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Violation of the two-time Leggett-Garg inequalities for a coarse-grained quantum field
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We investigate the violation of the Leggett-Garg inequalities for a quantum field, focusing on the two-time
quasiprobability distribution function of the dichotomic variable with a coarse-grained scalar field. The Leggett-
Garg inequalities are violated depending on the quantum state of the field and the size of coarse graining.
We demonstrate that the violation of the Leggett-Garg inequalities appears even for the vacuum state and the
squeezed state by properly constructing the dichotomic variable and the projection operator.
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I. INTRODUCTION

The Leggett-Garg inequalities were proposed to test the
macrorealism to characterize classical systems [1,2], in which
a macroscopic system is in a definite state at any given time in
different available states and the state can be measured with-
out any effect on the system. However, this can be violated
in quantum systems as a result of the superposition principle
and the state collapse. The Leggett-Garg inequalities utilize
temporal correlations [3], which are formulated in a similar
way to the Clauser-Horne-Shimony-Holt inequality [4], to test
the spatial nonlocal correlation and the violation of the real-
ism. The violation of the Leggett-Garg inequalities has been
experimentally verified in many macroscopic quantum sys-
tems, e.g., spin operators in qubit systems, superconducting
circuits, and neutron interferometer [5–10]. The Leggett-Garg
inequalities have also been applied to a test of the neutrino
oscillations coherence [11] and single- and multiqubit systems
on a quantum computer [12]. The quantum nature of gravita-
tional interaction might be probed using the violation of the
Leggett-Garg inequalities in the future [13].

Theoretical research on the Leggett-Garg inequalities is
progressing (e.g., [14–16]). In the present paper we develop
a theoretical formula for testing the violation of the Leggett-
Garg inequalities in a quantum field theory. We utilize the
two-time quasiprobability distribution function introduced in
Ref. [17] and explored in Refs. [18–21]. The present work
is a generalization of the theoretical work for a harmonic
oscillator in Ref. [22], in which the violation of the two-
time Leggett-Garg inequalities was investigated for various
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quantum states and projection operators. (For studies of the
violation of the Leggett-Garg inequalities in a harmonic oscil-
lator, see also Refs. [23–26] and cf. Ref. [27].) In Ref. [22],
a new technique to compute the two-time quasiprobabil-
ity distribution function was developed. By generalizing the
formulation to a quantum field, we demonstrate that the
Leggett-Garg inequalities are violated for the dichotomic vari-
able with a spatially coarse-grained quantum field, which will
be useful to verify the quantum nature of a field.

The present paper is organized as follows. In Sec. II we
briefly review the two-time quasiprobability distribution func-
tion and present the formulation for a quantum field theory in
(3 + 1)-dimensional Minkowski space-time. We demonstrate
that the violation of the Leggett-Garg inequalities appears for
a one-mode coherent state in the quantum field, and the condi-
tions for the violation are clarified. We discuss the effect of the
squeezing of the quantum state of the field on the violation of
the Leggett-Garg inequalities. We also discuss a nontrivial ex-
tension of the dichotomic variable and the projection operator,
which reveals the violation of the Leggett-Garg inequalities
for the vacuum state and the squeezed state. In Sec. III we
demonstrate a similar violation for a chiral massless field
in (1 + 1)-dimensional Minkowski space-time. Section IV is
devoted to a summary and conclusions. In the Appendix, a
brief summary of performing the integration of Eq. (30) is
presented.

II. LEGGETT-GARG INEQUALITIES

We start with a brief review of the Leggett-Garg inequal-
ities with the two-time quasiprobability distribution function.
We introduce a dichotomic variable Q, which takes values
±1, and we assume that Q1 and Q2 are the values of Q by
measurement at times t1 and t2, respectively. Here s1 and s2 are
the numbers ±1, which we choose for the measurements at t1
and t2, respectively. Then we have (1 + s1Q1)(1 + s2Q2) � 0.
Within the framework of macrorealism, there exists a joint
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probability function p(Q1, Q2) to give the expectation values,
which take the values of 0 � p(Q1, Q2) � 1; then the expec-
tation value of (1 + s1Q1)(1 + s2Q2) must be non-negative:

〈(1 + s1Q1)(1 + s2Q2)〉 � 0. (1)

This is a simple explanation of the two-time Leggett-Garg in-
equalities. Thus, depending on the choice of s1 and s2, we have
four inequalities for the two times t1 and t2. In the quantum
theory, the corresponding two-time Leggett-Garg inequalities
are expressed regarding Q̂(t ) as a Heisenberg operator of a
dichotomic quantum variable, which gives ±1 by a measure-
ment. Corresponding variables Q̂1 and Q̂2 are defined by the
results of measurements of Q̂(t1) = eiĤt1 Q̂e−iĤt1 and Q̂(t2) =
eiĤt2 Q̂e−iĤt2 , respectively, where we assume that the system
evolves unitarily through the Hamiltonian Ĥ . The two-time
quasiprobability function is introduced as

qs1,s2 (t1, t2) = 1
8 Tr{[1 + s1Q̂(t1)][1 + s2Q̂(t2)]ρ0} + (1 ↔ 2),

(2)

where ρ0 is the initial density operator. Introducing the pro-
jection operator P̂s = (1 + sQ̂)/2 and its Heisenberg operator
as

P̂s(t ) = eiĤt P̂se
−iĤt = 1

2 eiĤt (1 + sQ̂)e−iĤt = 1
2 [1 + sQ̂(t )],

(3)

the quasiprobability distribution function is written as

qs1,s2 (t1, t2) = 1
2 Tr[P̂s1 (t1)P̂s2 (t2)ρ0] + (1 ↔ 2)

= Re Tr[P̂s2 (t2)P̂s1 (t1)ρ0]. (4)

We note that qs1,s2 (t1, t2) satisfies the relations of the probabil-
ity [20]

〈Q̂(t1)〉 =
∑

s1,s2=±1

s1qs1,s2 (t1, t2), (5)

〈Q̂(t2)〉 =
∑

s1,s2=±1

s2qs1,s2 (t1, t2), (6)

1

2
〈{Q̂(t1), Q̂(t2)}〉 =

∑
s1,s2=±1

s1s2qs1,s2 (t1, t2), (7)

where {Q̂(t1), Q̂(t2)} = Q̂(t1)Q̂(t2) + Q̂(t2)Q̂(t1). However,
qs1,s2 (t1, t2) may have negative values in quantum theory; then
we call qs1,s2 (t1, t2) quasiprobability.

The above formula can be applied to a continuous quantum
variable of a harmonic oscillator [21,22,24,25]. In Ref. [22]
a useful formula to compute the quasiprobability distribution
function has been developed, which we apply to a quan-
tum field in (3 + 1)-dimensional Minkowski space-time. In
the present paper we consider a massless scalar field φ(x),
expressed as

φ̂(t, x) = 1

(2π )3/2

∫
d3k

×
(

1√
2ωk

e−iωkt+ik·xâk + 1√
2ωk

eiωkt−ik·xâ†
k

)
, (8)

where âk and â†
k are the annihilation and creation operators

satisfying [âk, â†
k′] = δ(3)(k − k′), and ωk = |k|. As the di-

chotomic operator, we adopt

Q(t ) = sgn[ ˆ̄φ(t ) − ϕ(t )], (9)

and the operator ˆ̄φ(t ) is defined by the coarse-grained field of
φ̂(x, t ) using the Gaussian window function with the scale L
as

ˆ̄φ(t ) = 1

π3/2L3

∫
d3x φ̂(x, t )e−x2/L2

, (10)

where ϕ(t ) can be chosen arbitrarily. We note that φ̂(x, t )
should be understood as a Heisenberg operator. Then we may
write ˆ̄φ(t ) = (2π )−3/2

∫
d3k[uk(t )âk + u∗

k(t )â†
k], with uk(t ) =

e−iωkt−k2L2/4/
√

2ωk .
The projection operator is given by

Ps(t ) = 1
2 {1 + s sgn[ ˆ̄φ(t ) − ϕ(t )]} = θ (s[ ˆ̄φ(t ) − ϕ(t )]),

(11)

where θ (z) is the Heaviside function. The quasiprobability
distribution function is

qs1,s2 (t1, t2) = Re Tr{θ (s2[ ˆ̄φ(t2) − ϕ(t2)])θ (s1[ ˆ̄φ(t1)

− ϕ(t2)])ρ0}. (12)

The use of the mathematical formula θ ′(z − c) = δ(z − c) =
(2π )−1

∫∞
−∞ d p e−ip(z−c) allows us to write

θ (s[ ˆ̄φ(t ) − ϕ(t )]) =
∫ ∞

0
dc
∫ ∞

−∞

d p

2π
eip{−s[ ˆ̄φ(t )−ϕ(t )]+c}. (13)

When the initial state ρ0 at t = 0 is a pure state ρ0 = |ψ0〉〈ψ0|,
we have

qs1,s2 (t1, t2) = Re

[ ∫ ∞

0

∫ ∞

0
dc1dc2

∫ ∞

−∞

∫ ∞

−∞

d p1d p2

(2π )2

×〈ψ0|e−ip2s2
ˆ̄φ(t2 )e−ip1s1

ˆ̄φ(t1 )|ψ0〉eip2[c2+s2ϕ(t2 )]

× eip1[c1+s1ϕ(t1 )]

]
. (14)

A. Coherent state

In this section we consider the initial state in which a mode
� is the coherent state and the other modes are the ground
state, i.e., |ψ0〉 = D�(ξ ) |0〉, where |0〉 denotes the vacuum
state. We define the displacement operator as

D�(ξ�) = exp(ξ�â†
� − ξ ∗

� â�) (15)

and we have

D†
� (ξ�)e−ip2s2

ˆ̄φ(t2 )e−ip1s1
ˆ̄φ(t1 )D�(ξ�)

= exp(−ξ�â†
� + ξ ∗

� â�)

× exp

(
−ip2s2

∫
d3k

(2π )3/2
[uk (t2)âk + u∗

k (t2)â†
k]

)

× exp

(
−ip1s1

∫
d3k

(2π )3/2
[uk (t1)âk + u∗

k (t1)â†
k]

)

× exp(ξ�â†
� − ξ ∗

� â�). (16)

Using the. Baker-Campbell-Hausdorff formula eX+Y =
eX eY e−[X,Y ]/2 and eX eY = e[X,Y ]eY eX , which hold for the oper-
ators X and Y satisfying [X,Y ] = const, the quasiprobability
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(a) (b)

FIG. 1. (a) Contour of q−1,1(0, t2) on the plane of �L and �t2, where we fixed ξ = 8. (b) Contour of q−1,1(0, t2) on the plane of ξ and �t2,
where we fixed �L = 10/3. In these panels, the quasiprobability takes negative values in the colored regions, where the Leggett-Garg inequality
is violated.

function leads to

qs1,s2 (t1, t2) = Re

[ ∫ ∞

0

∫ ∞

0
dc1dc2

∫ ∞

−∞

∫ ∞

−∞

d p1d p2

(2π )2

× exp

(
− A

2

(
p2

1 + p2
2

)− p1 p2s1s2B

−ip1{s1[E (t1)−ϕ(t1)]

− c1} − ip2{s2[E (t2)−ϕ(t2)] − c2}
)]

,

(17)

where A and B are defined by

A = 1

(2π )3

∫
d3k

1

2ωk
e−L2k2/2 = 1

4L2π2
, (18)

B = 1

(2π )3

∫
d3k

e−iωk (t2−t1 )

2ωk
e−L2k2/2

= 1

4L2π2
−i

√
π

2

e−(t2−t1 )2/2L2

4L3π2
(t2− t1)

[
1−erf

(
i(t2− t1)√

2L

)]
,

(19)

with erf (z) the error function, and E (t ) is defined by

E (t ) = 1

(2π )3/2

√
2

ω�

|ξ�|e−L2�2/4 cos(ω�t − α�), (20)

with ξ� = |ξ�|eiα� . In the present paper we assume α� = 0.
From Eq. (17) we note that the choice of the coherent state
as the initial condition with ϕ(t ) = 0 is equivalent to the
choice of the vacuum state as the initial condition by choosing
ϕ(t ) = −E (t ). Therefore, we assume ϕ(t ) = 0 in this section.
By performing the Gaussian integral in Eq. (17), we have

qs1,s2 (t1, t2) = Re

[
1

2π
√

A2 − B2

∫ ∞

0

∫ ∞

0
dc1dc2 exp

(
− 1

2(A2 − B2)

{
A
(
c2

1 + c2
2

)− 2Bs1s2c1c2

− 2s1[AE (t1) − BE (t2)]c1 − 2s2[AE (t2) − BE (t1)]c2 + A[E2(t1) + E2(t2)] − 2BE (t1)E (t2)
})]

, (21)

which can be performed numerically, as demonstrated in
Fig. 1. The appearance of the Leggett-Garg inequalities de-
pends on the parameter of the amplitude of the coherent state
ξ (=ξ�) and on the size of the coarse graining L of the field
through E (t ), A, and B. Figure 1 plots the contour of the
quasiprobability distribution function q−1,1(0, t2). Figure 1(a)
plots q−1,1(0, t2) on the plane of �L and �t2 with fixed ξ = 8,
where � = |�|. The colored regions are where the quasiprob-
ability distribution function has negative values. Similarly,
Fig. 1(b) shows q−1,1(0, t2) on the plane of ξ and �t2, where
�L is fixed as �L = 10/3. These figures demonstrate that the
two-time Leggett-Garg inequality with s1 = −1 and s2 = 1 is
violated when we choose the parameters ξ and L properly. The

results show that the optimized values are �L 
 π and ξ 
 10
for the violation. Thus the clear violation of the Leggett-Garg
inequality occurs for the choice of s1 = −1 and s2 = 1. We
found a violation for the case of s1 = −1 and s2 = −1, but
the violation is very weak compared with the case of s1 = −1
and s2 = 1.

The behaviors of Fig. 1 can be understood as follows. We
note that L is a parameter that represents the size of the coarse
graining of the field. From Fig. 1(a), L must be taken to be
1 < �L < 3.5 for the violation of the Leggett-Garg inequality.
If L is much larger than the wavelength of the mode in the
coherent state, L� � 1, the coherence in ˆ̄φ(t ) is washed out
by the coarse graining of the field. Conversely, if L is much
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shorter than the wavelength of the coherent state, L� � 1, the
vacuum fluctuations of shorter-wavelength modes in φ̂(t ) have
a measured value of ˆ̄φ(t ) that dominates the quantum nature
of the mode � in the coherent state. The optimized value is
�L 
 π , which means that L equals half of the wavelength
of the coherent wave π/�. From Fig. 1(b) we see that ξ , the
magnitude of the coherent state parameter, must be greater
than 7 for the violation. The optimized value is ξ 
 10, and
then the violation of the Leggett-Garg inequalities gets weaker
as ξ becomes larger.

The quasiprobability distribution function for a harmonic
oscillator in a coherent state is periodic with respect to t1
and t2 with the period of the harmonic oscillator [22]. This is
because the evolution of the system is unitary. In contrast, the
quasiprobability distribution function for the coarse-grained
quantum field shows no periodic behavior. The evolution of
our system is unitary too, but this feature could be understood
as an analog of the decoherence effect coming from the fact
that the dichotomic variable for the field theory is constructed
by the coarse graining of the field. This could be understood
as a result of the quantum correlation in the field.

B. Squeezed state with a coherent mode

In this section we consider the initial state as the two-mode
squeezed coherent state defined by

|ψ0〉 = D�(ξ�)

⎛
⎜⎜⎝ ∏

k
(independent)

Sk,−k(ζk) |0〉

⎞
⎟⎟⎠, (22)

where Sk,−k(ζk) is the two-mode squeezed operator defined as
Sk,−k(ζk) = exp(ζ ∗

k aka−k − ζka†
ka†

−k). We use the properties
of the squeezing operator that transforms annihilation and
creation operators as

S†
k,−k(ζk)âkSk,−k(ζk) = âk cosh rk − â†

−keiθk sinh rk, (23)

S†
k,−k(ζk)â†

kSk,−k(ζk) = â†
k cosh rk − â−ke−iθk sinh rk, (24)

where we used ζk = rkeiθk . After a computation similar to
that in the preceding section, we have the expression for the
quasiprobability

qs1,s2 (t1, t2) = Re
∫ ∞

0

∫ ∞

0
dc1dc2

∫ ∞

−∞

∫ ∞

−∞

d p1d p2

(2π )2
exp

[
−Asq(t1)p2

1 + Asq(t2)p2
2

2
− p1 p2s1s2Bsq(t1, t2)

− ip1{s1[E (t1)−ϕ(t1)] − c1} − ip2{s2[E (t2)−ϕ(t2)] − c2}
]
, (25)

where we defined

Asq(t ) = 1

(2π )3

∫
d3k

e−L2k2/2

2ωk
[cosh 2rk − sinh 2rk cos(2ωkt − θk)], (26)

Bsq(t1, t2) = 1

(2π )3

∫
d3k

e−L2k2/2

2ωk

{
e−iωk (t2−t1 ) cosh2 rk − sinh 2rk cos[ωk (t1 + t2) − θk]+eiωk (t2−t1 ) sinh2 rk

}
, (27)

and E (t ) is defined by Eq. (20). Here we note that assuming the squeezed state with a coherent mode as the initial condition with
ϕ(t ) = 0 is equivalent to assuming the squeezed state as the initial condition with ϕ(t ) = −E (t ). We assume ϕ(t ) = 0 hereafter
in this section. The case of the coherence state is reproduced by choosing rk = 0.

When rk does not depend on the mode k and θk = 0, i.e., rk = r, Asq(t ) and Bsq(t1, t2) reduce to

Asq(t ) = Le−2r − it
√

2πe−2t2/L2
erf (i

√
2t/L) sinh 2r

4π2L3
, (28)

Bsq(t1, t2) = 1

4
√

2π2L3

{√
2e−2rL − i

√
π (t2 − t1)e−(t2−t1 )2/2L2

[
1 − erf

(
i(t2 − t1)√

2L

)
cosh 2r

]

+ i
√

π (t1 + t2)e−(t1+t2 )2/2L2
erf

(
i(t1 + t2)√

2L

)
sinh 2r

}
. (29)

After integration of the right-hand side of Eq. (25) over p1 and p2, we have

qs1,s2 (t1, t2) = Re

[
1

2π
√

Asq(t1)Asq(t2) − Bsq(t1, t2)2

∫ ∞

0

∫ ∞

0
dc1dc2 exp

(
− 1

2[Asq(t1)Asq(t2) − Bsq(t1, t2)2]

× {
Asq(t2)c2

1 + Asq(t1)c2
2 − 2s1s2Bsq(t1, t2)c1c2 − 2c1s1[Asq(t2)E (t1) − B(t1, t2)E (t2)]

−2c2s2[Asq(t1)E (t2) − Bsq(t1, t2)E (t1)] + Asq(t2)E (t1)2 + Asq(t1)E (t2)2 − 2Bsq(t1, t2)E (t1)E (t2)
})]

. (30)

Figure 2 shows the same plots as in Fig. 1 but for the squeezed
state with a coherent mode Eq. (30) with r = 0.5. Figure 2(a)

plots the contour of q−1,1(0, t2) on the plane of �L and �t2
with fixed ξ = 8, while Fig. 2(b) shows the contour on the
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(a) (b)

FIG. 2. Contour of q−1,1(0, t2) for the squeezed state with a coherent mode. (a) Contour of q−1,1(0, t2) on the plane of �L and �t2, where
we fixed ξ = 8 and r = 0.5. (b) Contour of q−1,1(0, t2) on the plane of ξ and �t2, where we fixed �L = 10/3 and r = 0.5.

plane of ξ and �t2 with fixed �L = 10/3. The overall behavior
of q−1,1(0, t2) in Fig. 2 is similar to that of Fig. 1, though
the effect of the squeezed initial state changes the pattern
of the contour. The effect of squeezing increases the region
where the Leggett-Garg inequality is violated. In particular,
the periodic behavior appears in time t2 when ξ is large, but it
is not very clear because the violation is weak there.

C. Intuitive understanding of the violation

Let us discuss the reason why the violation of the Leggett-
Garg inequalities appears. We investigated the Leggett-Garg
inequalities in a quantum field theory, but it is useful to
consider it in analogy with a harmonic oscillator [22]. The
expectation value of the variable ˆ̄φ(t ) is given by

Tr[ ˆ̄φ(t )ρ0] = 1

(2π )3/2

√
2

ω�

|ξ�|e−L2�2/4 cos(ω�t − α�)

= E (t ). (31)

As we have assumed α� = 0 in the present paper, the
expectation value is Tr[ ˆ̄φ(t )ρ0] = φ̄0 cos ω�t , where φ̄0 =
|ξ�|e−L2�2/4/

√
4π3ω� > 0. Figure 3 shows a schematic plot

of the potential for φ̄ in analogy with a harmonic oscilla-
tor, which gives the solution φ̄0 cos ω�t . As we have also
assumed t1 = 0, the red mark in the figure denotes the

FIG. 3. Schematic plot of the potential V (φ̄) for φ̄. The violation
of the Leggett-Garg inequality can be understood using an analogy
of the dynamics of φ̄ as a harmonic oscillator.

initial position of φ̄ at t1 = 0; then φ̄ starts to move to the
left. As shown in the preceding section, the violation of the
Leggett-Garg inequalities clearly occurs for s1 = −1 and s2 =
1. This means that the violation appears for the quasiprob-
ability that the measurement at t1 gives φ̄ < 0 and the
measurement at t2 gives φ̄ > 0. The results of these measure-
ments are opposite to the expected values of Tr[ ˆ̄φ(t )ρ0] =
φ̄0 cos(ω�t ). More specifically, the expectation values at t1 and
t2 are Tr[ ˆ̄φ(t1 = 0)ρ0] > 0 and Tr[ ˆ̄φ(t2)ρ0] < 0 for π/2 <

ω�t2 < 3π/2. Because Tr[ ˆ̄φ(t )ρ0] = φ̄0 cos(ω�t ) can be re-
garded as a classically expected motion, the violation of the
Leggett-Garg inequalities occurs when the measurements give
values opposite to the classically expected values. This occurs
in quantum mechanics because the wave function has a spread
due to the superposition principle, which is the origin of the
violation of realism.

D. Projection operator for the vacuum state
and the squeezed state

In this section we adopt

Q(t ) = 1 + sgn[ ˆ̄φ(t ) − w] + sgn[− ˆ̄φ(t ) − w] (32)

as a dichotomic operator, where the operator ˆ̄φ(t ) is defined by
the coarse-grained field using the Gaussian window function
with the scale L in a similar way to the preceding section. Here
w is a parameter. The projection operator is given by

Ps(t ) = 1
2 {1 + s + sgn[ ˆ̄φ(t ) − w] + sgn[− ˆ̄φ(t ) − w]}

= θ (s[ ˆ̄φ(t ) − w]) + θ ( − s[ ˆ̄φ(t ) + w]) + 1
2 (s − 1),

(33)

where θ (z) is the Heaviside function. This dichotomic variable
defined by the above projection operator is understood as
follows. When the absolute value of a result of a measurement
of the coarse-grained field ˆ̄φ(t ) is larger than w, we assign
Q = 1. On the other hand, when the absolute value of a re-
sult of a measurement of ˆ̄φ(t ) is smaller than w, we assign
Q = −1. Therefore, the projection operator Ps with s = 1
gives the projection onto the region |φ̄(t )| > w, while Ps with
s = −1 gives the projection onto the region |φ̄(t )| � w.
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The quasiprobability function is given by evaluating

qs1,s2 (t1, t2) = Re Tr
[{

θ (s2[ ˆ̄φ(t2) − w]) + θ ( − s2[ ˆ̄φ(t2) + w]) + 1
2 (s2 − 1)

}
× {

θ (s1[ ˆ̄φ(t1) − w]) + θ ( − s1[ ˆ̄φ(t1) + w]) + 1
2 (s1 − 1)

}
ρ0
]
. (34)

Using the mathematical formula θ ′(z − a) = δ(z − a) = 1
2π

∫∞
−∞ d p e−ip(z−a), we have

qs1,s2 (t1, t2) = Re

[
〈ψ0|

(∫ ∞

0
dc2

∫ ∞

−∞

d p2

2π

(
e−ip2{s2[ ˆ̄φ(t2 )−w]−c2} + eip2{s2[ ˆ̄φ(t2 )+w]+c2})+ 1

2
(s2 − 1)

)

×
(∫ ∞

0
dc1

∫ ∞

−∞

d p1

2π

(
e−ip1{s1[ ˆ̄φ(t1 )−w]−c1} + eip1{s1[ ˆ̄φ(t1 )+w]+c1})+ 1

2
(s1 − 1)

)
|ψ0〉

]
, (35)

where we assumed that the initial state ρ0 at t = 0 is the squeezed state ρ0 = |ψ0〉〈ψ0| with

|ψ0〉 =

⎛
⎜⎜⎝ ∏

k
(independent)

Sk,−k(ζk)

⎞
⎟⎟⎠ |0〉 . (36)

After calculations similar to those in the preceding section, we have the quasiprobability distribution function

qs1,s2 (t1, t2) = Re

[
2
∫ ∞

0

∫ ∞

0
dc1dc2

∫ ∞

−∞

∫ ∞

−∞

d p1d p2

(2π )2

× exp

(
−Asq(t1)p2

1 + Asq(t2)p2
2

2
− p1 p2s1s2Bsq(t1, t2) + ip1(s1w + c1) + ip2(s2w + c2)

)

+ 2
∫ ∞

0

∫ ∞

0
dc1dc2

∫ ∞

−∞

∫ ∞

−∞

d p1d p2

(2π )2

× exp

(
−Asq(t1)p2

1 + Asq(t2)p2
2

2
+ p1 p2s1s2Bsq(t1, t2) + ip1(s1w + c1) + ip2(s2w + c2)

)

+ 2
∫ ∞

0
dc1

∫ ∞

−∞

d p1

2π
exp −Asq(t1)p2

1

2
+ ip1(s1w + c1)

1

2
(s2 − 1)

+ 2
∫ ∞

0
dc2

∫ ∞

−∞

d p2

2π
exp −Asq(t2)p2

2

2
+ ip2(s2w + c2)

1

2
(s1 − 1) + 1

4
(s1 − 1)(s2 − 1)

]
, (37)

where Asq(t ) and Bsq(t1, t2) are defined by Eqs. (26) and (27), respectively. Here we assume that rk does not depend on k and
θk = θ0 = 0, i.e., rk = r. Equation (37) can be evaluated in a similar way to the preceding section,

qs1,s2 (t1, t2) = Re

{
1

π
√

Asq(t1)Asq(t2) − Bsq(t1, t2)2

∫ ∞

0

∫ ∞

0
dc1dc2 exp

(
− 1

2[Asq(t1)Asq(t2) − Bsq(t1, t2)2]

× {
Asq(t2)c2

1 + Asq(t1)c2
2 − 2s1s2Bsq(t1, t2)c1c2 + 2c1s1w[Asq(t2) − B(t1, t2)]

+ 2c2s2w[Asq(t1) − Bsq(t1, t2)] + [Asq(t2) + Asq(t1) − 2Bsq(t1, t2)]w2})

+ 1

π
√

Asq(t1)Asq(t2) − Bsq(t1, t2)2

∫ ∞

0

∫ ∞

0
dc1dc2 exp

(
− 1

2[Asq(t1)Asq(t2) − Bsq(t1, t2)2]

× {
Asq(t2)c2

1 + Asq(t1)c2
2 + 2s1s2Bsq(t1, t2)c1c2 + 2c1s1w[Asq(t2) + B(t1, t2)]

+ 2c2s2w[Asq(t1) + Bsq(t1, t2)] + [Asq(t2) + Asq(t1) + 2Bsq(t1, t2)]w2
})

+ 1

2
(s2 − 1)

[
1 − erf

(
s1w√

2Asq(t1)

)]
+ 1

2
(s1 − 1)

[
1 − erf

(
s2w√

2Asq(t2)

)]
+ 1

4
(s1 − 1)(s2 − 1)

}
. (38)

Figure 4 plots the contour of q1,1(0, t2) on the plane of wL
and t2/L, where r = 0.3 [Fig. 4(a)] and r = 0.5 [Fig. 4(b)].

We can see that the quasiprobability distribution function has
negative values smaller than −0.03 and −0.025 for r = 0.3
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(a) (b)

FIG. 4. Contour of q1,1(0, t2) for the squeezed state with Eq. (33) on the plane of wL and t2/L, where we fixed θ0 = 0 and (a) r = 0.3 and
(b) r = 0.5. In these panels, the quasiprobability has negative values in the colored regions, where the Leggett-Garg inequality is violated.

and 0.5 [in Figs. 4(a) and 4(b), respectively] at Lw 
 0.2. Fig-
ure 5 plots the same contour as in Fig. 4 but for the case r = 0,
the vacuum state. For the vacuum state and the squeezed
states, the expectation values of ˆ̄φ(t ) are always zero. On the
other hand, q1,1(0, t2) denotes the quasiprobability that the
measurement at t1 = 0 gives |φ̄(t1)| > w and the measure-
ment at t2 gives |φ̄(t2)| > w. This is the counterintuitive result
of measurements against the expectation values. This occurs
because of a spread of the wave function, coming from the
superposition principle of the quantum-mechanical systems.

III. ONE-DIMENSIONAL CHIRAL
MASSLESS SCALAR FIELD

In this section we consider a chiral massless quantum
field in (1 + 1)-dimensional Minkowski space-time motivated
by Ref. [28]. We consider a massless scalar field, which is
expressed as

φ̂(t, x) = 1

(2π )1/2

∫ ∞

0
dk

(
1√
2k

e−iωk (t+x)âk

+ 1√
2k

eiωk (t+x)â†
k

)
, (39)

where âk and â†
k are the annihilation and creation operators

satisfying [âk, â†
k′ ] = δ (k − k′), respectively, and ωk = k. As

FIG. 5. Same as in Fig. 4 but for the case r = 0 and θ0 = 0, the
vacuum state.

the dichotomic operator, we adopt

Q(t ) = sgn[ ˆ̄φ′(t ) − ϕ(t )], (40)

where we defined the operators ˆ̄φ′(t ) by the coarse-grained
quantity of φ̂′(x, t ) using the Gaussian window function with
the scale L as

ˆ̄φ′(t ) = 1√
πL

∫ ∞

−∞
dx φ̂′(x, t )e−x2/L2

, (41)

with φ′(t, x) = ∂φ(x, t )/∂x, and ϕ(t ) can be chosen arbitrar-
ily. Then we may have

ˆ̄φ′(t ) = 1√
2π

∫ ∞

0
dk[uk (t )âk + u∗

k (t )â†
k], (42)

with uk (t ) = ike−ikt−k2L2/4/
√

2k. The projection operator and
the quasiprobability distribution function are given by

Ps(t ) = 1
2 {1 + s sgn[ ˆ̄φ′(t ) − ϕ(t )]} = θ (s[ ˆ̄φ′(t ) − ϕ(t )]),

(43)

qs1,s2 (t1, t2) = Re Tr{θ (s2[ ˆ̄φ′(t2) − ϕ(t2)])θ (s1[ ˆ̄φ′(t1)

−ϕ(t2)])ρ0}. (44)

A. Coherent state

We first consider the initial state in which a mode � is
in the coherent state and the other modes are in the vacuum
state, i.e., |ψ0〉 = D�(ξ ) |0〉. In this case, we have the same
expression for the quasiprobability distribution function as
Eq. (21) but with A, B, and E (t ) replaced by

A = 1

2π

∫ ∞

0
e−L2k2/2 k2

2k
dk = 1

4πL2
, (45)

B = 1

2π

∫ ∞

0
e−L2k2/2 e−ik(t1−t2 )

2k
k2dk

= 1

4πL2
− i

4πL3
e−(t2−t1 )2/2L2

(t2 − t1)

√
π

2

×
[

1−erf

(
i(t2 − t1)√

2L

)]
, (46)
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(a) (b)

FIG. 6. Contour of q−1,1(0, t2) for the one-mode coherent state of the field (a) on the plane of �L and �t2, where we fixed ξ = 3, and (b) on
the plane of ξ and �t2, where we fixed �L = 10/3. In these panels, the quasiprobability takes negative values in the colored regions, where the
Leggett-Garg inequality is violated.

and

E (t ) =
√

ω�

π
|ξ�|e−L2�2/4 sin(α� − ω�t ), (47)

with ξ = |ξ�|eiα� . We assume α� = 0 in the present paper.
The quasiprobability distribution function can be evaluated

numerically, as demonstrated in Fig. 6, which plots the con-
tour of the quasiprobability distribution function q−1,1(0, t2)
on the plane of �L and �t2 [Fig. 6(a)] and on the plane of
ξ and �t2 [Fig. 6(b)]. Behaviors similar to those in Fig. 1
can be seen. The appearance of the Leggett-Garg inequalities
depends on the parameters of the amplitude of the coherent
state ξ and on the size of the coarse graining L of the field
through E (t ), A, and B. Figure 6(a) plots the contour on the
plane of �L and �t2 with fixed ξ = 3. The colored regions are
where the quasiprobability distribution function has negative
values. Similarly, Fig. 6(b) shows the contour on the plane of

ξ and �t2, where �L is fixed as �L = 10/3. The clear violation
of the two-time Leggett-Garg inequalities appears for s1 = −1
and s2 = 1 when we choose the parameters ξ and L properly.
The results show that the optimized values are �L 
 π and
ξ 
 4.

B. Squeezed state with a coherent mode

We next consider the squeezed state with a coherent mode
defined by |ψ0〉 = D�(ξ�)[

∏
k>0 Sk (ζk )] |0〉, where Sk (ζk ) is

the one-mode squeezing operator defined as

Sk (ζk ) = exp

(
ζ ∗

k â2
k − ζkâ†

k
2

2

)
. (48)

In this case, we have the same expression for the quasiprob-
ability distribution function as Eq. (25) but with Asq(t ) and
Bsq(t1, t2) replaced by

Asq(t ) = 1

2π

∫ ∞

0
dk e−L2k2/2 k2

2k
[cosh 2rk − sinh 2rk cos(2kt − θk )], (49)

Bsq(t1, t2) = 1

2π

∫ ∞

0
dk e−L2k2/2 k2

2k
{cosh 2rk cos[k(t1 − t2)] − sinh 2rk cos[k(t1 + t2) − θk] + i sin[k(t1 − t2)]}, (50)

and E (t ) defined by Eq. (47), where ζk = rkeiθk . Equations (49) and (50) yield

Asq(t ) = L(cosh 2r − cos θ sinh 2r) + e−2t2/L2√
2πt[−i cos θ erf(i

√
2t/L) − sin θ ] sinh 2r

4πL3
, (51)

Bsq(t1, t2) = 1

4
√

2L3π

(
− i

√
π (t2 − t1) + cosh 2r

[√
2L − ie−(t2−t1 )2/2L2√

π (t2 − t1)erf

(
− i(t2 − t1)√

2L

)]

− sinh 2r

{√
2L cos θ + ie−(t2+t1 )2/2L2√

π (t2 + t1)

[
cos θerf

(
i(t2 + t1)√

2L

)
− i sin θ

]})
(52)

when ζk does not depend on k, i.e., ζk = r and θk = θ . In
this case, we have the same expression for the quasiprob-
ability distribution function as Eq. (30) but with Asq(t ),
Bsq(t1, t2), and E (t ) defined by Eqs. (51), (52), and (47),
respectively.

Figure 7 shows the contour of the quasiprobability dis-
tribution function q−1,1(0, t2). Figure 7(a) plots the contour
of q−1,1(0, t2) on the plane of �L and �t2 with fixed ξ = 3;
Fig. 7(b) shows the contour on the plane of ξ and �t2 with
fixed �L = 10/3. In Fig. 7 we assumed rk = 0.5 and θk = 0.
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(a) (b)

FIG. 7. Same as Fig. 6 but for the squeezed field with a coherent mode with rk = r = 0.5 and θk = 0. (a) Contour of q−1,1(0, t2) on the
plane of �L and �t2, where we fixed ξ = 3. (b) Contour of q−1,1(0, t2) on the plane of ξ and �t2, where we fixed �L = 10/3.

Similarly to Fig. 6, q−1,1(0, t2) in Fig. 7 has negative values
in the colored region in each panel. The overall behavior of
q−1,1(0, t2) in Fig. 7 is similar to that of Fig. 6, though the
effect of the squeezed initial state changes the pattern of the
contour.

We can understand when the violation of the Leggett-Garg
inequalities appears in a way to similar the three-dimensional
case. For the one-dimensional chiral field, the expectation
value of the coarse-grained field is

Tr[ ˆ̄φ′(t )ρ0] =
√

ω�

π
|ξ�|e−L2�2/4 sin(α� − ω�t ) = E (t ). (53)

As we assumed α� = 0, Tr[ ˆ̄φ′(t )ρ0] takes negative val-
ues for 0 < ω�t < π . On the other hand, q−1,1(0, t2) is
the quasiprobability that the measurement of ˆ̄φ′(t ) at t2
gives a positive value, which is opposite to the expecta-
tion values for 0 < ω�t < π , where the violation of the
Leggett-Garg inequality appears as demonstrated in Figs. 6
and 7.

C. Projection operator for the squeezed state
and the vacuum state

Similarly to Sec. II C, let us now consider the case when
the dichotomic variable Q(t ) is adopted as

Q(t ) = 1 + sgn[ ˆ̄
φ′(t ) − w] + sgn[− ˆ̄

φ′(t ) − w], (54)

in which the projection operator is written as

Ps(t ) = 1
2 {1 + s + sgn[ ˆ̄φ′(t ) − w] + sgn[− ˆ̄φ′(t ) − w]}

= θ (s[ ˆ̄φ′(t ) − w]) + θ ( − s[ ˆ̄φ′(t ) + w]) + 1
2 (s − 1).

(55)

The dichotomic variable is defined so that we assign Q = 1
(Q = −1) when the absolute value of a result of a measure-
ment of the coarse-grained field ˆ̄φ′(t ) is larger (smaller) than
w. For the squeezed state defined by |ψ0〉 = ∏

k>0 Sk (ζk ) |0〉,
the expression of the quasiprobability distribution function
is the same as Eq. (37) but with Asq(t ), Bsq(t1, t2), and E (t )
in this section. Figure 8 plots the contour of the quasiprob-
ability distribution function q1,1(0, t2) on the plane of wL

(a) (b)

FIG. 8. Contour of q1,1(0, t2) for the one-dimensional chiral massless field with the projection operator (55) on the plane of wL and
t2/L, where we fixed (a) r = 0 and (b) r = 0.3. In these panels, the quasiprobability takes negative values in the colored regions, where the
Leggett-Garg inequality is violated.
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FIG. 9. Contour of q1,1(0, t2) for the one-dimensional chiral
massless field with the projection operator (55) on the plane of
squeezed parameter r and t2/L, where we fixed wL = 0.4.

and t2/L for the vacuum state with r = 0 [Fig. 8(a)] and
for the squeezed state with r = 0.3 [Fig. 8(b)]. We can see
behaviors similar to the results of the three-dimensional model
in Sec. II C (see Figs. 4 and 5). Similarly, Fig. 9 plots
q1,1(0, t2) on the plane of r and t2/L. The quasiprobability
distribution function has negative values smaller than −0.02
around t2/L 
 1.2 and wL 
 0.4 ∼ 0.45 even for the vacuum
state. Figure 10 plots q1,1(0, t2) as a function of t2/L for the
model with wL = 0.45 and r = 0 [Fig. 10(a)] and with wL =
0.4 and r = 0.3 [Fig. 10(b)]. For the vacuum state and the
squeezed state, the expectation values of the coarse-grained
value Tr[ ˆ̄φ′(t )ρ0] is always zero. On the other hand, q1,1(0, t2)
is the quasiprobability that the measurement at t1 (=0) gives
|φ̄′(0)| > w and the measurement at t2 gives |φ̄′(t2)| > w.
This is the counterintuitive result of measurements against
the expectation values, which may occur due to a spread of
the wave function and the superposition principle in quantum-
mechanical systems.

IV. CONCLUSION

We have examined the violation of the Leggett-Garg in-
equalities for a quantum scalar field in a coherent state and the
squeezed state with a coherent mode excitation, as well as the
squeezed state and the vacuum state, where we constructed

the dichotomic variable of a coarse-grained field. We found
that the violation of the Leggett-Garg inequalities may occur
when ξ � 7 and 1 � �L � 3.5 for the (3 + 1)-dimensional
quantum field in the one-mode coherent state. A similar vi-
olation appears for the (1 + 1)-dimensional chiral massless
field, though the conditions for the violation are slightly dif-
ferent. We also demonstrated that the model of the one-mode
coherent state with ϕ(t ) = 0 is equivalent to the model of
the vacuum state choosing ϕ(t ) = −E (t ). Further, we demon-
strated that a simple choice of the dichotomic variable and
the projection operator exhibits violation of the Leggett-Garg
inequalities for the vacuum state, as in Secs. II D and III C.
Thus, by constructing the dichotomic variable properly, the
violation of the Leggett-Garg inequalities can be observed for
a quantum field in the vacuum state as well as the squeezed
state. The violation of the Leggett-Garg inequalities occurs
when the measurements give values opposite to the expec-
tation values, which can be understood in analogy with a
harmonic-oscillator model [22]. The periodic behavior in the
quasiprobability distribution function, which appears in the
case of a harmonic oscillator [22], does not appear for a
coarse-grained quantum field. This could be understood as
a kind of decoherence effect resulting from the fact that the
dichotomic variable of the coarse-grained quantum field has
a quantum correlation with the other region. Thus our finding
demonstrates a possible use of the Leggett-Garg inequalities
for testing the quantum nature of a field. We demonstrated
the violations of the Leggett-Garg inequalities for the chiral
massless quantum field in one dimension, which might be
applied in an experiment of the quantum Hall system [28–30].
In the present work we did not consider any physical process
of measurements of the dichotomic variable, which is con-
structed by a coarse-grained quantum field in a finite local
region. Predictions connected to such a realistic experiment
are left for future investigation (e.g., [31]).
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(a) (b)

FIG. 10. Contour of q1,1(0, t2) as a function of t2/L for the one-dimensional chiral massless field in the vacuum state and squeezed state
with the projection operator (55), where we fixed (a) r = 0 and wL = 0.45 and (b) r = 0.3 and wL = 0.4.
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APPENDIX: USEFUL FORMULA FOR THE QUASIPROBABILITY DISTRIBUTION FUNCTION

Using the variables c1 = c cos u and c2 = c sin u, the right-hand side of Eq. (30) leads to

qs1,s2 (t1, t2) = Re

{
1

4π [Asq(t1)Asq(t2) − Bsq(t1, t2)2]3/2

∫ π/2

0
du exp

(
− Asq(t2)E (t1)2+ Asq(t1)E (t2)2− 2Bsq(t1, t2)E (t1)E (t2)

2[Asq(t1)Asq(t2) − Bsq(t1, t2)]2

)

×
[

2[Asq(t1)Asq(t2) − Bsq(t1, t2)2]2

Asq(t2)cos2u + Asq(t1)sin2u − s1s2 sin 2u
−

√
2π

(
Asq(t1)Asq(t2) − Bsq(t1, t2)2

Asq(t2)cos2u + Asq(t1)sin2u − s1s2Bsq(t1, t2) sin 2u

)3/2

× exp

( {s1Asq(t2)E (t1) cos u + s2Asq(t1)E (t2) sin u − Bsq(t1, t2)[s2 sin uE (t1) + s1 cos uE (t2)]}2

2[Asq(t1)Asq(t2) − Bsq(t1, t2)2][Asq(t2)cos2u + Asq(t1)sin2u − s1s2 sin 2uBsq(t1, t2)]

)

× erfc

(
s1Asq(t2)E (t1) cos u + s2Asq(t1)E (t2) sin u − Bsq(t1, t2)[s2 sin uE (t1) + s1 cos uE (t2)]

2[Asq(t1)Asq(t2) − Bsq(t1, t2)2]

×
√

2[Asq(t1)Asq(t2) − Bsq(t1, t2)2]

Asq(t2)cos2u + Asq(t2)sin2u − 2s1s2Bsq(t1, t2) sin 2u)

)

× {s1Asq(t2)E (t1) cos u + s2Asq(t1)E (t2) sin u − Bsq(t1, t2)[s2E (t1) sin u + s1E (t2) cos u]}
]}

,

where erfc(z) is the complementary error function.
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