
i [Eq. (31)

with parameters εi, δi] in N3-star. On receiving the qubits, let
P1 perform two-qubits local unitary operations [Eq. (19)].
Corresponding correlations are then used to test I3-star

[Eq. (11)]. For (ν1, ν2, ν3, ν4) = (1.84378, 3.14, 0.27298, 0)
in Eq. (19) and ε3 = ε1 and δ3 = δ2 = δ1 in Eq. (31), there
exist ranges of noise parameters (ε1, ε2, δ1) for which viola-

(a) (b)

(c)

FIG. 8. All panels give region of noise parameters for which
violation of n-local inequality is obtained when P1 apply suitable
two-qubit local basis change given by Eq. (19) on the joint state of
its qubits in (a) N3-star and (b), (c) N4-star. In panel (a) noisy states
resulting from erroneous entanglement generation are considered.
Panels (b) and (c) involve states resulting from communication of
both qubits of ρi,i+1 through phase-damping channel �i in N3-star and
N4-star, respectively. Specifications of the phase-damped noisy states
ρ ′

i,i+1 [Eq. (32)] are as follows: (b) (μ1, μ2, μ3) = (π/4, 0, π/4),
(c) (μ1, μ2, μ3, μ4) = (π/4, 0, π/4, π/4) with γ3 ∈ [0, 1] in both
panels (b) and (c). States corresponding to any of the shaded regions
indicate higher tolerance against noise obtained when P1 applies
suitable two-qubit unitary operation. So violation of Eq. (11) is not
observed when any of these noisy states are used in the usual (a),
(b) N3-star and (c) N4-star, where the parties either do not apply any
local basis change or perform at most single-qubit local unitary
operations prior to measurements. Details of the two-qubit unitary
operation involved in panels (a)–(c) are specified in the eighth, ninth,
and tenth rows of Table IV, respectively.

tion of Eq. (11) is observed [see Fig. 8(a)]. For such a range of
noise parameters, violation of I3-star is not possible if none of
the parties is allowed to perform any local unitary operation
in N3-star. A numerical instance is given in the eighth row of
Table IV.

B. Noisy communication over quantum channels

Let each source generate a pure entangled state in NT . Let
qubits from at least one of the sources are communicated over
noisy quantum channel. Corresponding parties thus receive
one or more noisy qubits. In such a situation, there may exist
correlations lying outside AIT .

Consider the class of mixed entangled states given by
Eq. (27). Such states, up to local unitary transformations,
are equivalent to amplitude damped version of pure entan-
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gled states. Discussion in Sec. V A clearly points out that,
compared with usual Nbilocal (parties not applying any unitary
operation), violation of Ibilocal is obtained for larger ranges of
noise (ω1, ω2) [see Fig. 5(b)] when P2 performs a suitable
unitary operation on the joint state of the noisy qubits. Similar
findings were discussed in Sec. V B when all the states from
this family of mixed entangled states were used in N3-star

(Fig. 7).
Let Si generate a state ρi,i+1 from the family of pure en-

tangled states [Eq. (26)]. For all i = 1, 2, 3, let both the qubits
of ρi,i+1 be passed through a phase damping channel �i. The
phase damped state ρ ′

i,i+1 takes the form [34]

ρ ′
i,i+1 = sin2 μi|01〉〈01| + cos2 μi|10〉〈10| + (1 − γi)

× cos μi sin μi(|01〉〈10|+ |10〉〈01|) with i = 1, 2, 3.

(32)

γi denotes the probability with which phase damping occurs
when a qubit is passed through �i. Let γ2 = γ1, γ4 = γ3, and
γ6 = γ5. Consider specific pure states [Eq. (26)] given by
(μ1, μ2, μ3) = (π/4, 0, π/4). It may be noted that, for μ2 =
0, ρ2,3 is a pure product state. When phase damped versions
of these specific states are used in N3 and each of the parties
perform single-qubit unitary operations, then corresponding
correlations do not violate I3-star because the left-hand side
(L.H.S.) of Eq. (14) turns out to be two. Similarly, no vi-
olation of I4-star [L.H.S. of Eq. (15) gives four] is obtained
in N4-star involving these three particular states and ρ ′

4,5
with μ4 = π

4 .
Now, let us consider the case when the intermediate party

P1 performs two-qubit unitary operation given by Eq. (19).
Non-n-local correlations are simulated over some range of
noise parameters [see Figs. 8(b) and 8(c)]. Thus, in Nn-star(n =
3, 4), involving two-qubit unitary operations (by P1), In-star

offers more resistance to phase damping noise. A specific
instance of such unitary operations [Eq. (19)] in each N3-star

and N4-star is given in the ninth and tenth row of Table IV,
respectively.

C. Error due to imperfection in measurements

In contrast with ideal measurement contexts, the devices
used by the parties may be imperfect in the sense that any
such device may fail to detect the outputs with some nonzero
probability (see Sec. III H). This in turn leads to generation
of noisy correlation statistics, the source of error being the
failure probability of output detection. To exploit the utility of
unitary operations in offering more resistance to such type of
noise, Nlinear and Nn-star are considered.

In Nlinear (Nn-star) let each of the intermediate parties
(central party) perform imperfect Bell basis (n-qubit GHZ
basis) measurement whereas each of the extreme parties
(in both the networks) perform noisy projective measure-
ment [see Eq. (21) and Table III]. Resulting measurement
statistics are then used to test violation of correspond-
ing n-local inequality: Eq. (8) in Nlinear and Eq. (11)
in Nn-star.

Theorem 4. If Vlinear and Vn-star denote the value of the
L.H.S. of n-local inequality, Eqs. (8) and (11), respectively,
in an ideal measurement scenario (perfect-measurement con-

text), then violation of Eqs. (8) and (11) is possible in the
imperfect-measurement context when Eqs. (33) and (34) hold,
respectively,

Vlinear >
1√

δ
(noise)
1 δ

(noise)
n+1 �n

i=2β
(noise)
i

, (33)

Vn-star >
2n−2(

γ
(noise)
1 �n+1

i=2 δ
(noise)
i

) 1
n

. (34)

Proof. See Appendix C. �
Considering Nlinear, for the sake of simplicity of notation,

let V1 denote the value of the L.H.S. of Eq. (8) or (11) when
the parties perform only a single-qubit basis change on their
respective share of qubits. Similarly, let V2 denote the value
of the L.H.S. of Eq. (8) or (11) when every party is allowed
to perform any possible form of local unitary operation. The
application of multiqubit unitary operations helps to gener-
ate more-noise-resistant correlations in Nlinear and Nn-star if
Eqs. (35) and (36) hold, respectively:

1

V2
<

√
δ

(noise)
1 δ

(noise)
n+1 �n

i=2β
(noise)
i <

1

V1
, (35)

1

V2
<

(
γ

(noise)
1 �n+1

i=2 δ
(noise)
i

) 1
n <

1

V1
. (36)

The above relations clearly point out that multiqubit unitary
operations are effective if V1 < V2. Several such instances
have been discussed in previous sections. For a particular
example in Nbilocal, considering the second row of Table IV
in a consistent imperfect measurement context, i.e., where all
the noise parameters are same: δ1 = δ3 = β2 = β (say). Up to
the application of single-qubit unitary operations, violation of
Eq. (8) in the presence of consistent imperfection in measure-
ments requires:

β >
1

0.99996
2
3

. (37)

So, violation of Eq. (8) (for n = 2) is impossible if the parties
use imperfect measurement devices. However, when the par-
ties perform the specific two-qubit unitary operations (detailed
in the second row of Table IV), the violation of the inequality
is observed for β > 1/1.02142

2
3 ≈ 0.986.

Similarly for the example of noise resistance offered by
2-qubit unitaries in N3-star, consider the fourth row in the same
Table. If the parties apply only single-qubit unitaries and then
measure in imperfect devices with δ2 = δ3 = δ4 = γ1 = γ

(say), no violation of Eq. (11) is obtained for any γ ∈ [0, 1).
If unitary operations, as specified in the fourth row of Ta-
ble IV, are applied followed by measurement in the imperfect
devices, violation of Eq. (11) (for n = 3) is observed for any
γ ∈ (0.917, 1].

D. Imperfection in unitary operations

For some j = 1, 2, . . . , n + 1, let Uj denote an m-qubit
(m � 1) local basis change applied by party P j on its share
of the overall quantum state ρ (say) in the network. Let
the unitary operation Uj be imperfect in the sense that there
exists a nonzero probability 1 − λ(noise) (say) with which
Uj fails to act. Due to such imperfection in basis change,
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ρ evolves to ρ ′ (say):

ρ ′ = λ(noise)Uj · ρ · U †
j + (

1 − λ(noise)
)
ρ. (38)

Such ρ ′, on being subjected to perfect measurement con-
texts, may generate non-n-local correlations in corresponding
quantum networks over some range of λ(noise). For further
numerical illustration, let us consider some of the unitary
operations from Table IV.

In Nbilocal, let us consider the numerical instance provided
in the third row of the table. If P2 applies the noisy version
of the unitary operation over its share of the two specific
states mentioned there (third row), nonbilocal correlations are
generated for λ(noise) ∈ [0.91, 1]. For N3-star, let us consider the
imperfect version of the unitary operation and the particulars
of the quantum states mentioned in the fourth row of Table IV.
Nontrilocal correlations are observed for any value of λ(noise)

in the range [0.635,1].

VII. COMPARISON WITH EXISTING n-LOCAL
NETWORKS

Since its inception, the source-independence assumption
has helped reduce requirements for demonstrating quantum
nonlocality compared with the standard Bell scenario. Over
years, this assumption has been used in multifaceted appli-
cations exploiting quantum nonlocality. As a consequence,
several n-local network configurations have emerged.

Keeping pace with such progress, an attempt has been
made here to showcase the applicability of suitable 2-qubit
unitary operations for simulating nonlocal quantum correla-
tions in such networks. From what has been discussed so
far, it can safely be concluded that there exist many such
unitary operations, which when applied prior to measure-
ments enhance detection of non-n-local correlations compared
with detection of the same in existing network scenarios.
Each instance of violation of an n-local inequality (for n =
2, 3, 4) provided above takes place in the new network sce-
nario where the parties perform suitable basis change prior
to measurements. As has been mentioned each time after
providing examples of violation, n-local bounds existing in
the literature fail to detect violation of corresponding n-local
inequalities for the same quantum states and the same col-
lection of measurement settings. At this point, it may be
recalled from earlier discussions that all such bounds were
derived in corresponding n-local networks in the absence
of multiqubit unitary operations. Hence, such failure of ex-
isting n-local bounds, in contrast with observable violation
in the new network scenario (involving application of two-
qubit basis changes over multiple qubits) clearly imply the
effectiveness of multiqubit unitary operations. The last two
columns of Table IV reflect the numerics in support of the
comparison.

To this end, it may once again be mentioned that such
an advantage offered by multiqubit unitaries is indicated
by existing results of effectiveness of global unitary op-
erations in exploiting several notions of quantumness (see
Sec. I) in standard measurement scenarios involving single
sources of quantum states. However, owing to the inher-
ent unphysicalness of applying a global basis change in
any such scenario (see Secs. I and II for details), all

TABLE V. Details of the Hamiltonian gates [34] corresponding
to 1-qubit [Eq. (16)] and 2-qubit unitary operations (17) and (18) are
enlisted here.

Unitary
operation Gates

1-qubit exp(−i θ
2 H ) with

unitary [Eq. (16)] H = �η · �σ
2-qubits �3

j=1 exp(−iφ j Hj ) with
unitary [Eq. (17)] Hj = σ j ⊗ σ j, j = 1, 2, 3

2-qubits �3
j=1 exp(−iβ j Hj ) with

unitary [Eq. (18)] H1 = σ1 ⊗ σ2, H2 = σ2 ⊗ σ3,
H3 = σ3 ⊗ σ1

such results merely reduce to mathematical studies with
no proper insight in view of practical situations. But the
present study does not suffer from any such drawback be-
cause, in network configuration, at least one of the parties
get access to multiple qubits and can perform multiqubit
unitaries.

VIII. CIRCUIT IMPLEMENTATION

A unitary operation, applied to any quantum system, is a
linear transformation which preserves the norm of the vector
representing the state of the system [34]. In quantum in-
formation theory, any unitary operation thus corresponds to
a reversible operation that does not cause any information
loss. Now, quantum gates can be considered as the building
blocks of quantum circuits, which are the basic structures
used to perform quantum computations. Any unitary opera-
tion can be implemented in a quantum circuit using quantum
gates.

Consider the single-qubit unitary operation [Eq. (16)]. The
quantum gate associated with this unitary transformation is
the single-qubit Hamiltonian gate (see Table V). The effect of
each of the two 2-qubit unitary operations given by Eqs. (17)
and (18) can be obtained by applying a sequence of three 2-
qubit Hamiltonian gates (see Table V).

The unitary operation given by Eq. (19) corresponds to a
2-qubits controlled unitary gate CR(ν1, ν2, ν3, ν4) with control
on the first qubit and a possible global phase factor exp(iν4)
of the generic single-qubit unitary gate R(ν1, ν2, ν3) that takes
|0〉 to the state exp(iν3)[cos ν1

2 |0〉 + sin ν1
2 exp(iν2)|1〉] [39].

Circuit diagrams [39] for quantum gates corresponding to
some of the unitary operations used in Sec. V, i.e., associated
with some of the unitary operations enlisted in Table IV, are
given in Fig. 9.

IX. DISCUSSION

The notion of non IT -type absolute n-locality has been
introduced so as to provide a general framework for analyzing
the role of multiqubit unitary operations in any given quan-
tum network NT . To point out the existence of non-IT -type
absolute n-local correlations, explicit examples of two-qubit
unitary operations enhancing violation of bilocal inequality
in linear network and n-local (n = 3, 4) inequality in the
star network have been provided. As mentioned in Sec. IV,
the bounds of n-local inequalities in Nlinear and Nn-star exist

032216-13



KAUSHIKI MUKHERJEE PHYSICAL REVIEW A 109, 032216 (2024)

FIG. 9. Circuit diagram of the quantum gates used in the (a) sec-
ond, (b) third, and (c) fourth rows of Table IV, respectively. (a) t1 =
θ

(2)
2,2/2, t2 = θ

(2)
2,3/2, t3 = φ1, t4 = φ3; H1 = �η (2)

2,2 · �σ and H2 = �η (2)
2,3 · �σ .

(c) t5 = t6 = π/2. The gates are simulated using the Qiskit soft-
ware [39].

in literature under the assumption that the parties perform
single-qubit unitary operations. In this context, the present

findings clearly point out the existence of two-qubit states
which failed to generate non-n-locality in the usual linear and
nonlinear (star) n-local network but generated the same after
being subjected to suitable two-qubit unitary operations (see
Table IV). This in turn points out the utility of two-qubit uni-
tary operations in different practical tasks involving quantum
network topology.

When the parties perform suitable two-qubit local ba-
sis change, the visibility of some classes of bipartite noisy
entangled states can increase in the context of generating
non-n-locality. Such instances of non-n-locality have been
provided for bilocal and star network configuration only. It
will be interesting to generalize the study for any n-local
quantum network. For that one needs to characterize the cor-
relations lying outside AIT for any topology T .

It is observed that nontrilocal correlations can be simulated
in star-shaped trilocal networks involving a single two-qubit
product state. However, even after thorough numerical inves-
tigation, no such conclusion can be obtained when more than
one pure product state is allowed in such a network. Again,
by Theorem 2, it is impossible to get any nontrilocality when
each of the sources sends a product state. Regarding Nlinear,
it is observed that nonbilocality is not detected even if one of
the two sources sends a product state. In this context, it will
be interesting to analyze the maximum number of two-qubit
product states allowed in Nn-star (n � 5) such that correlations
lie outside AIn-star .

The present study may be considered as the initial step
to exploit the utility of multiqubit unitary operations in NT .
Here only a few two-qubit unitary operations have been used.
These turned out to be sufficient for the purpose of pointing
out the effectiveness of suitable local basis change to generate
nonbilocal and nontrilocal correlations. However, a detailed
analysis of general multiqubit unitary operations in this re-
spect may lead to more interesting findings.

To this end, it may be noted that practical demonstrations
of both Nbilocal and N3-star exist in literature [20,44]. In any
such network, quantum gates corresponding to the unitary op-
erations may be included. Resulting network architecture may
lead to the experimental realization of quantum correlations
lying outside AIbilocal and AI3-star . However, a detailed discus-
sion of any such experimental setup and practical challenges
related to the implementation of the gates in the existing setup
lies beyond the scope of the present discussion and can be
considered as a direction of future research. Also it will be
interesting to establish relations between the entangling ca-
pacity of multiqubits gates with that of simulated non-n-local
correlations.

APPENDIX A: PROOF OF THEOREM 1

Proof of Theorem 1. For all i = 1, 2, . . . , n, Si generates a pure product state:

ρi,i+1 =
⎡
⎣

⎛
⎝ 1∑

j=0

ai, j | j〉
⎞
⎠

⎛
⎝ 1∑

j=0

ai, j〈 j|
⎞
⎠

⎤
⎦ ⊗

⎛
⎝ 1∑

j=0

bi, j | j〉
⎞
⎠

⎛
⎝ 1∑

j=0

bi, j〈 j|
⎞
⎠, where

1∑
j=0

a2
i, j =

1∑
j=0

b2
i, j = 1. (A1)
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The overall state in the network [Eq. (7)] is thus given by

ρin = ⊗n
i=1

⎡
⎣

⎛
⎝ 1∑

j=0

ai, j | j〉
⎞
⎠

⎛
⎝ 1∑

j=0

ai, j〈 j|
⎞
⎠

⎤
⎦ ⊗n

i=1

⎡
⎣

⎛
⎝ 1∑

j=0

bi, j | j〉
⎞
⎠

⎛
⎝ 1∑

j=0

bi, j〈 j|
⎞
⎠

⎤
⎦. (A2)

Let all the parties perform any possible form of local unitary on their respective share of qubits (see Sec. IV B). The overall state
[Eq. (22)] in the network now becomes

ρ f = ⊗n+1
i=1 �i, where (A3)

�1 = U1 ·
⎡
⎣

⎛
⎝ 1∑

j=0

a1, j | j〉
⎞
⎠

⎛
⎝ 1∑

j=0

a1, j〈 j|
⎞
⎠

⎤
⎦ · U†

1 ,

�n+1 = Un+1 ·
⎡
⎣

⎛
⎝ 1∑

j=0

bn, j | j〉
⎞
⎠

⎛
⎝ 1∑

j=0

bn, j〈 j|
⎞
⎠

⎤
⎦ · U†

n+1,

�k = Uk ·
⎡
⎣

⎛
⎝ 1∑

j=0

bk−1, j | j〉
⎞
⎠

⎛
⎝ 1∑

j=0

bk−1, j〈 j|
⎞
⎠

⎤
⎦ ⊗

⎡
⎣

⎛
⎝ 1∑

j=0

ak, j | j〉
⎞
⎠

⎛
⎝ 1∑

j=0

ak, j〈 j|
⎞
⎠

⎤
⎦ · U†

k ∀ k = 2, 3, . . . , n. (A4)

The parties then perform local measurements on their respective share of qubits, forming ρ f [Eq. (A3)]. (n + 1)-partite
measurement correlations are used to test the n-local inequality [Eq. (8)]. ρ f [Eq. (A3)] being the tensor product of single-qubit
states �i, each (n + 1)-partite correlator term in the n-local inequality [Eq. (8)] can be factorized into the product of single-party
correlator terms: 〈

O1,y1 Oi
2Oi

3 . . . Oi
n−1On+1,yn+1

〉 = 〈O1,y1〉�n
j=2

〈
Oi

j

〉〈On+1,yn+1〉 ∀ i = 0, 1. (A5)

Observables corresponding to the Bell basis measurement are �o j ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)} ∀ j = 2, 3, . . . , n. So,
|〈Oi

j〉| � 1 ∀ i, j. Consequently, the L.H.S. of Eq. (8) becomes

√
|In| +

√
|Jn| � 1

2

1∑
s=0

√
|〈(O1,0 + (−1)sO1,1)(On+1,0 + (−1)sOn+1,1)〉|

� �s1=1,n+1

√∑1
s2=0 |〈Os1,0 + (−1)s2 Os1,1〉|

2

= �s1=1,n+1

√
Max(〈Os1,0〉, 〈Os1,1〉) � 1. (A6)

The inequality in the second line is due to the relation [12]

n∑
j=1

(
�n

i=1Ai, j
) 1

n � �n
i=1

⎛
⎝ n∑

j=1

Ai, j

⎞
⎠

1
n

, Ai, j > 0. (A7)

Equation (A6) proves the theorem. �

APPENDIX B: PROOF OF THEOREM 3

Before proving Theorem 3, a lemma is provided.
Lemma 1. Any three-qubit state satisfies the inequality

1∑
s=0

|〈O1,0 ⊗ σ2+(−1)s ⊗ σ2+(−1)s + (−1)sO1,1 ⊗ σ2+(−1)s ⊗ σ2+(−1)s〉| � 2, (B1)

where O1,i = �mi · �σ (i = 0, 1) with �mi ∈ R3.
Proof. Let � be any three-qubit state. Let us first consider the case where � is a pure state. The canonical form of a three-qubit

pure state is given by [45]

� = |ϑ〉〈ϑ |, where

|ϑ〉 = κ0|000〉 + κ1 exp (iς )|100〉 + κ2|101〉 + κ3|110〉 + κ4|111〉, κi � 0, 0 � ς � π,

4∑
i=0

κ2
i = 1. (B2)
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For i = 0, 1, let �mi = (sin θi cos βi, sin θi sin βi, cos θi ). For any three-qubit pure state [Eq. (B2)], the correlator expression in
the L.H.S. of Eq. (B1) becomes∣∣(κ2

0 − κ2
1 + κ2

2 + κ2
3 − κ2

4

)
(cos θ1 + cos θ2) + 2κ0κ1[cos ς (cos β1 sin θ1 + cos β2 sin θ2) + sin ς (sin θ1 sin β1 + sin θ2 sin β2)]

∣∣
+ |2[−(κ2κ3 + κ1κ4 cos ς ) cos θ1 + (κ2κ3 + κ1κ4 cos ς ) cos θ2 + κ0κ4(cos β1 sin θ1 − cos β2 sin θ2)]|. (B3)

Equation (B3) is now maximized over measurement parameters. Applying the inequality x cos θ + y sin θ � (x2 + y2)1/2 for
θ = θ1, θ2, β1, β2, the upper bound of the expression in Eq. (B3) in terms of state parameters is given by∑

i=0,1

√[
κ2

0 − κ2
1 + κ2

2 + κ2
3 − κ2

4 + 2(−1)i(κ2κ3 + κ1κ4 cos ς )
]2 + 4|κ0||

[
κ1 cos ς + (−1)i+1κ4

]2 + κ2
1 sin2 ς |. (B4)

Maximizing over all the state parameters, maximum value of above expression turns out to be two. Hence, the upper bound of
the L.H.S. of Eq. (B1) turns out to be two. This proves the lemma when a three-qubit pure state is considered.

Now any three-qubit mixed state can be written as an ensemble of pure states, {� j, p j}k
j=1. For each � j , the L.H.S. of Eq. (B1)

is �2. Thus, 2
∑k

j=1 p j � 2. This proves the lemma. �
Proof of Theorem 3. Without loss of generality, let S1 distribute a two-qubit entangled state φent and S2 generate a two-qubit

product state [Eq. (A1) for i = 2]. After all the parties perform a local basis change, the overall state in the network takes the
form

ρ f = ϕ1 ⊗ ϕ2, (B5)

where ϕ1 is a three-qubit entangled state shared by parties P1 and P2 whereas ϕ2 is a single-qubit state of P3. Owing to this
tensor product structure of ρ f , each tripartite correlator term in the bilocal inequality [Eq. (8) for n = 2]

〈O1,y1 Oi
2O3,y3〉 = 〈O1,y1 Oi

2〉〈O3,y3〉 ∀ i = 0, 1. (B6)

Consequently, the L.H.S. of Eq. (8) becomes

√
|I2| +

√
|J2| = 1

2

1∑
s=0

√
|〈(O1,0Os

2 + (−1)sO1,1Os
2

)
(O3,0 + (−1)sO3,1)〉|

�

√∑1
s=0 |〈O1,0Os

2 + (−1)sO1,1Os
2〉|

2

√∑1
s=0 |〈O3,0 + (−1)sO3,1〉|

2

=
√∑1

s=0 |〈O1,0Os
2 + (−1)sO1,1Os

2〉|
2

√
Max(〈O3,0〉, 〈O3,1〉)

�

√∑1
s=0 |〈O1,0Os

2 + (−1)sO1,1Os
2〉|

2
(B7)

because observables O3,0, O3,1 are binary valued. Now, as prescribed in Eq. (8) for n = 2, the correlators’ expression in the
above inequality [Eq. (B7)] is given by〈

O1,iO
j
2

〉 = 〈 �mi · �σ ⊗ σ2+(−1) j ⊗ σ2+(−1) j 〉 ∀ i, j = 0, 1. (B8)

Using Eq. (B8) and Lemma 1, in Eq. (B7), the theorem is proved.A. �

APPENDIX C: PROOF OF THEOREM 4

Proof of Theorem 4. First considering an n-local linear network for proving Eq. (33). As mentioned in the main text, each
of the parties is performing imperfect measurements (Table III). Now there exist two correlator terms in the n-local inequality
[Eq. (8)]: In and Jn. Focusing on the form of expectation terms used in these two correlators gives 〈O1,y1 Oi

2Oi
3 · · · Oi

n−1On+1,yn+1〉
with i = 0, 1 corresponding to In and Jn, respectively. The pattern of each of the expectation terms is the same in the sense
that each can be interpreted as W1 − W2 where each of W1 and W2 is the linear sum of an equal number of distinct probability
terms p(o1, o2, . . . , on−1on+1|y1, yn+1, z2, . . . , zn) such that W1 + W2 = 1. To be more precise, for construction of the expectation
terms, the entire set of (n + 1)-partite probability terms p(o1, o2, . . . , on−1on+1|y1, yn+1, z2, . . . , zn) is divided in two groups G1

and G2 (say) with |G1| = |G2| such that sum of terms from Gi corresponds to Wi(i = 1, 2). Due to such a pattern existing in each
of the expectation terms 〈O1,y1 Oi

2Oi
3 · · · Oi

n−1On+1,yn+1〉noisy, the contribution of identity operators (I2, I2 ⊗ I2) does not appear
in the computation of these terms for imperfect measurements [Eq. (21)]. Consequently, the difference between the expectation
terms computed in the ideal measurement scenario, in comparison with those in the imperfect scenario lies only in scaling of
these terms: 〈

O1,y1 Oi
2Oi

3 · · · Oi
n−1On+1,yn+1

〉noisy = δ
(noise)
1 δ

(noise)
n+1 �n

i=2β
(noise)
i 〈O1,y1 Oi

2Oi
3 · · · Oi

n−1On+1,yn+1〉ideal. (C1)
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Equation (C1) in turn leads to scaling of the correlator terms In and Jn in Eq. (8). This in turn proves the theorem for n-local
linear networks.

Consider next Nn-star. For any finite value of n, 2n−1 correlator terms appear in the corresponding n-local inequality [Eq. (11)].
The expectation term appearing in each of the correlators depends on õ1, which is obtained from classical postprocessing of the
raw output string o1 of P1 [12]. As discussed in Ref. [12], each of the expectation terms assumes the same pattern W ′

1 − W ′
2 with

each of W ′
1 and W ′

2 being a linear sum of an equal number of distinct probability terms p(õ1o2, . . . , on+1|z1, y2, . . . , yn+1) and
W ′

1 + W ′
2 = 1. So, as discussed for linear networks above, the expectation terms in ideal and imperfect measurement scenarios

get related by a scaling factor only:

1

2n

∑
y2,...,yn+1

(−1)hi (y2,...,yn+1 )〈A(i)
(1)A

(2)
y2

· · · A(n+1)
yn+1

〉noisy = γ
(noise)
1 �n+1

i=2 δ
(noise)
i

1

2n

∑
y2,...,yn+1

(−1)hi (y2,...,yn+1 )〈A(i)
(1)A

(2)
y2

· · · A(n+1)
yn+1

〉ideal
.

(C2)
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